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Abstract—The amalgamation of non-orthogonal multiple ac-
cess (NOMA) and physical layer security is a significant research
interest for providing spectrally-efficient secure fifth-generation
networks. Observing the secrecy issue among multiplexed NOMA
users, which is stemmed from successive interference cancellation
based decoding at receivers, we focus on safeguarding untrusted
NOMA. Considering the problem of each user’s privacy from
each other, the appropriate secure decoding order and power
allocation (PA) for users are investigated. Specifically, a decoding
order strategy is proposed which is efficient in providing positive
secrecy at all NOMA users. An algorithm is also provided through
which all the feasible secure decoding orders in accordance with
the proposed decoding order strategy can be obtained. Further,
in order to maximize the sum secrecy rate of the system, the
joint solution of decoding order and PA is obtained numerically.
Also, a sub-optimal decoding order solution is proposed. Lastly,
numerical results present useful insights on the impact of key
system parameters and demonstrate that average secrecy rate
performance gain of about 27 dB is obtained by the jointly
optimized solution over different relevant schemes.

I. INTRODUCTION AND BACKGROUND

By sharing the same resource block among numerous users

[1], non-orthogonal multiple access (NOMA) offers a promis-

ing solution to the issue of providing massive connectivity

in future wireless networks. However, NOMA is confronted

with critical security issues regarding users’ privacy, due to

the broadcast nature of wireless transmission, and successive

interference cancellation (SIC) based decoding at receivers [1]-

[2]. Physical layer security (PLS) is regarded as a favorable

technique for providing secure communications over wireless

channels [3]. Therefore, applying PLS in NOMA has recently

emerged as a new research frontier for providing NOMA based

spectrally-efficient secure communication system [2].

A. State-of-the-Art

The security objectives in NOMA can be divided into

two categories: firstly, security of information-carrying signal

against external eavesdroppers, and secondly, security of mul-

tiplexed data of NOMA users due to breach of trust among

users [3]. The security concern against external eavesdroppers

occurs because the transmitted information is vulnerable to

eavesdropping due to the open nature of wireless medium.

In this context, PLS of NOMA in large-scale networks has

been studied in [4] where a protected zone around the base

station (BS) is adopted to maintain an eavesdropper-free area.

In [5], optimal power allocation (PA) is characterized to

maximize the secrecy sum rate of multiple users against an

eavesdropper in a NOMA system. In [6], the optimal data

rates, decoding order, and power assigned to each user is

investigated for protecting the data transmission to NOMA

users against external eavesdroppers.

Besides, secrecy concern among multiplexed NOMA users

is stemmed because of the decoding concept of SIC at

receivers. Instead of assuming the users as trusted, secure

NOMA transmission among users when the users are con-

sidered as untrusted is a practical system design aspect. The

untrusted users’ scenario is a hostile situation where users have

no mutual trust and each user focuses on securing its own data

from all others [7]-[8]. In this context, [9] assumed near and

far users as trusted and untrusted, respectively, in each group

of NOMA users and investigated the sum secrecy rate of only

near users. In [10] also, the secrecy outage probability of a

trusted near user against an untrusted far user is analyzed in

a two-user NOMA system. As noted, [9]-[10] have assumed

only far user as untrusted, however, there exists a serious

security risk for the far user also in case the near user is

untrusted. Taking this into account, [11] has considered a two-

user NOMA system assuming both the users as untrusted and

proposed a new decoding order that is efficient in providing

positive secrecy rate at both the users.

B. Research Gap and Motivation

On the basis of potential of PLS, [4]-[6] have focused on

securing the messages of NOMA users from external eaves-

droppers only. In [9]-[10], the secrecy performance of trusted

near user is analyzed against untrusted far user in NOMA.

Further, [11] investigated a new decoding order for untrusted

NOMA that is efficient in providing secure data transmission

at all users. Note that the work in [11] for NOMA security

is limited to the study of two users. As inferred, the decod-

ing order selection problem for more users becomes rather

complicated because the problem is of combinatorial nature.

