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Abstract. The stability of the Nyström method for the Muskhelishvili equation on piecewise
smooth simple contours Γ is studied. It is shown that in the space L2 the method is stable if and
only if certain operators Aτj from an algebra of Toeplitz operators are invertible. The operators Aτj
depend on the parameters of the equation considered, on the opening angles θj of the corner points
τj ∈ Γ and on parameters of the approximation method mentioned. Numerical experiments show
that there are opening angles where the operators Aτj are non-invertible. Therefore, for contours
with such corners the method under consideration is not stable. Otherwise, the method is always
stable. Numerical examples show an excellent convergence of the method.
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1. Introduction. Let Γ be a simple closed curve in the complex plane C. The
Muskhelishvili integral equation

AΓ,kφ(t) ≡ −kφ(t)− k

2πi

∫
Γ

φ(τ)d log
τ − t

τ − t
− 1

2πi

∫
Γ

φ(τ)d
τ − t

τ − t
= f0(t) t ∈ Γ, (1.1)

plays an important role in the study of various problems in elasticity, hydrodynamics
and in other fields of applied mathematics. Thus in planar elastic problems for solid
bodies, the trace of the stress tensor on the boundary Γ can be expressed directly
via the derivative of the function φ. Other quantities of physical interest, such as
displacements and the full stress tensor of the material, can be also extracted from
the solution of the equation (1.1), [20, Sections 32 and 98].

The right-hand side f0 of the equation (1.1) has a special form – viz.

f0(t) = −1

2
f(t) +

1

2πi

∫
Γ

f(τ)dτ

τ − t
, (1.2)

where f is a given function, and the bar denotes the complex conjugation. The real
number k is fixed and can take the value one or it is defined by the Poisson constant
0 < ν < 1/2. In the following, we use the notations

k1 = 1, k2 = −(3− 4ν), k3 = −3− ν

1 + ν
.

The equation (1.1) with the coefficient k = k2 or k = k3 is usually connected to
planar elastic problems for solids with prescribed displacements on the boundary Γ
[18, 19, 20, 21]. On the other hand, this equation with coefficient k = 1 is related
to various boundary value problems for biharmonic equation in plane domains, cf.
[8, 20, 21] and references therein. It is remarkable that properties of the operator
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AΓ,k allows one to develop convenient, stable and very accurate numerical proce-
dures. There is an extensive literature dealing with various approximation methods
for the Muskhelishvili equation. However, for a long time only approximation meth-
ods based on Fourier series expansions have been used. This leads to unnecessary
restrictions on contour Γ, viz. it must be a circle or a sufficiently smooth curve. For
smooth Γ one can make use of conformal mappings and transfer the original Muskhe-
lishvili equation onto the circle [1]. However, such an approach requires an essential
additional computational cost. On the other hand, approximation methods using
non-trigonometric polynomial bases can be employed to the equation on non-circular
contours directly, [13]. The smoothness of Γ is also important in other issues related
to the stability of the method under consideration. Thus it ensures the compactness
of the integral operators from (1.1), so the sequences of approximating operators con-
verge uniformly to the corresponding integral operators cf. [16, 22] and the stability
of the approximation method depends only on the invertibility of the operator under
consideration.

It is notable that very often the application of an approximation method to the
Muskhelishvili equation is justified only by certain amount of examples without rig-
orous analysis of its stability. A systematic study of such problems have been started
only recently. Thus in the space L2(Γ) the stability of spline Galerkin, spline col-
location, and qualocation methods on simple smooth curves has been established in
[10]. For such contours, the methods mentioned are always stable. The situation
becomes more involved if Γ possesses corner points. It turns out now that stability
depends on certain operators associated with the corner points of Γ and on certain
specific parameters of the corresponding approximation method. Nevertheless, for the
Galerkin method using piecewise constant splines, necessary and sufficient stability
conditions have been obtained [7]. Moreover, in [7] an approximation method based
on the rectangular quadrature rule has also been studied. The last two methods
mentioned have both advantages and drawbacks. Thus the rectangular rule method
can be easily implemented but its convergence is relatively slow. On the other hand,
Galerkin methods have a better convergence rate but their implementation requires
additional efforts. In particular, one has to approximate the integral terms in the
equations involved and also the integrals representing the corresponding scalar prod-
ucts. As a result, it changes the structure of the approximating operators and the
stability conditions, cf. [2].

In the present paper, we deal with an approximation method which is based on
the composite Gauss–Legendre quadrature formula∫ 1

0

u(s) ds ≈
n−1∑
l=0

d−1∑
p=0

wpu(slp)/n. (1.3)

The points slp are defined by

slp :=
l + εp
n

, l = 0, 1, . . . , n− 1; p = 0, 1, . . . , d− 1, (1.4)

where wp and 0 < ε0 < ε1, . . . < εd−1 < 1 are, respectively, the weights and the
Gauss–Legendre points on the interval [0, 1], and d is a fixed positive integer. Such
a method combines the merits of the rectangular rule and Galerkin methods. It can
be easily implemented and it demonstrates an excellent convergence rate. In the
process, special grids refined in neighbourhoods of the corner points are used. We
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establish necessary and sufficient conditions of the stability of the method, and it is
worth mentioning that the corresponding operators responsible for the stability of
the spline Galerkin method from [7] have a simpler structure. Moreover, it is easily
seen that those operators are always Fredholm. On the other hand, the operators Aτj

associated with the stability of the present method are much more complicated; their
Fredholmness is not as apparent and it will be studied elsewhere. Let us also recall
that the Nyström method for another celebrated integral equation of elasticity–viz.
for the Sherman–Lauricella equation, has been studied in [4]. Note the Muskhelishvili
equation contains an additional parameter k which has to be taken into account while
studying Fredholm properties of the initial operator AΓ,k. Moreover, this situation
also requires us to use different invertibility correcting operators TΓ,k for different
values of k, cf. (2.5). Let us also emphasize that the stability of this method depends
on the invertibility of certain operators associated with the equation considered, with
the parameters of the method and with the opening angles of the corner points of Γ. As
a result, the conditions of the stability of the Nyström method for the Muskhelishvili
equation differ from those for the Sherman–Lauricella equation. Nevertheless, for both
the Muskhelishvili and Sherman–Lauricella equation the operators responsible for the
stability belong to a famous Toeplitz algebra which makes it possible to study their
Fredholm properties. However, the structure of these operators is rather complicated
and there is no analytical method to find out whether they are invertible or not.
Thus in [4] the corresponding operators for the Sherman–Lauricella equation have
been described but no verifiable condition of their invertibility was given. In contrast
to that work, here we not only establish the stability conditions but also propose an
approximation procedure for their verification. It allows us to find critical angles which
cause the instability of the method. For example, in the case of the Muskhelishvili
equation with the parameter k = 1, the method we use has 8 singular angles in the
interval [0.1π, 1.9π], whereas for k = −1.5 the same interval contains only 6 such
critical angles, cf. Figures 4.1 and 4.2.

