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Abstract

A version of the fundamental mean-square convergence theorem is proved for stochastic

differential equations (SDE) which coefficients are allowed to grow polynomially at infinity

and which satisfy a one-sided Lipschitz condition. The theorem is illustrated on a number

of particular numerical methods, including a special balanced scheme and fully implicit

methods. Some numerical tests are presented.
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1 Introduction

Let (Ω,F , P ) be a probability space and (w(t),Fw
t ) = ((w1(t), . . . , wm(t))⊤,Fw

t ) be an m-

dimensional standard Wiener process, where Fw
t , 0 ≤ t ≤ T, is an increasing family of σ-

subalgebras of F induced by w(t).We consider the system of Ito stochastic differential equations

(SDE):

dX = a(t,X)dt +

m
∑

r=1

σr(t,X)dwr(t), t ∈ (t0, T ], X(t0) = X0, (1.1)

where X, a, σr are d-dimensional column-vectors and X0 is independent of w. We suppose that

any solution Xt0,X0(t) of (1.1) is regular on [t0, T ]. We recall [3] that a process is called regular

if it is defined for all t0 ≤ t ≤ T.

In traditional numerical analysis for SDE [12, 9, 15] it is assumed that the SDE coefficients

are globally Lipschitz which is a significant limitation taking into account that most of the models
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of applicable interest have coefficients which grow faster at infinity than a linear function. If

the global Lipschitz condition is violated, the convergence of many usual numerical methods can

disappear (see, e.g., [22, 5, 6, 16]). This has been the motivation for the recent interest in both

theoretical support of existing numerical methods and developing new methods or approaches

for solving SDE under nonglobal Lipschitz assumptions on the coefficients.

In most of SDE applications (e.g., in molecular dynamics, financial engineering and other

problems of mathematical physics), one is interested in simulating averages Eϕ(X(T )) of the

solution to SDE – the task for which the weak-sense SDE approximation is sufficient and effective

[12, 15]. The problem with divergence of weak-sense schemes was addressed in [16] (see also [17])

for simulation of averages at finite time and also of ergodic limits when ensemble averaging is

used. The concept of rejecting exploding trajectories proposed and justified in [16] allows us to

use any numerical method for solving SDE with nonglobally Lipschitz coefficients for estimating

averages. Following this concept, we do not take into account the approximate trajectories X(t)

which leave a sufficiently large ball SR := {x : |x| < R} during the time T. See other approaches

for resolving this problem in the context of computing averages, including the case of simulating

ergodic limits via time averaging, e.g. in [22, 10, 1].

In this paper we deal with mean-square (strong) approximation of SDE with nonglobal Lips-

chitz coefficients. Mean-square schemes have their own area of applicability (e.g. for simulating

scenarios, visualization of stochastic dynamics, filtering, etc., see further discussion on this in

[9, 15, 7] and references therein). Furthermore, mean-square approximation is of theoretical

interest and it also provides fundamental insight for weak-sense schemes.

We note that in the case of weak approximation we often have to simulate large dimensional

complicated stochastic systems using the Monte Carlo technique (or time averaging), which is

typical for molecular dynamics applications, or we have to perform calculations on a daily basis,

which is usual, e.g., in financial applications. Hence the cost per step of a weak numerical

integrator should be low, which, in particular, essentially prohibits the use of implicit methods.

In contrast, areas of applicability of mean-square schemes, as a rule, do not involve simulation of

a large number of trajectories or over very long time periods and, consequently, there are more

relaxed requirements on the cost per step of mean-square schemes and efficient and reliable

implicit schemes have practical interest. There have been a number of recent works, including

[6, 5, 8, 21, 7] (see also the references therein), where strong schemes for SDE with nonglobal

Lipschitz coefficients were considered. An extended literature review on this topic is available

in [7].

In this paper we give a variant of the fundamental mean-square convergence theorem in the

case of SDE with nonglobal Lipschitz coefficients, which is analogous to Milstein’s fundamental

theorem for the global Lipschitz case [11] (see also [12, 15]). More precisely, we assume that the

SDE coefficients can grow polynomially at infinity and satisfy a one-sided Lipschitz condition.

The theorem is stated in Section 2 and proved in Appendix A. Its corollary on almost sure

convergence is also given. In Section 2 we start discussion on applicability of the fundamental
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theorem, including its application to the drift-implicit Euler scheme and thus establish its order

of convergence. Strong convergence (but without order) of this scheme was proved for SDE

with nonglobal Lipschitz drift and diffusion in [21, 7]. A particular balanced method (see the

class of balanced methods in [13, 15]) is proposed and its convergence with order 1/2 in the

nonglobal Lipschitz setting is proved in Section 3. In Section 4 we revisit fully implicit (i.e.,

implicit both in drift and diffusion) mean-square schemes proposed in [14] (see also [15]). In

[14, 15] their convergence was proved for SDE with globally Lipschitz coefficients. Here we relax

these conditions as the drift is required to satisfy only a one-sided Lipschitz condition and be

of not faster than polynomial growth at infinity. Some numerical experiments supporting our

results are presented in Section 5.

2 Fundamental theorem

Let Xt0,X0(t) = X(t), t0 ≤ t ≤ T, be a solution of the system (1.1). In what follows we will

assume the following.

Assumption 2.1. (i) The initial condition is such that

E|X0|2p ≤ K <∞, for all p ≥ 1. (2.1)

(ii) For a sufficiently large p0 ≥ 1 there exists a constant c1 ≥ 0 such that

(x−y, a(t, x)−a(t, y))+2p0 − 1

2

m
∑

r=1

|σr(t, x)−σr(t, y)|2 ≤ c1|x−y|2, t ∈ [t0, T ], x, y ∈ R
d. (2.2)

(iii) There exist c2 ≥ 0 and κ ≥ 1 such that

|a(t, x) − a(t, y)|2 ≤ c2(1 + |x|2κ−2 + |y|2κ−2)|x− y|2, t ∈ [t0, T ], x, y ∈ R
d. (2.3)

We note that (2.2) implies that

(x, a(t, x)) +
2p0 − 3

2

m
∑

r=1

|σr(t, x)|2 ≤ c0 + c′1|x|2, t ∈ [t0, T ], x ∈ R
d, (2.4)

where c0 = |a(t, 0)|2/2 + (2p0−3)(2p0−1)
4

∑m
r=1 |σr(t, 0)|2 and c′1 = c1 + 1/2. The inequality (2.4)

together with (2.1) is sufficient to ensure finiteness of moments [3]: there is K > 0

E|Xt0,X0(t)|2p < K(1 + E|X0|2p), 1 ≤ p ≤ p0 − 1, t ∈ [t0, T ]. (2.5)

Also, (2.3) implies that

|a(t, x)|2 ≤ c3 + c′2|x|2κ, t ∈ [t0, T ], x ∈ R
d, (2.6)

where c3 = 2|a(t, 0))|2 + 2c2(κ − 1)/κ and c′2 = 2c2(1 + κ)/κ.
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Introduce the one-step approximation X̄t,x(t + h), t0 ≤ t < t + h ≤ T, for the solution

Xt,x(t + h) of (1.1), which depends on the initial point (t, x), a time step h, and {w1(θ) −
w1(t), . . . , wm(θ)− wm(t), t ≤ θ ≤ t+ h} and which is defined as follows:

X̄t,x(t+ h) = x+A(t, x, h;wi(θ)− wi(t), i = 1, . . . ,m, t ≤ θ ≤ t+ h). (2.7)

Using the one-step approximation (2.7), we recurrently construct the approximation (Xk,Ftk ), k =

0, . . . , N, tk+1 − tk = hk+1, TN = T :

X0 = X(t0), Xk+1 = X̄tk ,X̄k
(tk+1) (2.8)

= Xk +A(tk,Xk, hk+1;wi(θ)− wi(tk), i = 1, . . . ,m, tk ≤ θ ≤ tk+1).

The following theorem is a generalization of Milstein’s fundamental theorem [11] (see also

[12, 15, Chapter 1]) from the global to nonglobal Lipschitz case. It also has similarities with

a strong convergence theorem in [5] proved for the case of nonglobal Lipschitz drift, global

Lipschitz diffusion and Euler-type schemes.

For simplicity, we will consider a uniform time discretization, i.e. hk = h for all k.

Theorem 2.1. Suppose

(i) Assumption 2.1 holds;

(ii) The one-step approximation X̄t,x(t+ h) from (2.7) has the following orders of accuracy:

for some p ≥ 1 there are α ≥ 1, h0 > 0, and K > 0 such that for arbitrary t0 ≤ t ≤ T − h,

x ∈ Rd, and all 0 < h ≤ h0 :

|E[Xt,x(t+ h)− X̄t,x(t+ h)]| ≤ K(1 + |x|2α)1/2hq1 , (2.9)

[

E|Xt,x(t+ h)− X̄t,x(t+ h)|2p
]1/(2p) ≤ K(1 + |x|2αp)1/(2p)hq2 (2.10)

with

q2 ≥
1

2
, q1 ≥ q2 +

1

2
; (2.11)

(iii) The approximation Xk from (2.8) has finite moments, i.e., for some p ≥ 1 there are β ≥ 1,

h0 > 0, and K > 0 such that for all 0 < h ≤ h0 and all k = 0, . . . , N :

E|Xk|2p < K(1 + E|X0|2pβ). (2.12)

Then for any N and k = 0, 1, . . . , N the following inequality holds:

[

E|Xt0,X0(tk)− X̄t0,X0(tk)|2p
]1/(2p) ≤ K(1 + E|X0|2γp)1/(2p)hq2−1/2 , (2.13)

where K > 0 and γ ≥ 1 do not depend on h and k, i.e., the order of accuracy of the method

(2.8) is q = q2 − 1/2.

