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Abstract— This paper presents a new subspace-based 2-D 
direction of arrival (DOA) estimation algorithm for narrow-
band sources with high-resolution localization capabilities. 
DOA estimation is achieved by using the noise-subspace 
eigenvectors of a new extended correlation matrix (ECM). A 
2-L shape antenna array is proposed. Unlike common planar 
and circular arrays, the novel antenna array with this special 
geometry requires no pair matching between the azimuth and 
elevation angle estimation also this key can remove the 
drawbacks of estimation-failure problems. The performance 
of the proposed approach is examined by a simulation study. 
The simulation results show a good estimate performance. 
 
Index Terms— DOA estimation, extended correlation matrix, 
2-L shape antenna array  
 
 

I. INTRODUCTION 
 

irection of arrival (DOA) estimation from the 
outputs of an array of sensors is an important and 

well-studied problem with many applications in radar, 
sonar, and wireless communications. Recent applications 
include array processing for wireless mobile 
communications at the base station for increasing the 
capacity and quality of these systems [1,4,5]. 

A large number of DOA estimation algorithms and 
analytical performance bounds have been developed. 
Beamformer method which scans the main beam of array 
antenna is the most fundamental technique. The other 
techniques based on eigenvalue decomposition of array 
input correlation matrix are the Min-Norm method, MUSIC 
(Multiple Signal Classification) [11], and ESPRIT 
(Estimation of Signal Parameters via Rotational Invariance 
Techniques) [12,13] have are attracted attention in the 
mobile communication system. The maximum likelihood 
estimator [2] provides optimum parameter estimation. Its 
computational complexity is extremely demanding. 
However, MUSIC is most well-known for its super-
resolution capability and simplicity, in addition, it has less 
computational complexity than maximum likelihood 
methods. 

 
 

 
The problem of estimating the two-dimensional 

directions of arrival, namely, the azimuth and elevation 
angles, of multiple sources was the topic of several 
researches [8,10]. 

In this paper, we present a new subspace-based 2-D 
direction of arrival estimation method based on the 
proprieties of an extended covariance matrix developed 
by Horn and Johnson in [14].  

 The DOA estimation performance of an array strongly 
depends on the number and locations of the array 
elements. A number of researchers have considered the 
design of arrays to achieve or optimize desired 
performance goals. Much of the array design literature is 
devoted to linear arrays [3]-[6]. For planar arrays, 
performance comparisons of some common array 
geometries are given in [7]-[9].  

The number and locations of the elements in an array 
strongly affect the DOA estimation performance of the 
array system. That is why, in this paper we consider a 2-L 
shape array geometry design for “good” DOA estimation 
performance. 

Tayem and Kwon in [15] have demonstrated the reason 
why the novel antenna array with this special geometry 
requires no pair matching between the azimuth and 
elevation angle estimation. They have also explained that 
this key can remove the drawbacks of estimation-failure 
problems, unlike common planar and circular arrays. 

The rest of the paper is organized as follows. The data 
model is presented in section II. The new correlation 
matrix is presented in section III. Section IV presents the 
2-D direction of arrival estimation algorithm. Section V 
shows simulation results and section VI makes 
conclusions. 

II. DATA MODEL 
 

Consider the two-L-shape uniform linear array (ULAs) 
in the x-z and the y-z planes shown in Fig.1 with inter-
element equals d, using three array elements placed on 
the x, y and z axes. Each linear array consists of N 
elements. The element placed at the origin is common for 
referencing purposes.  
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Assume that K signals s(t) from far-field uncorrelated 
sources impinge on the array with  the same wavelength λ . 
Such that kth source has an elevation angle kθ  and an 
azimuth angle kφ , k=1,…,K.  

We put the complex base-band representation of the 
signal received by the nth element of one subarray as )(txn  
(n = 1, 2. . . N), the signal sources are far apart from the 
subarray.  

The subarray output vector at the snapshot t is then given 
by: 
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 “T ” is the transpose, )(tη  is an N-dimensional complex 

white noise vector with mean zero and covariance I2σ , I is 
the identity matrix of size N and a( kθ , kφ ) is the steering 
vector defined by : 
 

a( kθ , kφ ) = [(1, 2,kje ϕ− , . . . , Nkje ,ϕ− ) T]                  (2) 
 
with nk ,ϕ depends on the position and the geometry of the 

subarray. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: the 2-L-shape array configuration used for the joint azimuth 
and elevation ( θφ , ) DOA estimation. 

 

A- The steering vector of the z axes subarray: 
 

Let )(tX z  be the Nx1 signal received at the linear 
subarray in the z axes at the snapshot t.  
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kθ  is the elevation angle of the kth source signal. 

)(tkzη is the additive White Gaussian noise of the kth 
source signal in the z axes at the snapshot t.  
 