Note that in all cases, an algebraic approach to study stability is employed. Thus
for the equation under consideration the corresponding approximation method is in-
cluded into a specific C∗-algebra of operator sequences such that the stability of the
method is equivalent to the invertibility of an element in an associated quotient al-
gebra. Consequently, the invertibility of the related coset is studied and stability
conditions are obtained.

2. Spaces and operators. Let X be a Banach space over the field of complex
numbers C. We say that an operator A : X 7→ X is additive if A(x1+x2) = Ax1+Ax2
for all x1, x2 ∈ X. As usual, the set of all additive continuous operators on the space
X is denoted by Ladd(X). This set becomes a real C∗-algebra, if one provides it with
natural operations of addition, multiplication, multiplication by real scalars, and with
a special norm [8]. Further, if X is a Banach space and if m is a positive integer, then
by Xm we will denote the Cartesian product of m copies of the space X provided
with the norm

||x||Xm = ||(x1, . . . , xm)||Xm =

 m∑
j=1

||xj ||2X

1/2

.

Assume that Γ is a simple closed piecewise smooth positively oriented contour in the
complex plane C, and let γ = γ(s), s ∈ R be a 1-periodic parametrization of Γ. Denote
by MΓ the set of all corner points τ0, τ1, . . . , τq−1 of Γ, and let θ = θτ ∈ (0, 2π) denote
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Fig. 2.1. Corner points of Γ: θτ is the left angle between the left T l
τ and right T r

τ semi-tangents
at the point τ ∈ Γ.

the left angle between the left T l
τ and right T r

τ semi-tangents to Γ at the point τ . It
is not equal to π for any τ ∈ MΓ. Moreover, let β = βτ ∈ [0, 2π) be the angle
between the right semi-tangent T r

τ to Γ at the point τ and the real axis R, cf. Fig.
2.1. If τj is a corner point, we will write these parameters as θj and βj rather than
θτj and βτj . Further, there is no loss of generality in assuming that τj = γ(j/q) for
all j = 0, 1, . . . , q − 1. In addition, we will always suppose that the function γ is two
times continuously differentiable on each interval (j/q, (j + 1)/q) and∣∣∣∣γ′( jq + 0

)∣∣∣∣ = ∣∣∣∣γ′( jq − 0

)∣∣∣∣ , j = 0, 1, . . . , q − 1.

Let C(Γ) denote the set of all complex-valued functions continuous on Γ, and let
L2(Γ) refer to the set of all Lebesgue measurable complex-valued functions f on Γ
such that

||f ||L2 = ||f ||2 :=

(∫
Γ

|f(τ)|2|dτ |
)1/2

<∞,

and let W 1,2(Γ) denote the closure of the set of all functions f with bounded deriva-
tives in the norm

||f ||W 1,2 :=

(∫
Γ

|f(τ)|2|dτ |+
∫
Γ

|f ′(τ)|2|dτ |
)1/2

.

In the present paper, the applicability of the original Nyström method to the
Muskhelishvili equation in the space L2(Γ) is studied. However, in order to establish
its stability conditions one first has to investigate the operator AΓ,k of (1.1) in both
spaces L2(Γ) and W 1,2(Γ).

Let M denote the operator of complex conjugation, i.e.

Mφ(t) := φ(t), t ∈ Γ,

and let LΓ and KΓ be the integral operators

LΓφ(t) :=
1

2πi

∫
Γ

φ(τ) d ln

(
τ − t

τ − t

)
, KΓ :=

1

2πi

∫
Γ

φ(τ) d

(
τ − t

τ − t

)
. (2.1)
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Then the operator AΓ,k of (1.1) has the form

AΓ,k = −kM + kMLΓ −KΓ.

Consider the smallest closed real C∗-subalgebra B2(Γ) := B2(SΓ,M,C(Γ)) of the
algebra Ladd(L

2(Γ)), which contains the Cauchy singular integral operator SΓ,

SΓf(t) :=
1

πi

∫
Γ

f(τ) dτ

τ − t
,

the operator of complex conjugation M , and the operators of multiplication by func-
tions f ∈ C(Γ). It is known that LΓ,KΓ ∈ B2(Γ), [11]. Moreover, if f ∈ C(Γ) then
the operator fSΓ − SΓf is compact and the set Kadd(L

2(Γ)) of all compact oper-
ators is contained in B2(Γ) [17]. For the reader’s convenience, we also recall some
results of [7, 8] concerning the operator AΓ,k ∈ B2(Γ) and adapt them to the situation
considered here.

Let R+ refer to the set of all positive real numbers. Fix θ ∈ (0, 2π), and consider
the operators Nθ,Mθ : L2(R+) → L2(R+) defined by

Nθ(f)(σ) :=
1

2

(
1

2πi

∫ +∞

0

f(s) ds

s− σeiθ
− 1

2πi

∫ +∞

0

f(s) ds

s− σei(2π−θ)

)
,

Mθf(σ) :=
1

π

∫ +∞

0

(σ
s

) sin θ

(1− (σ/s)eiθ)2
f(s)

s
ds.

With each corner point τj ∈ MΓ we associate an operator Aθj : (L2(R+))4 →
(L2(R+))4 defined by

Aθj =
0 e−i2βjMθj −kI kNθj

−e−i2(βj+θj)M2π−θj 0 kNθj −kI
−kI kNθj 0 −ei2βjM2π−θj

kNθj −kI ei2(βj+θj)Mθj 0

 , (2.2)

where I is the identity operator on the space L2(R+).

Lemma 2.1. If Γ is a simple closed piecewise continuous contour, then the Mus-
khelishvili operator AΓ,k : L2(Γ) → L2(Γ) is Fredholm if and only if all operators
Aθj : (L2(R+))4 → (L2(R+))4 are invertible.