The theorem is proved in Appendix A and it uses the following lemma.
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Lemma 2.1. Suppose Assumption 2.1 holds. For the representation

Xt,x(t+ θ)−Xt,y(t+ θ) = x− y + Zt,x,y(t+ θ), (2.14)

we have for 1 ≤ p ≤ (p0 − 1)/κ :

E|Xt,x(t+ h)−Xt,y(t+ h)|2p ≤ |x− y|2p(1 +Kh) , (2.15)

E |Zt,x,y(t+ h)|2p ≤ K(1 + |x|2κ−2 + |y|2κ−2)p/2|x− y|2php . (2.16)

This lemma is proved in Appendix B. Theorem 2.1 has the following corollary.

Corollary 2.1. In the setting of Theorem 2.1 for p ≥ 1/(2q) in (2.13), there is 0 < ε < q and

an a.s. finite random variable C(ω) > 0 such that

|Xt0,X0(tk)−Xk| ≤ C(ω)hq−ε,

i.e., the method (2.8) for (1.1) converges with order q − ε a.s.

The corollary is proved using the Borel-Cantelli-type of arguments (see, e.g. [2, 18]).

2.1 Discussion

In this section we make a number of observations concerning Theorem 2.1.

1. As a rule, it is not difficult to check the conditions (2.9)-(2.10) following the usual routine

calculations as in the global Lipschitz case [12, 9, 15]. We note that in order to achieve the

optimal q1 and q2 in (2.9)-(2.10) additional assumptions on smoothness of a(t, x) and σr(t, x)

are usually needed.

In contrast to the conditions (2.9)-(2.10), checking the condition (2.12) on moments of a

method Xk is often rather difficult. In the case of global Lipschitz coefficients, boundedness of

moments of Xk is just direct implication of the boundedness of moments of the SDE solution and

the one-step properties of the method (see [15, Lemma 1.1.5]). There is no result of this type

in the case of nonglobal Lipschitz SDE and each scheme requires a special consideration. For

a number of strong schemes boundedness of moments in nonglobal Lipschitz cases were proved

(see, e.g. [6, 5, 8, 7, 22]). In Section 3 we show boundedness of moments for a balanced method

and in Section 4 for fully implicit methods.

Roughly speaking, Theorem 2.1 says that if moments of Xk are bounded and the scheme

was proved to be convergent with order q in the global Lipschitz case then the scheme has the

same convergence order q in the considered nonglobal Lipschitz case.

2. Assumptions and the statement of Theorem 2.1 include the famous fundamental theorem

of Milstein [11] proved under the global conditions on the SDE coefficients (of course, as discussed

in the previous point, this case does not need the assumption (2.12)). Though the main focus

here is on cases when drift and diffusion can grow faster than a linear function at infinity, we

note that the assumptions also include the case when the diffusion coefficient grows slower than
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linear function at infinity, e.g. they cover so-called CIR process which is used in modelling short

interest rates and stochastic volatility in financial engineering.

3. Consider the drift-implicit scheme [15, p. 30]:

Xk+1 = Xk + a(tk+1,Xk+1)h+

m
∑

r=1

σr(tk,Xk)ξrk
√
h, (2.17)

where ξrk = (wr(tk+1) − wr(tk))/
√
h are Gaussian N (0, 1) i.i.d. random variables. Assume

that the coefficients a(t, x) and σr(t, x) have continuous first-order partial derivatives in t and

the coefficient a(t, x) also has continuous first-order partial derivatives in xi and that all these

derivatives and the coefficients themselves satisfy inequalities of the form (2.3). It is not difficult

to show that the one-step approximation corresponding to (2.17) satisfies (2.9) and (2.10) with

q1 = 2 and q2 = 1, respectively. Its boundedness of moments, in particular, under the condition

(2.4) for time steps h ≤ 1/(2c1), is proved in [7]. Then, due to Theorem 2.1, (2.17) converges

with mean-square order q = 1/2 (note that for q = 1/2, it is sufficient to have q1 = 3/2

which can be obtained under lesser smoothness of a). Further, in the case of additive noise (i.e.,

σr(t, x) = σr(t), r = 1, . . . ,m), q1 = 2 and q2 = 3/2 and (2.17) converges with mean-square order

1 due to Theorem 2.1. We note that convergence of (2.17) with order 1/2 in the global Lipschitz

case is well known [12, 9, 15]; in the case of nonglobal Lipschitz drift and global Lipschitz

diffusion was proved in [6, 5] (see also related results in [2, 22]); and its strong convergence

without order under Assumption 2.1 was proved in [21, 7].

5. Due to the bound (2.5) on the moments of the solution X(t), it would be natural to

require that β in (2.12) should be equal to 1. Indeed, (2.12) with β = 1 holds for the drift-

implicit method (2.17) [7] and for fully implicit methods (see Section 4). However, this is not

the case for tamed-type methods (see [8]) or the balanced method from Section 3.

6. The constant K in (2.13) depends on p, t0, T as well as on the SDE coefficients. The

constant γ in (2.13) depends on α, β and κ.

3 A balanced method

In this section we introduce a particular balanced scheme from the class of balanced methods

introduced in [13] (see also [15]) and prove its mean-square convergence with order 1/2 using

Theorem 2.1. As far as we know, this variant of balanced schemes has not been considered

before. In Section 5 we test the balanced scheme on a model problem and demonstrate that

it is more efficient than the tamed scheme (5.2) (see Section 5) from [7]. We also note that

it was mentioned in [7] that a balanced scheme suitable for the nonglobal Lipschitz case could

potentially be derived.

Consider the following balanced-type scheme for (1.1):

Xk+1 = Xk +
a(tk,Xk)h+

∑m
r=1 σr(tk,Xk)ξrk

√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|
, (3.1)

6



where ξrk are Gaussian N (0, 1) i.i.d. random variables.

We prove two lemmas which show that the scheme (3.1) satisfies the conditions of Theo-

rem 2.1. The first lemma is on boundedness of moments, which uses a stopping time technique

(see also, e.g. [16, 7]).

Lemma 3.1. Suppose Assumption 2.1 holds with sufficiently large p0. For all natural N and

all k = 0, . . . , N the following inequality holds for moments of the scheme (3.1):

E|Xk|2p ≤ K(1 + E|X0|2pβ), 1 ≤ p ≤ p0 − 1

4(3κ − 2)
− 1

2
, (3.2)

with some constants β ≥ 1 and K > 0 independent of h and k.

Proof. In the proof we shall use the letter K to denote various constants which are independent

of h and k. We note in passing that the case κ = 1 (i.e., when a(t, x) is globally Lipschitz) is

trivial.

The following elementary consequence of the inequalities (2.4) and (2.6) will be used in the

proof: for any C1 > 0 and C2 > 0 :

C1

m
∑

r=1

|σr(t, x)|2 ≤ (2C1c+
C2
1

C2
)(1 + |x|2) + C2|a(t, x)|2 (3.3)

≤ (2C1c+
C2
1

C2
)(1 + |x|2) + C2c

(

1 + |x|2κ
)

,

where c = max(c0, c
′
1, c

′
2, c3).

We observe that

|Xk+1| ≤ |Xk|+ 1 ≤ |X0|+ (k + 1). (3.4)

Let R > 0 be a sufficiently large number. Introduce the events

Ω̃R,k := {ω : |Xl| ≤ R, l = 0, . . . , k}, (3.5)

and their compliments Λ̃R,k. We first prove the lemma for integer p ≥ 1. We have

EχΩ̃R,k+1
(ω)|Xk+1|2p ≤ EχΩ̃R,k

(ω)|Xk+1|2p = EχΩ̃R,k
(ω)|(Xk+1 −Xk) +Xk|2p (3.6)

≤ EχΩ̃R,k
(ω)|Xk|2p + EχΩ̃R,k

(ω) |Xk|2p−2 [2p(Xk,Xk+1 −Xk) + p(2p− 1)|Xk+1 −Xk|2
]

+K

2p
∑

l=3

EχΩ̃R,k
(ω) |Xk|2p−l |Xk+1 −Xk|l.