B- The steering vector of the x axes subarray: 
 

Let )(tX x  be the Nx1 signal received at the linear 
subarray in the x axes at the snapshot t.  
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where  
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C- The steering vector of the y axes subarray: 
 

Let )(tX y  be the Nx1 signal received at the linear 

subarray in the y axes at the snapshot t.  
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III. PREVIOUS WORK 

III.1. The MUSIC algorithm: 
 

Let us review the procedure of the MUSIC algorithm 
[11]. The correlation matrix of sensor observations X(t) is 
calculated: 

 
HtXtXR )().(=                                                       (12) 

 
where H  represents a conjugate transpose. In practice, 

only a sample covariance matrix is available, i.e., an 
estimate of R based on a finite number ( P ) of data samples 
or snapshots  
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Then, obtain the eigenvalues decomposition 

HVV  R̂ Λ= , V = [v1,… , vN], Λ = diag[y1, . . . , yN], 
where vk is an eigenvector (N- dimensional column vector) 
and yk is the eigenvalue of vk sorted as Kyy ≥≥ ...1 . The 

K points where the function ∑
+=

=
N

Kk

H
k avU

1

2
)()( θθ  

approaches zero correspond to the directions θ1,…, θK of the 
source signals.  

If the number K of sources is smaller than the number N 
of sensors, all the signal components are represented in the 
signal subspace spanned by the first K eigenvectors 
v1,…,vN, and the remaining N−K eigenvectors vK+1,…,vN 
represents the noise subspace. The signal subspace and the 
noise subspace are orthogonal to each other since they are 
spanned by different eigenvectors. 

 The subspace spanned by the K steering vectors 
a(θ1),…, a(θK ) is also the signal subspace. When θ 
coincides with one of the source directions θ1,…, θK, the 
steering vector a(θ) and the noise subspace vK+1,…,vN are 
orthogonal, and therefore U(θ) approaches zero. This is 
why source directions can be estimated using U(θ). For the 
noise subspace to exist, the number N of sensors should be 
larger than the number K of sources. Thus, the MUSIC 
algorithm is applicable for mixtures of up to N − 1 signals. 
 

III.2. The new extended correlation matrix: 

In [14] a new correlation matrix is presented as: 
 

HaamRG )()(ˆ ϕϕϕ +=                                 (14) 
 
where R̂  is given in (13),  )(ϕa is 1 × N array response 
vector for direction ϕ  given in (2) and m is a positive 

scalar. The matrix ϕG is also positive definite and if kμ  

and ke denote eigenvalues and eigenvectors of ϕG  
respectively, k=1,…,N,  
Then it can be shown that while m in (14) is a positive 
scalar we have [14]: 

 

kk y≥μ       k=1,…,N         ϕ∀                           (15) 
 

Another important property of ϕG  is that when ϕ  in 
(14) is set to one of the source directions, i.e., ϕ = θk  for 
some 1 ≤ ki ≤ K, then it can be shown that [14] 
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IV. THE NEW DIRECTION OF ARRIVAL 
ESTIMATION ALGORITHM 

 
We can note that except the actual source directions no 

other value of ϕ  have the properties showed in (15) and 
(16). The property stated in (16) does not depend on the 
value of scalar m of (14) explicitly and will hold while m 
is positive. Based on the above proprieties of the 
extended covariance matrix ϕG  and the 2-L shape arrays 
antenna an algorithm for estimating the direction of 
sources can be formed with the following steps: 

 

A- Estimate of the elevation angle using the array in the z 
axes: 

1- From P data samples compute zR̂  using the 
steering vector calculated in (4). 

2- Compute kzŷ , k=1,…,N, the eigenvalues of zR̂  
that are in decreasing order. 

3- Choose a positive m and compute ϕ
zG  for all 

possible values ofϕ . 

4- For each value ofϕ , compute ϕμkz , k=1,…,N  the 

eigenvalues of ϕ
zG and calculate  the function )(ϕzD as:  
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5- Find all the values of ϕ  that maximize )(ϕzD . 
Elevation angles of sources θ1,…, θK are those values of ϕ  
that correspond to K largest maximums.  

 
B- Estimate of the x and y axes array components of the 
azimuth angle: 

1- Using elevation angles of sources estimated 
previously and the steering vector of the signal received at 
the antenna subarray placed on the x axes calculated in (6), 

we compute xR̂  from N data samples. 

2- Compute kxŷ , k=1,…,N, the eigenvalues of xR̂  that 
are in decreasing order. 

3- Choose a positive m and compute ϕ
xG  for all 

possible values ofϕ . 

4- For each value ofϕ , compute ϕμkx , k=1,…,N,  the 

eigenvalues of ϕ
xG  and calculate  the function )(ϕxD in 

(18). 
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5- Find all the values of ϕ  that maximize )(ϕxD  . The 

x axes array component of the azimuth angles of sources 

Kxx φφ ˆ,...,1̂ are those values of ϕ  that correspond to K 
largest maximums.  