Note that the entries of the matrix Aθj are Mellin operators, so the invertibility
of such operators can be studied. Thus if one introduces the functions

nθ(z) =
sinh(π − θ)z

sinhπz
, mθ(z) = −e−iθ z sin θ

sinhπz
e−(θ−π)z, z = x+ i/2, x ∈ R,

(2.3)
then the invertibility of the operator Aθj can be described as follows.

Lemma 2.2. The operator Aθj is invertible if and only if the determinant of the
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matrix

Φθj (z) =
0 e−i2βjmθj (z) −k knθj (z)

−e−i2(βj+θj)m2π−θj (z) 0 knθj (z) −k
−k knθj (z) 0 −ei2βjm2π−θj (z)

knθj (z) −k ei2(βj+θj)mθj (z) 0


(2.4)

is bounded away from zero on the line L := {z ∈ C : z = x+ i/2, x ∈ R}.
It turns out that the determinant of the matrix Φθj can be represented in a

convenient form. That allows one to provide a complete solution to the invertibility
problem of the operators Aθj .

Lemma 2.3. For any parameters θj ∈ (0, 2π) and βj ∈ [0, 2π) the operator
Aθj : (L2(R+))4 → (L2(R+))4 is invertible.

Proof. Expanding the determinant detΦθj (z) by the first two or by the last two
rows, one obtains

detΦθj (z) =
[z2 sin2(2π − θj)− k2 sinh2((2π − θj)z)][z

2 sin2 θj − k2 sinh2(θjz)]

sinh4(πz)

Consider now the function

ψθj (z) = z2 sin2 θj − k2 sinh2(θjz).

Since |k| > 1 and

sinh(θjz) = sinh

((
x+

i

2

)
θj

)
= sinh

(
θj x+

θj
2
i

)
= sinh (θj x) cos

(
θj
2

)
+ cosh (θj x) sin

(
θj
2

)
i,

the imaginary part of the function k sinh(θjz), z = x+ i/2, x ∈ R can be estimated as
follows

|Im (k sinh(θjz)| = |k|| cosh (x θj) |
∣∣∣∣sin(θj2

)∣∣∣∣
≥
∣∣∣∣sin(θj2

)∣∣∣∣ > | sin θj |
2

= |Im (z sin θj)| .

Thus if Reψθj (z) = 0, then Imψθj (z) ̸= 0, so ψθj does not vanish on the line L.
Therefore, the function Φθj is bounded away from zero, which implies the invertibility
of the operator Aθj for any θj ∈ (0, 2π) and βj ∈ [0, 2π).

For k ∈ {k1, k2, k3}, let TΓ,k be the operator defined by

TΓ,kφ(t) :=
1

2πi

∫
Γ

φ(τ) dτ

τ
+

1

t

1

2πi

∫
Γ

(
φ(τ) dτ

τ2
+
φ(τ) dτ

τ2

)
if k = k1,

1

2πi

∫
Γ

φ(τ) dτ

τ
if k ∈ {k2, k3}.

(2.5)
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Fig. 2.2. Left: The graph of the contour ΩΓ when Γ has corners with various opening angles θ
and k = 1. The contour is symmetric with respect to π in the sense that it is identical for corners with
opening angle θ and 2π − θ. Right: Zoom of the graph of ΩΓ in the neighbourhood of the origin for
small opening angles θ. The origin is marked by the asterisk. It is remarkable that even if some coils
are located extremely close to the origin, neither ΩΓ nor its interior contains the origin, i.e. the operator
BΓ,1 is Fredholm and indBΓ,1 = 0.

Now we can formulate the main result needed to construct stable approximation
methods for the Muskhelishvili equation (1.1) in the space L2(Γ).

Theorem 2.4. Let Γ be a simple closed piecewise continuous contour. Then for
any k ∈ {k1, k2, k3} the operator BΓ,k := AΓ,k + TΓ,k : L2(Γ) → L2(Γ) is invertible.
Moreover, if a function f belongs to the space W 1,2(Γ) and satisfies the condition

Re

∫
Γ

f(τ) dτ = 0, (2.6)

then the solution of the equation

BΓ,kφ = f (2.7)

is a solution of the equation (1.1).
Proof. The contour Γ and operator AΓ,k define the function

ω(τ, z) :=

{
detΦθ(z) if τ ∈ MΓ, z ∈ L
k4 if τ ∈ Γ \MΓ

. (2.8)

According to Lemmas 2.1-2.3 and [7, Theorem 12], the operator AΓ,k : L2(Γ) → L2(Γ)
is Fredholm. Since any integral operator TΓ,k is compact, the operator BΓ,k : L2(Γ) →
L2(Γ) is also Fredholm and the index

indBΓ,k

∣∣
L2(Γ) = indAΓ,k

∣∣
L2(Γ) = windΩΓ, (2.9)

where windΩΓ is the winding number of the curve ΩΓ := {ω(τ, z) ∈ C : τ ∈ Γ, z ∈ L}
which represents the image of the function (2.8) when the initial contour Γ is run in
the counterclockwise direction. Further, standard homotopy arguments ensure that
this index is actually equal to zero, cf. Fig. 2.2.

Thus

indBΓ,k

∣∣
L2(Γ) = 0 (2.10)
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Moreover, it is known [11] that the operator BΓ,k considered on the space W 1,2(Γ)
possesses two distinctive properties – viz.

indBΓ,k

∣∣
W 1,2(Γ) = 0, kerBΓ,k

∣∣
W 1,2(Γ) = {0}. (2.11)

Since the space W 1,2(Γ) is dense in L2(Γ), the relations (2.10)-(2.11) imply [12] that

kerBΓ,k

∣∣
L2(Γ) = {0}.

Applying (2.10) once more, one obtains that the operator BΓ,k is invertible on the
space L2(Γ), as well.

The second statement of Theorem 2.4 follows from the fact that for any solution
φ0 ∈W 1,2(Γ) of the equation (2.7) one has

TΓ,kφ0 = 0.

This completes the proof.
It is well-known that the invertibility of the operator associated with the equation

under consideration is a necessary condition for the applicability of various approxima-
tion methods. The original Muskhelishvili equation does not satisfy this requirement–
the operator AΓ,k is not invertible in the space L2(Γ). However, now we have an
invertible operator BΓ,k with the property that the solution of the equation (2.7) is a
solution of the Muskhelishvili equation (1.1). Therefore, an approximate solution of
(1.1) can be derived via approximation of the equation (2.7).

