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4 MIMETIC METHODS FOR LAGRANGIAN RELAXATION OF MAGNETIC

FIELDS ∗

S. CANDELARESI†, D. PONTIN†, AND G. HORNIG†

Abstract. We present a new code that performs a relaxation of a magneticfield towards a force-free state
(Beltrami field) using a Lagrangian numerical scheme. Beltrami fields are of interest for the dynamics of many
technical and astrophysical plasmas as they are the lowest energy states that the magnetic field can reach. The
numerical method strictly preserves the magnetic flux and the topology of magnetic field lines. In contrast to other
implementations we use mimetic operators for the spatial derivatives in order to improve accuracy for high distortions
of the grid. Compared with schemes using direct derivativeswe find that the final state of the simulation approximates
a force-free state with a significantly higher accuracy. We implement the scheme in a code which runs on graphical
processing units (GPU), which leads to an enhanced computing speed compared to previous relaxation codes.
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1. Introduction. For astrophysical plasmas magnetic diffusivity can be so low that one
can assume the plasma to evolve on dynamic timescales according to the ideal induction
equation

∂B

∂t
−∇× (u×B) = 0, (1.1)

whereB is the magnetic field andu the plasma velocity. Such an evolution equation is most
conveniently studied using the Lagrangian description of the fluid, with position vectors of
fluid elements represented byx(X, t), wherex(X, 0) = X. For our purposes we assume
thatx(X, t) is differentiable for allX andt. Equation (1.1) implies that magnetic field lines
behave like material lines of the plasma [2, 3, 22], a property which can be expressed with
the help of the flow of the velocity field,

∂x(X, t)

∂t
= u (x(X, t), t) , (1.2)

which together with equation (1.1) implies that the magnetic fields at timet = 0 and att > 0
are related by the pull-back underx(X, t) (see appendix A):

(x∗(t)B)(X, t) = B(X, 0). (1.3)

This is a modern formulation of Alfvén’s Theorem [2]. Here and in the rest of this paper
we express the magnetic fieldB(X, t) as a function of the initial grid positionsX and time
t. We can also express it as function of the coordinates with the different functional form
B̃(x(X, t), t) = B(X, t). When describing our numerical scheme we will sometimes for
simplicity suppress the explicit time dependence and simply writeB(X, t) = B(X).

The velocity in Equation (1.1) is coupled to the magnetic field via the magnetohydrody-
namic (MHD) momentum balance equation in a highly non-linear way. However, in order
to determine the end state of such an evolution (in the absence of external forces) one only
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has to know that the presence of a non-zero viscosity will continuously extract energy from
the system until a minimum energy state is reached [17]. In the absence of significant gas
pressure (low plasma-β) this minimum energy state can be obtained from a simple variation
of the magnetic energy density under the assumption of an ideal evolution (Eq. 1.1). This
results in a condition for a so-called force-free field or Beltrami field

(∇×B)×B = 0 ⇔ ∇×B = αB. (1.4)

Hereα is in general a function of the spatial variables, but due to the solenoidal condition on
B, α has to be constant along field lines, i.e.B ·∇α = 0.

As long as one is interested only in the minimum energy state of the evolution, one can
also prescribe an artificial dynamics instead of using the MHD momentum balance equation.
Specifically, if one takes

u = γJ ×B; J = ∇×B; γ > 0, (1.5)

it is easy to prove that the magnetic energy monotonically decreases until a force-free state is
reached [6, 27]. This approach is called the magneto-frictional method [5].J is the electric
current density, where we normalize by setting the permeability µ0 = 1.

The question as to whether, for an arbitrary given initial field B(X, 0), a corresponding
Beltrami field with the same topology (i.e. satisfying (1.3)for some mappingx) exists, and if
so whether it is smooth, is unsolved. Examples where the corresponding Beltrami fields have
singularities (typically current sheets) exist [24]. These weak solutions occur in particular for
cases where points, lines or surfaces of vanishing magneticfield strength exist in the initial
field. A debate is still ongoing under which conditions non-smooth solutions can develop
from smooth initial fields in regions of non-vanishing magnetic field [7, 13, 14, 19, 23, 25, 26].
This question was first raised by E. Parker, as a possible scenario for the onset of magnetic
reconnection in the solar atmosphere, and is also known as the Parker Problem.

