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Abstract. In this paper we consider the “exterior approach” to solve the inverse obstacle problem for the heat
equation. This iterated approach is based on a quasi-reversibility method to compute the solution from the Cauchy
data while a simple level set method is used to characterize the obstacle. We present several mixed formulations
of quasi-reversibility that enable us to use some classical conforming finite elements. Among these, an iterated
formulation that takes the noisy Cauchy data into account in a weak way is selected to serve in some numerical
experiments and show the feasibility of our strategy of identification.
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1. Introduction. This paper deals with the inverse obstacle problem for the heat equation,
which can be described as follows. We consider a bounded domain D ⊂ Rd, d ≥ 2, which contains
an inclusion O. The temperature in the complementary domain Ω = D \ O satisfies the heat
equation while the inclusion is characterized by a zero temperature. The inverse problem consists,
from the knowledge of the lateral Cauchy data (that is both the temperature and the heat flux) on
a subpart of the boundary ∂D during a certain interval of time (0, T ) such that the temperature
at time t = 0 is 0 in Ω, to identify the inclusion O. Such kind of inverse problem arises in thermal
imaging, as briefly described in the introduction of [9]. The first attempts to solve such kind of
problem numerically go back to the late 80’s, as illustrated by [1], in which a least square method
based on a shape derivative technique is used and numerical applications in 2D are presented. A
shape derivative technique is also used in [11] in a 2D case as well, but the least square method
is replaced by a Newton type method. Lastly, the shape derivative together with the least square
method have recently been used in 3D cases [18]. The main feature of all these contributions is
that they rely on the computation of forward problems in the domain Ω×(0, T ): this computation
obliges the authors to know one of the two lateral Cauchy data (either the temperature or the
heat flux) on the whole boundary ∂D of D. In [20], the authors introduce the so-called “enclosure
method”, which enables them to recover an approximation of the convex hull of the inclusion
without computing any forward problem. Note however that the lateral Cauchy data has to be
known on the whole boundary ∂D.

The present paper concerns the “exterior approach”, which is an alternative method to solve
the inverse obstacle problem. Like in [20], it does not need to compute the solution of the forward
problem and in addition, it is applicable even if the lateral Cauchy data are known only on a
subpart of ∂D, while no data are given on the complementary part. The “exterior approach”
consists in defining a sequence of domains that converges in a certain sense to the inclusion we are
looking for. More precisely, the nth step consists,

1. for a given inclusion On, in approximating the temperature in Ωn× (0, T ) (Ωn := D \On)
with the help of a quasi-reversibility method,

2. for a given temperature in Ωn× (0, T ), in computing an updated inclusion On+1 with the
help of a level set method.

Such “exterior approach” has already been successfully used to solve inverse obstacle problems
for the Laplace equation [5, 4, 15] and for the Stokes system [6]. It has also been used for the
heat equation in the 1D case [2]: the problem in this simple case might be considered as a toy
problem since the inclusion reduces to a point in some bounded interval. The objective of the
present paper is to extend the “exterior approach” for the heat equation to any dimension of
space, with numerical applications in the 2D case. Let us shed some light on the two steps of
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2 The inverse obstacle problem for the heat equation

the “exterior approach”. In the step 1, the quasi-reversibility method is used to approximate
the solution to the heat equation with lateral Cauchy data and zero initial condition in a fixed
domain, which is a linear ill-posed problem. Quasi-reversibility was first introduced in [22] and
roughly speaking consists, in its classical form, of a Tikhonov regularization applied to a bounded
heat operator ∂t. − ∆. from a Hilbert space to another, so that such operator is injective with
dense range, but not surjective. Quasi-reversibility has been then extensively studied by M. V.
Klibanov [21]. The main feature of this non iterative method is that it can be directly interpreted
as a weak formulation and hence is well adapted to a finite element method. However, such weak
formulation corresponds to a fourth-order problem and requires some Hermite type finite elements
[5]. This was our main motivation to introduce some mixed formulations of quasi-reversibility in
order to replace the fourth-order problem by a system of two second-order problems for which
Lagrange finite elements are sufficient. Those mixed formulations were introduced first for the
Laplace equation [3, 15], then for the Stokes system [6] and eventually for the heat/wave equations
[2]. Besides, our mixed formulations have some communalities with the regularization methods
recently proposed in [10, 13]. In the step 2 of the “exterior approach”, we use a non standard level
set method based on the resolution of a Poisson equation instead of a traditional eikonal equation.
Its main advantage is that the Poisson equation can be solved with the help of simple Lagrange
finite elements based on the mesh that is already used for the quasi-reversibility method. Such
level set method was first used for the Laplace equation in [5, 4, 15] and for the Stokes system in
[6].

