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NUMERICAL ALGORITHMS FOR TIME-FRACTIONAL SUBDIFFUSION
EQUATION WITH SECOND-ORDER ACCURACY∗

FANHAI ZENG†, CHANGPIN LI‡, FAWANG LIU§, AND IAN TURNER¶

Abstract. This article aims to fill in the gap of the second-order accurate schemes for the time-fractional sub-
diffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional
subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep
methods. These two methods are unconditionally stable with maximum global convergence order of O(τ + hr+1) in
the L2 norm, where τ and h are the step sizes in time and space, respectively, and r is the degree of the piecewise
polynomial space. The average convergence rates for the two methods in time are also investigated, which shows
that the average convergence rates of the two methods are O(τ1.5 + hr+1). Furthermore, two improved algorithms
are constrcted, they are also unconditionally stable and convergent of order O(τ2 + hr+1). Numerical examples are
provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones
are included, which show that our numerical algorithms exhibit better performances than the known ones.

Key words. Finite element method, fractional linear multistep method, fractional derivative, subdiffusion, un-
conditional stability, convergence.

AMS subject classifications. 26A33, 65M06, 65M12, 65M15, 35R11

1. Introduction. In last few decades, fractional calculus has attracted great interests of
many researchers. Fractional integral and derivatives are used more and more by scientists
and engineers to simulate many phenomena in physics, material science, control, biology,
signal processing, finance, etc., see for example [1, 2, 19, 22, 25, 27, 33, 35, 45]. In physics,
fractional derivatives are used to model anomalous diffusion (i.e., subdiffusion and superdif-
fusion), where particles spread in a power-law manner [27].

This paper deals with the following time-fractional subdiffusion equation [27]
C Dβ0,tu = µ ∂

2
xu + f (x, t), (x, t) ∈ I×(0,T ], I = (a, b),T > 0,

u(x, 0) = ϕ0(x), x ∈ I,

u = 0, (x, t) ∈ ∂I × (0,T ],

(1.1)

where 0 < β < 1, µ > 0 and C Dβ0,t is the βth-order Caputo derivative operator defined by

C Dβ0,tu(x, t) = D−(1−β)
0,t [∂tu(x, t)] =

1
Γ(1 − β)

∫ t

0
(t − s)−β∂su(x, s) ds, (1.2)

in which D−β0,t is the fractional integral operator defined by [33]

D−β0,t u(x, t) = RLD−β0,t u(x, t) =
1
Γ(β)

∫ t

0
(t − s)β−1u(x, s) ds, β > 0. (1.3)
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Another commonly used fractional derivative is the Riemann-Liouville derivative. The
βth-order Riemann-Liouville derivative operator RLDβ0,t is defined by [33]

RLDβ0,tu(x, t) = ∂t

[
D−(1−β)

0,t u(x, t)
]
=

1
Γ(1 − β)

∂

∂t

[∫ t

0
(t − s)−βu(x, s) ds

]
, β ∈ (0, 1).

If u(x, t) is suitably smooth in time, then we have the following relationship [33]

RLDβ0,t[u(x, t) − u(x, 0)] = C Dβ0,tu(x, t).

Till now, there have been many techniques to solve the fractional differential equations
(FDEs). The analytical methods cover the Fourier transform method, the Laplace transform
method, the Mellin transform method, and the Green function method, and so on [33]. In real
applications, analytical methods can not work well on most of FDEs due to the nonlocality
and complexity of the fractional differential operators. Hence, it is of great importance to seek
the efficient and reliable numerical techniques to solve the FDEs. Nowadays, the numerical
methods include finite difference methods (FDMs) [3, 7, 8, 9, 10, 20, 22, 26, 44, 41, 52], finite
element methods (FEMs) [13, 30, 37, 42, 48, 51], and spectral methods [6, 21, 23]. There are
also other numerical techniques such as the matrix approach, matrix transfer method, spine
collocation method, etc., see for example [11, 28, 31, 32, 34, 38, 40, 43].

Up to now, there have been some literatures carried out on the numerical simulations
of the subdiffusion equation of the form (1.1). The classical L1 method is often used to
discretize the time fractional derivative of (1.1), which is convergent of order (2 − β). When
β → 1, the L1 method has first-order accuracy, which is not satisfactory. Readers can refer
to some published papers as [16, 17, 18, 23, 36, 39, 49] for more detailed information. In
[46], the fractional linear multistep methods were adopted to discretize the temporal of (1.1)
with space discretized by finite element. Recently, Zhang et al. [50] proposed a new time
discretization to solve (1.1), in which the time fractional derivative was approximated on the
nonuniform grids that can be seen as a generalization of the classical L1 method. To the best
of authors’ knowledge, there are very few numerical works to solve (1.1) with second-order
accuracy in time. This paper aims to construct unconditionally stable numerical methods to
solve (1.1), which have second-order accuracy in time.

In this paper, we first construct two kinds of time discretization approaches to solve the
subdiffusion equation (1.1) with the spatial discretization performed by the finite element and
the time approximated by the fractional linear multistep methods. We give rigorous stability
and convergence analysis for the established methods, which shows that the two methods
are unconditionally stable with first-order accuracy in time. In some special cases, i.e., the
analytical solution u(x, t) is suitably smooth with ∂tu(x, 0) = 0, the global second-order can be
insured. Numerical experiments show that the two methods even have second-order accuracy
for any smooth solutions since the local truncation errors have second-order accuracy when
time level increases. Hence, we study the average convergence rates for the two methods,
which shows that the average convergence rates of the two methods in time are of order 1.5!
Then we propose two improved algorithms such that the global convergence rates in time are
of order 2. It is shown that the two improved algorithms are also unconditionally stable. Even
if the analytical solutions are not smooth enough, the present methods can also show second-
order accuracy in some cases. The optimal error estimates in space are obtained for all the
algorithms in the present paper. Numerical examples are presented to verify the theoretical
analysis. Comparisons are made between the derived algorithms in this paper and the existing
ones [14, 16, 17, 36, 47, 49], which show that our algorithms show better performances in the
numerical experiments.
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The remainder of this paper is outlined as follows. In Section 2, some necessary nota-
tions and lemmas are introduced. In Section 3, two fully discrete finite element methods for
the subdiffusion equation (1.1) are first established, the stability and error estimate are given.
Afterwards, the two improved algorithms are constructed with stability and convergence in-
cluded. The numerical results are presented in Section 4, and the conclusion is included in
the last section.

2. Preliminaries. In this section, we introduce some notations and lemmas that are
needed in the following sections.

Let I = (a, b) be a finite domain, and denote by (·, ·) the inner product defined on the
space L2(I) with the L2 norm ∥ · ∥ and the maximum norm ∥ · ∥∞. Denote Hr(I) and Hr

0(I)
as the commonly used Sobolev spaces with the norm ∥ · ∥r and semi-norm | · |r, respectively.
Define Pr(I) as the space of polynomials defined on I with the degree no greater than r, r ∈Z+.
Let S h be a uniform partition of I, which is given by

a = x0 < x1 < · · · < xN−1 < xN = b, N ∈ Z+.

Denote by h = (b − a)/N = xi − xi−1 and Ii = [xi−1, xi] for i = 1, 2, ...,N. We define the
finite element space Xr

h as the set of piecewise polynomials with degree at most r (r≥ 1) on
the mesh S h, which can be expressed by

Xr
h = {v : v|Ii ∈Pr(Ii), v ∈C(I)}.

Introduce the piecewise interpolation operator Ih : C(Ī)→ Xr
h as

Ihu
∣∣∣
Ii
=

r∑
k=0

u(xi
k)F i

k(x), u ∈C(Ī),

where F i
k(x) are Lagrangian basis functions defined by

F i
k(x) =

r∏
l=0,l,k

x − xi
l

xi
k − xi

l

, i = 1, 2, ...,N,

and {xi
k, k = 0, 1, ..., r} are the interpolation nodes on the interval Ii with xi

0 = xi−1 and xi
r = xi.

Define φi (i = 0, 1, ...,N) and φi
k (k = 1, 2, ..., r − 1; i = 1, 2, ...,N) as

φi
k(x) =

 F i
k(x), x ∈ [xi−1, xi], k = 1, 2, ..., r − 1, i = 1, ...,N,

0, others,

φi(x) =


F i

r(x), x ∈ [xi−1, xi], i = 1, ...,N − 1,

F i+1
0 (x), x ∈ [xi, xi+1], i = 1, ...,N − 1,

0, others,

φ0(x) =

 F1
0(x), x ∈ [x0, x1],

0, others,

φN(x) =

 FN
r (x), x ∈ [xN−1, xN],

0, others.

