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PATTERN SIZE IN GAUSSIAN FIELDS FROM SPINODAL
DECOMPOSITION∗

LUIGI AMEDEO BIANCHI† , DIRK BLÖMKER‡ , AND PHILIPP WACKER§

Abstract. We study the two-dimensional snake-like pattern that arises at the onset of phase
separation of alloys described by spinodal decomposition in the Cahn–Hilliard model. These are
somewhat universal patterns due to an overlay of the most unstable pattern, which are eigenfunctions
of the Laplacian all with a similar wave-number. Similar structures appear in other models like
reaction-diffusion systems describing animal coats’ patterns, hill formation in surface growth, or
vegetation patterns in desertification. In order to study the early stages of spinodal decomposition
we focus on the linearized equation. Our main result studies random functions given by cosine Fourier
series with independent Gaussian coefficients, which dominate the dynamics in the Cahn–Hilliard
model. This is not a cosine process, as the sum is taken over domains in Fourier space that not
only grow and scale with a parameter of order 1/ε for a small 0 < ε � 1, but also move to infinity
for ε → 0. Moreover, the model under consideration is as a random field at a fixed time neither
stationary nor isotropic. To study the pattern size of nodal domains we consider the density of
zeros on any straight line through the spatial domain. Using a theorem by Edelman and Kostlan
and weighted ergodic theorems that ensure the convergence of the moving sums, we show that the
average distance of zeros is asymptotically of order ε with a precisely given constant.
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1. Introduction. We are interested in studying the patterns that form in the
solution of the stochastic Cahn–Hilliard equation during the separation process called
spinodal decomposition. This equation was originally introduced in its deterministic
version in [10] and [11] and later in its stochastic version by [12]. It models the relative
concentration of two components in an alloy after quenching an initially homogeneous
mixture and exhibits a spontaneous phase separation. Here we are focusing on the
onset of this separation process. The dynamics of this separation was already studied
for the deterministic case with possibly random initial conditions in [28, 29, 35] and
for the stochastic case in [6, 7, 8]. In all these publications it was shown that the
onset of spinodal decomposition for a surprisingly long time is well described by the
linearized model. Nevertheless all these publications could only address the pattern
size appearing in the phase separation as an overlay of functions with a similar wave-
number.
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Similar structures and patterns appear in many other situations, for both stochas-
tic and deterministic models. One example are the patterns in coats of animals like
zebras or tigers [31], where the underlying system is a reaction-diffusion system with
a Turing instability, as argued by Sander and Wanner in [36]. Another occurrence is
the vegetation patterns in desertification like the one observed for the tiger bush in
Africa, as studied, for example, by Siero and others in [37, 38]. In those papers they
provide a mathematical study of the emergence of pattern on an unbounded domain
in the extended Klausmeier model, which is similar to a reaction-diffusion system.

More similar to the Cahn–Hilliard setting is the stochastic Swift–Hohenberg equa-
tion (see, for example, the review [14]). A result very much related to spinodal decom-
position is given by Blömker and Maier-Paape in [5]. The main difference is that the
instability is very weak and significantly fewer Fourier modes determine the pattern.

Another example is a stochastic partial differential equation arising in the theory
of surface growth [32, 25], which is also used in ion sputtering [30]. Here hills form
on an initially flat surface and in the early stages the model exhibits patterns similar
to spinodal decomposition. For details see the review article [9].

In all these examples, as studied in the Cahn–Hilliard equation both stochastic
and deterministic, the characteristic snake-like pattern that appears initially is mainly
due to composition of the most unstable pattern that dominates the linearized dy-
namics. These are eigenfunctions of the Laplacian all with a similar wavelength. In
the early stages of the pattern formation process the nonlinearity does not yet play a
significant role, and the solution is described well by a high dimensional space of the
most unstable pattern.

In order to outline this idea, we focus in the following sections on the stochas-
tic Cahn–Hilliard equation on the square. Moreover, for simplicity we focus on the
stochastic model, where the most unstable patterns are randomly weighted. In the
case of patterns at a fixed time, which we study here, similar results are true if we
take the deterministic model with Gaussian random initial conditions.

The main question that we want to answer rigorously in this paper is the following:
At a fixed time early in the separation process, what is the characteristic thickness of
the pattern (i.e., the snake-like structures)?

To address this, we consider the pattern at a fixed time and draw an arbitrary
straight line across the domain. We then count the number of zeros of the pattern
along this line to determine the pattern size. Using a result given by Edelman and
Kostlan in [19] we can also obtain rigorous results for the expected number of zeros
along one line, which we can then evaluate explicitly in the asymptotic limit of small
interaction length.

In the context of spinodal decomposition, for the deterministic model a partial
result for the pattern size was obtained by Maier-Paape and Wanner in [28], where
they tried to estimate the size of balls that would fit into the nodal domain of a pat-
tern. A numerical computation of Betti numbers of nodal domains to get topological
informatuon about the pattern was performed in a series of papers [20, 16, 17].

Moreover the spatial structure of nodal domains for Gaussian random fields is the
topic of numerous recent publications, which we do not try to survey in full detail.
Under the assumption of spatial stationarity and isotropy, which we do not have in
our model, there are asymptotic results on the numer of zeros along lines. See, for
example, [18, 27]. Minkowski functionals are also treated; see [2] for a review, or
[39] for references to asymptotic results of the number of connected components. We
comment on these approaches later on in more detail.
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1.1. The Cahn–Hilliard–Cook equation. The stochastic Cahn–Hilliard (or
Cahn–Hilliard–Cook) equation was introduced by Cook in [12] as a stochastic modi-
fication of the originally deterministic model. It can be written as follows:

∂tu = −∆(ε2∆u+ F(u)) + ∂tW,

where the noise ∂tW is the derivative of a Q-Wiener process and F is the derivative
of a double well potential, where a standard choice is F(u) = u − u3, although the
true nonlinearity introduced by Cahn and Hilliard should exhibit logarithmic poles.
We consider it on the square domain [0, 1]2, with Neumann boundary conditions
∂νu = ∂ν∆u. In the physical model of alloys, u models the rescaled concentration
of one component, and the extreme values u = ±1 correspond to 0% and 100%
concentration of the first component in any point.

The canonical initial condition for the phase separation in spinodal decomposition
is a homogeneous concentration

u(0, ·) ≈ m,
which is constant on the whole domain.

Due to the presence of the noise in the equation, which is studied here, or to
the presence of random fluctuations in the initial conditions, almost immediately the
homogeneous picture is broken and decomposition starts playing its role. The snake-
like pattern appears and persists, giving place to situations like the one simulated
in Figure 1. Our aim now is to describe the pattern at a fixed time in the early onset
of separation.

Fig. 1. Pattern in spinodal decomposition. The snake-like pattern appears as the nodal domains
in the level set of the average concentration, which is here m = 0.

For the Cahn–Hilliard equation, one can consider the set of the most unstable
eigenvalues, which dominate the dynamics for a long time, also called the “strongly
unstable subspace.” This was studied in the deterministic model by Maier-Paape and
Wanner in [28, 29] and later in the stochastic setting by Blömker, Maier-Paape, and
Wanner in [8, 6] (see also the review [7]). All results relied on the approximation of
the nonlinear dynamics via linearization in the early stages of the separation process.
Later Sander and Wanner extended in [35] this approximation result by linearization
to unexpectedly large radii, at least for the deterministic model.

In [20] Betti-numbers of nodal domains were numerically computed, and after the
initial formation of the pattern the deterministic model with random initial conditions
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exhibits a short, quite unnatural increase of pattern complexity, which is not present
in the stochastic model. This is a quite interesting observation that the evolution of
pattern complexity is different in the deterministic model with random initial condi-
tions or the stochastic model with constant initial condition, but we will focus on the
onset of pattern formation before this stage.

