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Abstract

We present modeling of the incompressible viscous flows in the domain containing unconfined
fluid and a porous medium in the case when the flow in the unconfined domain dominates.
For such setting a rigorous derivation of the Beavers-Joseph-Saffman interface condition was
undertaken by Jäger and Mikelić [SIAM J. Appl. Math. 60 (2000), p.1111-1127] using the
homogenization method. So far the interface law for the pressure was conceived and confirmed
only numerically. In this article we derive the Beavers and Joseph law for a general body force
by estimating the pressure field approximation. Different than in the Poiseuille flow case, the
velocity approximation is not divergence-free and the precise pressure estimation is essential.
This new estimate allows us to justify rigorously the pressure jump condition using the Navier
boundary layer, already used to calculate the constant in the law by Beavers and Joseph. Finally,
our results confirm that the position of the interface influences the solution only at the order of
physical permeability and therefore the choice of this position does not pose problems.
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1 Introduction

Slow viscous and incompressible simultaneous flow through an unconfined region and a porous
medium occurs in a wide range of industrial processes and natural phenomena. One of the classical
problems is finding effective boundary conditions at a naturally permeable wall, i.e., at the surface
which separates a channel flow and a porous medium.

The effective laminar incompressible and viscous flow through a porous medium can be described
using the Darcy’s law. The unconfined fluid flow in the channel is governed by the Stokes system,
or by the Navier-Stokes system if the inertia effects in the free fluid are important. To model
the coupling of both processes, it is necessary to put together two systems of partial differential
equations: the second order system for the velocity and the first order equation for the pressure,

−µ∆u +∇p = f (1)

div u = 0, (2)

in the unconfined fluid region, and the scalar second order equation for the pressure and the first
order system for the seepage velocity,

−µvF = K(f −∇pF ) (3)

div vF = 0, (4)

in the porous medium.
The orders of the corresponding differential operators are different and it is not clear what

conditions it is necessary to impose at the interface between the free fluid and the porous part of
the domain. One coupling condition is based on the continuity of the normal mass flux. However, it
is not enough for determination of the effective flow and it is necessary to specify more conditions.

Several laws of fluid dynamics in porous media were derived using homogenization. The most
notable example is the Darcy’s law, being the effective equation for one phase flow through a rigid
porous medium. Its formal derivation using the 2-scale expansion goes back to the classical paper
by Ene and Sanchez-Palencia [8]. This derivation was made mathematically rigorous by Tartar in
reference [24]. For the detailed proof in the case of a periodic porous medium we refer to the review
papers by Allaire [1], and by Mikelić [18] and for a random statistically homogeneous porous medium
to the paper of Beliaev and Kozlov [3].

As in the derivation of Darcy’s law, we would like to apply the homogenization technique to
find the effective interface laws. However, the assumption of statistical homogeneity of the domain,
which is necessary for the homogenization approach, is not valid close to the interface. Consequently,
deviations from the Darcy’s law are expected in the thin layers near the interfaces. Furthermore,
presence of such interfaces can significantly change the structure of the model coefficients and lead
to different effective constitutive laws for the flow.

It was experimentally found by Beavers and Joseph in [2] that the jump of the tangential compo-
nent of the effective velocity at the interface is proportional to the shear stress originating from the
free fluid. This law was justified at a physics level of rigor by Saffman in [21], where it was observed
that the seepage velocity contribution could be neglected leading to the law in the form

√
k
∂vτ
∂ν

= αvτ +O(k), (5)

where α is a dimensionless parameter depending on the geometrical structure of the porous medium,
ε is the characteristic pore size, and k is the scalar permeability. ν denotes the unit normal vector
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at the interface and vτ is the slip velocity of the free fluid in the channel. Saffman’s modification of
the law by Beavers and Joseph has been widely accepted.

As an alternative to (5), the continuity of the effective pressure was suggested by Ene and
Sanchez-Palencia in [8]. While this interface law is acceptable from modeling point of view, it
should be noted that the well-posedness of the averaged problem is not clear.

The law (5) was rigorously justified by Jäger and Mikelić in [12]. Numerical calculations of the
boundary layers for the experimental conditions of Beavers and Joseph are presented in [13]. They
indicate appearance of a pressure jump at the interface. These issues were heuristically discussed in
[14].

In the experiment by Beavers and Joseph only the flows tangential to a naturally permeable
wall (a porous bed) were considered. In general, the situation is much more complicated and
many types of interfacial conditions have been proposed, such as continuous tangential velocity with
discontinuous tangential shear stress introduced in [20] by Ochoa-Tapia and Whitaker, or continuous
tangential velocity and tangential shear stress in reference [19] by Neale and Nader, or discontinuous
tangential velocity and tangential shear stress from [5] by Cieszko and Kubik. In particular, in
[20] the continuity of the velocity and the continuity of the ”modified” normal stress were obtained
at the interface using volume averaging. In order to perform the averaging it was necessary to
assume the Brinkman’s flow in the porous part and a transition layer between the two domains.
Numerical study of the hydrodynamic boundary condition at the interface between a porous and
plain medium was performed by Sahraoui and Kaviany [22]. Numerical implementation of the
effective interface couplings was presented in [7] and in [10]. Nevertheless, determination of the
practical and relevant first-order interface conditions between the pure fluid and the porous matrix
remains an open question that could be treated using the technique developed in reference [11].

This paper is a continuation of works [12] and [13] and constitutes a step forward in the de-
velopment of the rigorous approach to model effective interface laws for the transport phenomena
between an unconfined fluid and a porous medium. We depart beyond justification of the law (5)
developed in [12] and undertake a rigorous derivation of the interface laws for the viscous flow in
a long channel in contact with a porous bed. The macroscopic model derived links pressure jump
with the shear stress of the unconfined fluid at the interface, an effect which was predicted based
on numerical simulations in reference [13]. Derivation of the law of Beavers and Joseph is based
on the procedures proposed in [12] and discussed in [14]; however it is nontrivially adjusted to the
new setting involving a general body force. We consider a general situation when the flow in the
unconfined region dominates. Nevertheless, even if the flow is much less important in the porous
part, the pressures are of the same order of magnitude. Hence finding and justifying the interface
law for the pressure is of fundamental interest.

The review paper [14] was concluded with the sentence ”Proving the error estimate for the
pressure approximation in the porous bed Ωε2 remains an open problem”. We solve this problem
and present a mathematically rigorous derivation of the pressure jump interface law, which is the
next order correction of the Beavers-Joseph law. We obtain the effective equations heuristically and
then rigorously justify them. Combination of homogenization and boundary layer approaches is
used to achieve this end. Study of such complex flows leads to artificial compressibility effects in the
upscaling process. In this paper we develop the required estimate of the pressure. Our main results
are the following:

1. Confirmation of Saffman’s form of the law by Beavers and Joseph in the more general setting

ueff1 = −εCbl1

∂ueff1

∂x2
+O(ε2), (6)
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where ueff is the average over the characteristic pore opening at the naturally permeable wall.
Physical permeability is given by k = kε = ε2K and the constant in (6) is proportional to

√
kε.

