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Abstract—We propose a deep Q-Learning (DQN) and
heuristic-based radio resource scheduling (RRS) algorithms,
which determine serving access points (APs), for maximum ratio
transmission (MRT) precoder in the cell-free massive multiple-
input multiple-output (CF mMIMO) networks. We show that,
DQN-based algorithm yields up to 6% higher sum spectral
efficiency (SE) than the heuristic and the reinforcement learning
based algorithms for MRT precoder, but the heuristic algorithm
yields 1000 times shorter computation time than the DQN-based
algorithm. Thus, the low complexity MRT heuristic algorithms
are the trade off between the performance and the cost.

Index Terms—Spectral efficiency, radio resource scheduling
algorithm, deep Q-Learning, and computational time.

I. INTRODUCTION

The multiple-input-multiple-output (MIMO) technique ap-
pears to be one of the most effective disruptive technologies in
recent wireless (mobile) network [1] resulting in a significant
spectral efficiency improvement. Similarly, the concept of
multi-user MIMO provides high capacity by utilizing the ben-
efits of space-division multiple access [2]. To further enhance
the SE, the massive MIMO solution has been proposed in
[3] where a number of antennas are simultaneously serving
several user equipments (UEs). In MIMO systems, the large
number of antennas can be co-located in a single array or
distributed geographically in a cell [4]. The cell-free mMIMO
is a network paradigm shift to an architecture where a number
of UEs in a geographic area is served by multiple access
points (APs) [5], [6]. Recently, the CF mMIMO system has
received a lot of interest due to its high SE [7]. Therefore, in
this work, we consider the CF mMIMO network concept and
address a DQN-based precoding-aware resource scheduling
method to improve the downlink (DL) sum spectral efficiency
performance of the network.

Several studies have already been carried out from various
aspects such as precoding optimization [8], [10], power alloca-
tion [11]–[14], and clustering [15] to enhance the performance
of the CF mMIMO networks. In particular, the authors in [8]
revealed the proposed scheme to optimize the precoding vector
at the APs for both centralized and decentralized fashions. It
has been shown, that centralized precoding, i.e., computing
the precoding vector in the central processor unit (CPU)
instead of the AP, can effectively improve the performance
over decentralized design with reasonably low complexity as
there is more information available in the centralised CPU
to determine the optimal precoding vector. Mapping of the

AP and CPU to the O-RAN terminology has been done
in [9], where the AP has been identified as the O-RU and
the CPU as the O-DU. To reduce the complexity of the
precoding vector computation of user-centric CF mMIMO,
the authors in [10] collect partial channel state information
from the APs at the CPU. The power allocation (PA) and
QoS-aware resource scheduling problems are addressed in
[11], [12], where a distributed deep neural network and deep
reinforcement learning algorithms are used to maximize SE
per user and system throughput of CF mMIMO networks.
Similarly, a deep Q-learning-based DL power transmission
method for CF mMIMO is proposed in [13] to maximize
the network SE. Also, a deep neural network (DNN) based
unsupervised learning method for PA is studied by Rajapaksha
et.al in [14] to maximize the minimum rate of the user in CF
mMIMO networks.

A. Contributions and Organization of the paper

In summary, existing works on ML algorithms for CF
mMIMO networks have generally studied precoding, PA, and
clustering problems either separately or jointly, to maximize
the system SE, per user SE, system throughput, a minimum
rate of the users [11]–[15]. The low-complexity precoding
aware radio resource scheduling scheme to maximize the
sum SE is still an open problem for CF mMIMO networks.
Therefore, in this work:

• Firstly, we propose a DQN-based states crossover acceler-
ated PRB allocation algorithm for CF mMIMO. Inherited
from the genetic algorithm, a random crossover of good
states rather then a random state is used for DQN start
point, yielding 100 times shorter computation time than
the DQN alone.

• Secondly, we propose a low-complexity heuristic PRB
scheduling algorithm for MRT precoder, which yields 3
ranges of magnitude shorter computation time than the
DQN with crossover.