Let Xr
h0 = Xr

h ∩ H1
0(I). Then the spaces Xr

h0 and Xr
h can be expressed as

Xr
h0 = span

{
φi

k, k = 1, 2, ..., r − 1, i = 1, 2, ...,N
}
∪

{
φi, i = 1, 2, ...,N − 1

}
,

Xr
h = span

{
φi

k, k = 1, 2, ..., r − 1, i = 1, 2, ...,N
}
∪

{
φi, i = 0, 1, ...,N

}
.
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The basis functions {φi
k} ∪ {φi} will be used in the numerical simulation with grid points

xi
k = xi

0 + kh/r, k = 0, 1, ..., r.
The orthogonal projection operator Π1,0

h : H1
0(I)→ Xr

h0 is defined as

(∂x(u − Π1,0
h u), ∂xv) = 0, u ∈H1

0(I),∀v ∈ Xr
h0. (2.1)

Next, we introduce the properties of the projector Π1,0
h and interpolation operator Ih that

will be used later on.
Lemma 2.1 ([5]). Let m, r ∈Z+, r≥ 1, and u ∈ Hm(I) ∩ H1

0(I). If 1≤m≤ r + 1, then there
exists a positive constant C independent of h, such that

∥u − Π1,0
h u∥l ≤Chm−l∥u∥m, l = 0, 1.

Lemma 2.2 (see p. 108 in [4]). Let m, r ∈Z+, r≥ 1, and u ∈ Hm(I). If 0≤m≤ r + 1, then
there exists a positive constant C independent of h, such that

∥u − Ihu∥ ≤Chm∥u∥m.

3. The schemes. In this section, we first present the time discretization for (1.1). Then,
the fully discrete schemes with space approximated by the finite element are given. At last,
we prove the stability and convergence.

3.1. Time discretization. Let τ be the time step size and nT be a positive integer with
τ = T/nT and tn = nτ for n = 0, 1, ..., nT . For the function u(x, t) ∈C([0,T ]; L2(I)), denote by
un = un(·) = u(·, tn).

We use the fractional linear multistep methods (FLMMs) developed in [24] by Lubich to
discretize the time fractional derivative of (1.1). The pth-order FLMMs for D−β0,t u(t) is given
by

D−β0,t u(t)
∣∣∣
t=tn
= τβ

n∑
k=0

ω
(β)
n−ku(tk) + τβ

s∑
k=0

w(β)
n,ku(tk) + O(τp), β > 0, (3.1)

where {ω(β)
k } can be the coefficients of the Taylor expansions of the following generating

functions

w(β)(z) =

 p∑
j=1

1
j
(1 − z) j

−β , p = 1, 2, ..., 6, (3.2)

w(β)(z) = (1 − z)−β
[
γ0 + γ1(1 − z) + γ2(1 − z)2 + ... + γp−1(1 − z)p−1

]
, (3.3)

w(β)(z) =
(

1
2

1 + z
1 − z

)β
, (3.4)

in which {γk} in (3.3) satisfy the following relation(
ln z

z − 1

)−β
=

∞∑
k=0

γk(1 − z)k, γ0 = 1, γ1 = −
β

2
.
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The starting weights {w(β)
n,k} are chosen such that the asymptotic behavior of the function u(t)

near the origin (t = 0) are taken into account [12]. One way to determine {w(β)
n,k} for the

sufficiently smooth function u(t) is given as follows [12, 24]

p−1∑
k=1

ω
(β)
n,kkq =

Γ(q + 1)
Γ(q + β + 1)

nq+β −
n∑

k=1

ω
(β)
n−kkq, q = 0, 1, · · · , p − 1. (3.5)

The FLMM (3.1) has second-order accuracy if the generating function (3.4) is used. In
the following, we will use the FLMMs based the generating function (3.3) with p = 2 or (3.4)
to discretize the time discretization of (1.1). For simplicity, we denote by

w(β)
1 (z) =

(
1
2

1 + z
1 − z

)β
, (3.6)

w(β)
2 (z) = (1 − z)−β

[
1 − β

2
(1 − z)

]
. (3.7)

We first consider the following fractional ordinary differential equation (FODE)

C Dβ0,ty(t) = µy(t) + g(t), y(0) = y0, 0 < β < 1. (3.8)

The above FODE is equivalent to the following Volterra integral equation

y(t) − y0 =
1
Γ(β)

∫ t

0
(t − s)β−1 (µy(s) + g(s)) ds = µD−β0,t y(t) + D−β0,t c(t) (3.9)

in the sense that a continuous function is a solution of (3.8) if and only if it is a solution of
(3.9), see Lemma 2.3 in [13]

Before discretizing (3.9), we introduce three lemmas.
Lemma 3.1 ([24, 46]). If y(t) = tν−1, ν > 0, then

[
D−β0,t y(t)

]
t=tn
= τβ

n∑
k=0

ω
(β)
n−ky(tk) + O(tν−1+β−p

n τp) + O(tβ−1
n τ

ν),

where ω(β)
k can be the coefficients of the Taylor series of the generating functions defined as

(3.2)–(3.4), and p = 2 if (3.4) is used.
Lemma 3.2 ([46]). Denote by

yn = τ
β

n∑
k=0

ω
(β)
n−kG(tk, yk), (3.10)

where {ω(β)
k } are the coefficients of Taylor expansions of the generating functions w(β)(z) de-

fined by Eq. (3.2), Eq. (3.3), or Eq. (3.4). Then, Eq. (3.10) is equivalent to the following
form

n∑
k=0

αkyn−k = τ
β

n∑
k=0

θn−kG(tk, yk) (3.11)

where αk and θk are the coefficients of Taylor expansions of α(z) and θ(z) satisfying w(β)(z) =
θ(z)/α(z).
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Lemma 3.3. Suppose that 0 < β < 1. Let {αk} be the coefficients Taylor expansions of the
generating function α(z) = (1 − z)β, i.e., αk = (−1)k

(
β
k

)
. Then

n∑
k=1

αn−kkγ−1 = O(nγ−1−β) + O(n−β−1), γ ∈ R, γ , 0,−1,−2, · · · .

Proof. See Lemma 3.5 and the last line on page 713 in [24], which ends the proof.
Now, we are in a position to discretize (3.9). In order to obtain the desired discretization,

we rewrite (3.9) into the the following form

y(t) − y0 = µD
−β
0,t y(t) + D−β0,t g(t) = µD−β0,t (y(t) − y(0)) +

µtβ

Γ(1 + β)
y0 + D−β0,t g(t). (3.12)

Let t = tn in (3.12). Then we have

y(tn) − y0 = µ
[
D−β0,t (y(t) − y0)

]
t=tn
+

µtβn
Γ(1 + β)

y0 +
[
D−β0,t g(t)

]
t=tn
. (3.13)

If y(t) is smooth enough, then y(t) − y0 can be expressed as y(t) − y0 = y′(0)t + D−2
0,t y
′′(t).

Therefore, by Lemma 3.1 and Theorem 2.4 in [24], we can have the following discretization
for

[
D−β0,t (y(t) − y0)

]
t=tn[
D−β0,t (y(t) − y0)

]
t=tn
= τβ

n∑
k=0

ω
(β)
n−k(y(tk) − y0) + R̃n

1 + R̃n
2, (3.14)

where ω(β)
k are the coefficients of Taylor expansions of the generating function (3.6) or (3.7),

and R̃n
1 = O(tβ−1

n τ
2) = y′(0)τ1+βnβ−1(r0 +O(n−1)), R̃n

2 = O(tβnτ2) = cntβnτ2, r0 is a constant only
dependent on β [24] and cn is bounded.

Let R̃n = R̃n
1 + R̃n

2. Then, Eq. (3.13) has the following discretization

y(tn) − y0 = µτ
β

n∑
k=0

ω
(β)
n−k(y(tk) − y0) +

µtβn
Γ(1 + β)

y0 +
[
D−β0,t g(t)

]
t=tn
+ R̃n. (3.15)

Next, we discuss the equivalent form of (3.15). From Lemma 3.2, we can obtain the
equivalent form of (3.15) as

n∑
k=0

αn−k

(y(tk) − y0
) −  µtβk
Γ(1 + β)

y0 + +
[
D−β0,t g(t)

]
t=tk
+ R̃k

 = µτβ n∑
k=0

θn−k(y(tk) − y0).