Studying magneto-frictional relaxation numerically withan Eulerian description requires
high spatial resolution in order to reduce numerical diffusion. However, the numerical dif-
fusion can never be completely eliminated with such a standard approach. Consequently, an
ideal evolution preserving the topology ofB can only be approximated. In order to circum-
vent this problem, Craig et al. [6] used a Lagrangian approach which directly calculates the
mappingx(X, t) and hence simulates a perfectly ideal evolution. The methodtherefore pre-
serves the topology of field lines as well as the magnetic flux through each surface element.
Additionally,∇ ·B = 0 is automatically preserved, thus eliminating the need for divergence
cleaning.

Later, Pontin et al. [20] analyzed the quality of the force-free approximation obtained
using the method of Craig et al. [6]. They found that, while the numerically calculated value
of (∇×B)×B could be minimized to an arbitrarily small value, the true value of(∇×B)×
B—obtained from independent measures described below—was sometimes much higher.
The reason for this discrepancy was identified to be numerical errors in the derivatives that
increase as the grid becomes highly distorted. Accumulation of these errors occurs due to
several multiplications of first and second derivatives that are required to obtain an expression
for (∇×B)×B in the scheme (see Eqs. (2.11) and (2.12) of Craig et al. [6]).Consequently,
it turns out that∇ · J 6= 0 can become large for high grid distortions. It was suggestedby
Pontin et al. [20] that these errors could be reduced by calculating the electric current density
using a mimetic method [9, 10]. Derivative operators are then represented as integrals, by
making use of e.g. Stokes’ or Gauss’ theorem. One of the greatadvantages of this approach
is that numerically computed curls are discretely divergence free.



MIMETIC METHODS FOR MAGNETIC FIELD RELAXATION 3

In the present work we apply these methods with the two-fold aim of a qualitative im-
provement of the force-free approximation obtained and a faster convergence. In order to
assess the quality of the force-free approximation and computational efficiency of our new
scheme, we also implement the classical method, as described by Craig et al. [6]. The two
methods are compared throughout the remainder of the paper.

2. Numerical Approach: The GLEMuR Code.

2.1. Magnetic Field Relaxation. For the evolution of the velocity fieldu we use the
aforementioned magneto-frictional force (1.5), as it causes the magnetic energy to decay
monotonically and the field to evolve towards a force-free state. For the sake of simplic-
ity the parameterγ = 1 is chosen to be constant in time and space. In principal it can
depend on space and time and this can be used for instance to address concerns about the
magneto-frictional method raised by Low [15] for cases of fixed boundaries or null points in
the domain. All examples discussed below, however, do not require this.

From the pull-back formula, (1.3), an equation for the magnetic field can be derived [16]
(see appendix A)

Bi(X, t) =
1

∆

3
∑

j=1

∂xi

∂Xj

Bj(X, 0), (2.1)

where∆ is the determinant of the Jacobian matrix∂xi/∂Xj and measures the local compres-
sion or expansion of the medium. This is analogous to Nanson’s formula known in continuum
mechanics. Equation (2.1) is used to determineB in the Lorentz force, which is required for
the numerical integration of (1.2). The other quantity required for the Lorentz force is the
electric current which we determine fromB via a mimetic operator.

2.2. Mimetic Operators. A property of the mimetic differential operators describedby
Hyman et al. [9] is that they map fields defined on a discrete space, like grid points, onto
a different discrete space, e.g. centers of grid faces. The curl operator maps the magnetic
field, defined on grid nodes (primal mesh), onto points in the centers of the faces of grid cells
(dual mesh), with the result thatB andJ are known at different locations. This is a general
characteristic of mimetic operators, which map their result onto edges, faces or cells, rather
than onto the same grid points.

Terms like(∇ × B) × B requireB and∇ × B to be known at the same locations.
Therefore, using the standard mimetic operators some sort of interpolation needs to be ap-
plied. It is not obvious which method or order of interpolation leads to numerical accuracy
or stability. Although we do not have a mathematical proof onnumerical stability, we will
characterize situations for which interpolations may fail.

Here we take an alternative approach, as described by Pontinet al. [20], that mitigates
this requirement for an explicit interpolation step. The current through a surfaceU bounded
by the closed loopC can in general be computed using Stokes’ theorem:

∫

U

J · n̂ dS =

∮

C

B · dr. (2.2)

For the current at the grid pointxijk = x(Xijk, t) we calculate three loop integrals in the
three grid surfaces which intersect at this point. For theij-grid surface this loop is shown in
Figure 2.1. The right hand side of (2.2) is evaluated as

4
∑

r=1

Br · dxr, (2.3)
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FIG. 2.1. Schematic representation of the vectors used for the calculations in equations(2.3)–(2.6). Here
only the contribution from theij-index plane is shown. For the remaining components one simply needs to cyclically
permute the indicesi, j andk.