1.2. Linearized Cahn–Hilliard–Cook equation. While the Cahn–Hilliard
equation is highly nonlinear, its dynamics at the onset of pattern formation is rea-
sonably well approximated by the linearized equation, which even holds true for quite
long times up to unexpectedly large solutions, as shown in [35, 40]. So let us discuss
the linearized system (around the spatially constant initial conditions u(0, ·) = m) for
the deviation v = u−m. This will motivate why we study random cosine series later.

Such linearized system can be written as

(1) ∂tv = Av + ∂tW , v(0) = 0,

where A = −ε2∆2 − ∆F ′(m) is a self-adjoint linear operator having a complete
orthonormal system of eigenfunctions.

In our study we focus on the simple domain [0, 1]2 to avoid additional pattern
complexity introduced by a complicated shape of the boundary. The L2-basis on the
square is made of cosine functions

ek,l(x) = C cos(kπx) cos(lπy),

with Aek,l = λk,lek,l, where

λk,l = −ε2(k2 + l2)2π4 + (k2 + l2)π2F ′(m).

The solution to (1) is given by the stochastic convolution (see [15]), which sim-
plifies here to a cosine series with random coefficients,

WA(t) =
∑

k,l∈N

∫ t

0
e(t−s)A dW (s) =

∑

k,l∈N
αk,l

∫ t

0
e(t−s)λk,l dBk,l(s)ek,l,

where the Bk are independent Brownian motions and the Q-Wiener process W has a
joint eigenbasis with A such that Qek,l = α2

k,lek,l. This is an usual but quite strong
assumption that Q commutes with A. As this is only our motivating example, for
simplicity of presentation we do not enter this discussion here. Some details and
further references can be found in [7]. One also could think of space-time white noise,
where Q is the identity and thus all αk,l are one.

In the case where m is in the spinodal region defined by F ′(m) > 0 a simple
calculation shows that the upper bound of the eigenvalues λk,l is given by

λmax =
1
4
ε−2(F ′(m))2.

The results on the early stages of spinodal decomposition (see, for example, [6])
show that the eigenfunctions of the most unstable eigenvalues form a strongly unstable
subspace also called “strong subspace”, for short, that dominates the dynamics of the
Cahn–Hilliard equation.

To be more precise this space is defined for any fixed γ ∈ (0, 1) close to 1 by taking
all eigenfunctions ek,l with eigenvalues satisfying λk,l > γλmax. Thus in Fourier space
by the wave-vectors

Rγε := {(k, l) ∈ N2 : λk,l > γλmax}.
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In particular, in the two-dimensional setting we consider, the setRγε is a quarter-ring in
the N2 lattice, which is easily seen by discussing the inequality −ε2z2π4+zπ2F ′(m) >
γλmax. This is nonempty only if ε is not too large, and moreover it contains O(ε−2)
many wave-vectors for ε → 0. In the following we do not always specify the explicit
dependence of Rγε on γ and write Rε for short. Note that this set not only is growing
in size for ε→ 0 but also moves as a whole toward infinity.

As already outlined, as long as the solution is not too large, the dynamics of the
nonlinear Cahn–Hilliard equation is dominated by the projection PRε of the stochastic
convolution on the strong subspace. By this we mean the restriction of the Fourier
series to wave-vectors in Rε, which is given by

PRεWA(t) =
∑

(k,l)∈Rε
αk,lck,lek,l with ck,l =

∫ t

0
e(t−s)λk,l dBk,l(s) .

The random variables in the family {ck,l}(k,l)∈Rε are by definition independent cen-
tered Gaussians. By Itō-isometry the variance of ck,l is

Ec2k,l =
∫ t

0
e(t−s)2λk,l ds =

1
2λk,l

(1− e−2λk,lt) ≈ 1
2λk,l

= O(ε2)

for times t ≈ ε2, which is close to the time-scale on which the first phase of spinodal
decomposition was described (see [6]). We also used that in the strongly unstable
subspace λk,l ∈ (1− γ, 1]λmax and thus λk,l is of the order ε−2.

Hence after linearization and projection via PRε , the solution at a fixed time t
seems to be well approximated by

(2) u(t, x, y) ≈ m+ v(t, x, y) ≈ m+
∑

(k,l)∈Rε
ck,l · cos(kπx) cos(lπy),

where the ck,l are independent centered Gaussians with similar variances. This mo-
tivates the choice of our toy model for studying the pattern at a fixed time t early
in the onset of spinodal decomposition. We will present the model in more detail in
the next subsection. There we make an additional simplification by fixing for ease
of presentation all the variances of the coefficients to be the same, although they are
only of the same order in ε.

1.3. Random Fourier series. For the main part of the paper we consider the
random function

(3) f(x, y) =
∑

(k,l)∈Rε
ck,l · cos(kπx) cos(lπy)

on the unit square x, y ∈ [0, 1]2, with the random coefficients ck,l being independent
and identically distributed centered Gaussian random variables. Later we discuss also
the impact of different domains Rε in Fourier space, and not only the ring discussed
below.

As we discussed in the previous subsection, this is a simplified model for the
stochastic Cahn–Hilliard equation at a fixed time early in the onset of pattern forma-
tion. First it simplifies by using the approximation (2) of the stochastic Cahn–Hilliard
equation, and second by assuming that all coefficients are identically distributed, al-
though they are only of the same order in ε. We furthermore set the variance of the
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random coefficients to be 1, i.e., ck,l ∼ N(0, 1). The actual size of the function is not
important when we study the nodal domain.

As our main example we consider the Cahn–Hilliard equation and fix the average
mass to be m = 0. If we consider different m we would only change the shape of
Rε and the value of various constants. In the case m = 0 the subset Rε of strongly
unstable modes is given by

Rε = {(k, l) ∈ N2| α	 <
√

(kε)2 + (lε)2 < α⊕},
where from λk,l > γλmax with m = 0 we obtain the parameters

α⊕ =

√
1 +
√

1− γ
2π2 and α	 =

√
1−√1− γ

2π2 with γ ∈ (0, 1).

Note that with z = k2 + l2 for m = 0 we have λk,l = −ε2z2π4 + zπ2 and thus
λmax = 1/4ε2.

Although the model (3) is somewhat reminiscent of the cosine process (see,
e.g., [1]) or the random wave model (see, e.g., [18]), where questions related to the
structure of nodal domains were discussed, it is fundamentally different in the sense
that it is neither spatially stationary nor isotropic, which would imply that the law of
f is invariant under translation or rotation. But due to the Neumann boundary con-
ditions on a square, the law of the random function f (as a function extended to R2)
changes under rotation around angles not being a multiple of 90 degrees. Moreover,
as the normal derivative is always zero at the boundary of the square, the law of f is
also not invariant under arbitrary translations.

Let us finally remark that it is an easy calculation to show that f(x) is a centered
Gaussian with covariance

Ef(x)f(y) = q(x+ y) + q(x− y) for q(z) =
1
2

∑

(k,l)∈Rε
cos(kπz) cos(lπz)

which is also not invariant under arbitrary translation and rotation of the (x, y)-plane.

1.4. Pattern size. A simulation of (3) with m = 0 and γ = 0.8 is presented
in Figure 2. We can see the snake-like patterns which are characteristic of the Cahn–
Hilliard model. It appears from the numerical simulations that the thickness of the

Fig. 2. A simulation of the function f for γ = 0.8 with a plot of its zero-level set. On the latter
we picked some measurements of the pattern thickness. Empirically, the average distance is 2πε.
There is of course some variation and there are areas and directions where the thickness is much
higher or lower.
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Fig. 3. Pattern size computation of the function f by inserting arbitrary lines through the
spatial domain [0, 1]2, where we represent the zero level sets for our model in the Fourier domain
R0.8

0.01. The zeros are order ε apart, on average.

structures is somewhat proportional to ε, as shown in Figure 2. Here we propose
to measure such thickness as the distance between consecutive zeros of the solution
considered on an arbitrary line through the domain, as exhibited in Figure 3.