Consider the second term in the right-hand side of (3.6):

EχΩ̃R,k
(ω) |Xk|2p−2 [2p(Xk,Xk+1 −Xk) + p(2p− 1)|Xk+1 −Xk|2

]

(3.7)

= 2pEχΩ̃R,k
(ω) |Xk|2p−2

E

[(

Xk,
a(tk,Xk)h+

∑m
r=1 σr(tk,Xk)ξrk

√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

)

+
2p− 1

2

∣

∣

∣

∣

∣

a(tk,Xk)h+
∑m

r=1 σr(tk,Xk)ξrk
√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

Ftk



 .
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Since

E

[

∑m
r=1 σr(tk,Xk)ξrk

√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

Ftk

]

= 0 (3.8)

and for l 6= r

E

[

σr(tk,Xk)ξrk
√
hσl(tk,Xk)ξlk

√
h

(1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|)2

∣

∣

∣

∣

∣

Ftk

]

= 0, (3.9)

the conditional expectation in (3.7) becomes

A : = E

[(

Xk,
a(tk,Xk)h+

∑m
r=1 σr(tk,Xk)ξrk

√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

)

(3.10)

+
2p− 1

2

∣

∣

∣

∣

∣

a(tk,Xk)h+
∑m

r=1 σr(tk,Xk)ξrk
√
h

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

Ftk





= E

[

(Xk, a(tk,Xk)h)

1 + h|a(tk,Xk)|+
√
h|∑m

r=1 σr(tk,Xk)ξrk|

+
2p− 1

2

a2(tk,Xk)h
2 + h

∑m
r=1 (σr(tk,Xk)ξrk)

2

(

1 + h|a(tk,Xk)|+
√
h|∑m

r=1 σr(tk,Xk)ξrk|
)2

∣

∣

∣

∣

∣

∣

∣

Ftk







≤ E

[

(Xk, a(tk,Xk)h)

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

+
2p− 1

2

h
∑m

r=1 |σr(tk,Xk)|2ξ2rk
1 + h|a(tk,Xk)|+

√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

Ftk

]

+
2p − 1

2
a2(tk,Xk)h

2

= E

[

(Xk, a(tk,Xk)h) +
2p−1
2 h

∑m
r=1 |σr(tk,Xk)|2

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

+
2p− 1

2

h
∑m

r=1 |σr(tk,Xk)|2(ξ2rk − 1)

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

Ftk

]

+
2p − 1

2
a2(tk,Xk)h

2.

Using (2.4) and (2.6), we obtain

A ≤ c0h+ c′1|Xk|2h (3.11)

+
2p− 1

2
h

m
∑

r=1

|σr(tk,Xk)|2E
[

(ξ2rk − 1)

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

Ftk

]

+Kh2 +K|Xk|2κh2.
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For the expectation in the second term in (3.11), we obtain

E

[

(ξ2rk − 1)

1 + h|a(tk,Xk)|+
√
h
∑m

r=1 |σr(tk,Xk)ξrk|

∣

∣

∣

∣

∣

Ftk

]

(3.12)

= E

[

(ξ2rk − 1)

[

1− h|a(tk,Xk)|+
√
h|∑m

l=1 σl(tk,Xk)ξlk|
1 + h|a(tk,Xk)|+

√
h
∑m

l=1 |σl(tk,Xk)ξlk|

]
∣

∣

∣

∣

∣

Ftk

]

= −E

[

(ξ2rk − 1)
h|a(tk,Xk)|+

√
h|∑m

r=1 σl(tk,Xk)ξlk|
1 + h|a(tk,Xk)|+

√
h
∑m

l=1 |σr(tk,Xk)ξlk|

∣

∣

∣

∣

∣

Ftk

]

≤ Kh|a(tk,Xk)|+K
√
h

m
∑

r=1

|σr(tk,Xk)|.

Using (2.6) and (3.3), we obtain from (3.11)-(3.12):

A ≤ c0h+ c′1|Xk|2h+Kh
m
∑

r=1

|σr(tk,Xk)|2
[

h|a(tk,Xk)|+
√
h

m
∑

r=1

|σr(tk,Xk)|
]

(3.13)

+Kh2 +K|Xk|2κh2

≤ Kh(1 + |Xk|2 + |Xk|2κh+ |Xk|3κh1/2) ≤ Kh(1 + |Xk|2 + |Xk|3κh1/2).

Now consider the last term in (3.6):

EχΩ̃R,k
(ω) |Xk|2p−l |Xk+1 −Xk|l (3.14)

≤ KEχΩ̃R,k
(ω) |Xk|2p−l

[

hl|a(tk,Xk)|l + hl/2
m
∑

r=1

|σr(tk,Xk)|l|ξrk|
l

]

≤ KEχΩ̃R,k
(ω) |Xk|2p−l hl/2

[

1 + |Xk|lκ
]

,

where we used (2.6) and (3.3) again as well as the fact that χΩ̃R,k
(ω) and Xk are Ftk -measurable

while ξrk are independent of Ftk .

Combining (3.6), (3.7), (3.10), (3.13) and (3.14), we obtain

EχΩ̃R,k+1
(ω)|Xk+1|2p (3.15)

≤ EχΩ̃R,k
(ω)|Xk|2p +KhEχΩ̃R,k

(ω) |Xk|2p−2
[

1 + |Xk|2 + |Xk|3κh1/2
]

+K

2p
∑

l=3

EχΩ̃R,k
(ω) |Xk|2p−l hl/2

[

1 + |Xk|lκ
]

≤ EχΩ̃R,k
(ω)|Xk|2p +KhEχΩ̃R,k

(ω) |Xk|2p +K

2p
∑

l=2

EχΩ̃R,k
(ω) |Xk|2p−l hl/2

+Kh3/2EχΩ̃R,k
(ω) |Xk|2p−2+3κ +Kh

2p
∑

l=3

EχΩ̃R,k
(ω) |Xk|2p+l(κ−1) hl/2−1.

Choosing

R = R(h) = h−1/(6κ−4), (3.16)

9



we get EχΩ̃R,k
(ω) |Xk|2p−2+3κ hl/2−1 ≤ χΩ̃R(h),k

(ω) |Xk|2p and χΩ̃R(h),k
(ω) |Xk|2p+l(κ−1) hl/2−1 ≤

χΩ̃R(h),k
(ω) |Xk|2p , l = 3, . . . , 2p, and hence we re-write (3.15) as

EχΩ̃R(h),k+1
(ω)|Xk+1|2p (3.17)

≤ EχΩ̃R(h),k
(ω)|Xk|2p +KhEχΩ̃R(h),k

(ω) |Xk|2p +K

p
∑

l=1

EχΩ̃R(h),k
(ω) |Xk|2(p−l) hl

≤ EχΩ̃R(h),k
(ω)|Xk|2p +KhEχΩ̃R(h),k

(ω) |Xk|2p +Kh,

where in the last line we have used Young’s inequality. From here, we get by Gronwall’s inequality

that

EχΩ̃R(h),k
(ω)|Xk|2p ≤ K(1 + E|X0|2p), (3.18)

where R(h) is from (3.16) and K does not depend on k and h but it depends on p.

It remains to estimate EχΛ̃R(h),k
(ω)|Xk|2p. We have

χΛ̃R,k
= 1− χΩ̃R,k

= 1− χΩ̃R,k−1
χ|Xk|≤R = χΛ̃R,k−1

+ χΩ̃R,k−1
χ|Xk|>R

= · · · =
k
∑

l=0

χΩ̃R,l−1
χ|Xl|>R,

where we put χΩ̃R,−1
= 1. Then, using (3.4), (3.18), (2.1), and Cauchy-Bunyakovsky’s and

Markov’s inequalities, we obtain

EχΛ̃R(h),k
(ω)|Xk|2p = E

k
∑

l=0

|Xk|2pχΩ̃R(h),l−1
χ|Xl|>R(h) (3.19)

≤
(

E|X0 + k|4p
)1/2

k
∑

l=0

(

E

[

χΩ̃R(h),l−1|Xl|>R(h)

])1/2

=
(

E|X0 + k|4p
)1/2

k
∑

l=0

(

P (χΩ̃R(h),l−1
|Xl| > R)

)1/2

≤
(

E|X0 + k|4p
)1/2

k
∑

l=0

(

E(χΩ̃R(h),l−1
|Xl|2(2p+1)(6κ−4))

)1/2

R(h)(2p+1)(6κ−4)

≤ K
(

E|X0 + k|4p
)1/2

(

E(1 + |X0|2(2p+1)(6κ−4))
)1/2

kh2p+1 ≤ K(1 + E|X0|4p+2(2p+1)(6κ−4))1/2,

which together with (3.18) implies (3.2) for integer p ≥ 1. Then, by Jensen’s inequality, (3.2)

holds for non-integer p as well. �

The next lemma gives estimates for the one-step error of the balanced scheme (3.1).

Lemma 3.2. Assume that (2.5) holds. Assume that the coefficients a(t, x) and σr(t, x) have

continuous first-order partial derivatives in t and that these derivatives and the coefficients satisfy

inequalities of the form (2.3). Then the scheme (3.1) satisfies the inequalities (2.9) and (2.10)

with q1 = 3/2 and q2 = 1, respectively.
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The proof of this lemma is a routine analysis of the one-step approximation corresponding

to (3.1) using the equalities (3.8)-(3.9). Since such analysis is similar to those done in the

global Lipschitz case [13, 15], we omit these routine calculations here. Lemmas 3.1 and 3.2 and

Theorem 2.1 imply the following result.