Therefore, observing the issue of computational complexity,

we study the decoding order selection problem for a three-user

untrusted NOMA system. However, the proposed investigation

can be extended to a general system with more users. Also,

keep this in mind that the number of users should not be

too large in NOMA due to the practical limitations such as

high interference and implementation complexity at receivers

with more users [12]. Besides, [11] assumes perfect SIC that
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cancels the interference from the decoded users entirely which

is a strong assumption due to practical implementation issues

[2]. Therefore, imperfect SIC model is highly realistic to

explore secure NOMA which has been considered in [13]

for two-user NOMA case. To this end, we focus to secure a

three-user untrusted NOMA system under practical imperfect

SIC based decoding at receivers, which to the best of our

knowledge, has not been investigated yet in the literature.

C. Key Contributions

The key contributions of this work are as follows: (1) An

appropriate decoding order strategy for a three-user down-

link untrusted NOMA system is proposed that safeguards

all untrusted users’ confidentiality against each other. (2)

Based on the proposed decoding order strategy, an algorithm

is provided through which all the feasible secure decoding

orders can be obtained. (3) An optimization problem aiming at

maximizing the sum secrecy rate of the system is formulated,

and the joint solution of decoding order and users’ PA is

obtained numerically. An efficient sub-optimal decoding order

solution is also proposed. (4) Numerical results present useful

insights on the optimized solution and analyze secrecy rate

performance achieved by the sub-optimal decoding order.

II. SECURE NOMA AMONG UNTRUSTED USERS

Here we present the system model, proposed decoding order

representation, and achievable secrecy rates at NOMA users.

A. System Model and Downlink NOMA Transmission

As shown in Fig. 1, we consider the downlink NOMA sys-

tem with a BS and 3 untrusted users, Un, n ∈ N = {1, 2, 3}.

All the nodes are equipped with a single antenna. The Rayleigh

fading channel gain coefficient between BS and Un is denoted

by hn. The channel power gains |hn|2 follows exponential

distribution with mean λn = Lpd
−e
n , where Lp, e and dn

denote path loss constant, path loss exponent, and distance

from BS to Un, respectively. The channel power gains are

assumed to be sorted as |h1|2 > |h2|2 > |h3|2. Pt denotes the

total power transmitted by BS, and αn is PA factor denoting

the fraction of Pt allocated to Un with α1 + α2 + α3 = 1.

In NOMA, the message signals dedicated to the users are

superimposed at the BS and then transmitted to the users. The

signal transmitted by the BS can be written as

x =
∑

n∈N

√

αnPtxn, (1)

where xn is the unit power signal which contains the message

required by Un. The signal received by Un can be written as

yn = hnx+ wn, (2)

where wn is zero-mean additive white Gaussian noise with

variance σ2 at Un. After obtaining the received signal, SIC

is carried out at receivers to extract the desired message from

the multiplexed signal. At each step of SIC, the previously

decoded user signals are canceled out from the received signal.

Since we consider imperfect SIC model, SIC is not performed

ideally, and thus, the residual interference from imperfectly

decoded users exists while decoding later users [14].

BS

U1

U2

U3

NOMA group

Strongest

Weakest

Desired information link

Wiretap link

Fig. 1. Illustration of downlink NOMA system with three untrusted users.

B. Decoding Order Representation for Untrusted NOMA

In NOMA, the order in which the SIC process is completed

at users, is represented by a decoding order. In the case of

conventional decoding order [1], SIC is applied at trusted

nearer users, and the respectively farther users can never

decode those nearer users’ data. In contrast, untrusted

NOMA case considers the practical situation in which all

the users are considered as untrusted and they may decode

others’ information through SIC [10]. Thus, each user

follows an independent decoding order, and hence, an overall

system decoding order for a 3-user NOMA system can be

represented by a 3 × 3 matrix as shown in Fig. 2. Let us

define o-th decoding order as Do = [D1, D2, D3], where

each column Dm = [D1m, D2m, D3m]T , represents the SIC

order followed by Um. Specifically, Dkm = n signifies

that Um decodes data of Un at k-th stage (k-th row of

matrix), where k,m, n ∈ N and D1m 6= D2m 6= D3m.

Using the concept of permutation, the total possible decoding

orders for each user are 3! = 6, such as, P = {Pz} =
{[1, 2, 3]T , [1, 3, 2]T , [2, 1, 3]T , [2, 3, 1]T , [3, 1, 2]T , [3, 2, 1]T},

where z ∈ {1, 2...6}. Since each user is independent, the count

of system decoding orders is 3! × 3! × 3! = 216. Algorithm

1, given at the top of next page, provides D = {Do}, a set of

total possible system decoding orders, where o ∈ {1, 2...216}.