This definition of pattern size intuitively seems to be the right one. On the other
hand the following fact is frequently stated in the literature: as by definition the
dominating Fourier space Rε consists of wave-vectors (k, l) ∈ Rε that are all of the
order ε−1 in norm for small ε, the overall pattern size is of the order ε.

Although this line of reasoning sounds very plausible, and it is easily proved
for a one-dimensional problem, in two dimensions the wave-vector consists of two
frequencies that can vary vastly, and it is not clear why the average number of zeros
along a line should scale with ε.

Moreover we will also see later in the main results that, when counting zeros on
arbitrary straight lines, only the scaling of the upper bound for the wave-number seems
to be essential. Let us remark that for spatially stationary and isotropic Gaussian
fields there are quite a few publications on the average density of zeros along lines.
They date back to the work of Rice [33] or Longuet-Higgins [27], [26]. See also Dennis
[18]. Their approach yields qualitatively analogous results of a pattern size of order
ε for models given by cosine series similar to (3), but none of those methods seem
to apply straightforwardly to (3), in that they usually assume spatial isotropy and
spatial stationarity.
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A rigorous quantification of the geometry and topology of Cahn–Hilliard–Cook
patterns is still an open problem, though. The first attempt in the setting of spinodal
decomposition by Maier-Paape and Wanner in [28] yielded a partial result by bound-
ing the radii of balls that would fit into the nodal domain. That strategy worked
completely only in the setting of [5], where the ring Rε was still growing, but its size
was smaller by a small power in ε.

As already mentioned in the previous subsection, recent numerical work on the
number of components in the pattern has been done, using rigorous methods from
computational algebraic topology to compute the Betti numbers, by Gameiro,
Mischaikow, and Wanner in [20] or similarly by Day, et al. in [16, 17]. See also
Guo and Hwang [23] and Sander and Tatum [34] for additional results on the pattern
in Cahn–Hilliard equation. Let us recall that Betti numbers for the two-dimensional
nodal domain count the number of connected components and the number of holes.

For general stationary or isotropic Gaussian fields there is also some work on
Minkowski functionals measuring the area and the number of connected components
of the nodal domain as well as the length of the set of level 0. See [2] for a collection
of results. But even the precise constant in the asymptotic behavior of the number
of connected components seems to be still an open problem. See [39] for further
references. None of these results seems to fit to (3) anyway, not just because of the
assumptions on isotropy and stationarity, but also because we are summing over index
sets that not only are growing but also moving, and thus the asymptotic limit is not
clear.

2. Main result and structure of the paper. The question we aim to rigor-
ously answer is as follows.

Question 2.1. What is the characteristic thickness of the pattern (i.e., snake-like
structures) in our model f(x, y) defined in (3), on the unit square (x, y) ∈ [0, 1]2?

In Figure 2 we can see that the average thickness appears to be 2πε, which we
will prove to be the case.

To address Question 2.1, we take the following approach: we draw a straight
line across the unit square and we count the (average) number of zeros of f on that
segment; see Figure 3. Let us remark that if a nodal line coincides for some interval
with the straight line, then we count this as infinity. We will see later in the main
result that this is an event with probability zero, as the expected number of zeros will
always be finite.

We divide the length of the segment by the number of zeros, obtaining the average
distance between zeros, that is, the average pattern size. So the problem reduces to
counting the number of zeros of f , a random function, and a way of doing this is
provided (in a more general form than reported here) by Edelman and Kostlan in [19].

Theorem 2.2 (number of real zeros of a random function). Let

v(x) = (f0(x), . . . , fn(x))T

be any collection of differentiable functions and c0, . . . , cn be independent and identi-
cally distributed Gaussians centered in 0. Given the function

h(x) =
n∑

k=0

ck · fk(x),
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the expected number of real zeros of h on I is
∫

I

δ(x) dx ,

where

δ(x) =
1
π

∥∥∥∥
d

dx
w(x)

∥∥∥∥
Rn

and w(x) =
v(x)

‖v(x)‖Rn
.

Due to the fact that the average number is given by an integral over δ, we call δ
the density of zeros of h.

The proof of this theorem is given in [19]. The key idea of the much longer proof
is that x is a zero of f if the vectors (ck)k and (fk(x))k are orthogonal. Thus after
normalization all admissible (ck)k form an equator on the unit sphere, and one can
translate the problem of counting zeros to determining the area covered by these
equators (counted with multiplicities). Then one uses that the area is proportional to
the derivative of the curve x 7→ (fk(x))k. Finally note that the argument for turning
Gaussian probabilities into the calculation of area is the fact that a standard Gaussian
vector after normalization induces a uniform distribution on the sphere.

Theorem 2.2 holds for functions h on the real line, so we need to translate our
two-dimensional problem f to an equivalent one formulated on a line. In the following
for simplicity first we consider f constrained on an arbitrary horizontal line at height
τ , which is

Lτ = {(x, τ) : x ∈ [0, 1]} for τ ∈ [0, 1] .

We obtain a function of one variable and can apply Theorem 2.2. The generalization
to arbitrary (nonhorizontal) lines as the ones depicted in Figure 3 is a straightforward
generalization and is discussed in section 6 but the underlying idea does not change.

We need to introduce, in the spirit of Theorem 2.2, the following notation:

wτ (x) =


 cos(kπx) cos(lπτ)√∑

(m,n)∈Rε cos2(mπx) cos2(nπτ)




(k,l)∈Rε

.

Note that although we parametrize wτ (x) over the two-dimensional set Rε, we consider
it as a vector in RNε , where Nε is the size of Rε. Moreover, we define

Wτ (x) =

∥∥∥∥∥

(
d

dx
wτ (x)

)

(k,l)∈Rε

∥∥∥∥∥

2

=
S3

S1
−
(
S2

S1

)2

,

where we have

S1 =
∑

m,n∈Rε
cos2(mπx) cos2(nπτ),

S2 =
∑

m,n∈Rε
mπ cos(mπx) sin(mπx) cos2(nπτ),

S3 =
∑

m,n∈Rε
m2π2 sin2(mπx) cos2(nπτ).

The main result for horizontal lines in the case of a ring Rε in Fourier space is the
following one, which is stated in terms of Wτ (x) = π2δ(x)2 and gives the asymptotic
behavior for small ε of the densities of zeros.
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Fig. 4. Patterns generated in the Fourier domains R0.1
0.01 (left) and R0.9

0.01 (right).

Theorem 2.3. For any γ ∈ (0, 1) and any horizontal line Lτ for x, τ ∈ (0, 1) the
function Wτ (x) defined on Lτ behaves asymptotically as (2ε)−2 for ε→ 0.

This means in particular that the density of zeros is δ(x) = (2πε)−1.

Thus the mean pattern size (i.e., the average distance between zeros on any hor-
izontal line of length 1) is given by 2πε.

Remark 2.4. It is a remarkable fact that the result of Theorem 2.3 is independent
of γ, because the number of Fourier modes involved is much smaller for γ ≈ 1 than
for γ ≈ 0. As we can see in Figure 4, while the average asymptotic pattern size along
lines remains the same, the domain with higher γ looks more organized. The pattern
seems to be “more regular” in some sense that our method cannot detect.

We will prove Theorem 2.3 later in section 3, where Lemma 3.7 shows

lim
ε→0

ε
S2

S1
= 0, lim

ε→0
ε2
S3

S1
=

1
4
.

The main idea behind the proof is that the sums Si, i = 1, 2, 3, can be calculated in
the limit via ergodic-type theorems.