with the difference vectorsdxi defined asdx1 = xII − xI, dx2 = xIII − xII, etc., the
magnetic fieldB1 = (B(XI) + B(XII))/2, etc. and the position vectorsxI = x(XI),
etc., where we use the short hand notationx(X) = x(X, t). The left hand side of (2.2) we
approximate by assuming that the current is constant on the quadrilateral,

J(Xijk) ·
4

∑

r=1

nrAr, (2.4)

with the four triangle elements

n1A1 = (xI − xijk)× (xII − xijk)/2,

n2A2 = (xII − xijk)× (xIII − xijk)/2,

n3A3 = (xIII − xijk)× (xIV − xijk)/2,

n4A4 = (xIV − xijk)× (xI − xijk)/2. (2.5)

The sum of the four surface elements is given as

nA =

4
∑

r=1

nrAr = (dx1 × dx2 + dx2 × dx3 + dx3 × dx4 + dx4 × dx1) /4. (2.6)

Hence, the discretized version of (2.2) at the grid locationxijk reads

J(Xijk) · n =
1

A

4
∑

r=1

Br · dxr. (2.7)

This equation determines the current in directionn at xijk. Together with corresponding
loops in thejk- andki-grid surfaces complete information of all three components of the
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vectorJ is obtained. The current components in theX,Y andZ directions are related to the
projections ofJ alongn by a system of linear equations that can be solved by inverting the
matrix composed of the three normal vectorsn. Note that the three normal vectors have to
be linearly independent, which will always be the case so long as the grid does not collapse
to being locally two-dimensional. We note that the scheme provided above makes use of a
modified version of the approximated normal compared to thatused by Pontin et al. [20].

While the above approach removes the requirement of an explicit interpolation step,
we note that it is based on the assumption thatJ can be approximated as constant over
the quadrilateral shown in Figure 2.1. For distortions on the grid scale, e.g. foldings, this
approximation will no longer be appropriate.

2.3. Next Nearest Neighbor Mimetic Approach.For finite difference methods, a higher
order scheme, including further next nearest neighbors, may increase the stability and accu-
racy of the numerical simulation1. To test whether accuracy and stability increase with a
modified loop integral forJ we perform a similar calculation as in equation (2.7) using val-
ues likexi+1,j+1,k and the magnetic field on those grid points.

Equation (2.3) is here augmented by further neighbors of thepoint xijk, forming an
octilateral (Figure 2.2). The loop integral over this octilateral includes eight contributions:

8
∑

r=1

Br · dxr, (2.8)

where the difference vectorsdxr and the magnetic field vectorsBr are chosen in analogy to
equation (2.3) (see Figure 2.2). The surface elements are

n1A1 = dx2 × dx3/2, n2A2 = dx4 × dx5/2,

n3A3 = dx6 × dx7/2, n4A4 = dx8 × dx1/2,

n5A5 = dxA × dxB/4, n6A6 = dxB × dxC/4,

n7A7 = dxC × dxD/4, n8A8 = dxD × dxA/4. (2.9)

The sum of the surface elements results in a similar equationas (2.6):

nA =

8
∑

r=1

nrAr = (dx2 × dx3 + dx4 × dx5 + dx6 × dx7 + dx8 × dx1) /2

+ (dxA × dxB + dxB × dxC + dxC × dxD + dxD × dxA) /4. (2.10)

Those elements are used in equation (2.7), where the matrix is inverted to calculateJ(Xijk).

2.4. Time Stepping. For the numerical integration of equation (1.5), we are interested
in fast convergence and stability. Adaptive time steps are needed to keep the error within
limits. Therefore, we use the method of lines to express the partial differential equations as a
set of ordinary differential equations and apply the fifth-order adaptive time step Runge–Kutta
formula [4, 21] for the time stepping.

The time step is adjusted according to the error of the calculation. If the error inx
exceeds a prescribed limit the step length is reduced via

dt′ = dt

∣

∣

∣

∣

Λ0

Λ

∣

∣

∣

∣

0.2

, (2.11)

1Higher order derivatives do not necessarily lead to higher accuracies. For sufficiently smooth solutions, how-
ever, they lead to increased stability and accuracy for mostpractical problems.
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FIG. 2.2. Schematic representation of the vectors used for the calculations in equations(2.9)and(2.10). Here
only the contribution from theij-index plane is shown. For the remaining components one simply needs to cyclically
permute the indicesi, j andk.

wheredt anddt′ are the old and adjusted time steps,Λ the maximum error inx, as calculated
in [21] andΛ0 the desired maximum error (tolerance). IfΛ > Λ0 the result is rejected and
recomputed withdt = dt′. ShouldΛ fall belowΛ0/2, dt′ is increased according to the same
equation, thus accelerating computation.