C. Achievable Secrecy Rates at Users

For a decoding order Do, let us denote S
bn
om as the set of

those users’ indices, i, which are decoded before decoding of

Un by Um, and S
an
om as the set of those users’s indices, j, which

will be decoded after decoding of Un by Um, where i, j ∈
N \ {n} and S

bn
om 6= S

an
om. Thus, the signal-to-interference-

plus-noise-ratio, γo
nm, when Un is decoded by Um, can be

defined as [5], [14]

γo
nm =

αn|hm|2

(ζ
∑

i∈Sbnom

αi +
∑

j∈San
om

αj)|hm|2 + 1
ρt

, (3)

where ρt
∆
= Pt/σ

2 is BS transmit signal-to-noise ratio and ζ

is residual interference factor, (0 ≤ ζ ≤ 1), where ζ = 0 and

ζ = 1, respectively, represent perfect SIC and fully imperfect

SIC [14]. The corresponding data rate can be given as [15]

Ro
nm = log2(1 + γo

nm). (4)



Algorithm 1 Finding the total possible system decoding orders for
a three-user untrusted NOMA system.

Input: Set P ⊲ set of possible decoding orders at each user
Output: Set D ⊲ set of total possible system decoding orders

1: Set index o = 0
2: for u = 1 to 6 do
3: D3 = Pu

4: for v = 1 to 6 do
5: D2 = Pv

6: for w = 1 to 6 do
7: o = o+ 1
8: D1 = Pw

9: Do = [D1, D2, D3]
10: return D = {Do}
11: end for
12: end for
13: end for

Let Ro
sn represents the achievable secrecy rate of Un con-

sidering all other users as eavesdroppers. Ro
sn can be defined

as the difference of the rates when Un decodes itself, and the

maximum of the rate that other users achieve while decoding

data of Un [3]. Mathematically, it can be expressed as

Ro
sn = {Ro

nn − max
m∈N\n

Ro
nm}+. (5)

Here the key idea of achieving positive secrecy is to ensure

that the rate of the desired channel is higher than that of

the eavesdroppers’ channel, i.e., the condition Ro
nn > Ro

nm,

simplified as γo
nn > γo

nm must be satisfied.

III. PROPOSED DECODING ORDER STRATEGY

To secure an untrusted NOMA system, we focus on all

users’ data confidentiality against each other. In this context,

we first highlight the infeasibility of conventional decoding

order strategy for secure communication among untrusted

users. Then, a novel decoding order strategy is proposed that

is efficient in securing all users’ data from each other.

A. Conventional Decoding Order

In the Conventional decoding order strategy of NOMA [1],

near users are considered to be trusted and far users never

attempt to decode near users’ data. Extending the conventional

decoding order for untrusted NOMA case, where all the three

users perform SIC based decoding in the order of weakest user

to strongest user as shown in Fig. 2 (a), decoding order can be

represented as Do = D216 = {[3, 2, 1]T , [3, 2, 1]T , [3, 2, 1]T}.

Here, we obtain S
b3
om = {φ}, S

a3
om = {2, 1}; S

b2
om = {3},

S
a2
om = {1}; and S

b1
om = {3, 2}, Sa1om = {φ} by m. As a result,

γo
nm defined in (3) can be expressed as

γo
nm =

αn|hm|2

(ζ
3
∑

i=n+1

αi +
n−1
∑

j=1

αj)|hm|2 + 1
ρt

. (6)

Next, we present a result on inefficiency of conventional

decoding order strategy in securing untrusted NOMA.

Lemma 1: Using conventional decoding order strategy in

an untrusted NOMA scenario, the information of any weaker

user cannot be secured from its respective stronger user.

U1 U2 U3

Stage 1

Stage 2

Stage 3

U1 U2 U3

Stage 1

Stage 2

Stage 3

(a) Conventional decoding

order strategy in untrusted

NOMA, o = 216

(b) Proposed sub-optimal de-

coding order securing untrusted

NOMA, o = 10

Fig. 2. Decoding order representation for 3-user untrusted NOMA system.