 
In the same way, we estimate the y axes array 

components of azimuth angles Kyy φφ ˆ,...,1̂  using the signal 

received at the antenna subarray placed on the y axes using 
the steering vector calculated in (10). 
The azimuth angle estimation kφ̂ can be written [15] as: 
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V. Simulation results 
 

Computer simulations have been conducted to evaluate 
the 2-D DOA estimation performance of the proposed 
method. The parameters used in the simulation are as 
follows: 

The sensors displacement d is taken to be half the wave 
length of the signal waves. We assume one single direct 
source K=1, with direction of arrival DOA ( φθ , ). The 
additive noise is white Gaussian processes. The number 
of snapshots per trial is P=200 and 1000 independent 
trials in total are used. 

Figs.2 and 3 show the histogram plots for the joint 
elevation and azimuth angles, respectively, for a single 
source with DOA located at (70°,40º) by using the 
proposed method of the 2-L shape array. We notice in 
each case that the method gives close elevation and 
azimuth DOA estimation and the clear peaks appear 
around  (70°) and (40°), respectively. 

 

 
 
Fig.2: histogram of elevation angle for a single source located at 
(70°,40°),  SNR = 10 dB  by  the proposed method with  5 elements on 
the z axes subarray  
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Fig.3: histogram of azimuth angle for a single source located at 
(70°,40°),  SNR = 10 dB  by  the proposed method with  5 elements on 
the z axes subarray  



Figure 4 prove the performance of the proposed method 
and  shows the spectrogram of the elevation and the 
azimuth angles for a single source located at (90°,10°) with 
SNR=10 dB and 5 elements on each subarray.  

 
The 2-L shape configuration shows zero number of 

estimation failures for any pair of incident DOAs ( φθ , ) 
and all trials. The reasons why the proposed antenna array 
configuration shows no failures are discussed in [15]. 
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Fig..4. Pseudo spectre of elevation and azimuth angles for a single source 
located at (90°,10°),  SNR = 10 dB by  the proposed method with  5 
elements on each subarray 
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Fig.5. Elevation angle estimation with the proposed method of a single 
source located at (80°,40°) versus SNRs with 5 elements on the z axes 
subarray 
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Fig.6. Azimuth angle estimation with the proposed method of a single 
source located at (80°,40°)  versus SNRs with 5 elements on each 
subarray. 
 

 
 
Figs. 5 and 6 show the spectrogram of elevation and 

azimuth angles, respectively versus SNRs in dB for a 
single source located at (80,40°).  While comparing it to 
results of MUSIC method form figs 6 and 7 with the 2-L 
shape array, we observe that it gives good performances 
with low SNRs for the angle of elevation and we note a 
success of estimation in low SNRs for the azimuth angle 
better than MUSIC. 
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Fig .7.  Elevation angle estimation with MUSIC method for a single 
source located at (80°,40°) versus SNRs with 5 elements on the z axes 
subarray. 
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Fig .8. Azimuth angle estimation with MUSIC method for a single source 
located at (80°,40°) versus SNRs with  5 elements on each subarray. 

 
The root mean square error (RMSE) of the proposed 

DOA estimation scheme was compared with that of the 
MUSIC and Propagator algorithms, using the 2-L shape 
array configuration in Fig.1. The RMSE for the joint DOA 
estimation is defined as: 
 

)]ˆ()ˆ[( kkkkERMSE φφθθ −+−=                                  (20) 
 
where k represents the source index, E[X] denotes the 
expectation of a random variable X, and ( kk φθ ˆ,ˆ ) are the 
pair of the elevation and azimuth angle estimates. 
Fig. 9 shows the RMSE values of the joint 
elevation θ  and azimuth φ  DOA estimation 
versus the SNR in dB for the proposed method, 
MUSIC and Propagator method, respectively, 
when source signal arrive form direction located 
at (90°,70°). The total number of elements is 15 
elements for the 2-L shape configuration for all 
methods. (five elements in each 
subarray).
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Fig.9. RMSE for a single source located at (90°,70°) with a 2-Lshape array 
antenna versus SNRs 

 

 We observe that the proposed method is 5.1 dB better 
than the Propagator method with the 2-L shape array and 
~3dB less well than the MUSIC method with the same 
configuration. 

VI. CONCLUSIONS 
A new method based on an extended correlation matrix 

with a 2-L shape antenna array configuration was 
proposed for the 2-D azimuth and elevation angle 
estimation problem. The proposed 2-D DOA estimation 
scheme shows a significant improvement. The proposed 
algorithm is quite general and can be applied to all array 
configurations. In other words, the proposed scheme does 
not require any pair matching for the 2-D DOA 
estimation problems, and the proposed algorithm shows 
no estimation failure for any pair of azimuth and 
elevation angles. Simulation results prove that the 
proposed scheme reduces the estimation error of both the 
azimuth and elevation angles and it proves a good 
performance at low SNRs. 
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