• Finally, we illustrate that, depending on the noise level,
MRT precoder results in 10-100 times lower fronthaul
load compared to zero forcing (ZF) and optimized ZF
(OZF) precoders, which makes MRT an attractive solu-
tion even though it yields lower sum SE compared to the
ZF and OZF precoders.

In section II of the paper, we discuss the system model
and formulate the optimisation problem. In section III, the



proposed DQN and heuristic-based PRB scheduling algo-
rithms are described. In section IV, we present and discuss
the simulation results and we conclude in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Let us consider a CF mMIMO network with N APs jointly
transmitting to single-antenna UEs. The received signal yub
at UE u on physical resource block (PRB) b consisting of 12
consecutive subcarriers, can be written as:

yub =

N∑
n

U∑
u′

hunbwnu′bsu′b + nub, (1)

where hunb is the complex-valued channel (propagation)
coefficient between UE u and transmit AP n in PRB b, wnub

denotes the complex precoding value that AP n applies to
transmit the symbol sub on PRB b and nub is the noise at
UE u in a PRB b. The UE received signal-to-interference and
noise (SINR) in PRB b is the total received power divided by
the total interference power in the PRB, where interference is
caused by transmission to other users u′ :

SINRub =
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The system achievable downlink SE, referred to as the sum
SE, denoted by SEDL, can be expressed as:

SEDL =
1

B

B∑
b

U∑
u

log2(1 + SINRub), (3)

where B is the number of PRBs in the carrier bandwidth. The
notation used in this paper is listed in Table I.

B. Problem formulation

The target of this work is to maximize the sum SE by
optimizing the precoders wnub with AP power constrain:

maxSEDL (4)
U∑
u

|wnub|2 ≤ Pmax, (5)

where Pmax is the maximum AP transmit power per PRB.

C. Search space of the problem

Let q be the quantizied precoder search space, e.g., q =
216 for precoder coded with 16 bits. Considering that an AP
serves only one UE per PRB, then the search space per PRB of
the 2-dimensional AP-UE optimisation problem is ω = (qU)N

and the overall search space of the 3-dimensional AP-UE-PRB
optimisation problem is Ω = ωB . For q = 216, U = 10, N = 64
and B = 100, the search space ω = (216 ∗ 10)64 ≈ 1.8 ∗ 10372
and Ω ∼ 1037225. The search space will be greater if an AP
can serve simultaneously more than one UE per PRB.

TABLE I: Notation

Symbols Meaning
N Number of APs
Index n AP index
U Number of UEs
Index u UE index
B Number of PRBs in the carrier bandwidth
Index b PRB index
s Transmitted symbol
y Received signal
h Channel
w Precoding
SINR Signal-to-interference and noise ration
n Noise
SE Spectral efficiency
P AP transmit power per PRB
ω Search space per PRB
Ω Overall search space
c RRS algorithm complexity per PRB
C Overall complexity of the RRS algorithm
S State
a Action
r Reward
Q Q-function, i.e., cumulative future reward
γ Discount factor
k Signal to jamming ratio

III. PRECODING-AWARE RRS

A significant contributor to the huge overall search space
is the quantizied precoder search space, q, therefore, we use
the precoding aware RRS approach where the precoder is
determined based on a well known precoder type, e.g., MRT
or ZF, but the APs serving each UE are derived by scheduling
algorithm optimised for the precoder type. Thus, the overall
radio resource allocation is divided into two steps:

• Precoding-aware RRS, where APs serving UEs are se-
lected independently for each PRB knowing the precoder
type. Not selected AP-UE-PRB resources will have the
precoder wnub = 0 indicating no transmission from the
AP n to the UE u in the PRB b. We propose two RRS
algorithms:

– The DQN-based for MRT precoding, which uses
DQN to explore relations between APs.

– The heuristic algorithm for MRT precoding, which
selects APs following a predefined search path.

• Precoding, where the exact value of the precoder wnub

is determined following the MRT, ZF or OZF scheme.