The article is organized as follows. In section 2 we introduce our inverse obstacle problem
as well as several uniqueness results. Section 3 is dedicated to different mixed formulations of
quasi-reversibility to solve the heat equation with lateral Cauchy data and initial condition. In
section 4 we present our algorithm to solve the inverse obstacle problem. Numerical experiments
are eventually shown in section 5.

2. The statement of the inverse problem and some uniqueness results.

2.1. Statement of the problem. Let D and O be two open bounded domains of Rd, with
d ≥ 2, the boundaries ∂D and ∂O of which are Lipschitz continuous. The domains D and O are
such that O ⊂ D and Ω := D \ O is connected. Let Γ be an open non empty subset of ∂D. For
some real T > 0 and a pair of lateral Cauchy data (g0, g1) on Γ × (0, T ), the inverse obstacle
problem consists to find O such that for some function u ∈ L2(0, T ;H1(Ω)):

∂tu−∆u = 0 in Ω× (0, T )
u = g0 on Γ× (0, T )
∂νu = g1 on Γ× (0, T )
u = 0 on ∂O × (0, T )
u = 0 on Ω× {0},

(2.1)

where ν is the unit outward normal vector on ∂Ω. We have to cope with problem (2.1) if for
example, starting from a zero temperature in the domain Ω, we try to recover the inclusion O
by imposing a heat flux g1 on the accessible part of the boundary Γ during the interval of time
(0, T ) and by measuring the resulting temperature on the same part of the boundary during the
same interval of time. On the inaccessible part of the boundary ∂D \ Γ, no data is provided.
The assumption u ∈ L2(0, T ;H1(Ω)) is sufficient to properly define all the boundary conditions
of problem (2.1). First of all, u|Γ×(0,T ) ∈ L2(0, T ;H1/2(Γ)) and u|∂O×(0,T ) ∈ L2(0, T ;H1/2(∂O)).

Let us now introduce the set Q = Ω× (0, T ) and the vector field U ∈ Rd+1 defined in Q by

U = (∇u,−u) = (∂xi
u,−u), i = 1, · · · , d. (2.2)

We clearly have divd+1U = ∆u − ∂tu = 0 in Q, which implies that U ∈ Hdiv,Q := {U ∈
(L2(Q))d+1, divd+1U ∈ L2(Q)}. As a consequence we have U · νd+1 ∈ H−1/2(∂Q), where νd+1 is
the unit outward normal on ∂Q. In particular, we conclude that ∂νu|Γ×(0,T ) ∈ H−1/2(Γ× (0, T ))

and u|Ω×{0} ∈ H−1/2(Ω× {0}).
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Remark 1. It is important to note that since in (2.1) we have no boundary condition on
the complementary part of Γ in ∂D, we cannot benefit from some “hidden regularity” and more
generally from classical regularity results for the heat equation.

2.2. A uniqueness result. Uniqueness for problem (2.1) is well-known (see for example
[11]). However we state and prove the result for sake of self-containment and in order to be precise
on regularity assumptions.

Theorem 2.1. For i = 1, 2, let two domains Oi and corresponding functions ui ∈ L2(0, T ;H1(Ωi))
satisfy problem (2.1) with data (g0, g1) 6= 0. Assume in addition that ui ∈ L2(0, T ;C0(Ωi)). Then
we have O1 = O2 and u1 = u2.

Proof. Let us consider Ω̃ the connected component of D \O1 ∪O2 which is in contact with Γ,

and Õ := D \ Ω̃. The function u = u1 − u2 satisfies in Ω̃ the problem ∂tu−∆u = 0 in Ω̃× (0, T )
u = 0 on Γ× (0, T )
∂νu = 0 on Γ× (0, T ).