(3.16)
Rewriting (3.16) into the following form

1
τβ

n∑
k=0

αn−k (y(tk) − y0) =µ
n∑

k=0

θn−ky(tk) + µ

 1
Γ(1 + β)

n∑
k=0

αn−kkβ −
n∑

k=0

θk

 y0

+
1
τβ

n∑
k=0

αn−k

[
D−β0,t g(t)

]
t=tk
+ y′(0)τ2

 1
τβ

n∑
k=0

αn−ktβ−1
k rk

 + O(τ2)

=µ

n∑
k=0

θn−ky(tk) + µBny0 +
1
τβ

Gn + Rn,

(3.17)
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where Rn = y′(0)τ2
[

1
τβ

∑n
k=0 αn−ktβ−1

k rk
]
+ τ2

[
1
τβ

∑n
k=0 αn−kcktβk

]
and

Bn =
1

Γ(1 + β)

n∑
k=0

αn−kkβ −
n∑

k=0

θk, Gn =

n∑
k=0

αn−k

[
D−β0,t g(t)

]
t=tk
. (3.18)

Let yk be the approximate solution to y(tk). From (3.17), we obtain the numerical scheme
for (3.8) as follows

1
τβ

n∑
k=0

αn−k (yk − y0) =µ
n∑

k=0

θn−kyk + µBny0 +
1
τβ

Gn. (3.19)

Choosing different αk and θk in (3.19) leads to different schemes. The two ways for the
choices of αk and θk in (3.19) are given follows:

• Use the generating function (3.6), where α(z) and θ(z) in Lemma 3.2 can be chosen
as α(z) = (1 − z)β =

∑∞
k=0 αkzk =

∑∞
k=0(−1)k

(
β
k

)
zk, θ(z) = (1+z)β

2β =
∑∞

k=0 θkzk =

1
2β

∑∞
k=0

(
β
k

)
zk.

• Use the generating function (3.7), where α(z) and θ(z) in Lemma 3.2 can be chosen
as α(z) = (1 − z)β =

∑∞
k=0 αkzk =

∑∞
k=0(−1)k

(
β
k

)
zk, θ(z) =

∑∞
k=0 θkzk = (1 − β2 ) + β2 z.

Next, we analyse the truncation error Rn = y′(0)τ2
[

1
τβ

∑n
k=0 αn−ktβ−1

k rk
]
+ O(τ2) defined

in (3.17) when the generating function (3.6) or (3.7) is used. In both cases, we have αk =

(−1)k
(
β
k

)
in (3.19). We can obtain a bound of the truncation error Rn of (3.19) as follows

|Rn|=
∣∣∣∣∣∣∣τ

n∑
k=1

αn−kkβ−1(y′(0)r0 + O(k−1)) + O(τ2)

∣∣∣∣∣∣∣ ≤C
(
|y′(0)|n−1τ + τ2

)
, (3.20)

where we have used 1
τβ

n∑
k=0
αn−kcktβkτ

2 = O(τ2) and Lemma 3.3.

Now, we are in a position to present the time discretization for (1.1). For simplicity, we
introduce the following notations

D(β)un =
1
τβ

n∑
k=0

ωk(un−k − u0) =
1
τβ

 n∑
k=0

ωkun−k − bnu0

 , (3.21)

L(β)
1 un =

1
2β

n∑
k=0

ωk(−1)kun−k, (3.22)

L(β)
2 un =

(
1 − β

2

)
un +

β

2
un−1, (3.23)

where ωk and bn are defined by

ωk = (−1)k
(
β

k

)
=

Γ(k − β)
Γ(−β)Γ(k + 1)

, (3.24)

bn =

n∑
k=0

ωk =
Γ(n + 1 − β)
Γ(1 − β)Γ(n + 1)

, n≥ 0. (3.25)

Assume that u(x, t) is sufficiently smooth in time. From (3.19), we can obtain the two
approaches to the time discretization of the subdiffusion equation (1.1) as follows.
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• Time discretization I: Applying the time discretization (3.19) with the generating
function (3.6) to subdiffusion equation (1.1) yields

D(β)un = µ L(β)
1 (∂2

xun) + µB(1)
n ∂

2
xu0 +

1
τβ

Fn + Rn, (3.26)

where D(β) and L(β)
1 are defined by (3.21) and (3.22), respectively, B(1)

n and Fn are
defined by

B(1)
n =

1
Γ(1 + β)

n∑
k=0

ωn−kkβ −
n∑

k=0

(−1)kωk, (3.27)

and

Fn =

n∑
k=0

ωn−k

[
D−β0,t f (x, t)

]
t=tk
, (3.28)

respectively, and Rn is the discretization error in time satisfying |Rn| ≤C(n−1τ + τ2).
• Time discretization II: Applying the time discretization (3.19) with the generating

function defined by (3.7) to subdiffusion equation (1.1) leads to

D(β)un = µ L(β)
2 (∂2

xun) + µB(2)
n ∂

2
xu0 +

1
τβ

Fn + Rn, (3.29)

where D(β), L(β)
2 , and Fn are defined by (3.21),(3.23), and (3.28), respectively, B(2)

n is
defined by

B(2)
n =

1
Γ(1 + β)

n∑
k=0

ωn−kkβ − 1, (3.30)

and Rn is the truncation error in time discretization satisfying |Rn| ≤C(n−1τ + τ2).
Remark 3.1. From (3.20), one obtains Rn = O(τ2) in (3.26) or (3.29) for ∂tu(x, 0) = 0.
Next, we present two fully discrete approximations for equation (1.1). From the time

discretization (3.26) and (3.29), we present the corresponding fully discrete approximations
for (1.1) as follows.

• Scheme I: Find un
h ∈ Xr

h0 for n = 1, 2, ..., nT − 1, such that (D(β)un
h, v) = −µ(L(β)

1 ∂xun
h, ∂xv) − µB(1)

n (∂xu0
h, ∂xv) +

1
τβ

(IhFn, v), ∀v ∈ Xr
h0,

u0
h = Π

1,0
h ϕ0,

(3.31)
where D(β), L(β)

1 , B(1)
n , and Fn are defined by (3.21), (3.22), (3.27), and (3.28), re-

spectively.
• Scheme II: Find un

h ∈ Xr
h0 for n = 1, 2, ..., nT − 1, such that (D(β)un

h, v) = −µ(L(β)
2 ∂xun

h, ∂xv) − µB(2)
n (∂xu0

h, ∂xv) +
1
τβ

(IhFn, v) ∀v ∈ Xr
h0,

u0
h = Π

1,0
h ϕ0,

(3.32)
where D(β), L(β)

2 , B(2)
n , and Fn are defined by (3.21), (3.23), (3.30), and (3.28), re-

spectively.
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Calculation of Fn: In (3.31) and (3.32), we do not illustrate how to calculate
[
D−β0,t f (x, t)

]
t=tk

in Fn. In the stability and convergence analysis, and the numerical simulations,
[
D−β0,t f (x, t)

]
t=tn

is approximated by the following second-order formula[
D−β0,t f (x, t)

]
t=tn
=

[
D−β0,t ( f (x, t) − f (x, 0))

]
t=tn
+

tβn
Γ(1 + β)

f (x, 0)

=τβ
n∑

k=0

ω
(β)
n−k( f (x, tk) − f (x, t0)) + τβw(β)

n,1( f (x, t1) − f (x, t0))

+
tβn

Γ(1 + β)
f (x, 0) + Rn,

(3.33)

where {ω(β)
k } are the coefficients of the Taylor expansions of the generating function (3.7). The

coefficients {w(β)
n,1} are chosen such that (3.33) is exact for f (x, t) − f (x, 0) = t1−β f̃ (x). Hence,

one has

w(β)
n,1 =

Γ(q + 1)
Γ(q + β + 1)

nq+β −
n∑

k=1

ω
(β)
n−kkq, q = 1 − β. (3.34)

If u(x, t) is sufficiently smooth in time, then f (x, t) − f (x, 0) has the form f (x, t) − f (x, 0) =
(c0t1−β + c1t) f̃ (x, t), f̃ (x, t) is sufficiently smooth in time. So q and Rn in (3.34) is chosen as
q = 1 − β and Rn = O(tβ−1

n τ
2). From [24], w(β)

n,1 satisfies w(β)
n,1 = O(nβ−1).

3.2. Stability and convergence. This subsection deals with the stability and conver-
gence for the schemes (3.31) and (3.32). Next, we introduce a lemma.