Remark 2.5. We always fix x, τ ∈ (0, 1) for the horizontal lines, as the functions
behave a little differently on the borders. If we have τ = 0, 1, we lose all the terms in τ ,
which become identically 1, but we obtain anyway the same result. The cases x = 0, 1
are not interesting, as the sin-function is always zero and thus Wτ (0) = Wτ (1) = 0.
But since we are looking for a density in terms of x, considering it in a single point
does not provide any useful information.

After the proof of Theorem 2.3 for the ring in Fourier space and the horizontal line
we present several extensions of the result. In section 4 we state the generalization of
the main result to general domains in Fourier space different from the quarter-ring and
give a few explicit examples that the main result is still true, although the patterns
appearing might look quite different.

As our result is a purely asymptotic one, we give a few examples in section 4,
where the number of zeros agrees very well with the asymptotic prediction even for
moderate ε. In section 5, we calculate numerically the functions δ(x) or Wτ (x) for
different values of ε. There (cf. also Figure 8) we see already for moderate ε a fast
and uniform convergence apart from any small layer at the boundary.

Finally in section 6 we briefly discuss the case of sloped lines, which is a straight-
forward generalization, up to some additional technicalities. In the appendix we show
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that we can establish convergence in the rational case not treated in the proof, where
we cannot use Birkhoff’s ergodic theorem.

Let us comment on further generalizations that are within the scope of this ap-
proach. First we can easily incorporate the case where the Gaussians are not all
identically distributed. For instance, when the noise is diagonal w.r.t. the cosine
modes, we just obtain additional weights in the main result, coming from the eigen-
values of the covariance operator of the noise.

For different domains in Fourier space we always get the same order of zeros
on any line through the domain, but as we will see in Figure 7 the pattern might
look quite different. Further characterizations using Betti numbers as in [20], the
Minkowski functionals as in [2], or bounds on the radii of balls in the nodal domains
as in [28] might help us to understand why the pattern in spinodal decomposition is
so special, as it appears to be quite regular, but not too symmetric.

Moreover, we believe that the result on the square [0, 1]2 is not that special,
and with the same method we should be able to treat three- or higher dimensional
problems. We have to stress that there are technical problems extending the result to
general domains, especially when the boundary has a complicated geometry. In the
proof for arbitrary domains we only need to replace the cosines by the corresponding
eigenfunctions. We should then use the ergodic theorem to recover the convergence
of the sums, but there is no guarantee that we can still do that, the main technical
problem being that we cannot easily isolate the wave-number as an argument of the
function. Moreover, even if we could, the reduction of the two-dimensional Birkhoff’s
ergodic theorem to the one-dimensional case is not always possible: we would need
to prove a true two-dimensional ergodic theorem, but such results are available in the
literature.

3. Proof of the main result. The main result is on one hand based on an
application of the theorem by Edelman and Kostlan. On the other hand, for the
asymptotic behavior we need the convergence of series over growing domains and
the value of the limit. This is established by a two-dimensional weighted Birkhoff’s
ergodic theorem. There is a vast literature on ergodic theorems, and the theory is
well developed, so we do not attempt to give an overview. We just refer to [21, 22]
for ergodic theorems on abstract groups or subgroups of lattices.

In the following we first state the one-dimensional ergodic theorem, then give
a direct proof for a weighted ergodic theorem on arbitrary domains based on the
analogous result on squares (see, for example, [24]). We also give an elementary proof
that the usual ergodic theorem implies (under some conditions on the weights) a
weighted version. Let us remark that the results we need are not in the usual setting
of weighted ergodic theorems, as, for example, in the theory of “good weights” (see,
for example, [3, 4]), because we allow the weights to grow and furthermore we change
the normalizing constant in front of the sum.

3.1. Ergodic theorem. Given a σ-algebra, a transformation T is said to be
uniquely ergodic if it has a unique ergodic measure. The map z 7→ z + α on the unit
circle is uniquely ergodic if and only if α is irrational. In this case the unique ergodic
measure is the Lebesgue measure.

Theorem 3.1 (Birkhoff’s ergodic theorem; see [13]). Let (X,µ) be a probability
space. If T is µ-invariant and ergodic and g is integrable, then for a.e. z ∈ X

(4) lim
N→∞

1
N

N∑

k=1

g
(
T k (z)

)
=
∫

X

g(ζ) dµ(ζ).
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Moreover if T is continuous and uniquely ergodic with measure µ and if g is continu-
ous, then (4) holds for all z ∈ X (instead of a.e.).

Remark 3.2. Having the result to hold for all initial conditions is of paramount
importance, as we require it to hold for some specific initial values. We will then look
for uniquely ergodic transformations.

3.2. The weighted averaging condition. First we draft a necessary require-
ment for averaged weighted sums fulfilling an ergodic-type property on a rectangle-
shaped summation domain. Then we show that this can be used to obtain summation
on more general domains. In our case this is a quarter-ring-shaped subset in N2.

After that we show that the sums we need to calculate all fulfill this requirement.

Weighted averaging condition. Let ([0, 1]d, λ) be the probability space with
the Lebesgue measure λ. We say that (f, (am)) with f : [0, 1]d → R continuous and
extended by periodicity to Rd and am ∈ R fulfills the weighted averaging condition if
for every x0 ∈ [0, 1]d, every α ∈ Nd, and

QL =
d⊗

i=1

[1, . . . , αiL] ∩ Nd,

the following assumption holds:
1∑

m∈QL am

∑

m∈QL
am · f(m1x

0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫

[0,1]d
f(x) dx .

For any open set M ⊂ Rd+ we define

ML = (L ·M) ∩ Nd,

the projection on the positive integers of its scaled version. We define

|ML|a =
∑

m∈ML

am

and denote by |ML| the cardinality of ML.

Generation of measures. We require that the weights a = (am) generate a
measure λa on Rd+ which is equivalent to the Lebesgue measure λ, i.e., there exists an
α > 0 such that for each set with open interior M ⊂ Rd+,

L−α|ML|a L→∞−−−−→ λa(M).

Let us remark that in general, we could get the result for a weaker assumption
on the measure λa than being equivalent to the Lebesgue measure. But as in all our
examples this is the case, we assume this for simplicity of presentation.

The trivial example for the generation of measures is the constant weights ak,l = 1
that generate the Lebesgue measure with α = d.

Example 3.3. An example that is used frequently later is ak,l = k2 for dimension
d = 2. Then by Riemann sum approximation

L−4|ML|a = L−4
∑

(k,l)∈L·M
k2 =

∑

(k,l)∈M∩ 1
LN2

k2L−2 L→∞−−−−→
∫

M

ξ2 d(ξ, η) .

Thus the measure λ(k2,1) generated by the weight has a Lebesgue-density (ξ, η) 7→ ξ2.
As the density is up to the Lebesgue null set ξ = 0 everywhere strictly positive, the
measures λ(k2,1) and λ are equivalent.
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Q1
L

Q2
L

Q3
L

RL

Fig. 5. Construction of RL from rectangles with one vertex in the origin: RL = Q3
L \ (Q1

L ∪Q2
L).

Lemma 3.4. Let (f, (am)) fulfill the weighted averaging condition with the weights
a generating a measure. Then for any open measurable set S ⊂ Rd+

1
|SL|a

∑

m∈SL
am · f(m1x

0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫

[0,1]d
f(x) dx .