By Holmgren’s theorem we obtain that u vanishes in Ω̃, that is u1 = u2 in Ω̃. Assume that O2

is not contained in O1, which implies that the open domain R2 = Õ \ O2 is not empty. We have
u2 = 0 on ∂R2 and since u2 ∈ L2(0, T ;C0(R2)) ∩ L2(0, T ;H1(R2)), from [7] (see theorem IX.17
and remark 20) we obtain that u2 ∈ L2(0, T ;H1

0 (R2)). We now use the heat equation for u2 and
obtain

d

dt

(∫
R2

u2
2 dx

)
= −

∫
R2

|∇u2|2 dx ≤ 0.

The initial condition satisfied by u2 enables us to conclude that u2 vanishes in R2×(0, T ). Whence,
from the Holmgren’s theorem again, we obtain that u2 vanishes in Ω2×(0, T ), which is incompatible
with the fact that (g0, g1) 6= 0. This implies that O2 ⊂ O1 and we prove similarly that O1 ⊂ O2,
which completes the proof.

2.3. Absence of initial condition. It is a natural question to ask what is the role of the
initial condition u = 0 in Ω×{0}. It is not difficult to see that, in the absence of initial condition in
problem (2.1), uniqueness does not hold. Indeed, let us consider for d = 2 a domain D that contains
the square S = (0, 1) × (0, 1). Such square contains itself the square S̃ = (1/4, 3/4) × (1/4, 3/4).
Let us now define for n ∈ N

λn = 4nπ
√

2, un(x1, x2, t) = e−λ
2
nt sin(4nπx1) sin(4nπx2).

The function u1 is clearly a solution to the heat equation in D that vanishes both on ∂S and
∂S̃. Hence it is a counterexample to uniqueness since two different obstacles are compatible with
the same lateral Cauchy data. One could then expect that uniqueness is restored if we add extra
lateral Cauchy data. This is not true, since all the functions un are solutions to the heat equation
in D, vanish both on ∂S and ∂S̃ and provide an infinite (still countable) number of lateral Cauchy
data.

2.4. Non zero initial condition. In view of the above non uniqueness result when no
information on the initial condition is given, it is another natural question whether we have
uniqueness if we assume that the initial condition is u = u0 in Ω× {0}, where u0 is known but is
not identically zero. To our best knowledge this question is open. However, there exists at most
one obstacle which is compatible with two pairs of Cauchy data (g0, g1) and (h0, h1) associated
with two functions u and v with (g0, g1) 6= (h0, h1). This result is simply obtained by applying
the uniqueness theorem 2.1 to the function u−v, which satisfies problem (2.1) for a non vanishing
pair of Cauchy data.
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2.5. Non negative initial condition. We complete this review of uniqueness results by
the special case of non negative initial condition and homogeneous Dirichlet data on the whole
boundary ∂D. The modified inverse obstacle problem we consider now consists, for some u0 on
Ω× {0} and g1 on Γ× (0, T ), to find O such that for some function u:

∂tu−∆u = 0 in Ω× (0, T )
u = 0 on ∂D × (0, T )

∂νu = g1 on Γ× (0, T )
u = 0 on ∂O × (0, T )
u = u0 on Ω× {0}.

(2.3)

We have the following uniqueness result.
Theorem 2.2. Let us consider u0 ∈ L2(Ω). For i = 1, 2, let two domains Oi and correspond-

ing functions ui ∈ L2(0, T ;H1(Ωi)) ∩ C0([0, T ];L2(Ωi)) satisfy problem (2.3) with g1 6= 0 and
u0 ≥ 0. If we assume in addition that ui ∈ L2(0, T ;C0(Ωi)) then we have O1 = O2 and u1 = u2.