A. Assumptions reducing algorithm complexity

We take an advantage of the interference independence
between PRBs and carry out RRS independently for each
PRB. Furthermore, we reduce the algorithms search space
allowing an AP to serve one UE per PRB. The search space,
where an AP can simultaneously serve two UEs yields 3.7%
higher sum SE compared to the search space where an AP can
serve one UE [16], however, this sum SE improvement is at
the cost of several ranges of magnitude greater search space,
while we search for efficient practically applicable algorithms.



Therefore, we consider the following two search spaces where
an AP can serve one UE:

• Search space 1, where an AP can select to serve the UE
with the highest power on that PRB.

• Search space 2, where an AP can serve either the highest
or second-highest power UE on that PRB.

In the case of the search space 1, the number of possible
schedule outputs per PRB is ω1 = 2N and in the case of the
search space 2, ω2 = 3N . With 64 APs, ω1 = 1.84×1019 and
ω2 = 3.4 × 1030. Because we carry out scheduling for each
PRB independently, therefore, the overall search space, Ω, is
derived as Ω = Bω. In the following sections we propose
DQN and heuristic RRS algorithms for the two search spaces.

B. The proposed DQN-based RRS for MRT precoder

The DQN is the deep learning based reinforcement learning
(RL) algorithm. It explores the environment and stores infor-
mation about the predicted cumulative future reward of each
action in a given state in a Q-function that is represented by a
neural network. The state, the action and the reward definitions
are the essential aspects of a RL algorithm and we define them
as follows:

• The state indicates the AP-UE association. If an AP
serves the UE then the AP-UE associations is denoted
by +1 (or ’+’) otherwise it is denoted by −1 (or ’−’).
The DQN algorithm search space 1 for MRT precoder is
denoted as MRT-DQN1 and its state is coded by length-
N binary sequence, as illustrated in Fig. 1. The algorithm
for search space 2 is denoted as MRT-DQN2 and its state
is coded by length-2N binary sequence.

• The action is a change of the status of one AP. The action
can be an addition action, when the AP-UE association
becomes serving, as shown in Fig. 1, or a removal action,
when a serving AP stops serving the UE. The number of
possible actions is equal to the number of states.

• The reward is the sum SE change and it can be positive,
if an action improves sum SE, or negative, if an action
yields decreased sum SE.

AP1 AP2 AP3

AP4 AP5

AP1 AP2 AP3

AP4 AP5

Action, a2

St = [ ]

AP2
addition

St+1 = [               ]

Fig. 1: An illustration of the RL state and action for the search
space 1, i.e., when an AP can serve the strongest power UE
only, in an example network consisting of 5 APs. In the state
St = [− − + − +], AP3 and AP5 are serving, thus, denoted
by ’+’. Not serving APs are denoted by ’−’. The action a2
adds the AP2 to the serving APs and transitions the network
to the next state St+1 = [−++−+].

For the DQN, we use a fully connected 3-layer neural
network with the input layer encoding states, the output layer
encoding Q-values for actions, one hidden layer with the same

Algorithm 1 The heuristic resource scheduling algorithm for
MRT precoder

1: Start;
2: For each AP n in the network calculate the metric kn =

abs(hnun,1)
2/abs(hnun,2)

2, defined as the ratio between
the received power by the strongest power UE, un,1, and
the received power by the second strongest power UE,
un,2, in the AP.

3: Sort the APs in the descending order of kn. Denote the
sorted APs as m1, ..,mN , the strongest power UEs in the
sorted AP as um1,1, ..., umN ,1 and the second strongest
power UEs in the sorted AP as um1,2, ..., umN ,2.