As we are dealing with a highly parallelizable problem, we make use of parallel com-
puting facilities. For that, we developed a numerical code named GLEMuR (Gpu-based La-
grangian mimEtic Magnetic Relaxation) which makes use of the computing power of graphi-
cal processing units. As API we use CUDA [18], which has been tested and has seen various
applications in computational analysis.

2.5. Boundary Conditions. In the code we implement both periodic boundary condi-
tions and so-called line-tied boundary conditions. A line-tied boundary is a boundary at which
the plasma velocity is zero and the magnetic flux through any surface element is fixed (i.e.
B ·n fixed). Periodic boundaries for a moving grid need careful treatment, since periodic grid
positions would not be physically consistent. In order to beconsistent with equation (2.1),
for a periodic boundary in, say, thez-direction we choose

xi,j,f−1 = xijl

yi,j,f−1 = yijl

zi,j,f−1 = zijl − Lz − dZ (2.12)

for the lower boundary, wheref andl are the indices for the first and last inner points of the
domain in thez-direction anddZ is the initial grid spacing in thez-direction. By analogy,
the upper boundary is set to

xi,j,l+1 = xijf

yi,j,l+1 = yijf

zi,j,l+1 = zijf + Lz + dZ. (2.13)
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With these conditions the magnetic field is automatically periodic, i.e.

B(Xi,j,f−1, t) = B(Xijl, t)

B(Xi,j,l+1, t) = B(Xijf , t). (2.14)

In the results described in the following sections all boundaries are line-tied, though periodic
boundaries do not qualitatively affect these results.

3. Field Relaxation.

3.1. Initial Configuration. Using the GLEMuR code as described above we compute
the ideal evolution of initially twisted magnetic fields starting with a rectangular computa-
tional grid. For comparison purposes two initial magnetic field configurations are considered.
Our primary focus is on an initial field for which we have an exact closed-form expression for
the corresponding force-free field, i.e. we know exactly theexpected values ofx(X, t → ∞)
andB(X, t → ∞). This allows us to compare in a straightforward and precise way the
quality of the relaxation. The form of the initial magnetic field is given by

B(X, 0) =
2B0Z

a2z
exp

(

−X2 + Y 2

a2r
− Z2

a2z

)

φ (Y êx −X êy) +B0êz, (3.1)

with the initial magnetic field amplitudeB0, length of the twist regionaz, width of the twist
regionar, twist angleφ and Cartesian unit vectorŝei. Unless explicitly stated, we choose
B0 = 1, ar =

√
2, andaz = 2. The twist angle is chosen eitherφ = π/4, φ = π/2 orφ = π.

The domain is a cuboid with sizeLx = Ly = 8 andLz = 20 with its center coinciding with
the origin of the coordinate system (Figure 3.1, left panel). Since field lines turn first by some
angle around thez-axis and then back by the same angle, determined by theφ parameter,
we will call this configurationIsoHelix. Although the twist decreases like a Gaussian with
distance to the center, there is a small and negligible normal component at the side boundaries
of the order of4.1 · 10−5.

The expected magnetic field in the relaxed state is of the form

Brelax = B0êz . (3.2)

For the same configuration we can compute the grid’s deformation for t → ∞ which takes
the form

xrelax = cos

(

exp

(

−X2 + Y 2

a2r
− Z2

a2z

)

φ

)

(X êx + Y êy)

+ sin

(

exp

(

−X2 + Y 2

a2r
− Z2

a2z

)

φ

)

(Y êx −X êy)

+Zêz. (3.3)

In the following we also mention results obtained using the identical initial condition to
that used by Pontin et al. [20]. They applied an initial magnetic field of the form

B(X, 0) = B0êz

+

2
∑

i=1

2B0φi

πar
exp

(

−X2 + Y 2

a2r
− (Z − Li)

2

a2z

)

× (−Y êx +X êy), (3.4)

where the symbols denote the same as in equation (3.1),Li are the distances of the twist
regions from the mid-plane andφi the two twist angles. We choose the domain extent and
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FIG. 3.1. Initial magnetic field for theIsoHelix field (left panel) and thePontin09field (right panel) with
φ = π andφ1/2 = ±π, respectively. The colors denote the field strength. For readability, only magnetic field lines
passing the origin at a radius of2 are plotted.

parameters to be the same values as for theIsoHelixconfiguration (Figure 3.1, right panel).
Depending on the case we choose eitherφ1,2 = ±π/2 or φ1,2 = ±π. The expected relaxed
magnetic field is also of the form (3.2). For convenience we will denote this type of initial
field asPontin09.