3. The Nyström method and its stability.. Let d be a positive integer and
let 0 < ε0 < ε1 < . . . < εd−1 < 1 and 0 < δ0 < δ1 < . . . < δd−1 < 1 be real numbers.
Consider two sets of points on Γ,

τlp = γ

(
l + εp
n

)
, tlp = γ

(
l + δp
n

)
, l = 0, 1, . . . , n− 1; p = 0, 1, . . . , d− 1. (3.1)

If K : L2(Γ) → L2(Γ),

Kφ(t) :=

∫
Γ

k(t, τ)φ(τ) dτ (3.2)

is an integral operator with a sufficiently smooth kernel k and if φ is a Riemann
integrable function, we approximate the integral (3.2) by the quadrature rule (1.3).
Thus ∫

Γ

k(t, τ)φ(τ) dτ =

∫ 1

0

k(γ(σ), γ(s))φ(γ(s))γ′(s) ds (3.3)

≈ K(ε,n)φ(t) =
n−1∑
l=0

d−1∑
p=0

wpk(t, τlp)φ(τlp)τ
′
lp/n,

where τ ′lp = γ′((l + εp)/n). Note that the kernels k(t, τ) of the integral operators KΓ

and LΓ possess finite limits limt→τ k(t, τ) for any τ /∈ MΓ [10]. This allows us to
define the expression k(τ, τ) by

k(τ, τ) := lim
t→τ

k(t, τ), τ /∈ MΓ.
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Therefore, if k is the kernel of the operator KΓ or LΓ, then the expression k(τlp, τlp)
is correctly defined.

Now we can approximate the solution of equation (2.7) at the points τlp, l =
0, 1, . . . , n− 1, p = 0, 1, . . . , d− 1. Set n = qm, m = 1, 2, . . . and note that for such n,
any corner of Γ always is the end point of some an interval (γ(j/n), γ((j+1)/n)). We
replace all integrals in (2.7) by the corresponding terms derived from the quadrature
formula (3.3) and equate the expressions obtained for the left-hand side of (2.7) and
the function f0 at the points tkr, replacing the terms φ(tlr) by φ(τlr) everywhere.
As the result, approximate values φ̃n(τlr) of the solution φ of the equation (2.7) at
the points τlr, l = 0, 1, . . . , n− 1, r = 0, 1, . . . , d− 1 can be derived from the following
system of algebraic equations

−kφ̃n(τkr)−
k

2πi

n−1∑
l=0

d−1∑
p=0

wpφ̃n(τlp)

(
τ ′lp

τ lp − tkr
−

τ ′lp
τlp − tkr

)
1

n
(3.4)

− 1

2πi

n−1∑
l=0

d−1∑
p=0

wpφ̃n(τlp)

(
τlp − tkr

(τ lp − tkr)2
τ ′lp
n

− 1

τ lp − tkr

τ ′lp
n

)
+ (T

(ε,n)
Γ,k φ̃n)(tkr) = f(tkr), k = 0, 1, . . . , n− 1; r = 0, 1, . . . , d− 1.

Let (d + 1)/n < 1, and let Sd
n(Γ) denote the space of the smoothest splines of

degree d on Γ associated with the parametrization γ : R → Γ, cf. [4] or [8, Sections 5.3
and 5.5] for more details. Having obtained approximate values φ̃n of the solution φ at
the points τlp, l = 0, 1, . . . , n−1, p = 0, 1, . . . , d−1, one can construct an interpolation
spline φn ∈ Sd

n(Γ), which satisfies the relation

φn

(
l + δp
n

)
= φ̃n

(
l + δp
n

)
for all l = 0, 1, . . . , n− 1, p = 0, 1, . . . , d− 1, (3.5)

and approximates an exact solution of the equation (1.1) on the whole curve Γ.
Let Qδ

n : L∞(Γ) 7→ Sd
n(Γ) denote the interpolation projection on the subspace

Sd
n(Γ) such that

Qδ
nφ(tlp) = φ(tlp), l = 0, 1, . . . , n− 1; p = 0, 1, . . . , d− 1

for each function φ from the set of the Riemann integrable functionsR(Γ). It is known
[22] that under some mild assumptions about the set {δp}d−1

0 such projections exist,
and the sequence (Qδ

n)n∈N : R(Γ) 7→ L2(Γ) strongly converges to the corresponding
embedding operator ,

lim
n→∞

||Qδ
nf − f ||L2(Γ) = 0, f ∈ R(Γ). (3.6)

Moreover, let P d
n : L2(Γ) 7→ Sd

n(Γ) be the orthogonal projection onto the spline
space Sd

n(Γ). Then the system of algebraic equations (3.4) is equivalent to the follow-
ing operator equation

Qδ
nB

(ε,n)
Γ,k P d

nφn ≡ −kQδ
nP

d
nMφn + kQδ

nML
(ε,n)
Γ P d

nφn

−Qδ
nMK

(ε,n)
Γ P d

nφn +Qδ
nT

(ε,n)
Γ,k P d

nφn = Qδ
nf, φn ∈ Sd

n(Γ), n ∈ N. (3.7)
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As was already mentioned, the aim of this work is to study the applicability of the
Nyström method (3.4),(3.7) to the Muskhelishvili equation. The most demanding task
in such an investigation is the proof of the stability of the corresponding method. As
soon as it is established, it implies the solvability of the systems (3.4) for sufficiently
large n and the L2-convergence of approximate solutions (3.5) to the exact solution of
equation (2.7). Moreover, error estimates can be easily obtained from known results
of approximation theory

Definition 3.1. The sequence (Qδ
nB

(ε,n)
Γ,k P d

n) is called stable if there is an n0 ∈ N
such that for all n ≥ n0 the operators Qδ

nB
(ε,n)
Γ,k P d

nP
d
n : Sd

n(Γ) 7→ Sd
n(Γ) are invertible

and the norms ||(Qδ
nB

(ε,n)
Γ,k P d

n)
−1P d

n ||n≥n0 are uniformly bounded.