Proof. We start the proof exactly the same way as in the proof of theorem 2.1 and we reuse
the same notations. We hence have u1 = u2 in Ω̃. Assume that O2 is not contained in O1, which
implies that there exists x ∈ ∂O2 and ε > 0 such that B(x, ε) ⊂ Ω1, where B(x, ε) is the ball of
center x and radius ε. By continuity of u2 up to the boundary of Ω2 and the fact that u2 = 0 on
∂O2 × (0, T ), we have u1(x, ·) = 0 on (0, T ). Thanks to interior regularity of function u1, such
equality is pointwise, that is u1(x, t) = 0, for all t ∈ (0, T ). Now let us use the mean value property
for the heat equation (see [16]). We define the heat ball E(x, t) of radius r in Ω× (0, T ) by

E(x, t) =

{
(y, s) ∈ Ω× (0, T ), Φ(x− y, t− s) ≥ 1

rd

}
,

with Φ the fundamental solution of the heat equation

Φ(z, τ) =
H(τ)

(4πτ)d/2
e−|z|

2/4τ ,

and H the Heavyside function. A short computation proves that

E(x, t) =

{
(y, s) ∈ Ω× (0, T ), y ∈ B(x, α(s)), t− r2

4π
≤ s ≤ t

}
, (2.4)

with

α(s) =

√
2d(t− s) ln

(
r2

4π(t− s)

)
.

We note that for (y, s) ∈ E(x, t), α(s) ≤ r
√
d/2π. As a result, for sufficiently small r, E(x, t) ⊂

B(x, ε)× (0, T ) for all t ∈ (0, T ). The mean value property implies that

u1(x, t) =
1

4rd

∫
E(x,t)

u1(y, s)
|y − x|2

(s− t)2
dyds.

By the maximum principle for the heat equation (see [7], theorem X.3), we have that u1 ≥ 0
in Ω1 × (0, T ). Therefore, that u1(x, t) = 0 for all t ∈ (0, T ) implies that u1 = 0 in E(x, t) for
all t ∈ (0, T ). Now let us denote 2a = r2/4π for sake of simplicity. For any t ∈ [2a, T − a/2]
and s ∈ [t − a, t − a/2] ⊂ [t − 2a, t], α(s) ≥

√
da ln 2, which means in view of (2.4) that for

t ∈ [2a, T − a/2], the heat ball E(x, t) contains the domain B(x,
√
da ln 2) × (t − a, t − a/2). By

Holmgren’s theorem, u1 = 0 in Ω1 × (t − a, t − a/2) for all t ∈ [2a, T − a/2], which implies that
u1 = 0 in Ω1× (a, T − a). Since the result is true for all sufficiently small a we obtain that u1 = 0
in Ω1 × (0, T ), which contradicts the fact that g1 6= 0. Then O2 ⊂ O1 and the reverse inclusion is
obtained the same way.
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3. Some quasi-reversibility methods for the heat equation. In this section we consider
the heat equation with lateral Cauchy data and initial condition: for a pair of lateral Cauchy data
(g0, g1) on Γ× (0, T ), find u ∈ L2(0, T ;H1(Ω)) such that

∂tu−∆u = 0 in Ω× (0, T )
u = g0 on Γ× (0, T )
∂νu = g1 on Γ× (0, T )
u = 0 on Ω× {0}.

(3.1)

The problem (3.1) is well-known to be ill-posed, however the Holmgren’s theorem implies unique-
ness of the solution u with respect to the data (g0, g1).

3.1. A H1-formulation. We introduce the following open subsets of ∂Q: Γ̃ = ∂Ω \ Γ,
Σ = Γ × (0, T ), Σ̃ = Γ̃ × (0, T ), S0 = Ω × {0}, ST = Ω × {T} as well as the following functional

sets. The space H
1/2

Σ̃,ST
(Σ) is the set of traces on Σ of functions in H1(Q) which vanish on Σ̃

and on ST . Its dual space is denoted H
−1/2
S0

(Σ), which coincides with the set of restrictions to

Σ of distributions of H−1/2(∂Q) the support of which is contained in Σ ∪ Σ̃ ∪ ST . Lastly, for
g0 ∈ L2(0, T ;H1/2(Γ)), we set

Hg = {u ∈ L2(0, T ;H1(Ω)), u|Σ = g0}, H0 = {u ∈ L2(0, T ;H1(Ω)), u|Σ = 0},

Ṽ0 = {λ ∈ H1(Q), λ|Σ̃ = 0, λ|ST
= 0}.

Due to Poincaré inequality, the spaces H0 and Ṽ0 can be endowed with the norms (
∫
Q
|∇·|2 dxdt)1/2

and || · ||, respectively, where || · || is defined by

|| · ||2 =

∫
Q

(∂t·)2 dxdt+

∫
Q

|∇ · |2 dxdt (3.2)

and the corresponding scalar product is denoted by ((·, ·)). We will need the following lemma,
which is a weak characterization of the solution to problem (3.1).