Proof: In order to analyze the secrecy performance at

weaker users, we investigate secrecy rate Ro
sn at Un against

Um, where m < n. Using (5), Ro
sn can be written as

Ro
sn = {log2(1+γo

nn)− max
m∈{1,2,...(n−1)}

log2(1+γo
nm)}+. (7)

As stated in Section II(C), the required condition for positive

secrecy rate at Un is γo
nn > γo

nm, and this gives |hn|2 >

|hm|2 which is an infeasible condition as we have considered

|hm|2 > |hn|2. Thus, positive secrecy rate cannot be obtained

at weaker user against stronger user.

Remark 1: It can be easily inferred from the above study

that only strongest user’s information is safe from all others

by using conventional NOMA strategy with untrusted users.

B. Decoding Order Strategy from Secrecy Perspective

Now, we present a decoding order strategy through which

all feasible secure decoding orders can be obtained that are

efficient in providing positive secrecy rate at all users.

Lemma 2: In order to provide positive secrecy rate at any

Un against any Um when m < n in decoding order Do, the

set of users decoded before decoding of Un by Un, must not

be equal to the set of users decoded before decoding of Un

by Um, i.e., Sbnon 6= S
bn
om.

Proof: We prove this Lemma by contradiction. Let us

suppose S
bn
on = S

bn
om. As a result, Sanon = S

an
om. For analyzing

the secrecy performance of Un against Um, we observe that

γo
nm defined in (3), when Un is decoded by Um, can be given

as

γo
nm =

αn|hm|2

(ζ
∑

i∈Sbnom

αi +
∑

j∈San
om

αj)|hm|2 + 1
ρt

. (8)

Similarly, in the case of decoding of Un by Un, γo
nn can be

written as

γo
nn =

αn|hn|2

(ζ
∑

i∈Sbnon

αi +
∑

j∈San
on

αj)|hn|2 +
1
ρt

. (9)

Note that, due to the assumption of Sbnon = S
bn
om, the required

condition γo
nn > γo

nm for positive secrecy at Un gives |hn|2 >

|hm|2 which is infeasible as |hm|2 > |hn|2. Hence, it can be

concluded that the decoding orders for which S
bn
on = S

bn
om, are

not feasible to ensure secrecy to all users.



Based on the decoding order strategy proposed in Lemma

2, now we present an algorithm that achieves the complete set

S of secure decoding orders that provide secrecy to all users.

The detailed steps are shown in Algorithm 2 given below.

Algorithm 2 Finding feasible secure decoding orders for untrusted
NOMA through proposed decoding order strategy in Lemma 2.

Input: Set D ⊲ set of total decoding orders
Output: Set S ⊲ set of secure decoding orders

1: Initialize row = 3, column = 3
2: Set counter to 0
3: for each Do in Set D do
4: Initialize flag1 = 1
5: for c1 = 2 to column do
6: Set q = c1
7: for c2 = 1 to (c1− 1) do
8: for k = 1 to row do
9: if (k = 1 || k = 3) then

10: if (Do(k, c1) = q) && (Do(k, c2) = q) then
11: Set flag1 = 0
12: break
13: end if
14: end if
15: if (k = 2) then
16: if (Do(k, c1) = q) && (Do(k, c2) = q) &&

(Do(k − 1, c1) = Do(k − 1, c2)) then
17: Set flag1 = 0
18: break
19: end if
20: end if
21: if (flag1 = 0) then
22: break
23: end if
24: end for
25: if (flag1 = 0) then
26: break
27: end if
28: end for
29: if (flag1 = 0) then
30: break
31: end if
32: end for
33: if (flag1 = 1) then
34: Increment counter
35: return S = {Do} ⊲ Do as secure decoding order
36: end if
37: end for

IV. SUM SECRECY RATE MAXIMIZATION

In this section, we focus on maximizing the sum secrecy

rate of the system by finding an appropriate secure decoding

order and BS transmission PA to users.

A. Problem Formulation

Using our proposed decoding order strategy described in

Lemma 2, we obtain a set S of 76 secure decoding orders

out of 216 total possible decoding orders, which can ensure

positive secrecy rate to all users. For a secure decoding order

Do, where Do ∈ S, the sum secrecy rate of the system, using

(5), can be defined as

Ro
s =

∑

n∈N

Ro
sn. (10)

Main objective is to find an appropriate secure decoding

order and PAs to users that can maximize sum secrecy rate

of the system. Regarding this, the joint optimization problem

over set S of secure decoding orders and BS transmission PA

to users, using Ro
s (10), can be formulated as

(P1) : maximize
Do,αn,Do∈S

Ro
s,

subject to (C1) : 0 < αn < 1, (C2) :
∑

n∈N

αn = 1.