Proposition 3.1. Under the assumptions of Lemmas 3.1 and 3.2 the balanced scheme (3.1) has

mean-square order 1/2, i.e., for it the inequality (2.13) holds with q = q2 − 1/2 = 1/2.

Remark 3.1. In the additive noise case the mean-square order of the balanced scheme (3.1)

does not improve (q1 and q2 remain 3/2 and 1, respectively).

4 Fully implicit schemes

Fully implicit (i.e., implicit both in drift and diffusion coefficients) mean-square schemes were

proposed in [14] (see also [15, Chapter 1]), where their convergence was proved under global

Lipschitz conditions. Here we analyze these schemes under the following assumptions, which

are stronger with respect to the diffusion coefficient than Assumption 2.1 used in the previous

Sections 2 and 3.

Assumption 4.1. (i) The initial condition is such that

E|X0|2p ≤ K <∞, for all p ≥ 1. (4.1)

(ii) There exists a constant c1 ≥ 0 such that

(x− y, a(t, x) − a(t, y)) ≤ c1|x− y|2, t ∈ [t0, T ], x, y ∈ R
d. (4.2)

(iii) There exist c2 ≥ 0 and κ ≥ 1 such that

|a(t, x) − a(t, y)|2 ≤ c2(1 + |x|2κ−2 + |y|2κ−2)|x− y|2, t ∈ [t0, T ], x, y ∈ R
d. (4.3)

(iv) The coefficients σr(t, x) have continuous bounded first-order spatial derivatives so that there

are constants L1 ≥ 0 and L2 ≥ 0 :

|∇σr(t, x)| ≤ L1, r = 1, . . . ,m, t ∈ [t0, T ], x ∈ R
d, (4.4)

and

|∇σr(t, x)σr(t, x)−∇σr(t, y)σr(t, y)| ≤ L2|x− y|, , r = 1, . . . ,m, t ∈ [t0, T ], x, y ∈ R
d. (4.5)

In proofs which follow we will need some implications of Assumption 4.1. The condition

(4.2) implies that there is c ≥ 0

(x, a(t, x)) ≤ c(1 + |x|2), t ∈ [t0, T ], x ∈ R
d. (4.6)
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It follows from (4.4) that

|σr(t, x)− σr(t, y)| ≤ L1|x− y|, t ∈ [t0, T ], x, y ∈ R
d, (4.7)

and hence

|σr(t, x)| ≤ L1|x|+ L0, (4.8)

where L0 = maxt∈[t0,T ] |σr(t, 0)|. Further, there is L ≥ 0 :

|∇σr(t, x)σr(t, x)| ≤ L(1 + |x|), t ∈ [t0, T ], x ∈ R
d, (4.9)

and

|σr(t, x)|2 ≤ L(1 + |x|2), t ∈ [t0, T ], x ∈ R
d. (4.10)

For definiteness, we consider the following one-parametric family of methods for (1.1) from

the broader class of fully implicit schemes of [14, 15]:

Xk+1 = Xk + a(tk+λ, (1 − λ)Xk + λXk+1)h (4.11)

−λ
m
∑

r=1

d
∑

j=1

∂σr
∂xj

(tk+λ, (1 − λ)Xk + λXk+1)σ
j
r(tk+λ, (1− λ)Xk + λXk+1)h

+
m
∑

r=1

σr(tk+λ, (1 − λ)Xk + λXk+1) (ζrh)k
√
h,

where 0 ≤ λ ≤ 1, tk+λ = tk + λh and (ζrh)k are i.i.d. random variables so that

ζh =















ξ, |ξ| ≤ Ah,

Ah, ξ > Ah,

−Ah, ξ < −Ah,

(4.12)

with ξ ∼ N (0, 1) and Ah =
√

2l| lnh| with l ≥ 1. We recall [15, Lemma 1.3.4] that

E(ξ2 − ζ2h) = (1 + 2
√

2l| lnh|)hl. (4.13)

Remark 4.1. Three choices of λ are most notable: λ = 0 gives the explicit Euler scheme which

is divergent [5, 7] in the considered setting; λ = 1 gives the fully implicit Euler scheme; and

λ = 1/2 corresponds to the mid-point rule, which in application to a system of Stratonovich SDE

is derivative free [15, p. 45].

Now we will study properties of the method (4.11).

Consider the one-step approximations corresponding to (4.11)

X̄ = X̄λ = x+ a(t+ λh,Uλ)h− λ

m
∑

r=1

d
∑

j=1

∂σr
∂xj

(t+ λh,Uλ)σjr(t+ λh,Uλ)h (4.14)

+
m
∑

r=1

σr(t+ λh,Uλ)ζrh
√
h,
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where

U = Uλ := (1− λ)x+ λX̄λ. (4.15)

Note that

Uλ = x+ λa(t+ λh,Uλ)− λ2
m
∑

r=1

d
∑

j=1

∂σr
∂xj

(t+ λh,Uλ)σjr(t+ λh,Uλ)h (4.16)

+λ
m
∑

r=1

σr(t+ λh,Uλ)ζrh
√
h.

Lemma 4.1. Let 0 < λ ≤ 1. Assume that Assumption 4.1 holds. For an arbitrary 0 < ε < 1,

find h0 > 0 such that

λ
[

h0c1 +mλL2h0 +mL1

√

2lh0| ln h0|
]

= 1− ε. (4.17)

Then the equation (4.14) for any 0 < h ≤ h0 has the unique solution X̄ which satisfies the

inequalities for some K > 0 :

|X̄ − x| ≤ K(1 + |x|κ)h+K(1 + |x|)
√

h| ln h| (4.18)

and

|X̄ |2 ≤ 16

3ε2λ
(L0 + 1)

√

2lh| ln h|+ 4

λ2
[(1− λ)2 +

4

3ε2
]|x|2, t ∈ [t0, T ], x ∈ R

d. (4.19)

Proof. Let

ã(t, x) = a(t, x)− λ
m
∑

r=1

d
∑

j=1

∂σr
∂xj

(t, x)σjr(t, x). (4.20)

For any fixed λ, t, ζrh, and h, we introduce the function

ψ(z) = z − λã(t+ λh, z)h − λ

m
∑

r=1

σr(t+ λh, z)ζrh
√
h

which is continuous in z due to our assumptions. The equation (4.14) can be written as

ψ(Uλ) = x. (4.21)

Using (4.2), (4.5) and (4.7), we obtain

(z − y, ψ(z) − ψ(y)) ≥ |z − y|2 − hλc1|z − y|2 − hmλ2L2|z − y|2 (4.22)

−mλL1

√

2lh| ln h||z − y|2

= (1− λ
[

hc1 +mλL2h+mL1

√

2lh| ln h|
]

)|z − y|2 ≥ ε|z − y|2 > 0,

i.e., ψ(z) is uniformly monotone function for h ≤ h0. This implies (see, e.g. [20, Theorem 6.4.4,

p. 167]) that (4.14) has a unique solution.

13



We obtain from (4.21) and (4.22):

ε|U |2 ≤ (U,ψ(U)− ψ(0)) = (U, x− ψ(0))

≤ ε

4
|U |2 + 2

ε
|x|2 + 2

ε
|ψ(0)|2 ≤ ε

4
|U |2 + 2

ε
|x|2 + 2λ(L0 + 1)

√

2lh| ln h|
ε

,

from which (4.19) follows.

|U |2 ≤ 8

3ε2
(λ(L0 + 1)

√

2lh| ln h|+ |x|2) (4.23)

which implies (4.19).

Further, it follows from (4.15), (4.21) and (4.22) that

λε|X̄ − x|2 = ε|U − x|2 ≤ (U − x,−λã(t+ λh, x)h − λ

m
∑

r=1

σr(t+ λh, x)ζrh
√
h)

≤ λ2|X̄ − x|
(

h|ã(t+ λh, x)| +
√

2lh| ln h|
m
∑

r=1

|σr(t+ λh, x)|
)

.

Then, using (4.3) and (4.8), we obtain (4.18), which completes the proof of Lemma 4.1 for the

implicit method (4.11). �

Now we consider boundedness of moments of (4.11).

Lemma 4.2. Let 1/2 < λ ≤ 1. Assume that Assumption 4.1 holds. Then for all 0 < h ≤ h0

with h0 from (4.17) and for all k = 0, . . . , N the following inequality holds for the fully implicit

scheme (4.11) for p ≥ 1:

E|Xk|2p ≤ K(1 + E|X0|2p), (4.24)

where K > 0 is a constant.