To study the stability of the sequence (Qδ
nB

(ε,n)
Γ,k P d

n) we will consider a C
∗-algebra

of operator sequences. Let AΓ denote the set of all sequences (An)n∈N of bounded
additive operators An : Sd

n → Sd
n such that there is an operator A ∈ Ladd(L

2) with
the property

lim
n→∞

AnP
d
nφ = Aφ and lim

n→∞
A∗

nP
d
nφ = A∗φ for any φ ∈ L2(Γ).

In other words, the sequences (AnP
d
n) and (A∗

nP
d
n) converge in the strong operator

topology to the operators A and A∗, respectively. In the following, the strong conver-
gence of the sequence (AnP

d
n) to an operator A is denoted by

A := s− lim
n→∞

AnP
d
n .

The set AΓ can be provided with natural componentwise operations of multiplication,
addition, involution, multiplication by real scalars, and with the norm

||(An)|| = sup ||An||,

so it becomes a real C∗-algebra.
For the following we need a general result about the stability of sequences from

the algebra AΓ. Let Kadd(L
2(Γ)) ⊂ Ladd(L

2(Γ)) denote the set of all additive compact
operators on the space L2(Γ). Let J Γ denote the subset of AΓ that consists of all
sequences (Jn) of the form

Jn = P d
nKP

d
n +Gn,

where K ∈ Kadd(L
2(Γ)) and limn→∞ ||Gn|| = 0.

Lemma 3.2 ([8]). The set J Γ is a closed two-sided ideal of the real C∗-algebra
AΓ.

Let us also recall a general result about the stability of sequences from the alge-
bra AΓ.

Theorem 3.3 (cf. [8, Proposition 1.6.4]). A sequence (An) ∈ AΓ is stable if and
only if the operator A = s − limn→∞An is invertible in Ladd(L

2(Γ)) and the coset
(An) + J Γ is invertible in the quotient algebra AΓ/J Γ.

This theorem can be used to study the stability of the Nyström method (3.4),(3.7).
Let u = uθ denote one of the functions (2.3) defined on the line L := {z ∈ C : z =

x+i/2, x ∈ R}. On the space l2 of sequences (ξk) of complex numbers ξk, k = 0, 1, . . .,

l2 := {(ξk)∞k=0 :
∞∑
k=0

|ξk|2 <∞},
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the function u defines bounded linear operators A
δr,εp
r,p , r, p = 0, 1, . . . , d− 1, with the

matrix representation

Aδr,εp
r,p = Aδr,εp

r,p (u) =

(
u

(
k + δr
l + εP

)
1

l + εp

)∞

k,l=0

,

where εr, δr are the parameters in the Nyström method (3.4), (3.7). As the next step,
one has to construct an operator Bδ,ε(u),

Bδ,ε = Bδ,ε(u) :=
(
wpA

δr,εp
rp (u)

)d−1

r,p=0
.

which acts on the space ld2 . We also need an additional operator M defined on the
space l2 by

M((ξk)
∞
k=0) := (ξk)

∞
k=0,

and redefined correspondingly on the Cartesian products of l2 spaces.
Now we can establish the conditions of applicability of the method considered.
Theorem 3.4. Let Γ be a simple closed piecewise smooth contour. The Nyström

method (3.4), (3.7) is stable if and only if the operators Aτj ,

Aτj :=

(
0 ei2βjBδ,ε(m2π−θj )

−ei2(βj+θj)B1−δ,1−ε(mθj ) 0

)

+

(
−kI kBδ,ε(nθj )

kB1−δ,1−ε(nθj ) −kI

)
M , (3.8)

τj ∈ MΓ are invertible for all τj ∈ MΓ . Moreover, if the right-hand side f ∈W 1,2(Γ)
and satisfies the condition (2.6), then the approximate solutions φn ∈ Sd

n constructed
according to the rule (3.5) converge to an exact solution φ of the Muskhelishvili equa-
tion (1.1) in L2-norm and

||φn − φ||L2 ≤ c

n
, (3.9)

where c is a constant independent of n.
Proof. Relation (3.6) and the strong convergence of the sequence (P d

n) to the

identity operator I [22] imply that the sequence (Qδ
nB

(ε,n)
Γ,k P d

n) belongs to the real

C∗-algebra AΓ and

lim
n→∞

Qδ
nB

(ε,n)
Γ,k P d

n = BΓ,k. (3.10)

Therefore, Theorem 3.3 can be used to study the stability of the Nyström method

(3.4), (3.7). Moreover, since the sequence (Qδ
nB

(ε,n)
Γ,k P d

n) converges to the operator
BΓ,k and since this operator is invertible by Theorem 2.4, one only has to establish

the invertibility of the coset (Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ in the real C∗-algebra AΓ/J Γ. Let
us recall that there are very developed tools to investigate the invertibility in Banach
and C∗-algebras. Nevertheless, the algebra AΓ is too large in order to treat this
problem directly. In connection with this, let us consider a smaller algebra containing
our sequence – viz. let BΓ be the smallest real C∗-subalgebra of AΓ which contains
all sequences of the form (Qδ

nBP
d
n) with B ∈ B2(Γ) and the sequences (Gn), Gn :
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Sd
n(Γ) 7→ Sd

n(Γ) with limn→∞ ||Gn|| → 0. Note that the ideal J Γ ⊂ BΓ, so BΓ/J Γ

is a C∗-subalgebra of the quotient C∗-algebra AΓ/J Γ. Moreover, it follows from
[6, Corollary 10] and [8, Corollary 1.4.10] that the real subalgebra BΓ/J Γ is inverse

closed in AΓ/J Γ. Thus the coset (Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ is invertible in AΓ/J Γ if and

only if it is invertible in BΓ/J Γ. Further, to study invertibility in BΓ/J Γ one can use
a localizing principle. Recall that localizing principles are very efficient, and they have
been successfully used in approximation methods for singular integral equations with
conjugation [5], Mellin integral equations with conjugation [9], the Muskhelishvili and
Sherman–Lauricella equations on piecewise smooth curves [4, 7]. For the convenience
of the reader, we reformulate the Allan’s local principle for real C∗-algebras here.

Consider a real C∗-algebra C and a strictly real closed C∗-subalgebra U of the
centre of C. Let M be the space of maximal ideals of U . If τ ∈ M, then we denote by
Iτ the smallest closed two-sided ideal of C containing the ideal τ .

Theorem 3.5 (cf. [8, Theorem 1.9.5]). Let C and U be as above. An element
c ∈ C is invertible in C if and only if for any τ ∈ M the coset c + Iτ is invertible in
the quotient algebra C/Iτ .