3.2. Diagnostics.

3.2.1. Force-Freeness.The final state of our relaxation simulations should be a numer-
ical approximation to a force-free field. That is, the final magnetic field (relaxed state) should
approximately satisfy∇×B = αB, whereα is constant along magnetic field lines. In order
to quantify the quality of this approximation we make use of the variableα∗, defined as

α∗ =
J ·B
B2

(3.5)

[20], where in an exact force-free stateα∗ is constant along field lines. The magnitude of the
variation ofα∗ along a magnetic field line provides information on the proximity to force-free
equilibrium.

In principle one can choose any field line and test how muchα∗ varies, but that would
require the tracing of field lines, which is computationallyexpensive and would need high
precision. To circumvent this difficulty we choose the central line interval

sα = {(0, 0, Z) : Z ∈ [−Lz/2, Lz/2]} . (3.6)

For the two configurations we know that there is one magnetic field line lying onsα that
is invariant in time (by symmetry). Therefore, we monitor the maximum difference ofα∗

between any two points onsα defined as

ǫ∗ = max
i,j

(

ar
α∗(Xi)− α∗(Xj)

|Xi −Xj|

)

; Xi,Xj ∈ sα. (3.7)
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3.2.2. Deviation from the Exact Known Equilibrium. For theIsoHelixfield one can
simply use the deviation between the exact and numerical results as a measure of the quality
of the final state. The standard deviation of the magnetic field is simply

σB =

√

1

N

∑

ijk

(B(Xijk)−Brelax(Xijk))2, (3.8)

with the analytically computed magnetic fieldBrelax(Xijk) for t → ∞ and the total number
of grid pointsN .

In analogy, the deviation from the exact grid deformation is

σx =

√

1

N

∑

ijk

(x(Xijk)− xrelax(Xijk))2, (3.9)

with the analytically computed gridxrelax(Xijk) for t → ∞ given by equation (3.3).

3.2.3. Convexity. Certain mimetic methods have been shown to be stable for convex
cells [11, 12]. For concave cells there is no such proof. It is, therefore, important to monitor
the convexity of the cells. To somewhat simplify the analysis and still retain significance, we
define a convexity parameter associated with grid points, although convexity is a property of
polygons. At each nodeXijk one can define eight trihedra composed by its three nearest
neighbors in index spaceijk. The three vectors for the trihedra are given as

dxλ = xi+δi,j,k − xijk

dxµ = xi,j+δj ,k − xijk

dxν = xi,j,k+δk − xijk; δi, δj , δk ∈ {−1, 1} (3.10)

and the convexity is defined as

κ(Xijk) =

{

1 sgn(det(dxλdxµdxν)) = δiδjδk
−1 otherwise.

(3.11)

3.2.4. Magnetic Energy.As discussed above, a force-free magnetic field corresponds
to a minimum of the magnetic energy. It can be demonstrated that the magneto-frictional
evolution equation (1.5) implies a monotonic decay of the magnetic energy [6, 27]. The
reliability of the methods applied here and the quality of the relaxation is consequently also
measured by the evolution of the magnetic energy in the volumeV

EM =

∫

V

B
2/2 dV. (3.12)

Its numerical computation on a moving grid is not trivial, since the volumedV surrounding
each grid node changes in time. This volume is given by the determinant∆ of the Jacobian
matrix multiplied by the corresponding undistorted volumedXdY dZ. Boundary points need
to be weighted by a factorζ, as part of their volume lies outside the domain. For grid points
lying on domain facesζ = 1/2, on edgesζ = 1/4 and on cornersζ = 1/8. Thus, the
magnetic energy is

EM =
1

2

∑

ijk

ζ(Xijk) B
2(Xijk) ∆(Xijk) dXdY dZ. (3.13)
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FIG. 4.1. Comparison of the quality of the field relaxation for the mimetic approach and the classical method
as evolution in time for theIsoHelix field (φ = π/4). The mimetic approach results in improved quality of the
relaxed state as measured in particular byσB andσx, as well asǫ∗.

4. Quality of the Force-Free Approximation. Here we describe results obtained using
the GLEMuR code with mimetic differential operators based on only nearest neighbors, as
described in section 2.2. These are compared with results using the classical approach with
second-order spatial finite differences.

4.1. Evolution of Diagnostic Parameters.As the magnetic field evolves, it approaches
the relaxed state, which is captured by the decay of the diagnostic variablesǫ∗ for thePontin09
field and, additionally,σB andσx for theIsoHelixfield (Figure 4.1, Tables 4.1 and 4.2).