Lemma 3.4 ([15]). Let {ωk} be given by (3.24). Then we have

ω0 = 1, ωn < 0, |ωn+1| < |ωn|, n = 1, 2, ...;

ω0 = −
∞∑

k=1

ωk > −
n∑

k=1

ωk > 0, n = 1, 2, ...;

bn−1 =

n−1∑
k=0

ωk =
Γ(n − β)
Γ(1 − β)Γ(n)

=
n−β

Γ(1 − β) + O(n−1−β), n = 1, 2, · · · .

(3.35)

Furthermore, bn − bn−1 = ωn < 0 for n > 0, i.e., bn < bn−1.
Before analysing the stability, we give a bound for B(1)

n and B(2)
n defined in (3.31) and

(3.32), which will be used in the stability analysis. From Lemma 3.1, we obtain

dn =
[
D−β0,t y(t)

]
t=tn
= τβ

n∑
k=0

ω
(β)
n−ky(tk) + τtβ−1

n rn

when y(t) = 1, where {ω(β)
k } are the coefficients of the Taylor series of the generating function

defined by (3.6) or (3.7), and rn is bounded satisfying rn = r0 + O(n−1).
By Lemma 3.2 (or see Eq. (3.16)), we have

n∑
k=0

αn−k

(
dk − rktβ−1

k τ
)
= τβ

n∑
k=0

θn−ky(tk). (3.36)

Inserting y(tk) = 1 and dn =
[
D−β0,t y(t)

]
t=tn
=

tβn
Γ(1+β) =

nβτβ
Γ(1+β) into (3.36) yields

1
Γ(1 + β)

n∑
k=0

αn−kkβ −
n∑

k=0

θn−k =

n∑
k=0

αn−kkβ−1rk = O(n−1), (3.37)
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where Lemma 3.3 is used. So we have

|B(i)
n | ≤Cn−1, i = 1, 2, n > 0, (3.38)

where C is a positive constant independent of n and τ.
For convenience, we define the norms ||| · |||1 and ||| · |||2 as

|||u|||1 =
(
∥u∥2 + µτβ(1/2)β∥∂xu∥2

)1/2
, |||u|||2 =

(
∥u∥2 + µτβ(1 − β/2)∥∂xu∥2

)1/2
.

Now, we have the following theorem.
Theorem 3.5. Suppose that uk

h for k = 1, 2, ..., nT is the solution of (3.31). Then, there
exists positive constants C1 independent of n, h, τ and T , and C2 independent of n, h and τ
such that

|||un
h|||21 ≤ |||u0

h|||21 + 2∥u0
h∥2 +C1τ

β∥∂xu0
h∥2 +C2 max

0≤ t≤ T
∥ f (t)∥2. (3.39)

Inequality (3.39) means that the method (3.31) is unconditionally stable.
Proof. We prove (3.39) by using the mathematical induction method. Letting v = un

h in
(3.31) yields

(D(β)un
h, u

n
h) = −µ(L(β)

1 ∂xun
h, ∂xun

h) − µB(1)
n (∂xu0

h, ∂xun
h) +

1
τβ

(IhFn, un
h). (3.40)

Using the property bn − bn−1 = ωn (see Lemma 3.4), we rewrite (3.40) as

|||un
h|||21 =(un

h, u
n
h) + µ(τ/2)β(∂xun

h, ∂xun
h)

=

n∑
k=1

(bk−1 − bk)
[
(un−k

h , u
n
h) + µ(τ/2)β(−1)k(∂xun−k

h , ∂xun
h)
]

+ bn(u0
h, u

n
h) − µτβB(1)

n (∂xu0
h, ∂xun

h) + (IhFn, un
h).

(3.41)

Using (3.41), bn − bn−1 ≤ 0, and the Cauchy-Schwartz inequality yields

|||un
h|||21 ≤

1
2

n∑
k=1

(bk−1 − bk)
[
∥un−k

h ∥2 + ∥un
h∥2 + µ(τ/2)β(∥∂xun−k

h ∥2 + ∥∂xun
h∥2)

]
+ bn∥u0

h∥2 +
bn

4
∥un

h∥2 +
τ2β

bn
∥IhFn∥2 + bn

4
∥un

h∥2 + µB(1)
n τ
β

(
ϵ∥∂xun

h∥2 +
1
4ϵ
∥∂xu0

h∥2
)

=
1
2
|||un

h|||21 +
1
2

n∑
k=1

(bk−1 − bk)|||un−k
h |||21 +

1
bn
∥IhFn∥2 + bn∥u0

h∥2

− 1
2

bnµ(τ/2)β∥∂xun
h∥2 + ϵµB(1)

n τ
β∥∂xun

h∥2 +
µB(1)

n τ
β

4ϵ
∥∂xu0

h∥2,
(3.42)

where ϵ is a suitable positive constant independent of n and τ, satisfying

−1
2

bn(1/2)β + ϵB(1)
n ≤ 0.

Such an ϵ exists, which can be deduced from Lemma 3.4 and (3.38). From Lemma 3.4, we
have 1/bn ≤Cβnβ, Cβ is only dependent on β. Hence, we have from (3.42)

|||un
h|||21 ≤

n∑
k=1

(bk−1 − bk)|||un−k
h |||21 +

2
bn
∥IhFn∥2 + 2bn∥u0

h∥2 +Cτβbn∥∂xu0
h∥2, (3.43)
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where C is a positive constant independent of n, h, and τ. Noticing that

τ2β

bn
= bn

1
b2

n

T 2β

n2β
T

≤ bnC2
βT

2β
(

n
nT

)2β

≤ (CβT β)2bn. (3.44)

Hence, we have from and (3.44)

2
bn
∥IhFn∥2 ≤ Cτ2β

bn
max
0≤t≤tn

∥ f (t)∥2 ≤C2bn max
0≤t≤tn

∥ f (t)∥2, (3.45)

where we have used the relation ∥IhFn∥2 ≤ C̃1∥Fn∥2 ≤ C̃2τ
2βmax0≤t≤tn ∥ f (t)∥2. Combining

(3.43) and (3.45) yields

|||un
h|||21 ≤

n∑
k=1

(bk−1 − bk)|||un−k
h |||21 + 2bn∥u0

h∥2 +C1bnτ
β∥∂xu0

h∥2 +C3bn max
0≤t≤tn

∥ f (t)∥2, (3.46)

Denote by

E = ∥|u0
h∥|21 + 2∥u0

h∥2 +C4τ
β∥∂xu0

h∥2 +C3 max
0≤ t≤ T

∥ f (t)∥2.

Then we have from (3.46)

|||un
h|||21 ≤

n∑
k=1

(bk−1 − bk)|||un−k
h |||21 + bnE. (3.47)

Setting n = 0 in (3.47), and noticing that |||u0
h|||21 ≤ E, one has

|||u1
h|||21 ≤ (1 − b1)|||u0

h|||21 + b1E ≤ (1 − b1)E + b1E = E. (3.48)

Hence, the inequality (3.39) holds for n = 1. Suppose that the inequality (3.39) holds for
0≤ n≤m − 1, i.e. |||un

h|||21 ≤ E (0≤ n≤m − 1). Next, we just need to prove that the inequality
(3.39) still holds for n = m.

Letting v = um
h in (3.40) yields (3.47) with n = m. Considering the inequality (3.47) with

n = m and using the assumption |||un
h|||21 ≤ E for 0≤ n≤m − 1, one has

|||um
h |||

2
1 ≤

m∑
k=1

(bk−1 − bk)|||um−k
h |||21 + bmE ≤

m∑
k=1

(bk−1 − bk)E + bmE = E, (3.49)

which means that (3.39) holds for n = m. Hence, (3.39) is true for any 0≤ n≤ nT , which ends
the proof.