Proof. We prove this in two steps. We call SL the summation domain. First we
show that the weighted averaging condition also holds for summation domains which
are rectangles not aligned at the origin (i.e., we shift the QL out of the origin). Second,
we cover S by a disjoint union of such rectangles and conclude the proof. Consider
the scaled rectangle RL = ⊗di=1{βiL, . . . , γiL} ⊂ Nd. Then RL can be constructed
by making unions and subtractions of origin-aligned rectangles of the form QL as
depicted in Figure 5. Thus

1
|RL|a

∑

m∈RL
am · f(m1x

0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫

[0,1]d
f(x) dx

follows immediately.
For every approximation threshold δ > 0 there are finite sets of squares {Pi}i and

{Oi}i fulfilling
Mδ =

⋃

i

Pi ⊂ S ⊂
⋃

i

Oi = Nδ.

with λ(Nδ \ S) ≤ λ(Nδ \Mδ) < δ. Write (Mδ,L = Mδ · L) ∩ Nd, Pi,L = (Pi · L) ∩
Nd, and Nδ,L = (Nδ · L) ∩ Nd analogously to S and SL. We write f(m � x0) =
f(m1x

0
1,m2x

0
2, . . . ,mdx

0
d) for brevity. Then we can derive the error estimate

Err =

∣∣∣∣∣∣
1

|Nδ,L|a
∑

m∈Nδ,L
amf

(
m� x0)− 1

|SL|a
∑

m∈SL
amf

(
m� x0)

∣∣∣∣∣∣

=
1

|Nδ,L|a · |SL|a

∣∣∣∣∣∣
|SL|a

∑

m∈Nδ,L
amf

(
m� x0)− |Nδ,L|a

∑

m∈SL
amf

(
m� x0)

∣∣∣∣∣∣

=
1

|Nδ,L|a · |SL|a

∣∣∣∣∣(|Nδ,L|a − |SL|a)
∑

m∈SL
amf

(
m� x0)

+ |SL|a
∑

m∈Nδ,L\SL
amf

(
m� x0)

∣∣∣∣∣∣
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≤ 1
|Nδ,L|a · |SL|a

∣∣∣∣∣(|Nδ,L|a − |SL|a) ‖f‖∞
∑

m∈SL
am

∣∣∣∣∣

+
1

|Nδ,L|a · |SL|a

∣∣∣∣∣∣
|SL|a · ‖f‖∞

∑

m∈Nδ,L\SL
am

∣∣∣∣∣∣

= 2‖f‖∞ ·
||Nδ,L|a − |SL|a|

|Nδ,L|a

= 2‖f‖∞ ·
|Nδ,L \ SL|a
|Nδ,L|a

L→∞−−−−→ 2‖f‖∞ ·
λa(Nδ \ S)
λa(Nδ)

δ→0−−−→ 0,

where in the last step we use that the weight a generates a measure λa equivalent to
the Lebesgue measure. Thus λa(Nδ)→ λa(S) > 0 and λa(Nδ \ S)→ λa(∅) = 0.

Hence the approximation error has for all δ > 0 a limit for L→∞ which is arbi-
trarily small for δ → 0, and it remains to check the limit on the cubical approximation
Nδ instead of S, but this is straightforward:

1
|Nδ,L|

∑

m∈Mδ,L

f(m� x0)

=
1

|Nδ,L|
∑

Pi,L
∪iPi,L=Nδ,L

|Pi,L| ·
1
|Pi,L|

∑

m∈Pi,L
f(m� x0) L→∞−−−−→

∫

[0,1]d
f(x) dx,

according to the first step of this proof.

3.3. Weighted averages. Here we present an elementary result showing that
if the averages converge, then the weighted averages do, too.

Lemma 3.5. Given two sequences {bk}k and {fk}k such that bk ≥ 0 for all k, if

FN =
1
N

N∑

k=1

fk
N→∞−−−−→ 0,

and also aN ·N∑N
k=1 ak

N→∞−−−−→ a, for some a ∈ R, with ak =
∑k
n=1 bn, and

∑N
k=1 ak

N→∞−−−−→
∞, then ∑N

k=1 ak · fk∑N
k=1 ak

N→∞−−−−→ 0.

Proof. Consider first
N∑

n=1

n · bn =
N∑

n=1

bn ·N −
N−1∑

n=1

1 ·
n∑

k=1

bk = N · aN −
N−1∑

n=1

an,

which means that ∑N
n=1 n · bn∑N
n=1 an

N→∞−−−−→ a− 1.

Now
∑N
k=1 akfk∑N
k=1 ak

=
∑N
k=1

∑k
n=1 bn · fk∑N
k=1 ak

=
∑N
n=1 bn ·

∑N
k=n fk∑N

k=1 ak
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=
N

∑N
k=1 ak

N∑

n=1

[
bn · FN − bn ·

n

N
· Fn

]

= FN ·
N · aN∑N
k=1 ak

−
N∑

n=1

Fn ·
n · bn∑N
k=1 ak

.

Note that
∑N
n=1 Fn · n·bn∑N

k=1 ak
is bounded by a constant C and there is N1 such that

|FN · N ·aN∑N
k=1 ak

| < ε
3 for n > N1. Also, there exists N2 such that for n > N2 we have

∣∣∣∣∣
N2∑

n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣ ≤ C ·
∑N2
k=1 ak∑N
k=1 ak

≤ ε

3
.

Finally, we can choose N3 such that for N ≥ N3

∣∣∣∣∣
N2∑

n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣ <
ε

3
.

Then
∣∣∣∣∣

∑N
k=1 akfk∑N
k=1 ak

∣∣∣∣∣ ≤
∣∣∣∣∣FN ·

N · aN∑N
k=1 ak

∣∣∣∣∣+

∣∣∣∣∣
N2∑

n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣+

∣∣∣∣∣
N∑

n=N2+1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣

< ε

for n > max(N1, N2, N3).

The following corollary follows immediately by setting f = g − C.

Corollary 3.6. Let the coefficients ak be as in Lemma 3.5. If

1
N

N∑

k=1

gk
N→∞−−−−→ C,

then ∑N
k=1 ak · gk∑N
k=1 ak

N→∞−−−−→ C.

3.4. Asymptotic behavior of the Si. Now we turn to the main technical tool
to prove the main result.

Lemma 3.7. For x, τ ∈ (0, 1),

lim
ε→0

1
|Rε|

· S1 =
1
4
,(5)

lim
ε→0

ε2 · S3

S1
=

1
4
,(6)

lim
ε→0

ε · S2

S1
= 0.(7)

Remark 3.8. In the following proof we will show that the weighted averaging
condition holds for x, τ /∈ Q by using Birkhoff’s ergodic theorem, Theorem 3.1. This
leaves out the case when either x or τ is in Q. We have two ways of addressing this
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issue. We can compute explicitly the terms and obtain analytically the convergence
required for the weighted average condition; these are straightforward but tedious
computations, a sample of which is provided in Appendix A.

At the same time we can observe that it is enough to have the limits almost
everywhere in x, τ , as we are integrating Wτ (x) and the Lebesgue integral ignores
sets of null measure.

Proof of Lemma 3.7. As discussed above, we will consider only the case x, τ /∈ Q.
We first prove (5). We can use Birkhoff’s ergodic theorem. Define Tx(z) = z+ x:

this is a measure-preserving and uniquely ergodic transformation (since x 6∈ Q). Then

1
N

N−1∑

k=0

cos2(πkx) =
1
N

N−1∑

k=0

cos2
(
πT kx (0)

) N→∞−−−−→
∫ 1

0
cos2(πx) dx =

1
2
.

All the coefficients am are 1 in this case and the function is multiplicative. Then the
result follows immediately from Lemma 3.4 and the fact that

∫

[0,1]2
cos2(πx1) cos2(πx2) d(x1, x2) =

1
4
.

We prove now (6). For x, τ 6∈ Q we know from (5) that the denominator S1 ∼ |Rε|4 as
ε→ 0 for x 6= 0, 1. Hence the term in question has the same asymptotic behavior as

(8) ε2
S3

S1
∼ 4π2 ε2

|Rε|
·
∑

k,l∈Rε
k2 sin2(kπx) cos2(lπτ).