The evolution ofǫ∗ provides one window into the quality of the force-free field obtained.
Comparing the results for the mimetic and classical approaches, we find that for all of the
configurations investigated here (Figure 4.1, Tables 4.1 and 4.2) the mimetic approach gives
a greatly improved relaxation as measured byǫ∗. The classical method converges to val-
ues of the order of one, almost independently of the resolution, while the mimetic approach
improves this by more than four orders of magnitude with convergence towards higher reso-
lutions (Tables 4.1 and 4.2).
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In addition to the above, one can also monitor directly the normalized maximum of the
Lorentz force in the domain

ξ = max
|J ×B|

B2
. (4.1)

For both methods this can be seen to decay to extremely small values (Figure 4.1, Tables 4.1
and 4.2) that are essentially limited only by numerical roundoff errors. However, as was
shown by Pontin et al. [20], these numbers can be highly misleading. In particular, it was
shown that for the classical method the Lorentz force is minimized at the expense of the ac-
curacy of, in particular,∇×B. Comparing plots for both the classical and mimetic methods,

TABLE 4.1
Asymptotic values of the diagnostic parameters as a function of the resolutionn, twist angleφ and method

for the numerical derivatives for theIsoHelix configuration. Runs marked by† denote the use of double precision
arithmetic (64 bit) in contrast to single precision (32 bit). Hyphens mark simulation runs which do not converge.

φ method n ξ ǫ∗ σB σX

π/4 Mimetic† 17 3.5e−12 1.0e−2 1.3e−3 9.6e−3

π/4 Mimetic† 33 9.4e−12 7.5e−3 3.8e−4 2.4e−3

π/4 Mimetic† 65 2.1e−11 2.7e−4 8.8e−5 1.5e−3

π/4 Mimetic† 129 4.4e−11 1.4e−5 2.4e−5 1.5e−3

π/2 Mimetic 17 5.0e−5 8.3e−2 4.4e−3 2.4e−2

π/2 Mimetic 33 3.0e−5 6.1e−2 1.5e−3 7.1e−3

π/2 Mimetic 65 1.5e−4 2.3e−3 3.4e−4 5.9e−3

π/2 Mimetic 129 6.1e−4 2.0e−4 1.3e−4 5.8e−3

π Mimetic 17 – – – –
π Mimetic 33 3.7e−4 5.4e−1 6.4e−3 2.7e−2

π Mimetic 65 1.1e−3 2.7e−2 1.4e−3 2.1e−2

π Mimetic 129 4.7e−3 2.4e−3 1.0e−3 2.3e−2

π/4 Classic† 17 3.7e−12 4.9e−1 9.0e−3 8.6e−3

π/4 Classic† 33 1.0e−11 9.6e−1 5.4e−3 5.1e−3

π/4 Classic† 65 2.3e−11 1.1 5.2e−3 4.6e−3

π/4 Classic† 129 5.0e−11 1.1 5.3e−3 4.6e−3

π/2 Classic 17 4.4e−5 9.9e−1 2.0e−2 3.5e−2

π/2 Classic 33 7.3e−5 1.9 1.9e−2 2.4e−2

π/2 Classic 65 1.5e−4 2.2 2.0e−2 2.0e−2

π/2 Classic 129 7.4e−4 2.2 2.1e−2 1.8e−2

π Classic 17 5.1e−5 2.0 5.5e−2 1.3e−1

π Classic 33 8.1e−5 3.8 6.9e−2 1.2e−1

π Classic 65 3.6e−4 4.3 7.5e−2 9.8e−2

π Classic 129 8.3e−3 4.4 7.6e−2 7.4e−2

TABLE 4.2
Asymptotic values of the diagnostic parameters as a function of the resolutionn and method for the numerical

derivatives for thePontin09configuration (φ = π/2).

method n ξ ǫ∗

Mimetic 17 5.4e−5 1.1e−1

Mimetic 33 3.3e−4 1.8e−2

Mimetic 65 8.9e−4 7.4e−4

Mimetic 129 4.0e−3 6.4e−4

Classic 17 1.5e−4 5.0e−1

Classic 33 1.8e−4 7.9e−1

Classic 65 9.8e−4 8.5e−1

Classic 129 2.9e−3 8.6e−1
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FIG. 4.2. Normalized relative free magnetic energy in time for theIsoHelix configuration withφ = π/4
using the mimetic approach (upper panel) and classical approach (lower panel). As expected, the energy decreases
monotonically.

we see thatξ continues to decrease even after all independent measures of the force-freeness
stabilize to a constant level. As a result, we do not considerthe directly calculated value ofξ
to be a reliable measure of the true accuracy of the force-free approximation.