Proof. We note that (4.6) and (4.9) imply

(x, ã(t, x)) ≤ (c+ 3mλL/2)(1 + |x|2), t ∈ [t0, T ], x ∈ R, (4.25)

which together with (4.4) ensures that the solution of (1.1) has all moments (2.5), p ≥ 1 [3].
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Let Uk+1 = (1− λ)Xk + λXk+1 (cf. (4.15)). We have

Vk+1 := |Xk+1|2 − |Xk|2 = 2(Uk+1,Xk+1 −Xk)− (2λ− 1)|Xk+1 −Xk|2 (4.26)

= 2λh(Uk+1, ã(tk+λ, Uk+1)) + 2λ
√
h(Uk+1,

m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k)

−(2λ− 1)h2|ã(tk+λ, Uk+1)|2 − (2λ− 1)h|
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k |2

−2(2λ− 1)h3/2(ã(tk+λ, Uk+1),
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k)

= 2λ(Uk+1, hã(tk+λ, Uk+1)) + 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k)

+(2λ2 − 2λ+ 1)h|
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k |2 − (2λ− 1)h2|ã(tk+λ, Uk+1)|2

+2(1− λ)2h3/2(ã(tk+λ, Uk+1),
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k).

Expanding σr(tk+λ, Uk+1) at (tk+λ,Xk), we obtain

Vk+1 = 2λ(Uk+1, hã(tk+λ, Uk+1)) + 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k) (4.27)

+2λ
√
h(Xk,

m
∑

r=1

∇σr(tk+λ, θ)(Uk+1 −Xk) (ζrh)k)

+(2λ2 − 2λ+ 1)h|
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k |2 − (2λ− 1)h2|ã(tk+λ, Uk+1)|2

+2(λ− 1)2h3/2(ã(tk+λ, Uk+1),
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k)

= 2λ(Uk+1, hã(tk+λ, Uk+1)) + 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k)

+2λ2h3/2(Xk,
m
∑

r=1

∇σr(tk+λ, θ)ã(tk+λ, Uk+1) (ζrh)k)

+2λ2h(Xk,

m
∑

r=1

∇σr(tk+λ, θ)

m
∑

l=1

σl(tk+λ,Xk) (ζlh)k (ζrh)k)

+(2λ2 − 2λ+ 1)h|
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k |2 − (2λ− 1)h2|ã(tk+λ, Uk+1)|2

+2(1− λ)2h3/2(ã(tk+λ, Uk+1),
m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k),

where θ = νUk+1 − (1− ν)Xk, ν ∈ [0, 1], is an intermediate point. Using (4.25), (4.10), Young’s
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inequality, (4.4) and (4.19), we obtain

Vk+1 ≤ λh(2c+ 3λmL)(1 + |Uk+1|2) + 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k) (4.28)

+
2λ− 1

2
h2|ã(tk+λ, Uk+1)|2 +

2λ4

2λ− 1
h|Xk|2m

m
∑

r=1

|∇σr(tk+λ, θ)|2| (ζrh)k |2

+λ2hm|Xk|2
m
∑

r=1

|∇σr(tk+λ, θ)|2| (ζrh)k |2 + λ2hm
m
∑

l=1

|σl(tk+λ,Xk)|2| (ζlh)k |2

+(2λ2 − 2λ+ 1)hm
m
∑

r=1

|σr(tk+λ, Uk+1)|2| (ζrh)k |2 − (2λ− 1)h2|ã(tk+λ, Uk+1)|2

+
2λ− 1

2
h2|ã(tk+λ, Uk+1)|2 +

2(1− λ)4

2λ− 1
hm

m
∑

r=1

|σr(tk+λ, Uk+1)|2| (ζrh)k |2

≤ λh(2c+ 3λmL)(1 + |Uk+1|2) + 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k)

+λ2[
2λ2

2λ− 1
+ 1]hL2

1|Xk|2m
m
∑

r=1

| (ζrh)k |2 + λ2hmL(1 + |Xk|2)
m
∑

l=1

| (ζlh)k |2

+[2λ2 − 2λ+ 1 +
2(1− λ)4

2λ− 1
]hmL(1 + |Uk+1|2)

m
∑

l=1

| (ζlh)k |2.

Then using (4.23), we arrive at

Vk+1 ≤ Kh(1 + |Xk|2)
(

1 +

m
∑

r=1

| (ζrh)k |2
)

+ 2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k),

where K > 0 is independent of h and k while it depends on λ and on constants appearing in

(4.2)-(4.10).

Thus

1+|Xk+1|2 ≤ 1+|Xk|2+Kh(1+|Xk|2)
(

1 +

m
∑

r=1

| (ζrh)k |2
)

+2λ
√
h(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k).

Then for integer p ≥ 1 we get

(

1 + |Xk+1|2
)p ≤

(

1 + |Xk|2
)p

+K
(

1 + |Xk|2
)p

p
∑

l=1

hl

[

1 +
m
∑

r=1

| (ζrh)k |2
]l

+K

p
∑

l=1

(

1 + |Xk|2
)p−l

hl/2

[

(Xk,

m
∑

r=1

σr(tk+λ,Xk) (ζrh)k)

]l

,

whence, observing that Xk are Ftk -measurable while ξrk are independent of Ftk , it is not difficult

to obtain

E
(

1 + |Xk+1|2
)p ≤ E

(

1 + |Xk|2
)p

+KhE
(

1 + |Xk|2
)p

+K

p
∑

l=2

E
(

1 + |Xk|2
)p−l

hl/2

[

(Xk,
m
∑

r=1

σr(tk+λ,Xk) (ζrh)k)

]l

≤ E
(

1 + |Xk|2
)p

+KhE
(

1 + |Xk|2
)p
,
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which together with Gronwall’s inequality completes the proof of the lemma for integer p ≥ 1.

Then by Jensen’s inequality for non-integer p > 1 as well. �

We have not succeeded in proving boundedness of moments for the mid-point scheme, i.e.,

(4.11) with λ = 1/2 under Assumption 4.1. One can observe that the proof of Lemma 4.2 is

not applicable to this choice of λ as the estimate in (4.28) blows up when λ → 1/2 and it is

clear that the mid-point scheme is the boundary case. We also know [4] that for σr = 0 (4.11) is

B-stable for λ ≥ 1/2 and not B-stable (in fact, not A-stable) for λ < 1/2. It is natural to expect

that for λ < 1/2 the moments of (4.11) are not bounded and hence the method with λ < 1/2

is divergent under Assumption 4.1 (see also such a conclusion for the drift-implicit θ-method in

[21]). In our experiments (Section 5) the mid-point method produced accurate results.

At the same time, we proved boundedness of moments for the mid-point scheme if in addition

to Assumption 4.1 we require that the diffusion coefficients σr(t, x) are bounded. The proof is

similar to the proof of Lemma 3.1.

Lemma 4.3. Let the assumptions of Lemma 4.2 hold and in addition assume that the diffusion

coefficients σr(t, x) are uniformly bounded. Then the moments of the mid-point method (4.11)

with λ = 1/2 has bounded moments: for p ≥ 1:

E|Xk|2p ≤ K(1 + E|X0|4(p+1)κ−4)1/2, (4.29)

where K > 0 is a constant.

Proof. For κ = 1 (cf. (4.3)), i.e., the global Lipschitz case, boundedness of moments of Xk is

established in [14, 15]. Let κ > 1.

From (4.26), we have

|Xk+1|2 − |Xk|2 = h(Uk+1, ã(tk+1/2, Uk+1)) +
√
h(Uk+1,

m
∑

r=1

σr(tk+1/2, Uk+1) (ζrh)k).

Then using (4.25) and Young’s inequality, boundedness of σr and (4.23), we get

|Xk+1|2 − |Xk|2 ≤ h(c+ 3λmL/2)(1 + |Uk+1|2) + h|Uk+1|2 +K

m
∑

r=1

| (ζrh)k |2

≤ Kh(1 + |Xk|2) +K
m
∑

r=1

| (ζrh)k |2,

from which one can obtain for integer p ≥ 1 :

E
(

1 + |Xk|2
)p ≤ Kh−p

E
(

1 + |X0|2
)p
. (4.30)

Further, using (4.25), Young’s inequality, boundedness of σr, (4.4), (4.3) and (4.23), we get from
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(4.27):

|Xk+1|2 − |Xk|2 = (Uk+1, hã(tk+1/2, Uk+1)) +
√
h(Xk,

m
∑

r=1

σr(tk+1/2,Xk) (ζrh)k)

+
1

2
h3/2(Xk,

m
∑

r=1

∇σr(tk+1, θ)ã(tk+1/2, Uk+1) (ζrh)k)

+
1

2
h(Xk,

m
∑

r=1

∇σr(tk+1/2, θ)

m
∑

l=1

σl(tk+1/2,Xk) (ζlh)k (ζrh)k) +
1

2
h|

m
∑

r=1

σr(tk+1/2, Uk+1) (ζrh)k |2

+
1

2
h3/2(ã(tk+λ, Uk+1),

m
∑

r=1

σr(tk+λ, Uk+1) (ζrh)k)

≤ Kh(1 + |Xk|2)(1 +
m
∑

r=1

| (ζrh)k |2) +
√
h(Xk,

m
∑

r=1

σr(tk+1/2,Xk) (ζrh)k)

+Kh3/2(1 + |Xk|κ+1)

m
∑

r=1

| (ζrh)k |.

Choosing R(h) = h−1/2(κ−1), we get after some additional calculation (cf. (3.18)):

EχΩ̃R(h),k
(ω)|Xk|2p ≤ K(1 + E|X0|2p), (4.31)

where Ω̃R(h),k is the event as in (3.5).