4: For each AP mi on the m1, ..,mN list, select an UE umi,1

or umi,2, whichever provides higher sum SE improvement.
5: Return the list of selected AP-UE associations.
6: End;

number of nodes as the input and output layers, and sigmoid
activation function. Let Q(St, at) be the output of the neural
network for a given state st and action at, where the output
is the predicted cumulative future reward of the action at in
state st. In the learning phase, the DQN weights and biases are
updated in order to minimize the Loss defined as the square
difference between the target and the prediction value, where
the target value is calculated as a sum of the reward rt of the
action at and the cumulative future reward of the best action
in the state St+1 multiplied by the discount factor γ = 0.1:

Loss =

 target︷ ︸︸ ︷
rt + γmax

at+1

Q(St+1, at+1)−

prediction︷ ︸︸ ︷
Q(St, at)


2

. (6)

When channels hunb change, a new single-use on-line
search for optimized RRS is necessary. We use the DQN
to find the optimized RRS, rather than to learn the DQN.
We accelerate the DQN search by starting a new search
batch from a crossover of good states, where AP states
from two different states are selected randomly. Furthermore,
we transfer the optimized RRS from MRT-DQN1 to MRT-
DQN2 for further optimization. During the search, we explore
the search space separately for each PRB running 3000 or
5000 batches per PRB for MRT-DQN1 and MRT-DQN2,
respectively. Each batch consists of N or 2N sequential
actions for MRT-DQN1 and MRT-DQN2, respectively. Thus,
for N = 64, the algorithms complexity per PRB can be
estimated as c1 = 1.92× 105 and c2 = 8.32× 105 actions for
MRT-DQN1 and MRT-DQN2, respectively. The complexity of
the algorithm compared with the corresponding search space
indicates the algorithm efficiency.

C. The proposed heuristic RRS for MRT precoder
In addition, we propose the heuristic MRT precoder-aware

RRS algorithm for the search space 2 denoted as MRT-
H2 and described in Algorithm 1, as an extension of the
MRT-H1 denoted in [16] as ’MRT with heuristic’. The MRT-
H2 algorithm runs independently for each PRB and its key



aspect is the sequence order in which the AP-UE associations
are considered for selection. The APs with highest signal to
jamming ratio k, defined as the power received by the strongest
power UE to the power received by the second strongest power
UE in the AP in the PRB, are considered first. This ensures
that APs are selected for the transmission in an order which
causes little interference for other UEs. With this algorithm,
all relations between APs are not searched. Only signal to
jamming dependencies between already selected APs and the
AP being considered for selection are checked.

The MRT-H2 algorithm calculates the sum SE twice per AP,
thus, the algorithm complexity per PRB is c2 = 128 for N =
64, which is three ranges of magnitude less than the MRT-
DQN2 algorithm. The comparison of the algorithm complexity
per PRB, c2 = 128, with the corresponding search space per
PRB, ω2 = 3.4 × 1030, shows that the heuristic scheduling
algorithm for MRT precoder attempts to solve a very complex
problem in an extremely simple way.

IV. SIMULATION RESULTS AND DISCUSSIONS

The simulated network of size 320 m × 277 m consists of
64 APs distributed in 8 rows and spaced by 40 m. Each AP
is equipped with 2.15 dBi gain omni-directional antenna at
10 m above the ground. The 4 GHz carrier with 10 PRBs and
15 kHz carrier spacing transmits maximum 20 mW per PRB.
In 100 simulation iterations 10 stationary single antenna UEs
have been randomly distributed in the network and the channel
has been modeled according to [16].

A. Convergence of the DQN algorithm

Fig. 2 shows the MRT-DQN1 algorithm convergence at
57.9 kbit/s/Hz during 3000 batches search and Fig. 3 shows,
that after this short learning the neural network does not
reach convergence yet. Fig. 4 shows 300000 batches search
after which the DQN provides the same maximum sum SE
of 57.9 kbit/s/Hz as during short search. However, after
long learning, the DQN provides repetitive converged search
attempts regardless of the starting state, as presented in Fig. 5.
The example shows, that long training leads to the neural
network convergence, but the neural network convergence is
not required for the purpose of single-use finding an optimized
state if DQN is combined with states crossover. The DQN
combined with stages crossover accelerates the search 100
times.