We define a = (ak,l)k,l with ak,l = k2, where we already saw in our example that this
generates a measure with Lebesgue density such that

(9) lim
ε→0

ε2 · |Rε|a|Rε|
= lim
ε→0

ε2 · 1
|Rε|

∑

k,l∈Rε
k2 =

λa(R)
λ(R)

,

where the rescaled domain is

R = {(η, ξ) ∈ R2| α	 <
√
ξ2 + η2 < α⊕},

which gives
Rε = ε−1R ∩ N2.

As dλa = η2 d(η, ξ) we obtain by elementary calculations using polar coordinates

λa(R)
λ(R)

=
4

π(α2
⊕ − α2

	)

∫

R

η2 d(η, ξ)

=
4

π(α2
⊕ − α2

	)

∫ π/2

0

∫ α⊕

α	

r3 cos(ϕ)2 dr dϕ =
1

α2
⊕ − α2

	

∫ α⊕

α	

r3 dr

=
1
4
α4
⊕ − α4

	
α2
⊕ − α2

	
=

1
4

(α2
⊕ + α2

	) =
1

4π2 .

Combining (8) and (9), it remains to show that we can apply the averaged Birkhoff’s
ergodic theorem to the sum. We already saw that it is sufficient to check this on large
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rectangles containing the origin. We define QL as in the weighted averaging condition
for α ∈ (0,∞)2 so that

QL = [1, α1L]× [1, α2L] ∩ N2 = I
(1)
L × I

(2)
L with I

(j)
L = [1, αjL] ∩ N .

Because of the rectangular shape we can split the sum

1
|QL|a

·
∑

(k,l)∈QL
k2 sin2(kπx) cos2(lπτ)

=
1∑

k∈I(1)L

k2 ·
∑

k∈I(1)L

k2 sin2(kπx) · 1∑
l∈I(2)L

1

∑

l∈I(2)L

cos2(lπτ)

∼ 1

|I(1)
L |
·
∑

k∈I(1)L

sin2(kπx) · 1

|I(2)
L |

∑

l∈I(2)L

cos2(lπτ)

L→∞−−−−→ 1
4

by the standard one-dimensional ergodic theorem, where we used Corollary 3.6 to
remove the weights. We can now use Lemma 3.4 to extend this to the ring and obtain

ε2 · S3

S1
∼ 4π2ε2 · |Rε|a|Rε|

· 1
|Rε|a

·
∑

k,l∈Rε
k2 sin2(kπx) cos2(lπτ) ε→0−−−→ 1

4
,

where we evaluated the value of the limit in (9).
Finally, we prove (7). As was the case in (6), we can calculate the sum of the

coefficients, factor them out, and see that the orders of magnitude of ε cancel out.
Then everything is reduced to the integral

∫

[0,1]2
cos(πx1) sin(πx1) cos2(πx2) d(x1, x2) = 0.

3.5. Proof of main result. We now have all the ingredients to complete the
proof of Theorem 2.3.

Proof of Theorem 2.3. From Lemma 3.7 we know that

Wτ (x) =
S3

S1
−
(
S2

S1

)2

∼ 1
4ε2

as ε→ 0.

By Theorem 2.2, the number of expected zeros on the horizontal line Lτ of length 1
is, for a given ε,

N =
1
π

∫ 1

0

√
1

4ε2
dx =

1
2π · ε .

This is the same as saying that the average pattern size is 1
N = 2πε.

4. General Fourier domains. We can consider domains in Fourier space that
are different from the quarter-ring but still scale with 1/ε. For all these domains we
obtain for the horizontal line that the average pattern size is again Cε−1, but now for
an explicit constant C that depends only on the size of the Fourier domain measured
with λa.
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Also the constant might be different along different directions (which are not
horizontal) in case we lose the symmetry in k and l in the Fourier domain, but we
will discuss that later in section 6.

On the other hand, for horizontal lines we can give an explicit constant, in terms
of the measure λa, and for vertical lines we can argue by symmetry. Let us discuss a
few explicit examples.

Consider the following mode domains, where we define as before for some γ ∈
(0, 1)

k1 =
α	
ε

=

√
1−√1− γ

2π2ε2
and k2 =

α⊕
ε

=

√
1 +
√

1− γ
2π2ε2

Rγε = {(k, l) ∈ N2| k1 <
√
k2 + l2 < k2},

Q1
ε = {(k, l) ∈ N2| 0 < k, l < k2},
Q2
ε = {(k, l) ∈ N2| k1 < k, l < k2},
Q3
ε = {(k, l) ∈ N2| k1 < k < k2, 2k1 < l < k1 + k2}.

Note that Rγε is the same quarter-ring-shaped domain as before and the others are
certain rectangles, all of them represented in Figure 6. For our main result, we will
also use the scaled ε-independent versions

Rγ = {(η, ξ) ∈ R2| α	 <
√
ξ2 + η2 < α⊕},

Q1 = (0, α⊕)2, Q2 = (α	, α⊕)2, Q3 = (α	, α⊕)× (2α	, α	 + α⊕),

Fig. 6. The ring Rγ and the alternative mode domains Qi, i = 1, 2, 3.
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so that
Rγε = ε−1Rγ ∩ N2 and Qiε = ε−1Qi ∩ N2 for i = 1, 2, 3 .

We provide numerical simulations on what the patterns look like on such do-
mains in Figure 7. They look quite different, although as we will see in the follow-
ing Lemma 4.1, the main result about the asymptotic density of zeros is in all four
cases Cε, only the constant C changes from case to case.

Lemma 4.1. Let Dε = ε−1D∩N2 be a scaled domain in Fourier space (for example
Rγε or Qiε for i = 1, 2, 3). Then the asymptotic (for ε → 0) density of zeros δ is on
horizontal lines through the pattern

δ(x) ∼ 1
2πε
·
√
λ(k2,1)(D)
λ(D)

,

while on vertical lines it is

δ(x) ∼ 1
2πε
·
√
λ(1,l2)(D)
λ(D)

.

Proof. This is a proof analogous to the one of Lemma 3.7. We obtain the following
asymptotic equivalences:

δ(x)2 ∼ S3

S1
∼ 1

4
· |Dε|(k2,1)

|Dε|
∼ 1

4ε2
· λ(k2,1)(D)

λ(D)
.

The statement on vertical lines simply follows by symmetry.

The correction factors λa(D)/λ(D) for the weights ak,l = k2 and the pattern sizes
in the following domains are

Domain Correction coeff. Avg. number of zeros Avg. pattern size

Rγε 1
1

2πε
2πε

Q1
ε

2/3
(
1 +
√

1− γ
) √

2/3
(
1 +
√

1− γ
)

2πε
2πε√

2/3
(
1 +
√

1− γ
)

Q2
ε

2/3
(
2 +
√
γ
) √

2/3
(
2 +
√
γ
)

2πε
2πε√

2/3
(
2 +
√
γ
)

These are, due to symmetry, the same results for horizontal or vertical lines, while for
the nonsymmetric Q3 we have

Q3
ε Correction coeff. Avg. number of zeros Avg. pattern size

horizontal 2/3
(
2 +
√
γ
) √

2/3
(
2 +
√
γ
)

2πε
2πε√

2/3
(
2 +
√
γ
)

vertical 2/3
(
8− 6

√
1− γ + 4

√
γ
) √

2/3
(
8− 6

√
1− γ + 4

√
γ
)

2πε
2πε√

2/3
(
8− 6

√
1− γ + 4

√
γ
)

In Figure 7 the simulations are run with γ = 0.7 and ε = 10−2. In those cases we
have the following rounded-off asymptotic values for the number of zeros on a line:
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x

y

x

y

x

y

x

y

R0.7
0.01 Q1

0.01

Q2
0.01 Q3

0.01

Fig. 7. Typical example of patterns generated by the Fourier domains presented in Figure 6.
We cannot really say why these quite different pattern are observed, as our results just give O(ε−1)
for the asymptotic number of zeros along a straight line. It seems that the pattern gets more and
more structured the smaller the domain is, and moreover the pattern size seems to decrease if the
Fourier modes are on average further away from (0, 0).