The error is of order kε, as remarked by Saffman in [21]. It is important to point out that
the parameter α from expression (5) is determined taking into account the auxiliary problems,

which we formulate later in (105)-(108) and (111), and that it is given by α = − 1

εCbl1

> 0.

2. Interface between the unconfined flow and the porous bed is an artificial mathematical bound-
ary and it can be chosen in a layer having the pore size thickness. We show that a perturbation
of the interface position of the order O(ε) implies a perturbation in the solution of O(ε2). Con-
sequently, it influences the result only at the next order of the asymptotic expansion.

3. We obtain a uniform bound on the pressure approximation. Furthermore, we prove that there
is a jump of the effective pressure on the interface and that it is proportional to the free fluid
flow shear at the boundary. The proportionality constant is calculated from the boundary
layer problem (105)-(108). Homogenization leads to the discontinuity of the effective pressure
field at the interface, which differs from the pressure interface continuity law proposed in
reference [8]. If the boundary layer pressure is neglected, the pressure in the neighborhood of
the interface is poorly approximated.

Here, we remark that some classes of problems, like infiltration into the porous medium, are charac-
terized by the velocity field of the same order in both domains. Such situation requests much larger
body force in the porous part than in unconfined. Some situations of this kind were considered in
[11]. In this paper, the body force is of order O(1) in both domains.

The paper is organized as follows. In Section 2 we formulate the problem and main results.
Section 3 is devoted to the proof of the results. We conclude the paper with two short appendices
recalling the notion of very weak solutions and definition and properties of the Navier boundary
layer.

2 Statement of the problem and of the results

2.1 Definition of the geometry

Let L, h and H be positive real numbers. We consider a two dimensional periodic porous medium
Ω2 = (0, L)× (−H, 0) with a periodic arrangement of the pores. The formal description goes along
the following lines:

First, we define the geometrical structure inside the unit cell Y = (0, 1)2. Let Ys (the solid part)
be a closed strictly included subset of Ȳ , and YF = Y \Ys (the fluid part). Now we make a periodic
repetition of Ys all over R2 and set Y ks = Ys+k, k ∈ Z2. Obviously, the resulting set Es =

⋃
k∈Z2 Y ks

is a closed subset of R2 and EF = R2\Es in an open set in R2. We suppose that Ys has a boundary
of class C0,1, which is locally located on one side of their boundary. Obviously, EF is connected and
Es is not.

Now we notice that Ω2 is covered with a regular mesh of size ε, each cell being a cube Y εi , with
1 ≤ i ≤ N(ε) = |Ω2|ε−2[1 + o(1)]. Each cube Y εi is homeomorphic to Y , by linear homeomorphism
Πε
i , being composed of translation and a homothety of ratio 1/ε.

We define Y εSi
= (Πε

i )
−1(Ys) and Y εFi

= (Πε
i )
−1(YF ). For sufficiently small ε > 0 we
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Figure 1: The geometry

consider the set Tε = {k ∈ Z2|Y εSk
⊂ Ω2} and define

Oε =
⋃
k∈Tε

Y εSk
, Sε = ∂Oε, Ωε2 = Ω2\Oε = Ω2 ∩ εEF

Obviously, ∂Ωε2 = ∂Ω2 ∪ Sε. The domains Oε and Ωε2 represent, respectively, the solid and fluid
parts of the porous medium Ω. For simplicity, we suppose L/ε,H/ε, h/ε ∈ N.

We set Σ = (0, L) × {0}, Ω1 = (0, L) × (0, h) and Ω = (0, L) × (−H,h). Furthermore, let
Ωε = Ωε2 ∪ Σ ∪ Ω1.

A very important property of the porous media is the following variant of Poincaré’s inequality:

Lemma 1. (see e.g. [23]) Let ϕ ∈ V (Ωε2) = {ϕ ∈ H1(Ωε2) |ϕ = 0 on Sε}. Then, it holds

‖ϕ‖L2(Σ) ≤ Cε1/2‖∇xϕ‖L2(Ωε
2)2 , (7)

‖ϕ‖L2(Ωε
2) ≤ Cε‖∇xϕ‖L2(Ωε

2)2 . (8)

2.2 The microscopic equations

Having defined the geometrical structure of the porous medium, we precise the flow problem. Here
we consider the slow viscous incompressible flow of a single fluid through a porous medium. We
suppose the no-slip condition at the boundaries of the pores (i.e., a rigid porous medium). Then,
we describe it by the following non-dimensional steady Stokes system in Ωε (the fluid part of the
porous medium Ω):

−∆vε +∇pε = f in Ωε (9)

div vε = 0 in Ωε,

∫
Ω1

pε dx = 0, (10)

vε = 0 on ∂Ωε \
(
{x1 = 0} ∪ {x1 = L}

)
, {vε, pε} is L− periodic in x1. (11)

Here the non-dimensional f stands for the effects of external forces or an injection at the boundary
or a given pressure drop, and it corresponds to the physical forcing term multiplied by the ratio
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between Reynolds’ number and Froude’s number squared. vε denotes the non-dimensional velocity
and pε is the non-dimensional pressure. The non-constant force f corresponds, e.g., to a non-constant
pressure drop or to injection profiles which are not parabolic.

Let

W ε = {z ∈ H1(Ωε)2, z = 0 on ∂Ωε \
(
{x1 = 0}∪{x1 = L}

)
and z is L−periodic in x1}. (12)

The variational form of the problem (9)-(11) reads:
Find vε ∈W ε, div vε = 0 in Ωε and pε ∈ L2(Ωε) such that∫

Ωε

∇vε∇ϕdx−
∫

Ωε

pε div ϕdx =

∫
Ωε

fϕdx ∀ϕ ∈W ε. (13)

Then for f ∈ C∞(Ω)2, the elementary elliptic variational theory gives the existence of the unique
velocity field vε ∈W ε , div vε = 0 in Ωε, which solves (13) for every ϕ ∈W ε, div ϕ = 0 in Ωε. The
construction of the pressure field goes through De Rham’s theorem (see e.g. book [25]).

2.3 Main result

We start by introducing the effective problems in Ω1 (the unconfined fluid part) and Ω2:
Find a velocity field u0 and a pressure field peff such that

−4ueff +∇peff = f in Ω1, (14)

div ueff = 0 in Ω1,

∫
Ω1

peff dx = 0, (15)

ueff = 0 on (0, L)× {h}; ueff and peff are L− periodic in x1, (16)

ueff2 = 0 and ueff1 + εCbl1

∂ueff1

∂x2
= 0 on Σ. (17)

We note that the second boundary condition in (17) is the law by Beavers and Joseph from [2].
The constant Cbl1 is strictly negative and calculated through (111), from the viscous boundary layer
described in Appendix 2.