Next, we consider the convergence analysis for the scheme (3.31). Denote by u∗ = Π
1,0
h u,

e = u∗ − uh, and η = u − u∗. Noticing that (∂xη, ∂xv) = 0 from (2.1), we obtain the error
equation for (3.31) below

(D(β)en, v) = −µ(L(β)
1 ∂xen, ∂xv) − µB(1)

n (∂xe0, ∂xv) + (Rn, v), ∀v ∈ Xr
h0, (3.50)

where Rn = Rn
1 + Rn

2 + Rn
3, and

|Rn
1| ≤Cn−β−1τ, Rn

2 = −D(β)ηn, Rn
3 = Fn − Π1,0

h Fn. (3.51)

By Theorem 3.5, we obtain the following convergence theorem.
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Theorem 3.6. Suppose that r≥ 1, u and un
h (1≤ n≤ nT ) are the solutions to (1.1) and

(3.31), respectively. If m≥ r+1, u ∈C2(0,T ; Hm(I)∩H1
0(I)), f ∈C(0,T ; Hm(I)) and ϕ0 ∈Hm(I),

then there exists a positive constant C independent of n, h and τ, such that

∥un
h − u(tn)∥ ≤C(τ + hr+1). (3.52)

Proof. According to Theorem 3.5, we only need to estimate

|||e0|||21 + 2∥e0∥2 +C1∥∂xe0∥2 +C2 max
0≤ k≤ nT

{
∥Rk

1∥2 + ∥Rk
2∥2 + ∥Rk

3∥2
}

to get an error bound. By (3.51), Lemmas 2.1 and 2.2, we can get the error following bounds

∥Rn
1∥ ≤Cτ, ∥Rn

2∥ =
1
τβ
∥

n∑
j=0

ω j(ηn− j − η0)∥ ≤Chr+1,

∥Rn
3∥ = ∥Fn − Π1,0

h Fn∥ = ∥
n∑

k=0

ωn−k

[
D−β0,t (I − Ih) f (x, t)

]
t=tk
∥ ≤Chr+1.

For the initial errors e0, we have e0 = 0. Hence, one derives

∥en∥ ≤ ∥|en∥|1 ≤C(τ + hr+1). (3.53)

By using Lemma 2.1 again, one has

∥un
h − u(tn)∥ = ∥un

h − Π
1,0
h un + Π

1,0
h u(tn) − u(tn)∥

≤ ∥en∥ + ∥Π1,0
h u(tn) − u(tn)∥

≤C(τ + hr+1).

(3.54)

The proof is completed.
Theorem 3.6 shows that the Scheme I (3.31) has first-order global accuracy in time for

all time levels n. From (3.20), we find that the local truncation error of (3.31) in time is
O(τ2) when n is sufficiently large. Although the errors at the first several time levels (n is
small) are a little larger, the influences of these errors caused on the following time levels are
weaker and weaker such that they can be ignored when n is large enough. Hence, we can
predict that the convergence rate will be better when n is big enough, which is verified by
the numerical experiments in Section 4. In the following, we study the average error in time
that considers all the errors on each time levels. It shows that the average error exhibits much
better convergence rate. We first introduce a lemma.

Lemma 3.7. Let bn be defined as in (3.35). For any G = {G1,G2,G3, ...} and q, where
G j = G j(x) and q = q(x) are real-valued functions defined on I. Then we have

Ak(G, q) =
1
τβ−1

k∑
n=1

[
b0(Gn,Gn) −

n−1∑
j=1

(bn− j−1 − bn− j)(G j,Gn) − bn−1(q,Gn)
]

≥ 1
2

1
τβ−1

 k∑
n=1

bk−n∥Gn∥2 − ∥q∥2
k∑

n=1

bn−1


≥ τCt−βk

k∑
n=1

∥Gn∥2 −Ct1−β
k ∥q∥

2,

(3.55)
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where C is a positive constants only dependent on β.
Proof. From Lemma 3.4, one has bn−1 ≤ bn. Using Cauchy-Schwartz inequality yields

Ak(G, q)≥ 1
τβ−1

1
2

k∑
n=1

[
2b0∥Gn∥2 −

n−1∑
j=1

(bn− j−1 − bn− j)(∥G j∥2 + ∥Gn∥2) − bn−1(∥q∥2 + ∥Gn∥2)
]

=
1
τβ−1

1
2

k∑
n=1

(
b0∥Gn∥2 −

n−1∑
j=1

(bn− j−1 − bn− j)∥G j∥2 − bn−1∥q∥2
)

=
1
2

1
τβ−1

 k∑
n=1

bk−n∥Gn∥2 − ∥q∥2
k∑

n=1

bn−1


≥ τCt−βk

k∑
n=1

∥Gn∥2 −Ct1−β
k ∥q∥

2,

(3.56)
where we have used

∑k
n=1 bn−1 = O(k1−β) and bn ≥C0τ

β from Lemma 3.4, C0 is only depen-
dent on β. The proof is completed.

Remark 3.2.
(1) If bn−1 in (3.55) is replaced by Bn, |Bn| ≤Cbn−1,C > 0, then (3.55) still holds.
(2) If the coefficients (bn− j−1 − bn− j) in (3.55) are replaced by (−1)σ( j)(bn− j−1 − bn− j),

where σ( j) is chosen randomly as 0 or 1, then (3.55) still holds.
Theorem 3.8. Suppose that r≥ 1, u and un

h (1≤ n≤ nT ) are the solutions to (1.1) and
(3.31), respectively. If m≥ r+1, u ∈C2(0,T ; Hm(I)∩H1

0(I)), f ∈C(0,T ; Hm(I)) and ϕ0 ∈Hm(I),
then there exists a positive constant C independent of k, h and τ, such that√√√

τ

k∑
n=1

∥un
h − u(tn)∥2 ≤C(τ1.5 + hr+1). (3.57)

Proof. From (3.50) and noticing that e0 = 0, we obtain the error equation as

1
τβ

[
b0(en, v) −

n−1∑
j=1

(bn− j−1 − bn− j)(e j, v)
]

+
µ

2β

[
b0(∂xen, ∂xv) +

n−1∑
j=1

(−1)n− j(bn− j−1 − bn− j)(∂xe j, ∂xv)
]
= (Rn, v).

(3.58)

Letting v = en in (3.58), summing up n from 1 to k, and using Lemma 3.7 and Remark 3.2
yield

1
2

1
τβ

k∑
n=1

bk−n∥en∥2 + 1
2
µ

2β

k∑
n=1

bk−n∥∂xen∥2

≤
k∑

n=1

(Rn, en)≤
k∑

n=1

(1
4

bk−n

τβ
∥en∥2 + τ

β

bk−n
∥Rn∥2

)
.

(3.59)

Hence, one obtains

k∑
n=1

bk−n

(
∥en∥2 + τβ21−βµ∥∂xen∥2

)
≤ 4τβ

k∑
n=1

τβ

bk−n
∥Rn∥2 ≤Cτβ

k∑
n=1

∥Rn∥2. (3.60)
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Noticing that τβ ≤Cbn from Lemma 3.4, one has

τ

k∑
n=1

∥en∥2 ≤ τ
k∑

n=1

(∥en∥2 + τβ21−βµ∥∂xen∥2)≤Cτ
k∑

n=1

∥Rn∥2

≤Cτ
k∑

n=1

(∥Rn
1∥2 + ∥Rn

2∥2 + ∥Rn
3∥2)≤C

τ k∑
n=1

∥Rn
1∥2 + h2(r+1)


≤C

τ3
k∑

n=1

n−2 + τ4 + h2(r+1)

 ≤C(τ3 + h2(r+1)),

(3.61)

where ∥Rn
1∥ ≤C(n−1τ + τ2), ∥Rn

2∥ ≤Chr+1, and ∥Rn
3∥ ≤Chr+1 have been used. Similarly to

(3.54), we obtain (3.57), which completes the proof.
Similarly to Theorem 3.5, we can immediately obtain the stability for the scheme (3.32).
Theorem 3.9. Suppose that un

h for n = 1, 2, ..., nT are solutions to (3.32). Then, there
exists positive constants C1 independent of n, h, τ and T , and C2 independent of n, h and τ
such that

∥|un
h∥|22 ≤ ∥|u0

h∥|22 + 2∥u0
h∥2 +C1∥∂xu0

h∥2 +C2 max
0≤ k≤ nT

∥ f k∥2. (3.62)

The inequality (3.62) means that the Scheme II (3.32) is unconditionally stable.
By Theorems 3.8 and 3.9, one can obtains the error estimate for (3.32) as follows.
Theorem 3.10. Suppose that r≥ 1, u and un

h (1≤ n≤ nT ) are the solutions to (1.1) and
(3.32), respectively. If m≥ r+1, u ∈C2(0,T ; Hm(I)), f ∈C(0,T ; Hm(I)∩H1

0(I)) and ϕ0 ∈Hm(I),
then there exists a positive constant C independent of k, h and τ, such that

∥uk
h − u(tk)∥ ≤C(τ + hr+1), (3.63)

and √√√
τ

k∑
n=1

∥un
h − u(tn)∥2 ≤C(τ1.5 + hr+1). (3.64)

3.3. Improved algorithms. This subsection presents two improved time discretization
techniques such that the derived algorithms have global second-order accuracy in time.