Now using (4.30), (4.31), and Cauchy-Bunyakovsky’s and Markov’s inequalities, we arrive at

(cf. (3.19)):

EχΛ̃R(h),k
(ω)|Xk|2p ≤ K(1 + E|X0|4(p+1)κ−4)1/2,

from which together with (4.31) the inequality (4.29) follows. �

The next lemma gives estimates for the one-step error of the method (4.11).

Lemma 4.4. Let 0 ≤ λ ≤ 1. Assume that (2.5) holds. Assume that the coefficient a(t, x)

has continuous first order partial derivative in t and in xi and that the derivatives and the

coefficient satisfy inequalities of the form (4.3); the functions σr(t, x) have continuous first-

order partial derivatives in t and that the derivatives and the coefficients satisfy inequalities of

the form (4.4)−(4.5); and the functions ∇σr(t, x)σr(t, x) have continuous first partial derivatives
in t and in xi which satisfy inequalities of the form (4.5). Then the method (4.11) satisfies the

inequalities (2.9) and (2.10) with q1 = 2 and q2 = 1, respectively.

Proofs of this lemma is rather routine and similar to the global Lipschitz case [14, 15] and

it is omitted here. Using Lemmas 4.1-4.4, the next proposition follows from Theorem 2.1.

Proposition 4.1. Let for 1/2 < λ ≤ 1 the assumptions of Lemmas 4.2 and 4.4 hold and for

λ = 1/2 in addition assume that the diffusion coefficients σr(t, x) are uniformly bounded. Then

the fully implicit method (4.11) has mean-square order 1/2, i.e., for it the inequality (2.13) holds

with q = 1/2.
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Remark 4.2. Consider the commutative case, i.e., when Λiσr = Λrσi (here the operator Λr :=

(σr, ∂/∂x)) or in the case of a system with one noise (i.e., m = 1). Then in the setting of

Lemma 4.4, the mid-point method, i.e., (4.11) with λ = 1/2, satisfies the inequalities (2.9) and

(2.10) with q1 = 2 and q2 = 3/2, respectively (see such a result in the global Lipschitz case in

[14, 15]). Therefore, it converges in this case with mean-square order 1 when its moments are

bounded.

5 Numerical examples

In this section we will test the following schemes: the balanced method (3.1) from Section 3; the

drift-implicit scheme (2.17); the fully implicit Euler scheme (4.11) with λ = 1; the mid-point

method (4.11) with λ = 1/2; the drift-tamed Euler scheme (a modified balanced method) [8]:

Xk+1 = Xk + h
a(Xk)

1 + h |a(Xk)|
+

m
∑

r=1

σr(tk,Xk)ξrk
√
h; (5.1)

the fully-tamed scheme [7]:

Xk+1 = Xk +
a(Xk)h+

∑m
r=1 σr(tk,Xk)ξrk

√
h

max
(

1, h
∣

∣

∣
ha(Xk) +

∑m
r=1 σr(tk,Xk)ξrk

√
h
∣

∣

∣

) ; (5.2)

and the trapezoidal scheme:

Xk+1 = Xk +
h

2
[a(Xk+1) + a(Xk)] +

m
∑

r=1

σr(tk,Xk)ξrk
√
h. (5.3)

As before, ξrk = (wr(tk+1)−wr(tk))/
√
h are Gaussian N (0, 1) i.i.d. random variables. We note

that under Assumption 2.1 boundedness of second moments and strong convergence (without

giving order) of θ-schemes, and in particular of (5.3), can be found in [21]. Strong convergence

with order 1/2 of (5.1) under Assumption 4.1 is proved in [8]. Strong convergence of (5.2)

without order under Assumption 2.1 is proved in [7].

In all the experiments with fully implicit schemes, where the truncated random variables ζ

are used, we took l = 2 (see (4.13)). The experiments were performed using Matlab R2012a on a

Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core, 2.80 GHz). In simulations

we used the Mersenne twister random generator with seed 100. Newton’s method was used to

solve the nonlinear algebraic equations at each step of the implicit schemes.

We test the methods on the two model problems. The first one satisfies Assumption 4.1

(nonglobal Lipschitz drift, global Lipschitz diffusion) and has two non-commutative noises. The

second example satisfies Assumption 2.1 (nonglobal Lipschitz both drift and diffusion). The aim

of the tests is to compare performance of the methods: their accuracy (i.e., roughly speaking,

size of prefactors at a power of h) and computational costs. We note that experiments cannot

prove or disprove boundedness of moments of the schemes since experiments rely on a finite

sample of trajectories run over a finite time interval while blow-up of moments in divergent

methods (e.g., explicit Euler scheme) is, in general, a result of large deviations [10, 16].
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Example 5.1. Our first test model is the Stratonovich SDE of the form:

dX = (1−X5) dt+X ◦ dw1 + dw2, X(0) = 0. (5.4)

In Ito’s sense, the drift of the equation becomes a(t, x) = 1 − x5 + x/2. Here we tested the

balanced method (3.1); the drift-tamed scheme (5.1); the fully implicit Euler scheme (4.11) with

λ = 1; the mid-point method (4.11) with λ = 1/2. We note that for all the methods tested on

this example except the mid-point rule mean-square convergence with order 1/2 is proved either

in earlier papers or here as it was described before.

To compute the mean-square error, we run M independent trajectories X(i)(t), X
(i)
k :

(

E [X(T )−XN ]2
)1/2 .

=

(

1

M

M
∑

i=1

[X(i)(T )−X
(i)
N ]2

)1/2

. (5.5)

We took time T = 50 and M = 104. The reference solution was computed by the mid-point

method with small time step h = 10−4. It was verified that using a different implicit scheme for

simulating a reference solution does not affect the outcome of the tests. We chose the mid-point

scheme as a reference since in all the experiments it produced the most accurate results.

Table 5.1 gives the mean-square errors and experimentally observed convergence rates for the

corresponding methods. We checked that the number of trajectories M = 104 was sufficiently

large for the statistical errors not to significantly hinder the mean-square errors (the Monte

Carlo error computed with 95% confidence was at least 10 time smaller than the reported mean-

square errors except values for (5.1) at h = 0.1 and 0.05 where it was at least 5 time smaller

than the mean-square errors). In addition to the data in the table, we evaluated errors for (3.1)

for smaller time steps: h = 0.002 – the error is 9.27e-02 (rate 0.41), 0.001 – 6.86e-02 (0.44).

The observed rates of convergence of all the tested methods are close to the predicted 1/2. For

a fixed time step h, the most accurate scheme is the mid-point one, the less accurate scheme

is the new balanced method (3.1). To produce the result with accuracy ∼ 0.06 − 0.07, in our

experiment of running M = 104 trajectories the scheme (5.1) required 170 sec., the mid-point

(4.11) with λ = 1/2 – 329 sec., (4.11) with λ = 1 – 723 sec., and (3.1) – 1870 sec. That is,

our experiments confirmed the conclusion of [8] that the drift-tamed (modified balance method)

(5.1) from [8] is highly competitive. We note that (5.1) is not applicable when diffusion grows

faster than a linear function and that in this case the balanced method (3.1) can outcompete

implicit schemes as it is shown in the next example.

Example 5.2. Consider the SDE in the Stratonovich sense:

dX = (1−X5) dt+X2 ◦ dw, X(0) = 0. (5.6)

In Ito’s sense, the drift of the equation becomes a(t, x) = 1− x5 + x3.

Here we tested the balanced method (3.1); the fully-tamed Euler scheme (5.2); the drift-

implicit scheme (2.17); the fully implicit Euler scheme (4.11) with λ = 1; the mid-point method
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Table 5.1: Example 5.1. Mean-square errors of the selected schemes. See further details in the

text.

h (4.11), λ = 1 rate (4.11), λ = 1/2 rate (5.1) rate (3.1) rate

0.1 1.712e-01 – 1.443e-01 – 3.748e-01 – 3.594e-01 –

0.05 1.234e-01 0.47 9.224e-02 0.65 2.103e-01 0.83 3.017e-01 0.25

0.02 7.692e-02 0.52 5.261e-02 0.61 9.472e-02 0.87 2.297e-01 0.30

0.01 5.478e-02 0.49 3.549e-02 0.57 6.104e-02 0.63 1.778e-01 0.37

0.005 3.935e-02 0.48 2.487e-02 0.51 3.959e-02 0.62 1.354e-01 0.39

(4.11) with λ = 1/2; and the trapezoidal scheme (5.3). We recall that in the case of nonglobal

Lipschitz drift and diffusion, for the drift-implicit scheme (2.17) and the balanced method (3.1)

mean-square convergence with order 1/2 is shown earlier in this paper; strong convergence of

the trapezoidal scheme (5.3) without order is proved in [21], it is natural to expect that its

mean-square order is 1/2 which is indeed supported by the experiments. Strong convergence

of (5.2) without order is proved in [7]. We note that it can be proved directly that implicit

algebraic equations arising from application of the mid-point and fully implicit Euler schemes

to (5.6) have unique solutions under a sufficiently small time step.

The reference solution was computed by the mid-point method with small time step h = 10−4.

The time T = 50 and M = 104 in (5.5).