Problem (14)-(17) has a unique solution, which in the case of Poiseuille flows (i.e. when f =

−pb − p0

L
e1) reads

ueffpois =

(
pb − p0

2L

(
x2 −

εCbl1 h

h− εCbl1

)
(x2 − h), 0

)
for 0 ≤ x2 ≤ h; peff = 0 for 0 ≤ x1 ≤ L. (18)

The effective mass flow rate through the channel is then

Meff =

∫
Ω1

ueff1 dx, (19)

which for the Poiseuille flow reads Meff
pois = −pb − p0

12
h3h− 4εCbl1

h− εCbl1

. (20)
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Theorem 2. Let us suppose f ∈ C∞(Ω)2 and L-periodic with respect to x1. For {vε, pε} given by
(9)-(11) and {ueff , peff} by (14)-(17). It holds

‖vε − ueff‖L2(Ω1)2 + |Mε −Meff | ≤ Cε3/2 (21)

‖vε − ueff‖H1/2(Ω1)2 + ‖pε − peff‖L1(Ω1) + ‖∇(vε − ueff )‖L1(Ω1)4+

‖|x2|1/2∇(vε − ueff )‖L2(Ω1)4 + ‖|x2|1/2(pε − peff )‖L2(Ω1)2 ≤ Cε, (22)

with Meff defined in (19).

Next, we study the situation in the porous medium Ω2.

Theorem 3. Let the permeability tensor K be given by (83). The effective porous media pressure
p̃0 is the L− periodic in x1 function satisfying

div

(
K(f(x)−∇p̃0)

)
= 0 in Ω2 (23)

p̃0 = peff + Cblω
∂ueff1

∂x2
(x1, 0) on Σ; K(f(x)−∇p̃0)|{x2=−H} · e2 = 0, (24)

with ueff being the solution to the problem (14)-(17) and Cblω being the pressure stabilization constant
defined by (113). In addition we have

1

ε2
vε −K(f −∇p̃0) ⇀ 0 weakly in L2((0, L)× (−H,−δ))2, as ε→ 0, ∀δ > 0; (25)

pε − p̃0 → 0 strongly in L2(Ω2), as ε→ 0; (26)

||pε − peff ||H−1/2(Σ) ≤ C
√
ε. (27)

Remark 4. If we include the vicinity of Σ the velocity vε has to be corrected by a boundary layer
term βbl,ε(x) = εβbl(x/ε), defined through (105)-(108), and the convergence result (25) reads

1

ε2

(
vε + βbl,ε

∂ueff1

∂x2
(x1, 0)

)
−K(f(x)−∇p̃0) ⇀ 0 weakly in L2(Ω2)2, as ε→ 0. (28)

Remark 5. Let Ωaε = (0, L)× (aε, h) for a < 0 and let {ua,eff , pa,eff} be a solution for (14)-(17)
in Ωaε, with (17) replaced by

ua,eff2 = 0 and ua,eff1 + εCa,bl1

∂ua,eff1

∂x2
= 0 on Σa = (0, b)× aε. (29)

Problem (14)-(16), (29) has a unique smooth solution {ua,eff , pa,eff}, its derivatives are bounded

independently of ε and, by (117), Ca,bl1 = Cbl1 − a. Then a simple calculation gives

0 = ua,eff1 (x1, εa) + εCa,bl1

∂ua,eff1

∂x2
(x1, εa) = ua,eff1 (x1, 0) + εCbl1

∂ua,eff1

∂x2
(x1, 0)+

(εa)2

2
(
∂2ua,eff1

∂x2
2

(x1, ξ1) +
∂2ua,eff1

∂x2
2

(x1, ξ2)), for ξ1, ξ2 ∈ (0, εa).

Therefore, a perturbation of the interface position for an O(ε) implies a perturbation in the solution
of O(ε2) in Hk(Ω1). Consequently, there is a freedom in fixing position of Σ. It influences the result
only at the next order of the asymptotic expansion.
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The physical permeability Kphys is proportional to ε2. Our result on the influence of the interface
position on the effective slip is in agreement with the observation of Kaviany in [15], pages 79-83.
In fact, it has been noticed by Larson and Higdon in [16] that changes of O(1) in the slip coefficients
are possible, after the change of order O(

√
Kphys) of the interface position. Therefore, the exact

position of Σ does not pose problems, since it influences the solution only at order O(Kphys).

3 Law by Beavers and Joseph

In this section we extend the justification of the law (5) from [12] to the case with a general body
force. Our boundary conditions are simpler from those of the experiment from [2] and we consider the
2D Stokes system. The Beavers and Joseph setting could be reduced to our setting if Ω is sufficiently
long in x1 direction. Then we may assume the periodic boundary conditions at inlet/outlet boundary

and the flow is governed by a force coming from the pressure drop and is equal to
pb − p0

b
e1. We

assume a non-constant force, which can describe a larger class of the problems.

3.1 The impermeable interface approximation

Intuitively, the main flow is in the unconfined domain Ω1. Following the approach from [12] we
study the problem

−4v0 +∇p0 = f in Ω1, (30)

div v0 = 0 in Ω1, (31)

v0 = 0 on ∂Ω1 \
(
{x1 = 0} ∪ {x1 = L}

)
, (32)

{v0, p0} is L− periodic in x1 (33)

Problem (30)-(33) has a unique solution {v0, p0} ∈ H1(Ω1)2 × L2
0(Ω1) (see e.g. book [25]). In fact

this solution is C∞ for f ∈ C∞. Therefore, for the lowest order approximation {v0, p0} we impose
on the interface the no-slip condition

v0 = 0 on Σ. (34)

We observe that in the Beavers and Joseph setting f = −pb − p0

L
e1 and the unique solution for

this problem in H1(Ω1)2×L2
0(Ω1) is the classic Poiseuille flow in Ω1, satisfying the no-slip conditions

at Σ. It is given by

v0 =

(
pb − p0

2L
x2(x2 − h), 0

)
for 0 ≤ x2 ≤ h; p0 = 0 for 0 ≤ x1 ≤ L (35)

(see [12] and [14] for further details).

We extend v0 to Ω2 by setting v0 = 0 for −H ≤ x2 < 0. For p0 we use a smooth extension to Ω2,
p̃0, which we shall precise. The question is in which sense this solution approximates the solution
{vε, pε} of the original problem (9)-(11).
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Direct consequence of the weak formulation (13) is that the difference vε − v0 satisfies the
following variational equation:∫

Ωε

∇(vε−v0)∇ϕ dx−
∫

Ωε

(pε−p̃0) div ϕ =

∫
Σ

∂v0
1

∂x2
ϕ1 dS−

∫
Σ

[p̃0]ϕ2 dS+

∫
Ωε

2

(f−∇p̃0)ϕ dx, ∀ϕ ∈W ε.