We still consider the discretization of (3.13), and we assume y(t) has the from y(t)−y(0) =
tαỹ(t), α > 0, ỹ(t) is suitably smooth. By Lemma 3.1, we can discretize

[
D−β0,t (y(t) − y0)

]
t=tn

in
(3.13) with the following approach

[
D−β0,t (y(t) − y0)

]
t=tn
= τβ

n∑
k=0

ω
(β)
n−k(y(tk) − y0) + τβw(β)

n,1(y(t1) − y(0)) + O(tα+βn τ
2), (3.65)

where ω(β)
k are the coefficients of Taylor expansions of the generating function (3.6) or (3.7),

and w(β)
n,1 is chosen such that (3.65) is exact for y(t) − y(0) = tα, which is given below

w(β)
n,1 =

Γ(α + 1)
Γ(α + 1 + β)

nα+β −
n∑

k=1

ω
(β)
n−kkα = O(nβ−1). (3.66)
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Repeating the processes (3.15)–(3.16), we obtain the following discretization

1
τβ

n∑
k=0

αn−k (y(tk) − y0) =µ
n∑

k=0

θn−ky(tk) + µBny0 + µCn(y(t1) − y(0)) +
1
τβ

Fn + Rn,

(3.67)
where Rn = O(τ2), Bn and Fn are defined by (3.18), and Cn is given by

Cn =

n∑
k=0

αn−kw(β)
k,1 =

Γ(α + 1)
Γ(α + 1 + β)

n∑
k=0

αn−kkα+β −
n∑

k=1

θn−kkα = O(nα−β−1), (3.68)

where we have used w(β)
n,1 = O(nβ−1) and Lemma 3.3.

Suppose that u(x, t) is sufficiently smooth, i.e., α = 1 in (3.67). From (3.67), we obtain
two improved time discretization for (1.1), which are similar to (3.26) and (3.29) that are
listed below.

• Improved time discretization I(α): Applying the time discretization (3.67) with
the generating function (3.6) to subdiffusion equation (1.1) yields

D(β)un = µ L(β)
1 (∂2

xun) + µB(1)
n ∂

2
xu0 + µC(1)

n ∂
2
x(u1 − u0) +

1
τβ

Fn + Rn, (3.69)

where D(β), L(β)
1 , B(1)

n , and Fn are defined by (3.21), (3.22), (3.27), and (3.28), re-
spectively, and Rn is the truncation error in time discretization satisfying Rn = O(τ2)
when α = 1, and C(1)

n is given by

C(1)
n =

Γ(α + 1)
Γ(α + 1 + β)

n∑
k=0

ωn−kkβ+α −
n∑

k=1

(−1)k

2β
ωn−kkα. (3.70)

• Improved time discretization II(α): Applying the time discretization (3.67) with
the generating function defined by (3.7) to subdiffusion equation (1.1) leads to

D(β)un = µ L(β)
2 (∂2

xun) + µB(2)
n ∂

2
xu0 + µC(2)

n ∂
2
x(u1 − u0) +

1
τβ

Fn + Rn, (3.71)

where D(β), L(β)
1 , B(1)

n , and Fn are defined by (3.21), (3.23), (3.30), and (3.28), respec-
tively, Rn is the truncation error in time discretization satisfying Rn = O(τ2) when
α = 1, and C(2)

n is given by

C(2)
n =

Γ(α + 1)
Γ(α + 1 + β)

n∑
k=0

ωn−kkβ+α −
[
(1 − β

2
)nα +

β

2
(n − 1)α

]
. (3.72)

Improved time discretization I(α) means that (3.69) is exact for u(x, t) = tα, as is for Improved
time discretization II(α) in (3.71).

From (3.69) and (3.71), we obtain the two fully improved algorithms below.
• Improved scheme I(α): Find un

h ∈ Xr
h for n = 1, 2, ..., nT − 1, such that

(D(β)un
h, v) = −µ(L(β)

1 ∂xun
h, ∂xv) − µB(1)

n (∂xu0
h, ∂xv) − µC(1)

n (∂xu1
h − ∂xu0

h, ∂xv)

+
1
τβ

(IhFn, v), ∀v ∈ Xr
h0,

u0
h = Π

1,0
h ϕ0,

(3.73)
where D(β), L(β)

1 , B(1)
n , Fn, and C(1)

n are defined by (3.21), (3.22), (3.27), (3.28), and
(3.70), respectively.
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• Improved scheme II(α): Find un
h ∈ Xr

h for n = 1, 2, ..., nT − 1, such that
(D(β)un

h, v) = −µ(L(β)
2 ∂xun

h, ∂xv) − µB(2)
n (∂xu0

h, ∂xv) − µC(2)
n (∂xu1

h − ∂xu0
h, ∂xv)

+
1
τβ

(IhFn, v) ∀v ∈ Xr
h0,

u0
h = Π

1,0
h ϕ0,

(3.74)
where D(β), L(β)

2 , B(2)
n , Fn, and C(2)

n are defined by (3.21), (3.23), (3.30), (3.28), and
(3.72), respectively.

If α = 1, then we denote the Improved scheme I(α) and Improved scheme II(α) as
Improved scheme I and Improved scheme II, respectively.

From (3.68), we know that C(i)
n also has the property as B(i)

n , i.e., |C(i)
n | ≤Cn−1 when u(x, t)

is sufficiently smooth in time. Hence, the stability and convergence analysis of the improved
schemes (3.73) and (3.74) are very similar to those of (3.31) and (3.32), we just list them
below.

Theorem 3.11. Suppose that uk
h for k = 1, 2, ..., nT is the solution of (3.73) or (3.74) .

Then, there exists positive constants C1 independent of n, h, τ and T , and C2 independent of
n, h and τ such that

|||un
h|||21 ≤C1|||u0

h|||21 +C2 max
0≤ t≤ T

∥ f (t)∥2.

The above inequality means that the method (3.73) or (3.74) is unconditionally stable.
Theorem 3.12. Suppose that r≥ 1, u and un

h (1≤ n≤ nT ) are the solutions to (1.1) and
(3.73) (or (3.74)), respectively. If m≥ r + 1, u ∈C2(0,T ; Hm(I)), f ∈C(0,T ; Hm(I)∩H1

0(I))
and ϕ0 ∈Hm(I), then there exists a positive constant C independent of k, h and τ, such that

∥uk
h − u(tk)∥ ≤C(τ2 + hr+1).

4. Numerical examples. In this section, we present several numerical examples. For
convenience, we use the interpolation operator Ih to replace the projectors Π1,0

h and Π1
h for the

computation. We first numerically verify the error estimates and the convergence orders of
the methods Scheme I (see Eq. (3.31)), Scheme II (see Eq. (3.32)), Improved scheme I (see
Eq. (3.73)) and Improved scheme II (see Eq. (3.74)).

Example 4.1. Consider the following subdiffusion equation [17, 23]
C Dβ0,tu = ∂

2
xu + f (x, t), (x, t) ∈ (0, 1)×(0, 1],

u(x, 0) = 2 sin(2πx), x ∈ [0, 1],
u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(4.1)

Choose a suitable right hand side function f such that the exact solution to (4.3) is

u = (t2+β + t + 2) sin(2πx).

Denote εn(τ, h) = un
h − un as the error equation at time level n. The convergence orders

in time and space in the sense of the L2 norm are defined as

order =
 log(∥εn(τ1, h)∥/∥εn(τ2, h)∥)/log(τ1/τ2), in time,

log(∥εn(τ, h1)∥/∥εn(τ, h2)∥)/log(h1/h2), in space,
(4.2)
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where τ, τ1, τ2 (τ1 , τ2) and h, h1, h2 (h1,h2) are the time and space step sizes, respectively.
The cubic element (r = 3) is used in this example, the space and time steps sizes are

chosen as h = 1/1000 and τ = 1/32, 1/64, 1/128, 1/256, 1/512.
We first check the global maximum L2 error max0≤n≤nT ∥un

h − un∥, the average L2 error
(τ

∑nT
n=0 ∥un

h − un∥2)1/2, and the L2 error ∥un
h − un∥ at n = nT , which are shown in Tables

4.1–4.3. From Table 4.1, we find that the Scheme I and II show about first-order accuracy
in time for β = 0.1, 0.5. When β = 0.9, the Scheme I and II show much better results than
theoretical analysis. Obviously, the Improved scheme I and II show the expected convergence
rates, even better than expected. Table 4.2 gives the average L2 errors, which shows that the
four algorithms yields the desired convergence rates even better than anticipated. Table 4.3
display the L2 error at t = 1. Obviously, the Scheme I and II show about second-order
accuracy in time, the Improved scheme I and II show second-order accuracy as expected.
Briefly, the Scheme I and II show better numerical results than theoretical analysis here, and
the Improved scheme I and II show about second-order accuracy as expected.