Lemma 3.1. For (g0, g1) ∈ L2(0, T ;H1/2(Γ)) ×H−1/2
S0

(Σ), the function u ∈ L2(0, T ;H1(Ω))

is the solution to problem (3.1) if and only if u ∈ Hg and for all µ ∈ Ṽ0,

−
∫
Q

u ∂tµdxdt+

∫
Q

∇u · ∇µdxdt =

∫
Σ

g1 µdsdt, (3.3)

where the meaning of the last integral is duality between H
−1/2
S0

(Σ) and H
1/2

Σ̃,ST
(Σ).

Proof. To begin with, let us assume that u ∈ Hg and satisfies the weak formulation (3.3). The
definition of Vg immediately implies that u = g0 on Γ× (0, T ). By first choosing µ = φ ∈ C∞0 (Q),
we obtain ∂tu−∆u = 0 in Q in the distributional sense. By using the definition (2.2), we conclude
that divd+1U = 0. In addition, from a classical integration by parts formula, we have for all
µ ∈ H1(Q), ∫

Q

U · ∇d+1µdX = −
∫
Q

divd+1U µdX +

∫
∂Q

U · νd+1 µdS,

where ∇d+1 = (∇, ∂t), X is the Lebesgue measure on Q while S is the corresponding surface
measure on ∂Q and the last integral has the meaning of duality between H−1/2(∂Q) and H1/2(∂Q).
Now, for µ ∈ Ṽ0 and given that divd+1U = 0, we obtain∫

Q

U · ∇d+1µdX =

∫
Σ∪S0

U · νd+1 µdS, (3.4)
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where the last integral has the meaning of duality between H−1/2(Σ∪ S0) and H
1/2
00 (Σ∪ S0), and

H
1/2
00 (Σ∪S0) denotes the space of traces on Σ∪S0 of functions in H1(Q) which vanish on Σ̃∪ST .

The weak formulation (3.3) is equivalent to∫
Q

U · ∇d+1µdX =

∫
Σ

g1 µdS, ∀µ ∈ Ṽ0

that is to ∫
Q

U · ∇d+1µdX =

∫
Σ∪S0

g̃1 µdS, ∀µ ∈ Ṽ0, (3.5)

where g̃1 is the extension by 0 of g1 to Σ ∩ S0 and the last integral has the meaning of duality

between H−1/2(Σ∪S0) and H
1/2
00 (Σ∪S0). The distribution g̃1 is well defined in H−1/2(Σ∪S0) from

the fact that g1 ∈ H−1/2
S0

(Σ). Comparing equations (3.4) and (3.5) we end up with U · νd+1 = g̃1

in the sense of H−1/2(Σ∪S0), which implies both ∂νu = g1 on Σ and u = 0 on S0, that is u solves
problem (3.1). We prove similarly that if u ∈ L2(0, T ;H1(Ω)) solves the problem (3.1) then it
satisfies u ∈ Hg and the weak formulation (3.3).

The H1-formulation of quasi-reversibility consists of the following problem for some real ε > 0:

for (g0, g1) ∈ L2(0, T ;H1/2(Γ))×H−1/2
S0

(Σ), find (uε, λε) ∈ Hg×Ṽ0 such that for all (v, µ) ∈ H0×Ṽ0,



−
∫
Q

v ∂tλε dxdt+

∫
Q

∇v · ∇λε dxdt+ ε

∫
Q

∇uε · ∇v dxdt = 0,

−
∫
Q

uε ∂tµdxdt−
∫
Q

∂tλε ∂tµdxdt

+

∫
Q

∇uε · ∇µdxdt−
∫
Q

∇λε · ∇µdxdt =

∫
Σ

g1 µdsdt,

(3.6)

where the last integral has the meaning of duality between H
−1/2
S0

(Σ) and H
1/2

Σ̃,ST
(Σ).