(36)
Taking ϕ = vε − v0 in (36) and applying Lemma 1 leads to the following result, proved in [12]:

Proposition 6. Let {vε, pε} be the solution for (9)-(11) and {v0, p0} defined by (30)-(33). Then,
it holds

√
ε‖∇(vε − v0)‖L2(Ωε)4 +

1√
ε
‖vε‖L2(Ωε

2)2 + ‖vε‖L2(Σ) ≤ Cε (37)

Furthermore, using estimate (37) and the notion of very weak solutions for the Stokes system in
Ω1, introduced in [6] (see also Appendix 1), we conclude the following additional estimates:

Corollary 7. (see [12]) Let {vε, pε} be the solution for (9)-(11) and {v0, p0} defined by (30)-(33).
Then, it holds

√
ε‖pε − p0‖L2(Ω1) + ‖vε − v0‖L2(Ω1)2 ≤ Cε. (38)

This provides the uniform a priori estimates for {vε, pε}. Moreover, we have found that the
viscous flow in Ω1 corresponding to an impermeable wall is an O(ε) L2-approximation for vε. Beavers
and Joseph’s law should correspond to the next order velocity correction. Since the Darcy velocity
is of order O(ε2) we justify Saffman’s version of the law.

3.2 Justification of the law by Beavers and Joseph

At the interface Σ the approximation from Subsection 3.1 leads to the shear stress jump equal to

−∂v
0
1

∂x2
|Σ. Contrary to the pressure difference, which could be easily set to zero by the appropriate

choice of p̃0, the shear stress jump requires construction of the corresponding boundary layer. For
the intuitive argument how to obtain the shear stress jump correction using the natural stretching

variable y =
x

ε
, we refer to the paper [14], page 503. In the present paper we present the rigorous

construction, based on the Navier boundary layer and following the scheme originally used in [12].
Let {βbl, ωbl} be the boundary layer given by (105)-(108).
Now we set

βbl,ε(x) = εβbl(
x

ε
) and ωbl,ε(x) = ωbl(

x

ε
), x ∈ Ωε, (39)

βbl,ε is extended by zero to Ω \ Ωε. Let H be Heaviside’s function. Then for every q ≥ 1 we obtain

1

ε
‖βbl,ε − ε(Cbl1 , 0)H(x2)‖Lq(Ω)2 + ‖ωbl,ε − CblωH(x2)‖Lq(Ωε) + ‖∇βbl,ε‖Lq(Ω1∪Σ∪Ω2)4 = Cε1/q. (40)

Hence, our boundary layer is not concentrated around the interface and there are some stabilization
constants. We will see that these constants are closely linked to our effective interface law.
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As in [11] stabilization of βbl,ε towards a nonzero constant velocity ε
(
Cbl1 , 0

)
, at the upper bound-

ary, generates a counterflow. It is given by the following Stokes system in Ω1:

−4zσ +∇pσ = 0 in Ω1, (41)

div zσ = 0 in Ω1, (42)

zσ = 0 on {x2 = h} and zσ =
∂v0

1

∂x2
|Σe1 on {x2 = 0}, (43)

{zσ, pσ} is L− periodic in x1. (44)

In the setting of the experiment by Beavers and Joseph, zσ was proportional to the two dimensional

Couette flow d = (1− x2

h
)e1.

Now, after [11], we expected that the approximation for the velocity reads

vε = v0 − (βbl,ε − ε(Cbl1 , 0))
∂v0

1

∂x2
|Σ − εCbl1 zσ +O(ε2), (45)

Concerning the pressure, there are additional complications due to the stabilization of the bound-

ary layer pressure to Cblω , when y2 → +∞. Consequently, ωbl,ε −H(x2)Cblω
∂v0

1

∂x2
|Σ is small in Ω1 and

we should take into account the pressure stabilization effect.
At the flat interface Σ, the normal component of the normal stress reduces to the pressure field.

Subtraction of the stabilization pressure constant at infinity leads to the pressure jump on Σ:

[pε]Σ = p0(x1,+0)− p̃0(x1,−0) = −Cblω
∂v0

1

∂x2
|Σ +O(ε) for x1 ∈ (0, L). (46)

Therefore, the pressure approximation is

pε(x) = p0H(x2) + p̃0H(−x2)−
(
ωbl,ε(x)−H(x2)Cblω

)∂v0
1

∂x2
|Σ − εCbl1 p

σH(x2) +O(ε). (47)

Following the ideas from [11], these heuristic calculations could be made rigorous. Let us define
the errors in velocity and in the pressure:

Uε(x) = vε − v0 + (βbl,ε − εCbl1 e1H(x2))
∂v0

1

∂x2
|Σ + εCbl1 zσ (48)

Pε(x) = pε − p0H(x2)− p̃0H(−x2) +
(
ωbl,ε(x)−H(x2)Cblω

)∂v0
1

∂x2
|Σ + εCbl1 p

σH(x2). (49)

Remark 8. Rigorous argument, showing that Uε is of order O(ε2), allows justifying Saffman’s
modification of the Beavers and Joseph law (5): On the interface Σ we obtain

∂vε1
∂x2
|Σ =

∂v0
1

∂x2
|Σ −

∂βbl1
∂y2
|Σ,y=x/ε +O(ε) and

vε1
ε

= −βbl1 (x1/ε, 0)
∂v0

1

∂x2
|Σ +O(ε).

After averaging over Σ with respect to y1, we obtain the Saffman version of the law by Beavers and
Joseph

ueff1 = −εCbl1

∂ueff1

∂x2
on Σ, (50)

where ueff1 is the average of vε1 over the characteristic pore opening at the naturally permeable wall.
The higher order terms are neglected.
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For simplicity we denote

σ0
12(x1) =

∂v0
1

∂x2
|Σ.

Then, the variational equation for (βbl,ε − εCbl1 e1H(x2))
∂v0

1

∂x2
|Σ reads

∫
Ωε

∇
(

(βbl,ε − εCbl1 e1H(x2))σ0
12

)
: ∇ϕ dx−

∫
Ωε

σ0
12

(
ωbl,ε(x)−H(x2)Cblω

)
div ϕ dx =

−
∫

Σ

ϕ1σ
0
12 dS −

∫
Σ

Cblω ϕ2σ
0
12 dS −

∫
Ωε

∑
i

(
∆σ0

12(βbl,εi − εCbl1 δ1iH(x2))ϕi−

∂xiσ
0
12(ωbl,ε − εCblω )ϕi − 2(βbl,εi − εCbl1 δ1iH(x2)) div (ϕi∇σ0

12)

)
dx, ∀ϕ ∈W ε. (51)

Next, the variational form of (41)-(44) reads∫
Ωε

∇zσ : ∇ϕ dx−
∫

Ωε

pσ div ϕ dx = −
∫

Σ

(−ϕ2p
σ + ϕ · ∂zσ

∂x2
) dS, ∀ϕ ∈W ε. (52)

Now we are ready to write the variational equation for {Uε,Pε} and obtain the higher order
error estimates as in [12]. Nevertheless, contrary to [12], Uε is not divergence free anymore and we
need more effort to control Pε.