B. Reference algorithms

Table II lists the proposed MRT-DQN1, MRT-DQN2 and
MRT-H2 RRS algorithms together with reference CF SISO
and CF mMIMO algorithms, the latter utilizing MRT, ZF and
OZF precoders. In the CF SISO, in each PRB, the UE is served
by a single AP, the one which provides the strongest DL signal
power in the PRB. Because the CF SISO does not rely on CF
mMIMO precoding therefore it can be consider as a reference
for the CF mMIMO algorithms. We also compare the proposed
algorithms with the MRT reinforcement learning based, MRT-
RL1, and MRT heuristic of search space 1, MRT-H1, in [16].
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Fig. 2: DQN convergence during short learning. The first 1000
batches start from a random state and the remaining 2000
batches start from a crossover of two out of 40 best states.
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Fig. 3: DQN performance during exploitation mode after
learning in Fig. 2. The search attempts do not converge
indicating that the DQN was not trained.
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Fig. 4: DQN convergence during long learning. The first
298000 batches start from a random state and the last 2000
batches start from a crossover of two out of 40 best states.

0 20 40 60 80 100 120 140
Iteration

Search attempt 1, starts from non AP serving
Search attempt 2, starts from non AP serving
Search attempt 3, starts from random AP serving
Search attempt 4, starts from random AP serving
Search attempt 5, starts from random AP serving
Search attempt 6, starts from all APs serving
Search attempt 7, starts from all APs serving

0

10

20

30

40

50

60

s
u
m

 S
E

 (
b
it
/s

/H
z
)

Fig. 5: DQN exploitation mode convergence after learning in
Fig. 4. The search attempts converge indicating that the DQN
was trained.



TABLE II: Radio resource allocation algorithms

Algorithm Scheduling1 Precoding Time2 (s)
CF SISO Best AP-PRB – 0.0002
MRT-DQN2 DQN (2) MRT 15 + 85
MRT-DQN1 DQN (1) MRT 15
MRT-RL1 RL (1) MRT 1.0
MRT-H2 Heuristic (2) MRT 0.004
MRT-H1 Heuristic (1) MRT 0.0016
ZF-all All APs ZF 0.002
ZF-RL RL ZF 3.6
OZF-all All APs OZF 0.063

1In the bracket, the searched number of best power UEs per AP per PRB.
2The computation time measured in Matlab R2016b on the MacBook Air
M1 2020 with macOS 13.4 for one PRB, 64 APs and 10 UEs.

In ZF-all and OZF-all, all APs serve all UEs. In ZF-RL [16],
the RL algorithm determines the APs which serve all UEs.

C. DQN and heuristic algorithms computation time

Table II also shows the computation time of the algorithms.
The MRT-DQN1 computation time is 3 ranges of magnitude
greater than the MRT-H1, which searches the same area. Also
the MRT-DQN2 computation time is 3 ranges of magnitude
greater than the MRT-H2, which searches the same area.

D. DQN and heuristic algorithms sum SE

It can be seen in Fig. 6, that at each noise power, the CF
mMIMO RRS provides significantly higher sum SE compared
to the CF SISO scheduler. At low noise of -90 dBm per
PRB, the CF mMIMO with ZF or OZF precoder yield the
sum SE of 130 bit/s/Hz, which is 2.7 times higher compared
to 48.4 bit/s/Hz sum SE of the CF SISO scheduler. MRT-
DQN2 yields the sum SE of 74.5 bit/s/Hz and performs
6% better than its corresponding heuristic algorithm MRT-
H2, which yields the sum SE of 70.1 bit/s/Hz. The DQN
is able to search for dependencies between the APs, while
the heuristic algorithm only checks if the AP considered for
selection provides sum SE improvement when serving together
with the already selected APs. Interestingly, the MRT-DQN1
performs only 1% worse than the MRT-DQN2 indicating that
the search space 1, where the AP is allowed to serve only
the highest power UE on the PRB, provides satisfactory sum
SE performance. At high noise of -50 dBm per PRB, all
MRT algorithms show similar sum SE performance and they
outperform the CF SISO scheduler providing 2.4 times higher
sum SE, since the MRT-DQN2 yield 22 bit/s/Hz and CF SISO
9.3 bit/s/Hz.