The problem maximizing sum secrecy rate can be reformu-

lated via considering the PA constraints (C1) and (C2), which

can be simplified in terms of α1 and α2, and α3 = 1−α1−α2.

Thus, the reformulated optimization problem can be stated as

(P2) : maximize
Do,α1,α2,Do∈S

Ro
s, subject to (C3) : α1 + α2 < 1,

(C4) : 0 < α1 < 1, (C5) : 0 < α2 < 1.

To solve the aforementioned joint optimization problem, we

need to find feasible conditions on PAs for each secure decod-

ing order in set S. To reduce this computational complexity

in finding an optimal solution, next, we propose an efficient

sub-optimal decoding order solution.

B. Proposed Sub-optimal Decoding Order Solution

In order to increase the secrecy rate at Un which further

increases the sum secrecy rate of the system, Rnn and Rnm

should be increased and decreased, respectively. This is be-

cause the required condition for positive secrecy rate at Un,

when Un is decoded by Um, is Rnn > Rnm. Based on these

observations, we present two key insights in designing a sub-

optimal decoding order as described in the following:

(i) Un decodes data of itself at the last stage: To increase

secrecy rate Ro
sn at Un, Rnn should be high. Note that the

maximum Rnn is obtained when the interference from all

other users is maximum cancelled, which is attained when

Un decodes its own data at the last stage. Hence, each user

must decode its information after decoding all others’ data.

(ii) For the first 2 stages, the data of other users are decoded

by Un, in accordance to one by one from the user with

the strongest channel condition to the user with the weakest

channel condition: To maximize secrecy rate at Un against

Um, Rnm should be decreased, which is obtained when

interference from other users at Um, while decoding data of

Un, is more. Thus, with a focus on improving the secrecy rate

for stronger users, the order of decoding of data from strongest

to weakest channel helps in improving the overall secrecy rate

of the system. Taking these points into account, we obtain a

sub-optimal decoding order described as D10 in Fig. 2(b).

Now, we aim to find a joint-optimal solution of proposed

optimization problem (P2) for which we firstly solve the sum

secrecy rate maximization problem for each decoding order.

C. PA for each Secure Decoding Order

The sum secrecy rate maximization problem for each secure

decoding order Do subject to PAs can be formulated as

(P3) : maximize
α1,α2

Ro
s, subject to (C3), (C4), (C5).



Observing (3)-(5), we note that the secrecy rate of each user

is a non-convex function of PA parameters. In this case, we

solve the sum secrecy rate maximization problem numerically

and find BS transmission PA solutions αo∗
1 and αo∗

2 for Do.

D. Joint Solution of Decoding Order and PA

As mentioned in Section IV-C, first we numerically obtain

optimized PAs and respective sum secrecy rate solution for

all secure decoding orders of set S. Let us define a set

R = {Ro∗
s }, where Ro∗

s = Ro
s(α

o∗
1 , αo∗

2 ) denotes optimized

sum secrecy rate of decoding order Do. Now, to complete

joint optimization, we select the decoding order providing the

maximum sum secrecy rate which can be expressed as

D̂o = argmax
Do∈S

(Ro∗
s ). (11)

The optimized sum secrecy rate of system can be given as

R̂s(α̂1, α̂2) = max
Do∈S

(R), (12)

where (α̂1, α̂2) denotes numerically optimized system PAs.

Note that, the computational complexity to obtain optimized

result is 76 times more as compared to sub-optimal approach.

V. NUMERICAL RESULTS AND DISCUSSION

Now, numerical results are presented to assess the per-

formance of proposed design under various system settings.

For simulation, Lp = 1, e = 3 and ζ = 0.1 are consid-

ered. Noise signal at all users follow Gaussian distribution

with a noise power of −90 dBm. Symbolic PA αn =
1

(|hn|2)β(
∑

n∈N
1

(|hn|2)β
)

is considered, indicating PA to users

is in accordance with users’ channel conditions. Note that β

is a coefficient ranging from −1 to 1. Simulation results are

averaged over 104 randomly generated channel realizations.