Theorem 9. Let Uε be defined by (48) and Pε by (49). Let p̃0 be a smooth function satisfying the
interface condition (46). Then, the following estimates hold

ε‖∇Pε‖H−1(Ωε) + ε‖∇Uε‖L2(Ωε)4 + ‖Uε‖L2(Ωε
2)2 + ε1/2‖Uε‖L2(Σ)2 ≤ Cε2 (53)

Proof. First we remark that for y2 > 0 the mean with respect to y1 of ωbl(y)− Cblω is zero. Conse-
quently, the problem

∂πblω
∂y1

= ωbl(y)− Cblω ∀y1 ∈ (0, 1); πblω is 1-periodic ;

∫ 1

0

πblω (y1, y2) dy1 = 0, (54)

has a unique smooth solution.
Next by subtracting (51) and (52) from (36) we obtain∫

Ωε

∇Uε : ∇ϕ dx−
∫

Ωε

Pε div ϕ dx =

ε

∫
Σ

(−ϕ2p
σ + ϕ · ∂zσ

∂x2
) dS +

∫
Ωε

2

(f −∇p̃0)ϕ dx−
∫

Ωε

∑
i

(
∆σ0

12(βbl,εi − εCbl1 δ1iH(x2))ϕi dx−∫
Ωε

2

∂x1σ
0
12ω

bl,εϕ1 dx−
∫

Ω1

επblω (
x

ε
)(ϕ1∂

2
x1
σ0

12 + ∂x1ϕ1∂x1σ
0
12) dx+

2

∫
Ωε

(βbl,ε1 − εCbl1 H(x2))(ϕ1∂
2
x1
σ0

12 + ∂x1
ϕ1∂x1

σ0
12) dx, ∀ϕ ∈W ε, (55)

div Uε = (βbl,ε1 − εCbl1 H(x2))
d

dx1
σ0

12 in Ωε. (56)
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From (55) we find out that

|
∫

Ωε

∇Uε : ∇ϕ dx−
∫

Ωε

Pε div ϕ dx| ≤ Cε3/2||∇ϕ||L2(Ωε)4 + Cε||f −∇p̃0||L2(Ω2)2 ||∇ϕ||L2(Ωε
2)4

(57)

and || div Uε||L2(Ωε)2 ≤ Cε3/2. (58)

The size of div Uε does not allow us to obtain the appropriate estimate and we should diminish it
further.

Let Qbl be given by (118)-(120). Furthermore let Qbl,ε(x) = ε2Qbl(x/ε) and let wQ be defined
by 

∆wQ −∇pQ = 0 in Ω1;

div wQ =
1

|Ω1|

∫
Σ

d

dx1
σ0

12 dS = 0 in Ω1;

wQ = − d

dx1
σ0

12e
2 on Σ, wQ = 0 on {x2 = h};

{wQ, pQ} is L-periodic in x1.

(59)

We introduce the following error functions, where the compressibility effects are reduced to the next
order:

Uε(x) = Uε0 (x) + Qbl,ε(x)
d

dx1
σ0

12 + ε2H(x2)(

∫
ZBL

(Cbl1 H(y2)− βbl1 (y)) dy)wQ, (60)

Pε(x) = Pε0(x, t) + ε2H(x2)(

∫
ZBL

(Cbl1 H(y2)− βbl1 (y)) dy)pQ, (61)

div Uε0 = −Qbl,ε1 (x)
d2

dx2
1

σ0
12 in Ωε. (62)

Then Uε0 ∈ W ε and || div Uε0 ||L2(Ωε)4 ≤ Cε5/2. Next, we construct a function Φ1,ε ∈ H1(Ω1)2 such
that 

div Φ1,ε = −Qbl,ε1 (x)
d2

dx2
1

σ0
12 in Ω1, ;

Φ1,ε =
e2

|Σ|

∫
Ω1

Qbl,ε1 (x)
d2

dx2
1

σ0
12 dx on Σ, Φ1,ε = 0 on {x2 = h},

Φ1,ε is L-periodic in x1.

(63)

We note that ||Φ1,ε||H1(Ω1)2 ≤ Cε2. Next we extend Qbl,ε by zero to the rigid part of the porous
medium and choose a function Φ2,ε ∈ H1(Ω2)2 such that

div Φ2,ε = −Qbl,ε1 (x)
d2

dx2
1

σ0
12 in Ω2,

Φ2,ε = − e2

|Σ|

∫
Ω2

Qbl,ε1 (x)
d2

dx2
1

σ0
12 dx on Σ, Φ2,ε = 0 on {x2 = −H},

Φ2,ε is L-periodic in x1.

(64)
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We note that Φ1,ε = Φ2,ε on Σ and ||Φ2,ε||H1(Ω1)2 ≤ Cε2. Let X2 = {z ∈ H1(Ω2)2, z = 0 on {x1 =
L} and z is L − periodic in x1} and Xε

2 = {z ∈ X2, z = 0 on ∂Ωε2 \ ∂Ω2}. In the seminal
paper [24] Tartar constructed a continuous linear restriction operator operator Rε ∈ L

(
X2, X

ε
2

)
,

such that

div (Rεϕ) = div ϕ+
∑
k∈Tε

1

|Y εFk
|
χY ε

Fk

∫
Y ε
Sk

div ϕdx, ∀ϕ ∈ X2 (65)

‖Rεϕ‖L2(Ωε
2)2 ≤ C

{
ε‖∇ϕ‖L2(Ω2)4 + ‖ϕ‖L2(Ω2)2

}
, ∀ϕ ∈ X2 (66)

‖∇(Rεϕ)‖L2(Ωε)4 ≤
C

ε

{
ε‖∇ϕ‖L2(Ω2)4 + ‖ϕ‖L2(Ω2)2

}
, ∀ϕ ∈ X2. (67)

Furthermore, ϕ = Rεϕ on Σ. For more details we refer also to [1] and [18]. This construction allows
us to work with the divergence free velocity error function Uε given by

Uε = Uε0 −H(x2)Φ1,ε −H(−x2)RεΦ
2,ε (68)

Now we write the analogue of the variational equation (55) for {Uε,Pε0} and, since ||∇RεΦ2,ε||L2(Ω2)4

≤ Cε. We find out that the leading order force term is of the same order as in the estimate (57).
Now we test the analogue of variational equation (55) for {Uε,Pε0} with ϕ = Uεto obtain

||∇Uε||L2(Ωε)4 ≤ Cε. (69)

We remark that Uε differs from Uε for O(ε2) in L2-norm and for O(ε) in H1-norm . Therefore (69)
gives us the middle part of the estimate (53). In what concerns the L2(Σ) norm of Uε, it follows by
using (7). Remaining pressure estimate follows easily from the weak formulation and the estimates
on Uε.