Further, the value ofξ strongly depends on the resolution and the toleranceΛ0. The
former can even have a negative effect ifΛ0 is chosen to be the same irrespective of the
resolution. We explain this by the error of the grid deformation during the time stepping
(Eq. 2.11), whereΛ0 is set to similar values for different resolutions. If the grid error is
the same for high and low resolutions, the error in the derivatives is higher for smaller grid
separations, which is why we see higher values forξ.

4.2. Deviations from the Analytical Solution. For theIsoHelixconfiguration, we can
directly assess the accuracy of the method by comparing the magnetic field and grid distortion
with the known exact values as measured byσB andσx. Like ξ andǫ∗, σB andσx decrease
over time, indicating the relaxation of the field towards a force-free state (Figure 4.1). For
the mimetic approach there is a reduction in these quantities, in some cases by more than two
orders of magnitude. We also confirm strong improvements with increasing resolution. Their
monotonic decay serves us as reassurance that the mimetic approach is very well suited for
studying relaxation processes.

4.3. Magnetic Energy. Motivated by previous predictions on the magnetic energy evo-
lution [6, 27] we monitor the free magnetic energyEfree

M = EM − E0
M, whereE0

M is the
magnetic energy stored in the homogeneous background fieldBbkg = B0êz. From that
analysis we confirm thatEfree

M andEM decrease monotonically in time (Figure 4.2), which is
well established even for very low grid resolutions. The classical approach allows the energy
to decay only down to a certain threshold while the mimetic approach leads to the expected
decay of the free energy. This behavior also serves as additional verification that all applied
methods are able to reproduce correct results within their limits.

4.4. Grid Convexity and Stability. Relaxation of the magnetic fields used here results
in an untwisted magnetic field, which is achieved by twistingthe grid in the opposite sense
to the initial magnetic field twist. Increasing the field’s initial twist (φ) also increases the
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FIG. 4.3. Grid distortion as seen in theij-index plane atZ = 0 for the final stage of the simulation for
the Pontin09configuration (φ = π). Red grid nodes denote convexity, while blue denote concavity as defined in
equation(3.11). The left panel shows the grid close to relaxation using the classical method. Second and third panel
show the same configuration using the mimetic method at timet = 200 and t = 238.2, respectively. The mimetic
method breaks down shortly after the grid becomes locally concave.

expected grid distortion of the relaxed state, as the field unwinds itself. Such high distortions
lead to concave grid cells, particularly for low resolutions, for which the mimetic operators
might not yield a good approximation [12].

The grid distortion is clearly seen in Figure 4.3 where we plot the grid at the mid-plane
Z = 0 at an intermediate time for thePontin09configuration (φ = π). We also plot the
convexity, as defined in equation (3.11), where red represents convexity and blue concavity.
Applying the classical method we find that the grid becomes locally concave (Figure 4.3, left
panel) but the simulation remains stable. The mimetic approach also leads to concave cells
(Figure 4.3, central panel) which subsequently causes jagged grid distortions and the method
breaks down (Figure 4.3, right panel). At this time, we see a blow up of the diagnostic
parameters (Figure 4.4) together with a drop of the time stepby several orders of magnitude,
at which point the simulation is stopped. Increased grid resolution can delay this blow up.
Moreover, it should be stressed that while the classical approach is stable in this case, it does
not result in an improved relaxed state, as measured byǫ∗. Indeed, the mimetic approach
before the blow up provides by orders of magnitude a better force-free approximation, see
Figure 4.4.

4.5. Next-Nearest-Neighbors Mimetic Approach.Here we apply our next-nearest-
neighbor curl operator to computeJ = ∇ × B, described in Section 2.3. Subject to this
study is the field for which we know its analytical solution (Eq. (3.1)) withφ = π/4. For
the evolution ofξ, σB andσx we observe almost identical behavior as for the nearest neigh-
bor approach. In that respect there is no advantage of this method over the nearest neighbor
method. By contrast, forǫ∗ we observe an improvement of up to 5 orders of magnitude (Fig-
ure 4.5). However, this method proves to be unstable for all other configurations discussed
herein. Indeed, the numerical instability sets in even before the grid becomes concave, which
severely limits its applicability. This suggests that including additional grid points in the
mimetic approach is in general not likely to be fruitful.