A. Insights on Decoding Order Selection

Fig. 3 presents the probability of occurrence of secure

decoding orders with a maximum sum secrecy rate for various

channel realizations. Fig. 3(a) and Fig. 3(b) are plotted for

fixed PAs to all users for all channel realizations and Fig.

3(c) and Fig. 3(d) are plotted, respectively, for β = 1 and

β = −1. We observe that different decoding orders win for

various PA schemes through which we can conclude that an

appropriate decoding order plays a vital role in designing an

optimal secure communication system.

B. Insights on Optimality

Now we present the numerical proof that the unique solution

of PA exists for each secure decoding order Do of set S.

In this context, Fig. 4 plots sum secrecy rate performance

of the system for various PAs in a sub-optimal decoding

order D10. One can easily observe that the contour plot in

Fig. 4 confirms existence of optimal PAs to users achieving

maximum sum secrecy rate. Thus, it can be concluded that the

optimal secrecy rate performance of a secure NOMA system

is highly dependent on BS transmit PA to users.

10 30 others
0

0.5

1

82 10 30 12 others
0

0.5

30 12 82 10 others
0

0.5

10 100 42 82 others
0

0.5

0
0.0060 0.0010

0

00

Fig. 3. Probability of occurrence of different secure decoding orders with
maximum sum secrecy rate at various PAs, (a) α1 = 0.3333, α2 = 0.3333,
(b) α1 = 0.1667, α2 = 0.3333, (c) β = 1, and (d) β = −1.
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Fig. 4. Insight on optimality in sub-optimal decoding order o = 10.

C. Insights on Sub-optimal Decoding Order Performance

Fig. 5 is plotted to present the impact of the proposed sub-

optimal decoding order over other decoding orders. We plot

the probability density function (Pdf) of the system’s sum

secrecy rate for 4 different secure decoding orders with two

different PAs to users. Observing the variance of the Pdf plots,

it can be concluded that the proposed sub-optimal decoding

order outperforms the remaining secure decoding orders.

D. Impact of Relative Distance between Users

Here Fig. 6 present the impact of users’ distance on opti-

mized PAs performance that maximize the sum secrecy rate

of the system. Fixing distance d1 = 100 meter, the effect of

variation of d2 and d3 from BS is observed on optimized PAs

for a decoding order index o = 100. The results presented

in Fig. 6(a) show that αo∗
1 monotonically increases with the

increase in d2 and d3. On the other hand, increasing d2 and

d3 decrease achievable αo∗
2 as shown in Fig. 6(b). The reason

is, with increasing distance of weaker users, a decrease in

achievable information rate at weaker users improves secrecy

rate for stronger users. In this case, decreasing PAs to weaker
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Fig. 5. Impact of different secure decoding orders on the average sum secrecy
rate performance of the system at fixed PAs, (a) α1 = 0.3333, α2 = 0.3333,
(b) α1 = 0.1667, α2 = 0.3333.

users helps in further increasing the secrecy rate at respective

stronger users, and thus, the optimal sum secrecy rate obtains.

E. Performance Comparison

To demonstrate the performance gain achieved by the joint-

optimal scheme (joint-optimal decoding order and PAs to

users) for sum secrecy rate maximization, Fig. 7 presents its

performance comparison with three different schemes (FPA:

fixed PA for sub-optimal decoding order; ODO: fixed PA for

optimal decoding order; OPA: optimal PA for sub-optimal

decoding order). Note that, fixed PAs are considered as α1 =
0.1667 and α2 = 0.3333. The results depict that the jointly

optimized solution achieves best sum secrecy rate performance

and obtains average performance improvement of about 27 dB.

VI. CONCLUDING REMARKS

By employing PLS to NOMA, we have focused on resolving

the inherent security issue among untrusted NOMA users.

A novel decoding order strategy has been proposed that is

efficient in providing positive secrecy rate at all users. Based

on the proposed decoding order strategy, numerically, we have

obtained all feasible secure decoding orders. To maximize the

sum secrecy rate of the system, we have investigated joint

optimization over secure decoding orders and PAs. Also, a

sub-optimal decoding order solution is proposed. Numerical

results show that the optimal solution achieves average gain

of about 27 dB in the sum secrecy rate over relevant schemes.
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