The fully-tamed scheme (5.2) did not produce accurate results until the time step size is at

least h = 0.005 and we do not then report its errors here but see the remark below.

Remark 5.1. The fully-tamed scheme (5.2) appears to be of a low practical value. If at a step k∗,

the event O :=
∣

∣

∣
ha(Xk) +

∑m
r=1 σr(tk,Xk)ξrk

√
h
∣

∣

∣
> 1/h happens, then in the case of (5.6) the

trajectory Xk, k > k∗, oscillates approximately between Xk∗ and Xk∗ − signum(Xk∗)/h. Since

the probability of the event O is positive for any step size h > 0 and grows with integration time,

it is unavoidable that in some scenarios (i.e., on some trajectories) such oscillatory behavior

will appear. For instance, in this experiment for h = 0.1 we observed 989 out of 1000 paths for

which O happened over the time interval [0, 50]; for h = 0.05 – 866 out of 1000 paths. From

the practical point of view, (5.2) works as long as the explicit Euler scheme works (cf. [10] and

also [15, p. 17]). The strong convergence (without order) of (5.2) [7] in comparison with the

explicit Euler scheme is due to the following fact. When event O happens for the Euler scheme

its sequence Xk starts oscillating with growing amplitude which leads to unboundedness of its

moments and, consequently, its divergence in the mean-square sense. For (5.2), the oscillations

are bounded by ∼ 1/h and since the probability of O over a finite time interval decreasing with

decrease of h, then the moments are bounded uniformly in h. At the same time, the one-step

approximation of (5.2) does not satisfy the conditions (2.9) and (2.10) of Theorem 2.1. We note

that the explicit balanced-type scheme (3.1) does not have such drawbacks as (5.2).
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Table 5.2 gives the mean-square errors and experimentally observed convergence rates for the

corresponding methods. We checked that the number of trajectories M = 104 was sufficiently

large for the statistical errors not to significantly hinder the mean-square errors (the Monte Carlo

error computed with 95% confidence was at least ten time smaller than the reported mean-square

errors). In addition to the data in the table, we evaluated errors for (3.1) for smaller time steps:

h = 0.002 – the error is 3.70e-02 (rate 0.41), 0.001 – 2.73e-02 (0.44), 0.0005 – 2.00e-02 (0.45), i.e.,

for smaller h the observed convergence rate of (3.1) becomes closer to the theoretically predicted

order 1/2. Since (5.6) is with single noise, Remark 4.2 is valid here which explains why the mid-

point scheme demonstrates the first order of convergence. The other implicit schemes show the

order 1/2 as expected. Table 5.3 presents the time costs in seconds. Let us fix tolerance level at

0.05− 0.06. We highlighted in bold the corresponding values in both tables. We see that in this

example the mid-point scheme is the most efficient which is due to its first order convergence in

the commutative case. Among methods of order 1/2, the balanced method (3.1) is the fastest

and one can expect that for multi-dimensional SDE the explicit scheme (3.1) can considerably

outperform implicit methods (see a similar outcome for the drift-tamed method (5.1) supported

by experiments in [8]; note that (5.1), in comparison with (3.1), is, as a rule, divergent when

diffusion is growing faster than a linear function on infinity).

Table 5.2: Example 5.2. Mean-square errors of the selected schemes. See further details in the

text.

h (2.17) rate (4.11), λ = 1 rate (4.11), λ = 1/2 rate (5.3) rate (3.1) rate

0.2 3.449e-01 – 1.816e-01 – 1.378e-01 – 4.920e-01 – 2.102e-01 –

0.1 2.441e-01 0.50 1.331e-01 0.45 8.723e-02 0.66 3.526e-01 0.48 1.637e-01 0.36

0.05 1.592e-01 0.62 9.619e-02 0.47 5.344e-02 0.71 2.230e-01 0.66 1.270e-01 0.37

0.02 8.360e-02 0.70 6.599e-02 0.41 2.242e-02 0.95 1.048e-01 0.82 9.170e-02 0.36

0.01 5.460e-02 0.61 4.919e-02 0.42 1.145e-02 0.97 5.990e-02 0.81 7.065e-02 0.38

0.005 3.682e-02 0.57 3.522e-02 0.48 5.945e-03 0.95 3.784e-02 0.66 5.393e-02 0.39

Table 5.3: Example 5.2. Comparison of computational times for the selected schemes. See

further details in the text.

h (2.17) (4.11), λ = 1 (4.11), λ = 1/2 (5.3) (3.1)

0.2 9.25e+00 1.10e+01 9.33e+00 1.20e+01 3.98e+00

0.1 1.77e+01 2.17e+01 1.80e+01 2.30e+01 7.49e+00

0.05 3.42e+01 4.26e+01 3.51e+01 4.48e+01 1.41e+01

0.02 8.33e+01 1.04e+02 8.69e+01 1.10e+02 3.37e+01

0.01 1.64e+02 2.05e+02 1.73e+02 2.19e+02 6.62e+01

0.005 3.25e+02 4.07e+02 3.47e+02 4.37e+02 1.32e+02
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[2] I. Gyöngy. A note on Euler’s approximations. Poten. Anal. 8 (1998), 205–216.

[3] R.Z. Hasminskii. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, 1980.

[4] E. Hairer, G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-

Algebraic Problems. Springer, 2004.

[5] D.J. Higham, X. Mao, A.M. Stuart. Strong convergence of Euler-type methods for nonlinear

stochastic differential equations. SIAM J. Num. Anal. 40 (2003), 1041–1063.

[6] Y. Hu. Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In: Stochastic

Analysis and Related Topics V : The Silvri Workshop (Ed.: H. Koerezlioglu), Progr. Probab.

38, Birkhauser, Boston, 1996, pp. 183–202.

[7] M. Hutzenthaler, A. Jentzen. Numerical approximation of stochastic differential equations

with non-globally Lipschitz continuous coefficients. Preprint, 2012.

[8] M. Hutzenthaler, A. Jentzen, P.E. Kloeden. Strong convergence of an explicit numerical

method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab.

22 (2012), 1611–1641.

[9] P.E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Springer,

1992.

[10] J.C. Mattingly, A.M. Stuart, D.J. Higham. Ergodicity for SDEs and approximations: Lo-

cally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101 (2002), 185–232.

[11] G.N. Milstein. A theorem on the order of convergence of mean-square approximations of

solutions of systems of stochastic differential equations. Theor. Prob. Appl. 32 (1987), 738–

741.

[12] G.N. Milstein. Numerical Integration of Stochastic Differential Equations. Kluwer Academic

Publishers, 1995.

23



[13] G.N. Milstein, E. Platen, H. Schurz. Balanced implicit methods for stiff stochastic systems.

SIAM J. Num. Anal. 35 (1998), 1010–1019.

[14] G.N. Milstein, Yu.M. Repin, M.V. Tretyakov. Numerical methods for stochastic systems

preserving symplectic structure. SIAM J. Num. Anal. 40 (2002), 1583–1604.

[15] G.N. Milstein, M.V. Tretyakov. Stochastic Numerics for Mathematical Physics. Springer,

2004.

[16] G.N. Milstein, M.V. Tretyakov. Numerical integration of stochastic differential equations

with nonglobally Lipschitz coefficients. SIAM J. Num. Anal. 43 (2005), 1139–1154.

[17] G.N. Milstein, M.V. Tretyakov. Computing ergodic limits for Langevin equations. Physica

D 229 (2007), 81–95.

[18] G.N. Milstein, M.V. Tretyakov. Monte Carlo algorithms for backward equations in nonlinear

filtering. Adv. Appl. Prob. 41 (2009), 63–100.

[19] D.S. Mitrinovic, J. Pecaric, A.M. Fink. Inequalities Involving Functions and their Integrals

and Derivatives. Kluwer, 1994.

[20] J. M. Ortega, W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Vari-

ables. SIAM, 2000.

[21] L. Szpruch, X. Mao. Strong convergence and stability of numerical methods for non-linear

stochastic differential equations under monotone condition. J. Comp. App. Math. 238

(2013), 14–28.

[22] D. Talay. Stochastic Hamiltonian systems: exponential convergence to the invariant mea-

sure, and discretization by the implicit Euler scheme. Markov Proc. Relat. Fields 8 (2002),

163–198.

A Proof of the fundamental theorem

Note that in this and the next section we shall use the letter K to denote various constants

which are independent of h and k. The proof exploits the idea of the prove of this theorem in

the global Lipschitz case [11].

Consider the error of the method X̄t0,X0(tk+1) at the (k + 1)-step:

ρk+1 := Xt0,X0(tk+1)− X̄t0,X0(tk+1) = Xtk ,X(tk)(tk+1)− X̄tk,Xk
(tk+1) (A.1)

= (Xtk ,X(tk)(tk+1)−Xtk ,Xk
(tk+1)) + (Xtk ,Xk

(tk+1)− X̄tk,Xk
(tk+1)) .