5. Performance. We compare the computation time forJ = ∇ × B for the classical
direct approach, as used by Craig et al. [6], with the mimeticapproach. Since the simulation is
performed on an Nvidia graphics card model GTX 765M, we use theNVIDIA Visual Profiler
tool to compare the computation time of the computation kernels for a resolution of653 grid
points. For computingJ the classical approach requires a typical time of about37.56ms,
while the mimetic approach only needs19.82ms.



14 S. CANDELARESI, D. PONTIN, G. HORNIG

10-2

10-1

100

101

ǫ
∗

mimetic

0 100 200 300 400 500 600
t

10-2

10-1

100

101
ǫ
∗

classic
n=17
n=33

n=65

n=129

FIG. 4.4. Time evolution for thePontin09configuration (φ1/2 = ±π) of ǫ∗ for J computed by using the
mimetic approach (upper panel) and classical derivatives (lower panel). Forǫ∗, the mimetic method is far superior
in creating a force-free field but lacks in stability for thisparticular field.
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FIG. 4.5. Time evolution of the force-free measureǫ∗ for the next-nearest-neighbor mimetic approach using
theIsoHelixconfiguration withφ = π/4. The inset shows the time evolution forn = 17 for longer times. Compared
to the nearest neighbor method there is an improvement of 5 orders of magnitude as measured byǫ∗.

Summing up all computationally intensive floating point operations, like multiplications,
divisions and roots, we know that there are462multiplications and7 divisions for the classical
method. For the mimetic approach there are only156 multiplications and one division, but
12 roots. In both cases, multiplications and divisions by a factor of 2n with n ∈ N are
excluded from the operation count, since they only require abitwise shift. The difference in
computational working load approximately reflects the measured timings.

Currently our code runs on single GPUs only. This means that running simulations on
multiple graphics cards, like on a cluster, would not increase the computational speed. Since
efficient multi-GPU computation for finite difference schemes is rather labor intensive to
design we left this open for future work. However, the code iscurrently designed such that it
can in principle run on hardware with any number of multiprocessors, and has run on high-
end cards like the Nvidia Tesla K40. As the development of graphics cards is rapid we will
soon be able to use our code on future hardware without computational penalties.
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6. Conclusions.The question as to whether for an arbitrary given magnetic field a cor-
responding force-free field (Beltrami field) with the same topology exists, and if so whether
it is smooth, is an important unsolved problem in plasma physics. We have presented here
a new code that performs a relaxation of a magnetic field towards a force-free state using a
Lagrangian numerical scheme. The method strictly preserves the magnetic flux and the topol-
ogy of magnetic field lines. In contrast to other implementations we use mimetic operators
for the spatial derivatives in order to improve accuracy forhigh distortions of the grid. We im-
plement the scheme in a code which runs on graphical processing units (GPU), which leads
to an enhanced computing speed compared to previous relaxation codes. Compared with
schemes using direct derivatives we find that the final state of the simulation approximates
a force-free magnetic field with a significantly higher accuracy. Furthermore, as expected,
this accuracy improves as the resolution increases. It is found, however, that the method is
only numerically stable so long as the cells of the numericalgrid remain convex. This places
a restriction on the proximity of the initially prescribed field to the corresponding force-free
field. Increasing the number of points used in the scheme to consider next-nearest-neighbors
is found to strongly compromise the stability, indicating that this is not a fruitful approach for
such schemes.

Appendix A. Derivation of Eqs. (1.3)and (2.1).
To extend the initial discussion about the ideal evolution we express Eq. (1.1) in terms of

a Lie-derivative of a differential 2-formβ associated with the vectorB. The relation between
the 2-form and the vectorB is given by the interior productβ = iBµ whereµ is the standard
volume form in the domain. In Cartesian coordinates(X1, X2, X3) this reads

β = β23dX
2 ∧ dX3 + β13dX

1 ∧ dX3 + β12dX
1 ∧ dX2,

where

β12 = B3, β23 = B1, β13 = −B2.

Hence, Eq. (1.1) is equivalent to

∂

∂t
β(X, t) + Luβ(X, t) = 0,

whereLu is the Lie-derivative with respect tou. This is in turn the differential formulation
of

(x∗(t)β)(X, t) = β(X, 0),

where the star indicates the pull-back operation (see [1, pp. 370] and [8, pp. 140-3]). Writing
this out we get

(x∗(t)β)(X, t) = βij(x(X, t), t)
∂xi

∂Xk

∂xj

∂X l
dXk ∧ dX l, i, j, k, l ∈ {1, 2, 3} andi < j.

One can solve this equation forβ(X, t), using the formula for the adjoint of the Jacobian
matrix. Translating this back into components of the vectorfieldB leads to equation (2.1).
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