Next, we compare the present FEMs Scheme I, Scheme II, Improved scheme I, and
Improved scheme II with the FEM in [17], where time was discretized by the L1 method,
we denote it by L1FEM. The L1FEM has convergence order of O(τ2−β + hr+1). We choose
the same parameters in the computation, the results are shown in Table 4.4. Obviously, the
present methods show better performances than the L1FEM, especially when β increases. It is
easy to verify that the present four algorithms show second-order experimental accuracy and
the L1FEM shows (2−β)th-order experimental accuracy, which are inline with the theoretical
analysis.

Table 4.1
The global maximum L2 errors max

0≤n≤nT
∥un

h − un∥ for Example 4.1, N = 1000, r = 3.

Methods 1/τ α = 0.1 order α = 0.5 order α = 0.9 order
32 4.7141e-4 1.0490e-3 1.3175e-4
64 2.4645e-4 0.9357 5.2706e-4 0.9930 6.7038e-5 0.9747

Scheme I 128 1.2553e-4 0.9733 2.4738e-4 1.0912 2.3457e-5 1.5150
(3.31) 256 6.3191e-5 0.9902 1.1150e-4 1.1498 7.2003e-6 1.7039

512 3.1637e-5 0.9981 4.8600e-5 1.1980 2.0743e-6 1.7954
32 7.4577e-5 6.8243e-5 1.4795e-4
64 5.0606e-5 0.5594 1.5696e-5 2.1203 2.9862e-5 2.3088

Scheme II 128 2.8356e-5 0.8356 8.3982e-6 0.9022 7.3010e-6 2.0322
(3.32) 256 1.4864e-5 0.9319 4.7785e-6 0.8135 1.9438e-6 1.9092

512 7.5776e-6 0.9720 2.2498e-6 1.0867 5.2847e-7 1.8790
32 5.2941e-5 1.2396e-4 9.3790e-5

Improved 64 1.2332e-5 2.1020 2.1236e-5 2.5453 1.2378e-5 2.9217
Scheme I 128 2.8724e-6 2.1021 5.1989e-6 2.0302 3.1014e-6 1.9968

(3.73) 256 6.6894e-7 2.1023 1.3003e-6 1.9994 7.7612e-7 1.9986
512 1.5581e-7 2.1021 3.2515e-7 1.9996 1.9403e-7 2.0000
32 5.2941e-5 1.2396e-4 9.3790e-5

Improved 64 1.2332e-5 2.1020 2.1236e-5 2.5453 1.1039e-5 3.0869
Scheme II 128 2.8726e-6 2.1020 3.6080e-6 2.5573 1.3108e-6 3.0741

(3.74) 256 6.6894e-7 2.1024 6.0779e-7 2.5695 1.5970e-7 3.0370
512 1.5571e-7 2.1030 1.0149e-7 2.5823 3.1009e-8 2.3646

Example 4.2. Consider the following subdiffusion equation [16]
C Dβ0,tu = ∂

2
xu + f (x, t), (x, t) ∈ (0, 1)×(0, 1],

u(x, 0) = exp(x), x ∈ (0, 1),

u(0, t) = t1+β, u(1, t) = t1+β exp(1) t ∈ (0, 1],

(4.3)
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Table 4.2
The average L2 errors (τ

∑nT
n=0 ∥u

n
h − un∥2)1/2 for Example 4.1, N = 1000, r = 3..

Methods 1/τ α = 0.1 order α = 0.5 order α = 0.9 order
32 1.1498e-4 3.3381e-4 4.2705e-5
64 4.1847e-5 1.4581 1.0495e-4 1.6693 1.1796e-5 1.8561

Scheme I 128 1.4962e-5 1.4838 3.1468e-5 1.7378 2.9836e-6 1.9832
(3.31) 256 5.3064e-6 1.4955 9.2010e-6 1.7740 7.3814e-7 2.0151

512 1.8747e-6 1.5011 2.6420e-6 1.8002 1.8227e-7 2.0178
32 1.8257e-5 1.5479e-5 2.7191e-5
64 8.0767e-6 1.1766 3.0432e-6 2.3466 4.3535e-6 2.6429

Scheme II 128 3.1225e-6 1.3710 1.2367e-6 1.2991 9.0489e-7 2.2664
(3.32) 256 1.1462e-6 1.4458 4.5034e-7 1.4574 2.1165e-7 2.0960

512 4.1152e-7 1.4779 1.5235e-7 1.5636 5.1627e-8 2.0355
32 1.7649e-5 6.3719e-5 3.5855e-5

Improved 64 4.2297e-6 2.0610 1.5076e-5 2.0795 8.0732e-6 2.1509
Scheme I 128 1.0439e-6 2.0186 3.7252e-6 2.0169 1.9916e-6 2.0193

(3.73) 256 2.6030e-7 2.0037 9.2916e-7 2.0033 4.9700e-7 2.0026
512 6.5029e-8 2.0010 2.3217e-7 2.0007 1.2415e-7 2.0011
32 9.8452e-6 2.2325e-5 1.8170e-5

Improved 64 1.6221e-6 2.6015 2.8235e-6 2.9831 2.3677e-6 2.9400
Scheme II 128 2.6828e-7 2.5961 4.0332e-7 2.8075 4.9677e-7 2.2528

(3.74) 256 4.4794e-8 2.5824 7.3597e-8 2.4542 1.2155e-7 2.0311
512 7.6500e-9 2.5498 1.6522e-8 2.1553 3.0315e-8 2.0034

Table 4.3
The L2 errors ∥un

h − un∥ at n = nT (t = 1) for Example 4.1, N = 1000, r = 3.

Methods 1/τ α = 0.1 order α = 0.5 order α = 0.9 order
32 2.3997e-6 1.5308e-5 4.8896e-5
64 9.3699e-7 1.3567 1.1924e-5 0.3604 1.2355e-5 1.9847

Scheme I 128 3.2532e-7 1.5262 4.2184e-6 1.4991 3.1005e-6 1.9945
(3.31) 256 1.0460e-7 1.6370 1.1979e-6 1.8162 7.7624e-7 1.9979

512 3.2047e-8 1.7066 3.1472e-7 1.9284 1.9409e-7 1.9998
32 3.1243e-6 4.6797e-6 7.9556e-6
64 8.1059e-7 1.9465 1.1587e-6 2.0139 1.9910e-6 1.9985

Scheme II 128 1.9968e-7 2.0212 2.8364e-7 2.0304 4.9787e-7 1.9997
(3.32) 256 4.8185e-8 2.0511 6.9455e-8 2.0299 1.2441e-7 2.0007

512 1.1575e-8 2.0575 1.7069e-8 2.0247 3.0986e-8 2.0054
32 1.8316e-5 8.4548e-5 4.9286e-5

Improved 64 4.5797e-6 1.9998 2.0821e-5 2.0217 1.2378e-5 1.9934
Scheme I 128 1.1438e-6 2.0014 5.1989e-6 2.0018 3.1014e-6 1.9968

(3.73) 256 2.8575e-7 2.0010 1.3003e-6 1.9994 7.7612e-7 1.9986
512 7.1316e-8 2.0025 3.2515e-7 1.9996 1.9403e-7 2.0000
32 1.3694e-7 3.9832e-6 7.9564e-6

Improved 64 1.1867e-7 0.2066 1.0307e-6 1.9504 1.9917e-6 1.9981
Scheme II 128 3.8589e-8 1.6206 2.5996e-7 1.9872 4.9811e-7 1.9995

(3.74) 256 1.0583e-8 1.8665 6.5024e-8 1.9992 1.2448e-7 2.0006
512 2.7949e-9 1.9208 1.6227e-8 2.0026 3.1005e-8 2.0053

where 0 < β < 1, and

f (x, t) =
(
Γ(2 + β)t − tβ+1

)
exp(x).

The exact solution of (4.1) is u = t1+β exp(x).
In this example, the L∞ error on the grid points {xi} at t = tn is defined as

ε∞(τ, h, tn) = max
0≤i≤N

|u(xi, tn) − un
h(xi)|.

We mainly compare the numerical results obtained by the cubic element in Scheme I,
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Table 4.4
Comparison of the L2 errors ∥un

h − un∥ at n = nT (t = 1) for Example 4.1, N = 1000, r = 3.