Next we use Theorem 9 and the results on the Stokes system with L2− boundary values from
[9] and [4] to conclude the following result:

Corollary 10. Let Uε be defined by (48) and Pε by (49). Let p̃0 be a smooth function satisfying
the interface condition (46). Then, the following estimate holds

√
ε‖Pε‖L2(Ω1) + ‖Uε‖H1/2(Ω1)2 ≤ Cε3/2. (70)

Now we introduce the effective flow equations in Ω1 through the boundary value problem (14)-
(17), containing the slip condition of Beavers and Joseph. Since our expansion is performed using the
solution {v0, p0} of the problem (30)-(33), we need to know the relationship between the solutions
to these two boundary value problems.

Proposition 11. Let f ∈ C∞(Ω1)2 and L-periodic in x1. Let {ueff , peff} be the solution of the
problem (14)-(17), {v0, p0} of the problem (30)-(33) and {zσ, pσ} of the problem (41)-(44). Then
we have

||ueff − v0||Hk(Ω1)2 + ||peff − p0||Hk−1(Ω1) ≤ Cε, ∀k ∈ N; (71)

||ueff − v0 + εCbl1 zσ||Hk(Ω1)2 + ||peff − p0 + εCbl1 p
σ||Hk−1(Ω1) ≤ Cε2, ∀k ∈ N. (72)

Proof. The elliptic regularity for the Stokes operator (see e.g. [25]) gives C∞ regularity for the
functions {ueff , peff}, {v0, p0} and {zσ, pσ}. It is easy to see that {ueff , peff} is bounded in
Hk(Ω1)4, independently of ε, for every integer k.
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Let U = ueff − v0 and P = peff − p0. Then for every ϕ ∈ V = {ϕ ∈ H1(Ω1)2| ϕ is L-periodic
in x1, ϕ = 0 on {x2 = h}, ϕ2 = 0 on Σ} we obtain∫

Ω1

∇U : ∇ϕ dx−
∫

Ω1

P div ϕ dx− 1

εCbl1

∫
Σ

U1ϕ1 dS = −
∫

Σ

σ0
12ϕ1 dS. (73)

Using ϕ = U as a test function yields ||U||H1(Ω1)2 +
1√
ε
||U1||L2(Σ) ≤ C

√
ε,

||P ||L2(Ω1) ≤ C
√
ε.

(74)

Differentiating the equations with respect to x1 leads to the estimate
|| ∂U

∂x1
||H1(Ω1)2 +

1√
ε
||∂U1

∂x1
||L2(Σ) ≤ C

√
ε,

|| ∂P
∂x1
||L2(Ω1) ≤ C

√
ε.

(75)

Since
∂U2

∂x1
= 0 on Σ, we have for the velocity trace U ∈ H1(Σ)2 and its norm is smaller than Cε.

Using [9] and [4] we obtain that

||U||H3/2(Ω1)2 + ||P ||H1/2(Ω1) ≤ Cε. (76)

After bootstrapping, we conclude that the estimate (71) holds true.

Using corrections U1 = ueff − v0 + εCbl1 zσ and P 1 = peff − p0 + εCbl1 p
σ, for every ϕ ∈ V =

{ϕ ∈ H1(Ω1)2| ϕ is L-periodic in x1, ϕ = 0 on {x2 = h}, ϕ2 = 0 on Σ} we obtain∫
Ω1

∇U1 : ∇ϕ dx−
∫

Ω1

P 1 div ϕ dx− 1

εCbl1

∫
Σ

U1
1ϕ1 dS = ε

∫
Σ

gϕ1 dS, (77)

where g = −Cbl1

∂zσ1
∂x2
|Σ ∈ C∞(Σ) is uniformly bounded with respect to ε. Repeating the argument

used in the first part of the proof to {U1, P 1} yields the estimate (72).

Proof. (of Theorem 2 ) We remark that on Σ

vε − ueff = Uε − (βbl,ε − ε(Cbl1 , 0))
∂v0

1

∂x2
(x1, 0). (78)

Now Theorem 9, Corollary 10 and Propositions 15 and 16 from the Appendix 1 imply the desired
result.

3.3 Justification of the interface pressure jump law and the effective equa-
tions in the porous medium

We have already seen that, after extension by zero to the rigid part, the velocity Uε satisfies the
a priori estimates (53), (70), with Ωε replaced by Ω. Furthermore, it would be more comfortable

14



to work with the pressure field Pε defined on Ω. Following the approach from [17], we define the
pressure extension P̃ε by

P̃ε =

{
Pε in Ωε

1
|Y ε

Fi
|
∫
Y ε
Fi

Pε in the Y εSi
for each i, (79)

where Y εFi
is the fluid part of the cell Y εi . Note that the solid part of the porous medium is a union

of all Y εSi
. Then, following Tartar’s results from [24] we have

< ∇P̃ε, ϕ >Ω=< ∇Pε, R̃εϕ >Ωε , ∀ϕ ∈ H1(Ω)2,

where

R̃εϕ(x) =

{
ϕ(x), for x ∈ Ω1 ∪ Σ;
Rεϕ(x), for x ∈ Ωε2.

(80)

Using the estimate (53) and properties (65)-(67) of the restriction operator Rε, we arrive at

Corollary 12. (a priori estimate for the pressure field in Ω2). Let P̃ε be defined by (79). Then it
satisfies the estimates

‖∇P̃ε‖W ′ ≤ C and ‖P̃ε‖L2(Ω2) ≤ C, (81)

where W = {z ∈ H1(Ω2)2 : z = 0 on {x2 = −H} ∪ {x2 = 0}, z is L− periodic}.

We remark that in Ω2 we have strong L2-compactness of the family {P̃ε}. From the properties
of Tartar’s restriction operator (see [24] or [1]) it follows:

Lemma 13. The sequence {P̃ε} is strongly relatively compact in L2(Ω2).

Following the homogenization derivation of the Darcy law from [8], [24], [1] or [18], we consider
the following auxiliary problems in YF :

For 1 ≤ i ≤ 2, find {wi, πi} ∈ H1
per(YF )2 × L2(YF ),

∫
YF
πi(y) dy = 0, such that−∆yw

i(y) +∇yπi(y) = ei in YF
divyw

i(y) = 0 in YF
wi(y) = 0 on (∂YF \ ∂Y )

(82)

Obviously, these problems always admit unique solutions. Let us introduce the permeability
matrix K by

Kij =

∫
YF

∇ywi : ∇ywj dy =

∫
YF

wij dy, 1 ≤ i, j ≤ 2. (83)

Then after [23], permeability tensor K is symmetric and positive definite. Consequently, the drag
tensor K−1 is also positive definite.