Theorem 3.2. For any (g0, g1) ∈ L2(0, T ;H1/2(Γ)) × H
−1/2
S0

(Σ), the problem (3.6) has

a unique solution (uε, λε) in Hg × Ṽ0. Furthermore, if there exists a (unique) solution u ∈
L2(0, T ;H1(Ω)) to problem (3.1) associated with data (g0, g1), then the solution (uε, λε) to problem
(3.6) associated with the same data (g0, g1) satisfies

lim
ε→0

uε = u in L2(0, T ;H1(Ω)), lim
ε→0

λε = 0 in H1(Q).

Proof. We first prove well-posedness of the quasi-reversibility formulation. Since we have
assumed that g0 ∈ L2(0, T ;H1/2(Γ)), the set Hg contains at least one element Φ. In order to use
the Lax-Milgram lemma, we define ûε = uε − Φ so that the problem (3.6) is equivalent to find
(ûε, λε) ∈ H0 × Ṽ0 such that for all (v, µ) ∈ H0 × Ṽ0,

A((ûε, λε), (v, µ)) = L(v, µ).

Here L is a continuous linear form on H0 × Ṽ0 (which we don’t give explicitly as a function of Φ),
and A is the continuous bilinear form on H0 × Ṽ0 given by

A((û, λ), (v, µ)) = −
∫
Q

v ∂tλ dxdt+

∫
Q

∇v · ∇λ dxdt+

∫
Q

û ∂tµdxdt

−
∫
Q

∇û · ∇µdxdt+ ε

∫
Q

∇û · ∇v dxdt+

∫
Q

∂tλ∂tµdxdt+

∫
Q

∇λ · ∇µdxdt.
(3.7)

The Lax-Milgram lemma relies on the coercivity of A on the space H0×Ṽ0, which is straightforward
from

A((û, λ), (û, λ)) = ε ||û||2L2(0,T ;H1(Ω)) + ||λ||2. (3.8)
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Now let us prove the convergence of the quasi-reversibility solution to the exact solution for exact
data. By the lemma 3.1, the exact solution satisfies u ∈ Hg and (3.3). By subtracting the equation

(3.3) to the second equation of problem (3.6), we obtain that for all (v, µ) ∈ H0 × Ṽ0,

−
∫
Q

v ∂tλε dxdt+

∫
Q

∇v · ∇λε dxdt+ ε

∫
Q

∇uε · ∇v dxdt = 0,

−
∫
Q

(uε − u) ∂tµdxdt−
∫
Q

∂tλε ∂tµdxdt

+

∫
Q

∇(uε − u) · ∇µdxdt−
∫
Q

∇λε · ∇µdxdt = 0.

(3.9)

We select the test functions v and µ as v = uε − u ∈ H0 and µ = λε ∈ Ṽ0 in the above system
(3.9). By subtracting the two obtained equations, we end up with

ε

∫
Q

∇uε · ∇(uε − u) dxdt+

∫
Q

(∂tλε)
2
dxdt+

∫
Q

|∇λε|2 dxdt = 0, (3.10)

which can be simply rewritten as

ε ||uε||2L2(0,T ;H1(Ω)) + ||λε||2 = ε ((uε, u))L2(0,T ;H1(Ω)).

It is then easy to derive that

||uε||L2(0,T ;H1(Ω)) ≤ ||u||L2(0,T ;H1(Ω)), ||λε|| ≤
√
ε ||u||L2(0,T ;H1(Ω)). (3.11)

From the first majoration (3.11) uε is bounded in L2(0, T ;H1(Ω)). There exists a subsequence of
uε, still denoted uε, that weakly converges to some w ∈ L2(0, T ;H1(Ω)), which happens to belong
to the set Hg since such set is weakly closed.
Passing to the limit in the second equation of (3.6) and using the second majoration (3.11), we
obtain that for all µ ∈ Ṽ0,

−
∫
Q

w ∂tµdxdt+

∫
Q

∇w · ∇µdxdt =

∫
Σ

g1 µdsdt,

that is w solves problem (3.1) by using lemma 3.1 again. Uniqueness in problem (3.1) implies that
w = u, so that uε weakly converges to u in L2(0, T ;H1(Ω)). The weak convergence and the first
majoration (3.11) imply strong convergence. A classical contradiction argument proves that the
whole sequence uε (not only the subsequence) converges to u in L2(0, T ;H1(Ω)).