Domain Correction coeff. Avg. number of zeros Avg. pattern size

R0.7
0.01 1 15.915 (×1) 0.062832

Q1
0.01 1.032 16.167 (×1.016) 0.061856

Q2
0.01 1.891 21.887 (×1.375) 0.045690

Q3
0.01 (hor.) 1.891 21.887 (×1.375) 0.045690

Q3
0.01 (ver.) 5.374 36.894 (×2.318) 0.027105.

The size of the correction coefficient is not that straightforward to explain. While
Q1 is by far the largest domain, its correction is very close to 1. At the same time for
the smaller domains Q2 and Q3 the corrections are significantly larger than 1. This
can be explained by looking closer at the correction coefficient λ(k2,1)(D)/λ(D). For a
fixed size λ(D) of the domain, thanks to the weight k2 we can increase the correction
coefficient by moving the domain away from 0. Moreover, if we move D closer to
the k1-axis and further away from the k2-axis, then also the correction grows. This
is nicely visualized by the comparison of horizontal and vertical lines for Q3. The
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intuitive reasoning here is simple, as Fourier modes close to the k1-axis have much
faster oscillations in the x-direction than in the y-direction.

If we sample random horizontal lines in the numerical simulations represented
in Figure 7, we get the following number of zeros and average pattern sizes, which are
in good agreement with the predicted asymptotic results (the values are obtained by
averaging over 500 simulations for each domain):

Avg. number of zeros Avg. pattern size

Domain Predicted Sampled Predicted Sampled

R0.7
0.01 15.915 16.066 0.062832 0.060388

Q1
0.01 16.167 16.502 0.061856 0.058540

Q2
0.01 21.887 22.204 0.045690 0.044655

Q3
0.01 (ver.) 36.894 38.286 0.027105 0.026088.

It is surprising that the numerical result is in all four cases slightly biased in one
direction, compared to the asymptotic result, but we have no explanation for this.

5. Numerical simulations. In Figure 8 we plot the (rescaled) density of zeros
εδ(x) = ε

π

√
Wτ (x) for various values of ε on the domain R0.8. We scale by ε so

that the convergence to 1/2π is easily seen. We can observe that the density in fact
converges pointwise (apart from x = 0, 1). It even seems that the convergence is22 L. A. BIANCHI, D. BLÖMKER, AND P. WACKER
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Fig. 8. Three examples of the (rescaled) density of zeros εδ(x) for τ = 0.5 and γ = 0.8 on the ring-shaped
domain. These pictures are a graphical representation of the pointwise limit εδ(x) → 1

2π proven in Theorem 2.2.
Inside the domain the convergence seems to be uniform and very fast. Only at the boundary the convergence is slow.

5. Numerical Simulations. In Figure 8 we plot the (rescaled) density of zeros εδ(x) =
ε

π

√
Wτ (x) for various values of ε on the domain R0.8. We scale by ε so that the convergence to 1/2π

is easily seen. We can observe that the density in fact converges pointwise (apart from x = 0, 1).
It even seems that the convergence is uniform away from an arbitrarily small boundary layer and
that the convergence is very fast. We do not have a a heuristic explanation for this, as the speed
of convergence comes from the ergodic theorem.

In order to see the speed of convergence, we fix a point x0 ∈ (0, 1) and to track the value of
εδ(x0) for ε→ 0. This is done in Figure 9.

Once again we can read off the convergence to 1/2π but we can also quantify the convergence’s
disturbance by the “travelling wave” which goes to the borders of the interval: even if we choose a
point which is very close to 0 (the critical points), for example x0 = 10−2, we see that the magnitude

Fig. 8. Three examples of the (rescaled) density of zeros εδ(x) for τ = 0.5 and γ = 0.8 on the
ring-shaped domain. These pictures are a graphical representation of the pointwise limit εδ(x)→ 1

2π
proven in Theorem 2.3. Inside the domain the convergence seems to be uniform and very fast. Only
at the boundary the convergence is slow.
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Fig. 9. Values for εδ(x0) for various values of x0. The parameter ε is in a logarithmic scale on the abscissa
and the scaled value εδ(x) of the density of zeros is on the ordinate.

of the density grows very quickly at first until it hits the limit value and then exhibits a damped
oscillation around that asymptotic growth rate. When compared to Figure 8, we can imagine those
travelling waves approaching and going through such a value x0 until after some threshold ε, the
oscillation is negligible.

5.1. Numerical comparison with Cahn-Hilliard-Cook equation. As mentioned in the
Introduction, the average number of zeros along a line (horizontal, with correction term for sloped
lines) is expected to be 1/2πε not only in our model but also for the actual Cahn-Hilliard-Cook
equation. We will now provide numerical evidence in that sense.

To do so we use a standard semi-implicit spectral solver for the Cahn-Hilliard-Cook equation
to compute a solution of such equation seen as a time evolution up to some time T which is still in
the linear regime, as discussed in subsection 1.2. This solution depends in particular on the choice
of the parameter ε.

Fig. 9. Values for εδ(x0) for various values of x0. The parameter ε is in a logarithmic scale
on the abscissa and the scaled value εδ(x) of the density of zeros is on the ordinate.

uniform away from an arbitrarily small boundary layer and that the convergence is
very fast. We do not have a heuristic explanation for this, as the speed of convergence
comes from the ergodic theorem.

In order to see the speed of convergence, we fix a point x0 ∈ (0, 1) and track the
value of εδ(x0) for ε→ 0. This is done in Figure 9.

Once again we can read off the convergence to 1/2π but we can also quantify the
convergence’s disturbance by the “traveling wave” which goes to the borders of the
interval: even if we choose a point which is very close to 0 (the critical points), for
example, x0 = 10−2, we see that the magnitude of the density grows very quickly at
first until it hits the limit value and then exhibits a damped oscillation around that
asymptotic growth rate. When compared to Figure 8, we can imagine those traveling
waves approaching and going through such a value x0 until after some threshold ε,
the oscillation is negligible.

5.1. Numerical comparison with the Cahn–Hilliard–Cook equation. As
mentioned in the introduction, the average number of zeros along a line (horizontal,
with correction term for sloped lines) is expected to be 1/2πε not only in our model
but also for the actual Cahn–Hilliard–Cook equation. We will now provide numerical
evidence in that sense.

To do so we use a standard semi-implicit spectral solver for the Cahn–Hilliard–
Cook equation to compute a solution of such equation seen as a time evolution up to
some time T which is still in the linear regime, as discussed in subsection 1.2. This
solution depends in particular on the choice of the parameter ε.
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Once we have a solution at time T , we take a horizontal cut through the domain,
in the same way as seen in Figure 3, and we find the zeros along that line. We have
then the number of zeros along the line and the distances between two consecutive
ones.

We can take a Monte Carlo approach and do this several times for each chosen
value of the parameter ε, and then compare the (averaged) results obtained with those
predicted from Theorem 2.3 and the (averaged) ones coming from simulations of the
model, with the domain Rγε that best captures the essence of Cahn–Hilliard, as argued
in subsection 1.2. The results for the number of zeros are presented in Table 1, while
those for the distances between two consecutive zeros are in Table 2. An additional
visual comparison is provided in Figures 10 and 11, where we plot, for the simulations
of the model and of the Cahn–Hilliard–Cook equation, the number of zeros, and the
average distance, respectively

Table 1
Average number of zeros, with standard deviation, for different values of ε. For the model we

are considering the domain Rγε with γ = 0.7. For the model, we ran 500 simulations for ε = 0.01 and
ε = 0.005 and 100 simulations for ε = 0.001. For simulation of the Cahn–Hilliard-Cook equation,
we used 500, 500 and 100 iterations, respectively.