Proof. (Proof of Theorem 3) Let the function p̂0 be the solution for the boundary value problem

div

(
K(f(x)−∇p̂0)

)
= 0 in Ω2 (84)

p̂0 = p0 + Cblω σ
0
12(x1) on Σ; K(f(x)−∇p̂0)|{x2=−H} · e2 = 0. (85)
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We take as test function in (55) ϕ(x)ψ(y), with ϕ ∈ C∞0 (Ω2) and ψ ∈ H1
per(YF )2, divyψ = 0.

Then after passing to the subsequence

Uε

ε2
→ U imp(x, y), ∇U

ε

ε
→ ∇yU imp(x, y) and P̃ε → Pimp(x)

and we have∫
Ω2

∫
YF

∇yU imp : ∇yψϕ dydx−
∫

Ω2

∫
YF

Pimp(x)ψ(y)∇xϕ(x) dydx =

∫
Ω2

∫
YF

(f−∇p̂0)ψ(y)ϕ(x) dydx,

(86)
implying

U imp(x, y) =

2∑
j=1

wj(y)(fj(x)− ∂(p̂0 + Pimp)
∂xj

) (a.e.) in Ω2. (87)

Consequently, we obtain p̂0 + Pimp ∈ H1(Ω2).
By Corollary 10 it holds that ε−1∇Uε ⇀ 0 strongly in L2(Ω1)2. Next taking ϕ ∈ C∞0 (Ω) and

using a priori estimates (53), the variational equation (55) yields a generalized form of (86) leading
to

Pimp = 0 on Σ. (88)

Averaging div Uε in Ω2 results in

div

(
K(f(x)−∇(Pimp + p̂0))

)
= 0 in Ω2.

Hence the function Pimp + p̂0 is L− periodic in x1 and satisfies

div

(
K(f(x)−∇(P imp + p̂0))

)
= 0 in Ω2, (89)

Pimp + p̂0 = p0 + Cblω σ
0
12(x1) on Σ; K(f(x)−∇(Pimp + p̂0))|{x2=−H} · e2 = 0, (90)

and we have Pimp = 0. Let p̃0 be the solution to the problem (23)-(24). Using Proposition 11 we
find out that p̃0 and p̂0 differ for Cε in any Hk(Ω2), k ∈ N. Hence we have established (25)-(26). It
remains to prove the last stated result i.e.

||pε − p0||H−1/2(Σ) ≤ C
√
ε. (91)

We use the variational equation (55) with test function having support in Ω1 and Corollary 10
to obtain

|| div (∇Uε2 − Pεe2 − 2βbl,ε2

dσ0
21

dx1
e1)||L2(Ω1) + ||∇Uε2 − Pεe2 − 2βbl,ε2

dσ0
21

dx1
e1||L2(Ω1)2 ≤ Cε. (92)

Estimate (92) implies the following estimate for the trace

||∂U
ε
2

∂x2
− Pε||H−1/2(Σ) ≤ Cε. (93)

Next, we remark that
∂Uε2
∂x2

= div Uε − ∂Uε1
∂x1

16



and on Σ, using Theorem 9, we obtain

||Pε||H−1/2(Σ) ≤ ||
∂Uε2
∂x2
||H−1/2(Σ) + Cε ≤ ||∂U

ε
1

∂x1
||H−1/2(Σ) + Cε. (94)

A direct calculation shows that

||[∂U
ε
2

∂x2
− Pε]||L∞(Σ) ≤ Cε,

and our result is valid for the traces taken from either unconfined side or from the side corresponding
to the porous medium.

4 Appendix 1: Very weak solutions to the Stokes system in
Ω1

Let G1 ∈ L2(Ω1)2 , G2 ∈ L2(Ω1)4, and ξ ∈ L2(Σ)2. We consider the following Stokes system in Ω1:

−∆b +∇P = G1 + div G2 in Ω1;

div b = 0 in Ω1,

b = ξ on ΣT = Σ ∪ {x2 = h},

{b, P}, is L-periodic in x1.

(95)

Our aim is to show the existence of a very weak solution (b, P ) ∈ L2(Ω1)2×H−1(Ω1) to problem
(95). To this end, we use the transposition method from [6].

Thus, let us test problem (95) with a smooth test function (Φ, π), satisfying Φ = 0 on ΣT and
being L-periodic in x1. Furthermore, π is L-periodic in x1. We obtain

< G1 + div G2,Φ >=< − div (∇b− PI),Φ >= −
∫

Ω1

P div Φ dx+∫
ΣT

(2D(Φ)− πI)νξ dSdt+

∫
Ω1

b ·
(
−∆Φ +∇π

)
dx. (96)

Let (g, s) ∈W q−2,r(Ω1)2×W q−1,r(Ω1), 1 < r < +∞, 1 ≤ q ≤ 2, andH = {z ∈W q−1,r(Ω1),
∫

Ω1
z dx =

0}, and denote by H∗ its dual. Let now {Φ, π} be given by
−∆Φ +∇π = g in Ω1,

div Φ = s in Ω1,

Φ = 0, on ΣT , {Φ, π} is L-periodic in x1.

(97)

After the elliptic regularity for the Stokes system in [25], for q 6= 1+1/r we obtain Φ ∈W q,r(Ω1)2, π ∈
W q−1,r(Ω1), with

∫
Ω1
π = 0, and the following estimates hold

‖Φ‖W q,r(Ω1)2 + ‖∇π‖W q−2,r(Ω)dt ≤ C
(
‖g‖W q−2,r(Ω1)2 + ‖∇s‖W q−2,r(Ω1)

)
. (98)
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Now, analogously to the approach in [6] where the stationary Stokes system was treated, for
q > 1 + 1/r, we consider the linear form

`(g, s) = 〈G1 + div G2,Φ〉Ω1 − 〈ξ, (∇Φ− πI)ν〉ΣT
, (99)

where (Φ, π) is given by (97). Since (Φ, π) satisfies (98), the linear form ` : W q−2,r(Ω1)2 ×H → R
is continuous, and we set

Definition 14. (A very weak variational formulation for the Stokes problem (95)). {b, P} is a very
weak solution of the problem (95) if

{b, P} ∈W 2−q,r/(r−1)(Ω1)2 ×H∗ (100)

and satisfies
〈g,b〉Ω1

− 〈P, s〉H∗,H = `(g, s), ∀g ∈ Lr(Ω1)2, ∀s ∈ H. (101)

Because of the linearity and continuity of `, Riesz’s theorem implies

Proposition 15. Let 1 < r < +∞ and 1 + 1/r < q ≤ 2 and < ξ2, 1 >ΣT
= 0. Then, there exists a

unique very weak solution {b, P} for (95). It satisfies the following estimates

‖b‖W 2−q,r/(r−1)(Ω1)2 ≤ c
{
‖G1‖L1(Ω1)2 + ‖G2‖W 1−q,r/(r−1)(Ω1)4 + ‖ξ‖W 1+1/r−q,r/(r−1)(ΣT )2

}
. (102)

Another approach is to use directly the result from the article [9], which reads

Proposition 16. Let G1 = 0 and G2 = 0. Then for ξ ∈ L2(ΣT ),
∫

ΣT
ξ2 = 0, there exists a unique

very weak solution {b, P} of (95), satisfying the following estimates

‖b‖H1/2(Ω1)2 ≤ c‖ξ‖L2(ΣT )2 . (103)

Furthermore,
‖|x2|1/2∇b‖L2(Ω1)2 + ‖|x2|1/2π‖L2(Ω1)2 ≤ c‖ξ‖L2(ΣT )2 . (104)

5 Appendix 2: Navier’s boundary layer and compressibility
corrections

In this Appendix, for completeness of the paper, we recall the derivation of Navier’s boundary layer
developed in [11] and [12] and presented also in [14].