Let CR(Γ) denote the set of all continuous real-valued functions on Γ. Consider
the smallest closed C∗-subalgebra UΓ of the algebra BΓ which contains all sequences
(Fn) of the form Fn = Qδ

nfP
d
n +Gn where f ∈ CR(Γ) and (Gn) ∈ J Γ. Since for any

f1, f2 ∈ CR(Γ) one has

Qδ
nf1P

d
nQ

δ
nf2P

d
n = Qδ

nf1Q
δ
nf2P

d
n = Qδ

nf1f2P
d
n = Qδ

nf2P
d
nQ

δ
nf1P

d
n ,

and fSΓ − SΓf ∈ Kadd(L
2(Γ)) [17], the algebra UΓ/J Γ is a central subalgebra of

BΓ/J Γ. Moreover, it is isometrically isomorphic to the real function algebra CR(Γ),
so it is strictly real closed C∗-subalgebra of BΓ/J Γ, the space of maximal ideals M of
which is homeomorphic to Γ and the maximal ideal associated with a point τ ∈ Γ is

{(Qδ
nfτP

d
n) + J Γ : fτ (τ) = 0, fτ ∈ CR(Γ)}. (3.11)

Now Theorem 3.5 can be employed to establish the conditions of the invertibility

of the coset (Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ in BΓ/J Γ. More precisely, let Iτ be the smallest

closed two-sided ideal of BΓ/J Γ generated by the ideal (3.11). By Theorem 3.5, the

coset (Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ in BΓ/J Γ is invertible in BΓ/J Γ if and only if the cosets

((Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ) + Iτ are invertible in (BΓ/J Γ)/Iτ for all τ ∈ Γ.
Consider first the case τ /∈ MΓ. Let Uτ be a neighbourhood of τ , and let

χUτ
denote the characteristic function of Uτ . If Uτ ∩ MΓ = ∅, then the operators

χUτLΓχUτ , χUτKΓχUτ and χUτTΓ,kχUτ are compact, hence

((Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ) + Iτ = ((−MP̃ d
n) + J Γ) + Iτ . (3.12)

The coset in the right-hand side of (3.12) is obviously invertible since so is the operator

−M . Therefore, if τ /∈ MΓ, the coset ((Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ) + Iτ is invertible in

(BΓ/J Γ)/Iτ .
If τ ∈ MΓ, the situation is more involved and requires a more detailed study.

We start with a simple observation that since operators TΓ,k in (2.5) are compact,

the sequences (Qδ
nB

(ε,n)
Γ,k P d

n) and (Qδ
nA

(ε,n)
Γ,k P d

n) belong to the same quotient class of

the algebra BΓ/J Γ. Thus instead of (Qδ
nB

(ε,n)
Γ,k P d

n) + J Γ one can use the notation

(Qδ
nA

(ε,n)
Γ,k P d

n) + J Γ.
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Γ

Γ
−

Γ
+

Γτ

τ

Fig. 3.1. Curves Γ and Γτ .

With any τ ∈ MΓ we associate a specific curve Γτ , viz. the union of two rays

Γτ = ei(βτ+θτ )R ∪ eiβτR,

where θτ ∈ (0, 2π) is the angle between the right and the left semi-tangents to Γ at
the point τ , and βτ is the angle between the right semi-tangent to Γ at the point τ
and the real axis R.

Now one can consider the Muskhelishvili equation on Γτ and construct the se-
quence of Nyström methods

Q̃δ
nA

(ε,p)
Γτ ,k

P̃ δ
nφ̃n = fn, n ∈ N, (3.13)

where A
(ε,p)
Γτ ,k

are the approximations of the Muskhelishvili operator AΓτ ,k based on
quadratures similar to the quadrature rule (1.3)-(1.4), cf. [4, formula (3.5)], whereas

Q̃δ
n and P̃ δ

n are interpolation and orthogonal projections on the corresponding spline
spaces on the curve Γτ .

Let B2(Γτ ) := B2(SΓτ ,M,C(Γτ )) be the smallest closed C∗-subalgebra of the
algebra Ladd(L

2(Γτ )) constructed analogously to the algebra B2(Γ). Moreover, let
AΓτ , BΓτ , J Γτ be the corresponding C∗-algebras of sequences and the ideals associ-
ated with the curve Γτ .

On the contour Γ we choose a neighbourhood Uτ of the corner point τ which
does not contain other points from MΓ. The neighbourhood Uτ consists of two
simple smooth arcs Γ− and Γ+ , cf. Figure 3.1. Let t ∈ Γ− ∪ Γ+ 7→ Γτ and let
l(τ, t) be the length of the corresponding arc connecting these two points. Consider
now the mapping ψ : Γ− 7→ ei(βτ+θτ )R and ψ : Γ+ 7→ eiβτR which sends a point
t ∈ Γ− ∪ Γ+ into ψ(t) ∈ Γτ such that l(τ, t) = l(τ, ψ(t)). Let Vτ := ψ(Uτ ). The
mapping ψ : Uτ 7→ Vτ is obviously invertible. Moreover, the operator ψ−1SΓτψ −
SΓ is compact in the space L2(Uτ ) [17], whereas ψ−1fψ is again an operator of
multiplication by a continuous function for any f ∈ CR(Uτ ). It implies that the local

algebras (BUτ /J Uτ )/Iτ and (BVτ /J Vτ )/Ĩτ are topologically isomorphic and the cosets

((Qδ
nA

(ε,n)
Γ,k P d

n)+J Γ)+Iτ and ((Q̃δ
nA

(ε,n)
Γτ ,k

P̃ d
n)+J Γτ )+Ĩτ are simultaneously invertible

or not. However, the last coset is invertible if and only if the sequence (Q̃δ
nA

(ε,p)
Γτ ,k

P̃ δ
n)

is stable. Setting now τ := τj and following the considerations of Lemma 3.3 and

Corollary 3.4 of [4] one obtains that the sequence (Q̃δ
nA

(ε,p)
Γτj

,kP̃
δ
n) is stable if and only

if the operator Aτj defined by (3.8) is invertible. This completes the proof of the
stability part.
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On the other hand, the stability implies the convergence of the approximate
solutions φn to the exact solution φ of the equation (2.7) in L2-norm. By the second
part of Theorem 2.4, this function φ is simultaneously a solution of the Muskhelishvili
equation (1.1). It remains to obtain estimate (3.9). It follows from [22, p.44], and
known results on spline approximation [23].