ε Predicted Simulated model Simulated Cahn–Hilliard–Cook

0.01 15.915 16.066± 2.307 15.134± 2.489

0.005 31.831 31.878± 3.354 29.776± 3.401

0.001 159.150 159.690± 7.150 151.240± 6.830

Table 2
Pattern size for different values of ε. For the model we are considering the domain Rγε with

γ = 0.7. For both the model and Cahn–Hilliard–Cook, we ran 500 simulations for ε = 0.01 and
ε = 0.005 and 100 simulations for ε = 0.001.

Predicted Simulated model Simulated Cahn–Hilliard–Cook

ε Average Average std Average std

0.01 0.062832 0.060388 0.033575 0.063650 0.037470

0.005 0.031416 0.030787 0.018617 0.032922 0.019638

0.001 0.0062832 0.0062375 0.0038216 0.006574 0.004077

The theory we present here concerns only the expected number of zeros of a
function in one dimension (which we apply to higher-dimensional solutions of the
Cahn–Hilliard–Cook equation by making cuts through the domain). But the problem
of getting an estimate on the pattern size is reciprocal to that. We can read Figure 11
not only horizontally, comparing the model and the Cahn–Hilliard–Cook equation, but
also vertically, confronting the average pattern size measured directly (top), and as the
reciprocal to the number of zeros (bottom). While not exactly the same (necessarily,
given how they are obtained), they closely resemble each other.

6. Sloped lines. As we have already mentioned, the result given in Theorem 2.3
is proven only for horizontal lines and by symmetry for vertical lines. We claim that
the result is far more general. In order to do so, we consider any sloped line through
the origin. For the ring Rγ we will see that we obtain the same asymptotic behavior.

To fix the setting we assume y = µx with µ ∈ (0, 1]. This last assumption is just
for simplicity of presentation, as we can use the reflection at the diagonal to get the
analogous result for the remaining half square.
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Fig. 10. Histograms of the number of zeros of the model (left) and of the Cahn–Hilliard–Cook
equation (right). In both cases we ran 500 simulations setting the parameter ε to 0.005.
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Fig. 11. Comparison of average “pattern size” obtained for both the model (left) and the Cahn–
Hilliard–Cook equation (right). In both cases we ran 5000 simulations, setting ε = 0.01. The top
figures show the average distance between subsequent zeros, directly measured, and the bottom figures
depict the inverse of the number of zeros in each of the simulations. Note that bars are not equally
spaced: they are centered in the inverses of the natural numbers 26 down to 6, as the reciprocal of
the number of zeros can only assume values of the form 1/N , where N ∈ N, and in this way the
plots are comparable with each other.
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Note that considering lines through the origin is not restrictive, we do this only
for simplicity of presentation. The more general case y = µx+ τ̂ behaves in the same
way, using the trigonometric formulas for the cosine of a sum, which just adds to the
number of the terms involved.

The important thing in that situation is to consider only the intersection (x, µx+
τ̂) ∩ [0, 1]2, so we have to pay attention to the x’s that are in our domain, and to the
corresponding length of the segment we need for the renormalization.

For y = µx, we have, instead of wτ (x), the following vector of functions:

wµ(x) =


cos(kπx) cos(lπµx)/

(∑

m,n

cos2(mπx) cos2(nπµx)

)1/2


k,l

and also

Wµ(x) =

∑
k,l

[ −S1(kπ sin(kπx) cos(lπµx) + lπµ sin(lπµx) cos(kπx))
+ cos(kπx) cos(lπµx)S̃2

]2

(S1)3

=

∑
k,l(kπ sin(kπx) cos(lπµx) + lπµ sin(lπµx) cos(kπx))2

S1
−
(
S̃2

S1

)2

=
S̃3

S1
−
(
S̃2

S1

)2

,

where S1 is as in the horizontal case with τ := µx and

S̃2 =
∑

k,l

cos(kπx) cos(lπτ)(kπ sin(kπx) cos(lπτ) + lπµ sin(lπτ) cos(kπx))

S̃3 =
∑

k,l

(kπ sin(kπx) cos(lπτ) + lπµ sin(lπτ) cos(kπx))2,

which are the generalizations of the S2 and S3 encountered before. To prove that
things work the same way in this case, we have to prove first the following:

(10) lim
ε→0

ε2

(
S̃2

S1

)2

= 0.

This can be shown with arguments analogous to those for horizontal lines. The main
new tool we need is that the averaging works for weights (k, 1), (1, l), and (k, l). Then
we need to notice that any term with a sin-function averages in the limit to 0 in the
Birkhoff’s ergodic theorem. This implies (10).

Second, with the same argument, we see the following asymptotic equivalence:

ε2
S̃3

S1
∼ ε2 1

S1

(∑

k,l

k2π2 sin(kπx)2 cos(lπµx)2 + µ2
∑

k,l

l2π2 sin(lπµx)2 cos(kπx)2
)

This implies the following theorem.

Theorem 6.1. For sloped lines y = µx with µ ∈ [0.1] and general Fourier–
domains D we have that

δ(x)2 ∼ 1
4ε2
· 1
λ(D)

(
λ(k2,1)(D) + µ2λ(1,l2)(D)

)
.
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If the domain D is symmetric with respect to the reflection along the diagonal,
like, for example, the ring Rγ or the squares Q1 and Q2, then the density of zeros
δ(x) is compared to a horizontal line modified by a factor

√
1 + µ2. But this just

compensates for the length of the segment, which is not 1 as for the horizontal line,
but

√
1 + µ2. Now the two factors cancel and the average pattern size is for every

sloped line the same as for the horizontal line. Thus we obtain that for any sloped
line the average pattern size is the same and of order ε.

Let us discuss in more detail the case of Q2 and Q3, where the nodal lines seem
to be diagonal. The interesting question is what happens if we consider a sloped line
almost parallel to those pattern. First the average number of zeros is finite, which
follows from the result by Edelman and Kostlan; thus the probability is zero that our
line coincides on a whole interval with a nodal line and produces infinitely many zeros.
Moreover even if the nodal line is almost diagonal it still bends and has oscillations
on the scale of order ε. So even if our line is almost on the nodal line, the spacing
of zeros will be of order ε. But even if the density of zeros is high at this place, the
chances are high that our line in a place further away will fully miss nodal lines and
will lie between them without hitting any zero there. But this does not contradict
our main result for the average number of zeros along a line. It does not say that the
zeros are evenly spaced along a line.

Appendix A. The rational case. In the proof of Lemma 3.7 we considered
only irrational values of x and τ . This is sufficient because we are interested in the
density on a set of Lebesgue measure 1 because we integrate it anyway. But as an
additional consideration, for rational values, the periodicity of trigonometric functions
yields a nonergodic averaging result of the same type as on the irrational numbers.

We restrict ourselves to a particularly easy case but the actual proof is a straight-
forward generalization.

Let x = 1
n and N = l · n for l, n ∈ N without loss of generalization and consider

1
N

N∑

k=1

cos2(kπx) =
1

2N

N∑

k=1

cos
(

2πk
1
n

)

=
1
2

+
1
2
·
(

1
2

sin( 2πN+π
n )− 1

sin(πn )

)

=
1
2
− 1

4N
N→∞−−−−→ 1

2
.

This corresponds nicely to the ergodic result

lim
N→∞

1
N

N∑

k=1

cos2(kπx) =
1
2

for irrational x. In this way, we can, for example, prove

1
|Rε|

S1 =
1
|Rε|

∑

k,l∈Rε
cos2(kπx) cos2(lπτ) N→∞−−−−→ 1

4
.
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