Improved Improved L1FEM
β 1/τ Scheme I Scheme II Scheme I Scheme II [17]

32 2.6133e-5 4.2566e-6 7.3488e-5 2.9381e-6 4.0588e-5
64 1.3567e-6 1.0444e-6 1.7955e-5 7.8792e-7 1.3740e-5

0.4 128 1.2998e-6 2.5085e-7 4.4601e-6 2.0074e-7 4.6194e-6
256 6.6074e-7 6.0246e-8 1.1137e-6 5.0390e-8 1.5450e-6
512 2.1850e-7 1.4488e-8 2.7828e-7 1.2532e-8 5.1494e-7
32 5.9934e-5 5.3346e-6 8.9378e-5 5.0233e-6 1.5276e-4
64 1.9695e-5 1.3308e-6 2.2267e-5 1.2773e-6 5.8654e-5

0.6 128 5.3544e-6 3.2966e-7 5.5749e-6 3.2041e-7 2.2413e-5
256 1.3765e-6 8.1818e-8 1.3950e-6 8.0201e-8 8.5394e-6
512 3.4737e-7 2.0098e-8 3.4871e-7 1.9809e-8 3.2467e-6
32 7.2323e-5 7.0592e-6 7.4360e-5 7.0381e-6 5.1564e-4
64 1.8542e-5 1.7682e-6 1.8673e-5 1.7661e-6 2.2617e-4

0.8 128 4.6721e-6 4.4172e-7 4.6794e-6 4.4170e-7 9.8860e-5
256 1.1713e-6 1.1048e-7 1.1712e-6 1.1054e-7 4.3132e-5
512 2.9302e-7 2.7603e-8 2.9286e-7 2.7632e-8 1.8799e-5

Table 4.5
Comparison of the L∞ errors at t = 1 for Example 4.2.

Improved Improved
β 1/τ N Scheme I Scheme II Scheme I Scheme II L1C[16]

4 4 7.9798e-04 8.6898e-05 2.3006e-04 1.2659e-04 7.2822e-04
64 8 2.7301e-06 2.8640e-07 6.5009e-07 1.3719e-07 6.0359e-06

0.25 1028 16 6.8502e-09 8.3677e-09 8.5961e-09 8.3113e-09 3.8460e-08
8 8 2.1647e-04 1.9277e-05 5.2969e-05 2.2607e-05 2.2328e-04

128 16 5.6815e-07 4.9021e-08 1.2734e-07 2.5393e-08 1.8709e-06
2048 32 9.7178e-10 5.3225e-10 7.2499e-10 5.2555e-10 1.4338e-08

4 4 7.9340e-04 1.1024e-05 1.2806e-03 1.4880e-04 1.7300e-03
64 8 1.3147e-07 1.2932e-07 1.6305e-06 1.2356e-07 5.3739e-04

0.75 1028 16 8.3028e-09 8.3022e-09 1.1579e-08 8.3023e-09 1.6874e-05
8 8 1.0239e-04 7.6851e-07 1.3003e-04 2.0395e-05 7.2000e-03

128 16 3.1043e-08 8.2769e-09 3.9629e-07 7.9173e-09 2.2716e-04
2048 32 5.2618e-10 5.2606e-10 1.8712e-09 5.2615e-10 7.1085e-06

Scheme II, Improved Scheme I, and Improved Scheme II with the compact finite difference
method in [16] with time discretized by the L1 method (L1C). Table 4.5 displays the L∞

errors at t = 1. Clearly, the present algorithms yields better numerical results.
Example 4.3. Consider the following subdiffusion equation [30] ∂tu = RLD1−β

0,t (∂2
xu) + f (x, t), (x, t) ∈ (0, 1)×(0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1],
(4.4)

where 0 < β < 1. Choosing the suitable initial datum u(x, 0) = u0 and source term f (x, t)
such that the exact solution is

u(x, t) =
(
tβ − Γ(β + 1)

π2

)
sin(πx).

In this example, we first convert the equation (4.4) into the form as (1.1). Then we solve
the converted equation by using Improved Scheme I(α) (IS-I(α)) and Improved Scheme II(α)
(IS-I(α)) with α = β in the computation. Let β = 0.5 and h4 = N−4 = τ3 as those in [30], so
we have α = 0.5. We use the linear element in the computation as that in [30], the maximum
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Table 4.6
Comparison of the maximum L2 errors max

0≤n≤nT
∥un

h − un∥ for Example 4.3, r = 1, β = 0.5.

N IS-I(0.5) order IS-II(0.5) order γ=1 order γ=1.5 order γ=2 order
27 6.62e-4 6.62e-4 9.33e-3 1.63e-3 5.42e-4
64 1.18e-4 1.50 1.18e-4 1.50 3.89e-3 0.76 3.50e-4 1.34 9.64e-5 1.50

125 3.09e-5 1.50 3.09e-5 1.50 1.87e-3 0.82 9.91e-5 1.41 2.53e-5 1.50
216 1.04e-5 1.50 1.04e-5 1.50 9.96e-4 0.86 3.44e-5 1.45 8.46e-6 1.50

Table 4.7
The maximum L2 errors max

0≤n≤nT
∥un

h − un∥ for Example 4.3,r = 3, β = 0.5.

N 1/τ IS-I(0.2) IS-II(0.2) IS-I(0.5) IS-II(0.5) IS-I(0.8) IS-II(0.8)
27 81 8.12e-09 8.12e-09 8.13e-09 8.15e-09 8.20e-09 8.10e-09
64 256 2.57e-10 2.57e-10 2.58e-10 2.58e-10 2.61e-10 2.57e-10
125 625 1.77e-11 1.78e-11 1.80e-11 1.84e-11 1.83e-11 1.83e-11
216 1296 6.63e-12 5.05e-12 9.74e-12 1.12e-11 4.48e-12 1.05e-11
27 100 8.12e-09 8.12e-09 8.16e-09 8.15e-09 8.10e-09 8.10e-09
64 100 2.57e-10 2.57e-10 2.58e-10 2.58e-10 2.57e-10 2.57e-10
125 100 1.78e-11 1.77e-11 1.81e-11 1.78e-11 1.79e-11 1.79e-11
216 100 3.95e-12 8.24e-12 1.37e-11 1.11e-11 8.76e-12 8.76e-12
64 10 2.57e-10 2.57e-10 2.60e-10 2.58e-10 2.67e-10 2.57e-10
64 20 2.57e-10 2.57e-10 2.59e-10 2.58e-10 2.65e-10 2.57e-10
64 40 2.57e-10 2.57e-10 2.59e-10 2.58e-10 2.64e-10 2.57e-10
64 80 2.57e-10 2.57e-10 2.58e-10 2.58e-10 2.63e-10 2.57e-10

L2 errors are shown in Table 4.6. Obviously, the present methods IS-I(0.5) and IS-II(0.5)
show a little better results than the cases γ = 1 and γ = 1.5 in [30], and have almost similar
results for the case γ = 2 in [30].

Since the methods IS-I(α) and IS-II(α) are exact in time for this example when α = β.
So they should show better performances when the space accuracy are improved. We use the
cubic element in the improved algorithms IS-I(β) and IS-II(β) for different β (β = 0.2, 0.5, 0.8)
and time steps, the results are shown in Table 4.7. Obviously, the satisfactory numerical
results are displayed. One also finds that the error does not dependent on the time steps sizes,
which is inline with the theoretical analysis.

5. Conclusion. In this paper, we first propose two fully discrete FEMs for the subdiffu-
sion equation (1.1) with the time discretized by the fractional linear multistep methods. We
give the strict stability and convergence analysis, which shows that both methods are uncondi-
tionally stable, and the global convergence orders in time are at least 1 for the suitably smooth
solutions. We also explore the average error estimates, which covers all the truncation errors
in the fully discrete schemes. It is shown that the average convergence rates are 1.5 for both
schemes! Then, we propose two improved algorithms with global second-order accuracy for
the smooth enough solutions. The two improved algorithms are also unconditionally stable.
Even if the exact solution is not smooth enough, the present methods can attain second-order
accuracy in temporal for some special cases. To the best knowledge of the authors, there are
few works on the numerical methods with convergence order of 2 with unconditional sta-
bility for the subdiffusion equation (1.1), while the numerical methods with (2 − β)th-order
accuracy can be found in several papers, see for instance [14, 16, 17, 23]. One can also see
[20, 29, 46] for the corresponding works.

We present enough numerical experiments to verify the theoretical analysis, and the com-
parisons with other methods are also given, which exhibit better accuracy than many of the
existing numerical methods. Obviously, the present methods can be easily extended to the
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corresponding two- and three-dimensional problems. The stability and convergence analysis
are very similar to those given here.
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