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
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θ = 4π/3

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ = 2π/3

θ = 4π/3

Fig. 3.2. The two contour-types used. Both contour-types are parameterized with an angle θ. Left:
a one-corner contour with θ = π/3 (solid line) and θ = 4π/3 (dashed line). Right: a two-corner contour
with θ = 2π/3 (solid line) and θ = 4π/3 (dashed line).

3.1. Numerical examples. We end this section with a few numerical examples
that illustrate the convergence of the Nyström method (3.4) for (2.7). For this, and
for further use in Section 4, we introduce two contours, one of which possesses only
one corner point with an opening angle θ whereas another has two corner points, both
with the same opening angle θ, see Figure 3.2.

The one-corner contour in the left image of Figure 3.2 has the parameterization

γ(s) = sin(πs) exp(iθ(s− 0.5)) , s ∈ [0, 1] . (3.14)

The two-corner contour in the right image of Figure 3.2 is the union of two circular
arcs with parameterizations

γ1(s) = −0.5 cot(θ/2) + 0.5/ sin(θ/2) exp(iθ(s− 0.5)) , s ∈ [0, 1] , (3.15)

γ2(s) = 0.5 cot(θ/2)− 0.5/ sin(θ/2) exp(iθ(s− 0.5)) , s ∈ [0, 1] , (3.16)

The special case of θ = 2π/3 makes the two-corner contour assume the shape of a
Vesica Piscis.

We consider the above described Nyström method with d = 16 and with both sets
of points {ϵp} and {δp} of (3.1) coinciding with the zeros of the Legendre polynomial
P16(x) on the canonical interval x ∈ [−1, 1], scaled and shifted to the interval x ∈ [0, 1].
This corresponds to composite 16-point Gauss–Legendre quadrature.

Figure 3.3 shows approximate solutions ϕ to (2.7) obtained for the two-corner
contour (3.15)-(3.16) and for various choices of the right-hand side f , the parameter
k, and opening angle θ. One can see that if the oscillation of the argument of the
right-hand side f is high, then opening angles close to 2π give solutions that are simple
closed curves while smaller opening angles give solutions that are increasingly coiled,
although the number of coils stabilizes after some point. On the other hand, if the
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Fig. 3.3. Solution ϕ for contour (3.15)-(3.16) with various opening angles θ. Left column: k = 1,
f(z) = −z|z| and θ = 0.2π, 0.6π, 1.4π, 1.8π. Right column: k = −1.5, f(z) = −1/z10 and θ =
0.2π, 0.5π, 0.6π, 1.8π.
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Fig. 3.4. Convergence of ϕn for the contour (3.15)-(3.16) with the opening angle θ = 0.2π and
f(z) = −1/z10 for k = −1.5, k = −2 and k = −2.5. The relative error is measured as ||ϕn −
ϕ2n||2/||ϕ2n||2.

right-hand side f has no strong oscillation, then there is a less complicated connection
between the shape of ϕ and the magnitude of θ.

Figure 3.4 confirms an excellent convergence of the method also in the case of a
small θ and a rapidly varying f .

4. Fredholm properties and the invertibility of the operators Aτ . The
previous theorem underscores the importance on the operators Aτ associated with the
corner points τ ∈ MΓ. Thus it is desirable to find effectively verifiable conditions of
their invertibility. Unfortunately, at present there is no result related to this problem.
The operators under consideration belong to an algebra of Toeplitz operators with
piecewise continuous matrix symbols, and there are no efficient methods to check their
invertibility. Nevertheless, the Fredholm properties of such operators can be studied.
As far as the invertibility is concerned, it seems that only a numerical approach can
give us any ideas when such operators are invertible.

Let us start with an auxiliary result.
Lemma 4.1. Let τj ∈ MΓ. The operator Aτj is invertible (Fredholm) if and only

if the operator

Âτj =
0 ei2βjBδ,ε(m2π−θj ) −kI kBδ,ε(nθj )

−ei2(βj+θj)B1−δ,1−ε(mθj ) 0 kB1−δ,1−ε(nθj ) −kI

−kI kBδ,ε(nθj ) 0 e−i2βjBδ,ε(mθj )

kB1−δ,1−ε(nθj ) −kI −e−i2(βj+θj)B1−δ,1−ε(m2π−θj ) 0


(4.1)

is invertible (Fredholm).
The proof of this result immediately follows from [8, Lemma 1.4.6] and relations

(23) of [7].
Let a be an essentially bounded function on the unit circle T, and let (ak) be

the sequence of its the Fourier coefficients. The Toeplitz operator T (a) is defined on
finitely supported sequences (ξk) by

T (a)(ξk) = (ηj),

where ηj :=
∑∞

k=0 aj−kξk, j = 0, 1, . . . ,∞. It can be extended on the whole space l2

by continuity.
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Consider the smallest closed C∗-subalgebra T2 of the algebra of bounded linear
operators B(l2) containing all Toeplitz operators T (a) with generating functions a ∈
L∞(Γ).

Lemma 4.2. Let k refer to the one of the functions defined by (2.3). Then for
any corner point τj the entries of the operator Bδ,ε(k) belong to the algebra T2 and

the symbol A
A

δr,εp
r,p (k)

of the operator A
δr,εp
r,p (k) is

A
A

δr,εp
r,p (k)

(z) = k(z), z ∈ L. (4.2)

Proof. The proof of this result can be obtained following considerations of [8,
Section 5.4].

Consider now the matrix

ABδ,ε(k)(z) :=
(
wpAA

δr,εp
rp (k)

(z)
)d−1

r,p=0
.

It follows from (4.2) that

ABδ,ε(k)(z) = (W⊗ k)(z), z ∈ L,

where W := (wp)
d−1
r,p=0 and W⊗ k is the tensor product of W and k.

Lemma 4.1, Lemma 4.2 and the representations (4.1) and (4.2) imply the following
result.

Theorem 4.3.
1. The operator Aτj is Fredholm if and only if the determinant detAAτj

(z) of

the matrix

AAτj
(z) =
0 ei2βjW⊗m2π−θj −kI kW⊗nθj

−ei2(βj+θj)W⊗mθj 0 kW⊗nθj −kI

−kI kW⊗nθj 0 −e−i2βjW⊗mθj

kW⊗nθj −kI e−i2(βj+θj)W⊗m2π−θj 0

 (z)

(4.3)

does not vanish on the line z = x+ i/2, x ∈ R.
2. The operator Aτj is invertible if and only if:

(a) The winding number of the function detAAτj
(z), z = x + i/2, x ∈ R is

equal to zero.
(b) The dimension of the kernel dimkerAτj = 0.