As observed in hydrology, the phenomena relevant to the boundary occur in a thin layer sur-
rounding the interface between a porous medium and a free flow. In this Appendix we are going to
present a sketch of the construction of the main boundary layer, used for determining the coefficient
α in (5) and the coefficient Cblω in the interface pressure jump law (24). Since the law by Beavers
and Joseph is an example of the Navier slip condition, we call it Navier’s boundary layer.

In addition to the notations from subsection 2.1, we introduce the interface S = (0, 1)×{0}, the
free fluid slab Z+ = (0, 1)× (0,+∞) and the semi-infinite porous slab Z− = ∪∞k=1(YF −{0, k}). The
flow region is then ZBL = Z+ ∪ S ∪ Z−.

We consider the following problem:
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Find {βbl, ωbl} with square-integrable gradients satisfying

−4yβbl +∇yωbl = 0 in Z+ ∪ Z− (105)

divyβ
bl = 0 in Z+ ∪ Z− (106)[

βbl
]
S

(·, 0) = 0 and
[
{∇yβbl − ωblI}e2

]
S

(·, 0) = e1 on S (107)

βbl = 0 on ∪∞k=1 (∂Ys − {0, k}), {βbl, ωbl} is 1− periodic in y1 (108)

By Lax-Milgram’s lemma, there exists a unique βbl ∈ L2
loc(ZBL)2, ∇yz ∈ L2(ZBL)4 satisfying (105)-

(108) and ωbl ∈ L2
loc(Z

+ ∪Z−), which is unique up to a constant and satisfying (105). We note that
due to the incompressibility and the continuity of βbl on S, considering ∇βbl or the symmetrized
gradient (∇+∇t)βbl is equivalent.

The goal of this subsection is to show that system (105)-(108) describes a boundary layer, i.e.
that βbl and ωbl stabilize exponentially towards constants, when |y2| → ∞. Since we are studying
an incompressible flow, it is useful to prove properties of the conserved averages.

Lemma 17. ([11]). Any solution {βbl, ωbl} satisfies∫ 1

0

βbl2 (y1, b) dy1 = 0, ∀b ∈ IR and

∫ 1

0

ωbl(y1, b1) dy1 =

∫ 1

0

ωbl(y1, b2) dy1, ∀b1 > b2 ≥ 0,

(109)∫ 1

0

βbl1 (y1, b1) dy1 =

∫ 1

0

βbl1 (y1, b2) dy1 = −
∫
ZBL

|∇βbl(y)|2 dy, ∀b1 > b2 ≥ 0. (110)

Proposition 18. ([11]). Let

Cbl1 =

∫ 1

0

βbl1 (y1, 0)dy1. (111)

Then, for every y2 ≥ 0 and y1 ∈ (0, 1), |βbl(y1, y2)− (Cbl1 , 0)| ≤ Ce−δy2 , ∀δ < 2π. (112)

Corollary 19. ([11]). Let

Cblω =

∫ 1

0

ωbl(y1, 0) dy1. (113)

Then, for every y2 ≥ 0 and y1 ∈ (0, 1), we have | ωbl(y1, y2)− Cblω |≤ e−2πy2 . (114)

In the last step we study the decay of βbl and ωbl in the semi-infinite porous slab Z−.

Proposition 20. (see [11], pages 411-412). Let βbl and ωbl be defined by (105)-(108). Then, there
exist positive constants C and γ0, such that

|βbl(y1, y2)|+ |∇βbl(y1, y2)| ≤ Ce−γ0|y2|, for every (y1, y2) ∈ Z−. (115)

Furthermore, the limit κ∞ = lim
k→−∞

1

| YF |

∫
Zk

ωbl(y) dy exists and it holds

|ωbl(y1, y2)− κ∞| ≤ Ce−γ0|y2|, for every (y1, y2) ∈ Z−. (116)

Remark 21. Without loosing generality, we take κ∞ = 0. If the geometry of Z− is axially symmetric
with respect to reflections around the axis y1 = 1/2, then Cblω = 0. For the proof, we refer to
[13]. In [13] a detailed numerical analysis of the problem (105)-(108) is given. Through numerical
experiments it is shown that for a general geometry of Z−, Cblω 6= 0.
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It is important to be sure that the law by Beavers and Joseph does not depend on the position
of the interface. We have the following result

Lemma 22. Let a < 0 and let βa,bl be the solution of (105)-(108) with S replaced by Sa = (0, 1)×{a},
Z+ by Z+

a = (0, 1)× (a,+∞) and Z−a = ZBL \ (Sa ∪ Z+
a ). Then, it holds

Ca,bl1 = Cbl1 − a. (117)

This simple result implies the invariance of the obtained law on the position of the interface. It is in
agreement with the law of Saffman for the slip coefficient formulated in [21]. The law was confirmed
numerically by Sahraoui and Kaviany in [22]. For more discussion, we refer to the book [15], page
74, formulas (2.193)− (2.195) and page 81, Fig. 2.22 and formula (2.211).

The reminder of the section is devoted to auxiliary functions correcting the compressibility effects.
We define Qbl, by

divyQ
bl(y) = βbl1 (y)− Cbl1 H(y2) in Z+ ∪ Z−, (118)

Qbl = 0 on ∪∞k=1 (∂Ys − {0, k}), Qbl is 1-periodic in y1 (119)

[Qbl]S = e2

∫
ZBL

(Cbl1 H(y2)− βbl1 (y)) dy = −e2

∫
Z−

βbl1 (y) dy. (120)

Proposition 23. (see [11], page 411) Problem (118)-(120) has at least one solution Qbl ∈ H1(Z+∪
Z−)2 ∩C∞loc(Z+ ∪Z−)2. Furthermore, Qbl ∈W 1,q(Z+)2, Qbl ∈W 1,q(Z−)2, for all q ∈ [1,+∞) and
there exists γ0 > 0 such that

eγ0y3Qbl ∈ H1(Z+ ∪ Z−)2. (121)
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