E. DQN and heuristic algorithms power utilization

Fig. 7 shows the power utilization defined as the ratio of
the mean AP transmit power, resulted from the applied RRS
algorithm, to the maximum AP power. For example, if each
UE is served by one AP transmitting on its maximum power,
then U out of N APs transmit with full power and the power
utilization is U

N = 10
64 = 0.156. For CF SISO, the power

utilization is 0.142, which is less than 0.156, because more
than one UE may be served by an AP, thus, less than 10
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Fig. 6: Mean sum SE performance of the radio resource
allocation algorithms.
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APs transmit. The RRS algorithms with MRT precoder choose
more than one serving AP for each UE, therefore, the power
utilization is significantly higher compared to the CF SISO.
For the MRT precoder, the mean number of serving APs per
UE grows with the noise level, thus also the power utilization
grows. At -90 dBm noise, the MRT-DQN2 uses in average
2.90 AP/UE resulting in power utilization of 0.45, but, at the
noise level of -50 dBm, 6.35 AP/UE results in the power
utilization of 0.99, i.e., almost all APs transmit. The MRT-
DQN1 selects less APs compared to the MRT-DQN2 and the
heuristic algorithms tent to selct less serving APs than the
DQN-based algorithms. The ZF-all yields the lowest power
utilization of 0.13 across all noise levels, since the ZF does not
use the full AP power. At low noise, the OZF precoder yields
similar power utilization to the ZF precoder, but increases the
transmit power at higher noise.

F. DQN and heuristic algorithms fronthaul load

Fig. 8, shows the mean sum fronthaul load defined as the
mean sum SE multiplied by the mean number of APs serving
the UE, which is applicable when the beamforming is done at
the RU as in the O-RAN 7-2 split, and fronthaul modulation
compression is used. For -90 dBm noise level, the MRT-DQN2
yields the sum SE of 74.5 bit/s/Hz with mean number of 2.90
APs serving an UE, yielding the mean sum fronthaul load of
74.46 bit/s/Hz× 2.9 = 216 bit/s/Hz. With the CF SISO an
UE is served by one AP per PRB thus the mean sum fronthaul
load is equal to the sum SE. With the ZF-all and OZF-all each
UE is served by all APs, thus, the mean sum fronthaul load
is N times greater than the sum SE, i.e., 8312 bit/s/Hz for
-90 dBm noise. At this noise, ZF-RL selects 62.5 serving APs
yielding the same sum SE as the ZF-all but with 2.3% lower
fronthaul load. Thus, scheduling can reduce fronthaul load.
Fig. 8 also shows that the 7-2 split fronthaul load for MRT
RRS algorithms does not change much across different noise
levels because, with higher noise, the mean number of serving
AP increases, but the sum SE decreases.

V. CONCLUSIONS

We show that the MRT precoded transmission, even though
yields lower sum SE, is an interesting solution due to 10-100
times lower 7-2 split O-RAN fronthaul load compare to ZF
and OZF precoders. The DQN-based algorithm, when used for
optimized radio resource scheduling search, can be accelerated
100 times when combined with states crossover, however, the
crossover does not reduce the DQN learning time. The DQN-
based algorithm for the MRT precoder, at low interference of
-90 dBm per PRB, yields 6% higher sum SE compared to
the heuristic algorithm, but at the high noise of -60 dBm both
algorithms yield similar sum SE. Due to 3 ranges of magnitude
lower computational time of the heuristic algorithm compared
to the DQN algorithm, the heuristic algorithm seems to be
an attractive real deployment solution. We also investigate the
transmit power of the proposed algorithms and observe that
the ZF precoded transmissions dissipate less power than the

MRT precoded. As future work we will seek for DQN-based
scheduling algorithm which allows for off-line learning.
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