Note that the condition 2(a) can be easily verified. On the other hand, there
is no analytic tool to find the dimension of the kernel space of the operator Aτj .
However, this condition does not depend on a specific shape on the initial contour
but only on the opening angle θj ∈ (0, 2π). Therefore, one can try to use special
contours and numerical methods to find those values θ for which Aτj are not invertible.
In particular, in order to decide whether Aτj is invertible or not, one can run the
numerical method for equations on contours with one corner or on contours with
multiple corners, all with the same opening angle θj . In such a specific situation the
first part of Theorem 3.4 can be reformulated as follows.

Corollary 4.4. Let Γ be a simple closed piecewise smooth contour all corner
points τj ∈ MΓ of which have the same opening angle θ1. Then the operator Aτ1 is

invertible if and only if the sequence (Qδ
nB

(ε,n)
Γ,k P d

n) is stable.
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Fig. 4.1. Condition numbers of the discretized operator BΓ,1 for different angles θ. Left: the
one-corner contour with the original Nyström method. Right: the two-corner contour with the original
Nyström method.

Taking this result into account, let us consider the stability of the Nyström method
for the Muskhelishvili equation for the two contours of Figure 3.2. On both contours
we consider the Nyström method as described in Section 3.1. Computing the corre-
sponding condition numbers for various values of the parameter θ and representing
the results graphically, see Figure 4.1, we conclude there are certain values of θ where
the corresponding operator Aτ is not invertible. These values are represented by the
sharp peaks in Figure 4.1.

In these examples, k = 1 and the two-corner contour is discretized using 100
quadrature panels containing 1600 points, i. e. n = 100, d = 16, and the one-corner
contour is discretized using 80 quadrature panels containing 1280 points, i.e. n = 80,
d = 16.

The peaks for the two-corner contour with the original Nyström method are lo-
cated at the following θ/π values (three significant digits are given)

0.122 , 0.166 , 0.246 , 0.454 , 1.546 , 1.754 , 1.834 , 1.878

The peaks for the one-corner contour with the original Nyström method are located
at the following θ/π values (three significant digits are given)

0.122 , 0.166 , 0.246 , 0.454 , 1.546 , 1.754 , 1.834 , 1.878

In other words, Figure 4.1 supports the fact that the invertibility of the associated
operators Aτ depends on the opening angle but not on the shape of the contour. It
is remarkable that the above instability angles coincide up to three digits with the
corresponding instability angles of the Nyström method for the Sherman–Lauricella
equation [3]. It leads to a conjecture that if k = 1, then the Nyström method for
the Muskhelishvili equation is stable if and only if so is for the Sherman–Lauricella
equation. However, the authors were not able to find a rigorous analytic proof for
this statement.

On the other hand, critical angles strongly depend on the parameter k. Thus for
k = −1.5 there are only six such angles θπ with θ taking the values

0.127 , 0.196 , 0.391 , 1.609 , 1.804 , 1.873,
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Fig. 4.2. Condition numbers of the discretized operator BΓ,k for different angles θ in the case of
one-corner geometry. Left: k = −1.5. Right: k = −2.5.

and for k = −2.5, the corresponding critical values of θ are

0.105 , 0.156 , 0.163 , 0.338 , 1.662 , 1.837 , 1.844 , 1.895,

cf. Figure 4.2.
In conclusion we want to note that while the focus of the present paper is on

stability for the original Nyström method, improved computational economy in the
solution of integral equations on piecewise smooth contours can be obtained with a
recently developed scheme [15]. That scheme uses a modified (product integration)
Nyström method [14, Section 2.1] and also employs a compression technique to restrict
integral operators to low-dimensional subspaces – thereby reducing the number of
discretization points needed to reach a given accuracy. A remarkable property of the
modified Nyström method is that it seems to possess no ”singular” opening angles.
The condition numbers for this method are presented in the right part of Figure 4.3.

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Convergence

Number of quadrature panels n

||φ
n−

φ 2n
|| 2/||

φ 2n
|| 2

 

 

original Nyström
modified Nyström

0 0.5 1 1.5 2
10

0

10
5

10
10

10
15

θ/π

C
on

di
tio

n 
nu

m
be

r

Fig. 4.3. Left: Convergence of the original and modified Nyström methods for the contour (3.15)-
(3.16) with the opening angle θ = 0.2π, k = −1.5 and f(z) = −1/z10. Right: Condition numbers of the
discretized operator BΓ,k for different angles θ in the two-corner contour and with the modified Nyström
method [14, Section 2.1].
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ators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2008. Real C∗-algebra approach.

[9] V. D. Didenko and E. Venturino, Approximate solutions of some Mellin equations
with conjugation, Integral Equations Operator Theory, 25 (1996), pp. 163–181.

[10] V. D. Didenko and E. Venturino, Approximation methods for the Muskhelishvili
equation on smooth curves, Math. Comp., 76 (2007), pp. 1317–1339.

[11] R. V. Duduchava, General singular integral equations and fundamental problems of the
plane theory of elasticity, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR,
82 (1986), pp. 45–89.

[12] I. C. Gohberg and I. A. Fel’dman, Convolution equations and projection methods
for their solution, American Mathematical Society, Providence, R.I., 1974. Translated from
the Russian by F. M. Goldware, Translations of Mathematical Monographs, Vol. 41.

[13] J. Helsing, On the interior stress problem for elastic bodies, ASME J. Appl. Mech., 67
(2000), pp. 658–662.

[14] J. Helsing, Integral equation methods for elliptic problems with boundary conditions of
mixed type, Journal of Computational Physics, 228 (2009), pp. 8892–8907.

[15] J. Helsing, A fast and stable solver for singular integral equations on piecewise smooth
curves, SIAM Journal on Scientific Computing, 33 (2011), pp. 153–174.

[16] C. T. Kelley, A fast multilevel algorithm for integral equations, SIAM J. Numer. Anal.,
32 (1995), pp. 501–513.
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[22] S. Prössdorf and B. Silbermann, Numerical analysis for integral and related oper-
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