24



The first difference in the right-hand side of (A.1) is the error of the solution arising due to the

error in the initial data at time tk, accumulated at the k-th step, which we can re-write as

Stk ,X(tk),Xk
(tk+1) = Sk+1 := Xtk ,X(tk)(tk+1)−Xtk ,Xk

(tk+1) = ρk + Ztk ,X(tk),Xk
(tk+1)

= ρk + Zk+1,

where Z is as in (2.14). The second difference in (A.1) is the one-step error at the (k + 1)-step

and we denote it as rk+1 :

rk+1 = Xtk ,Xk
(tk+1)− X̄tk ,Xk

(tk+1).

Let p ≥ 1 be an integer. We have

E|ρk+1|2p = E |Sk+1 + rk+1|2p = E[(Sk+1, Sk+1) + 2(Sk+1, rk+1) + (rk+1, rk+1)]
p (A.2)

≤ E |Sk+1|2p + 2pE |Sk+1|2p−2 (ρk + Zk+1, rk+1) +K

2p
∑

l=2

E |Sk+1|2p−l |rk+1|l.

Due to (2.15) of Lemma 2.1, the first term on the right-hand side of (A.2) is estimated as

E |Sk+1|2p ≤ E|ρk|2p(1 +Kh). (A.3)

Consider the second term on the right-hand side of (A.2):

E |Sk+1|2p−2 (ρk + Zk+1, rk+1) = E |ρk|2p−2 (ρk, rk+1) (A.4)

+E

(

|Sk+1|2p−2 − |ρk|2p−2
)

(ρk, rk+1) + E |Sk+1|2p−2 (Zk+1, rk+1).

Due to Ftk -measurability of ρk and due to the conditional variant of (2.9), we get for the first

term on the right-hand side of (A.4):

E |ρk|2p−2 (ρk, rk+1) ≤ KE |ρk|2p−1 (1 + |Xk|2α)1/2hq1 . (A.5)

Consider the second term on the right-hand side of (A.4) and first of all note that it is equal to

zero for p = 1. We have for integer p ≥ 2 :

E

(

|Sk+1|2p−2 − |ρk|2p−2
)

(ρk, rk+1) ≤ KE |Zk+1| |ρk||rk+1|
2p−3
∑

l=0

|Sk+1|2p−3−l|ρk|l.

Further, using Ftk -measurability of ρk and the conditional variants of (2.10), (2.15) and (2.16)

and the Cauchy-Bunyakovsky inequality (twice), we get for p ≥ 2 :

E

(

|Sk+1|2p−2 − |ρk|2p−2
)

(ρk, rk+1) (A.6)

≤ KE |ρk|2p−1 (1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2.

Due to Ftk -measurability of ρk, the conditional variants of (2.10) and (2.16) and the Cauchy-

Bunyakovsky inequality (twice), we obtain for the third term on the right-hand side of (A.4):

E |Sk+1|2p−2 (Zk+1, rk+1) ≤ E[E
(

Sk+1|4p−4|Ftk

)1/2
E
(

|Zk+1|4|Ftk

)1/4
E
(

|rk+1|4|Ftk

)1/4
] (A.7)

≤ KE |ρk|2p−1 (1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|4α)1/4.
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Due to Ftk -measurability of ρk and due to the conditional variants of (2.10) and (2.15) and

the Cauchy-Bunyakovsky inequality, we estimate the third term on the right-hand side of (A.2):

K

2p
∑

l=2

E |Sk+1|2p−l |rk+1|l ≤ K

2p
∑

l=2

E[E(|Sk+1|4p−2l |Ftk)
1/2

E(|rk+1|2l|Ftk )
1/2] (A.8)

≤ K

2p
∑

l=2

E[|ρk|2p−lhlq2(1 + |Xk|2lα)1/2].

Substituting (A.3)-(A.8) in (A.2) and recalling that q1 ≥ q2 + 1/2, we obtain

E|ρk+1|2p ≤ E|ρk|2p(1 +Kh) +KE |ρk|2p−1 (1 + |Xk|2α)1/2hq2+1/2

+KE |ρk|2p−1 (1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2

+KE |ρk|2p−1 (1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|4α)1/4

+K

2p
∑

l=2

E[|ρk|2p−lhlq2(1 + |Xk|2αl)1/2]

≤ E|ρk|2p(1 +Kh) +KE |ρk|2p−1 (1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2

+K

2p
∑

l=2

E[|ρk|2p−lhlq2(1 + |Xk|2lα)1/2].

Then using Young’s inequality and the conditions (2.5) and (2.12), we obtain

E|ρk+1|2p ≤ E|ρk|2p +KhE|ρk|2p +K(1 + E|X0|βp(κ−1)+2pαβ)h2p(q2−1/2)+1

whence (2.13) with integer p ≥ 1 follows by application of Gronwall’s inequality. Then by

Jensen’s inequality (2.13) holds for non-integer p as well. �

B Proof of Lemma 2.1

Lemma 2.1 is an analogue of Lemma 1.1.3 in [15].

Proof. Introduce the process St,x,y(s) = S(s) := Xt,x(s) − Xt,y(s) and note that Z(s) =

S(s)− (x− y). We first prove (2.15). Using the Ito formula and the condition (2.2) (recall that
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(2.2) implies (2.5)), we obtain for θ ≥ 0 :

E|S(t+ θ)|2p = |x− y|2p + 2p

∫ t+θ

t
E|S|2p−2

[

S⊺(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
1

2

m
∑

r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]

ds

+2p(p− 1)

∫ t+θ

t
E|S|2p−4

∣

∣

∣

∣

∣

S⊺(s)

m
∑

r=1

[σr(t,Xt,x(s))− σr(t,Xt,y(s))]

∣

∣

∣

∣

∣

2

ds

≤ |x− y|2p + 2p

∫ t+θ

t
E|S|2p−2

[

S⊺(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
2p− 1

2

∫ t+θ

t

m
∑

r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]

ds

≤ |x− y|2p + 2pc1

∫ t+θ

t
E|S(s)|2p ds

from which (2.15) follows after applying Gronwall’s inequality.

Now we prove (2.16). Using the Ito formula and the condition (2.2), we obtain for θ ≥ 0 :

E |Z(t+ θ)|2p = 2p

∫ t+θ

t
E|Z|2p−2

[

Z⊺(a(t,Xt,x(s))− a(t,Xt,y(s))) (B.1)

+
1

2

m
∑

r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]

ds

+2p(p− 1)

∫ t+θ

t
E|Z|2p−4

∣

∣

∣

∣

∣

Z⊺

m
∑

r=1

[σr(t,Xt,x(s))− σr(t,Xt,y(s))]

∣

∣

∣

∣

∣

2

ds

≤ 2p

∫ t+θ

t
E|Z|2p−2(s)

[

S⊺(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
2p− 1

2

∫ t+θ

t

m
∑

r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]

ds

−2p

∫ t+θ

t
E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds

≤ 2pc1

∫ t+θ

t
E|Z|2p−2|S|2 ds− 2p

∫ t+θ

t
E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds.

Using Young’s inequality, we get for the first term in the right-hand side of (B.1):

2pc1

∫ t+θ

t
E|Z|2p−2|S|2 ds ≤ 4pc1

∫ t+θ

t
E|Z|2p−2(|Z|2 + |x− y|2) ds (B.2)

≤ K

∫ t+θ

t
E|Z|2pds+K|x− y|2

∫ t+θ

t
E|Z|2p−2ds.
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Consider the second term in the right-hand side of (B.1). Using Hoelder’s inequality (twice),

(2.3), (2.15) and (2.5), we obtain

−2p

∫ t+θ

t
E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds (B.3)

≤ 2p

∫ t+θ

t
E|Z|2p−2|a(t,Xt,x(s))− a(t,Xt,y(s))||x− y|ds

≤ K|x− y|
∫ t+θ

t

[

E|Z|2p
]1−1/p

[E|a(t,Xt,x(s))− a(t,Xt,y(s))|p]1/p ds

≤ K|x− y|
∫ t+θ

t

[

E|Z|2p
]1−1/p

×(E[(1 + |Xt,x(s)|2κ−2 + |Xt,y(s)|2κ−2)p/2|Xt,x(s)−Xt,y(s)|p])1/p ds

≤ K|x− y|
∫ t+θ

t

[

E|Z|2p
]1−1/p (

E[(1 + |Xt,x(s)|2κ−2 + |Xt,y(s)|2κ−2)p]
)1/2p

×
(

E[|Xt,x(s)−Xt,y(s)|2p]
)1/2p

ds

≤ K |x− y|2 (1 + |x|2κ−2 + |y|2κ−2)1/2
∫ t+θ

t

[

E|Z|2p
]1−1/p

ds.

Substituting (B.2) and (B.3) in (B.1) and applying Hoelder’s inequality to E|Z|2p−2 · 1, we
get

E |Z(t+ θ)|2p ≤ K

∫ t+θ

t
E|Z|2pds+K |x− y|2 (1 + |x|2κ−2 + |y|2κ−2)1/2

∫ t+θ

t

[

E|Z|2p
]1−1/p

ds

(B.4)

whence we obtain (2.16) for integer p ≥ 1 using Gronwall’s inequality as, e.g. in [19, p. 360],

and then by Jensen’s inequality for non-integer p > 1 as well. �
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