Remark 2. Our H1-formulation of quasi-reversibility (3.6) can be considered as an im-
provement of the formulation (13) proposed in [2] in the sense that the regularity of u is only
L2(0, T ;H1(Ω)) instead of H1(Q), which coincides with L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)).

3.2. Some Hdiv-formulations. Another family of mixed quasi-reversibility methods can be
proposed by rewriting problem (3.1) as

∂tu− div p = 0 in Ω× (0, T )
∇u− p = 0 in Ω× (0, T )
u = g0 on Γ× (0, T )

p · ν = g1 on Γ× (0, T )
u = 0 on Ω× {0}.

(3.12)

We assume in this section that the exact solution u satisfies the more restrictive condition u ∈
H1(Q).
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3.2.1. A basic formulation. Let us introduce the space H
1/2
S0

(Σ) of traces on Σ of functions

in H1(Q) which vanish on S0. For g0 ∈ H1/2
S0

(Σ) and g1 ∈ L2(0, T ;H−1/2(Γ)), we also consider
the sets

Vg = {u ∈ H1(Q), u|Σ = g0, u|S0
= 0}, V0 = {u ∈ H1(Q), u|Σ = 0 u|S0

= 0},

Wg = {p ∈ L2(0, T ;Hdiv,Ω), p · ν|Σ = g1}, W0 = {p ∈ L2(0, T ;Hdiv,Ω), p · ν|Σ = 0},

where Hdiv,Ω denotes the space of vector functions p ∈ (L2(Ω))d such that div p ∈ L2(Ω). The
spaces Hdiv,Ω and L2(0, T ;Hdiv,Ω) are naturally endowed with the norms || · ||div,Ω and || · ||div

defined by

|| · ||2div,Ω =

∫
Ω

(
| · |2 + (div ·)2

)
dx, || · ||2div =

∫ T

0

|| · ||2div,Ω dt,

respectively. The scalar product which corresponds to norm || · ||div is denoted by ((·, ·))div. The
space V0 is endowed with the norm || · || already defined by (3.2). In view of (3.12), another way

to regularize problem (3.1) is for some real ε > 0: for (g0, g1) ∈ H1/2
S0

(Σ) × L2(0, T ;H−1/2(Γ)),
find (uε,pε) ∈ Vg ×Wg which minimizes the functional

Jε(u,p) =

∫
Q

(
(∂tu− div p)2 + |∇u− p|2

)
dxdt+ ε

∫
Q

(
(∂tu)2 + |∇u|2 + |p|2 + (div p)2

)
dxdt.

The optimality for such minimization problem leads to the following mixed formulation for some

ε > 0: for (g0, g1) ∈ H
1/2
S0

(Σ) × L2(0, T ;H−1/2(Γ)), find (uε,pε) ∈ Vg × Wg such that for all
(v, q) ∈ V0 ×W0 

∫
Q

(∂tuε − div pε)∂tv + (∇uε − pε) · ∇v) dxdt

+ε

∫
Q

(∂tuε ∂tv +∇uε · ∇v) dxdt = 0,∫
Q

((div pε − ∂tuε)div q + (pε −∇uε) · q) dxdt

+ε

∫
Q

(pε · q + (div pε)(div q)) dxdt = 0.

(3.13)

3.2.2. A relaxed formulation. In practice, the lateral Cauchy data (g0, g1) on Γ × (0, T )
are measurements and then are likely to be corrupted by noise. It is then tempting to modify
the formulation (3.13) as follows: on the one hand we assume that the data g0, g1 belong to
L2(0, T ;L2(Γ)), on the other hand we take them into account in a weak way rather than in
a strong way. To this aim, the strong conditions u = g0 and p · ν = g1 on Γ × (0, T ) have
to be removed from the sets Vg and Wg, respectively. Moreover, since for a vector function p in
L2(0, T ;Hdiv,Ω) the trace p·ν on Γ×(0, T ) is only in L2(0, T ;H−1/2(Γ)) and not in L2(0, T ;L2(Γ))
in general, we have to include such regularity assumption within the space of interest. We will
denote as Hdiv,Ω,Γ the space of vector functions p ∈ Hdiv,Ω such that p · ν ∈ L2(Γ). The spaces
Hdiv,Ω,Γ and L2(0, T ;Hdiv,Ω,Γ), are naturally endowed with the norms || · ||div,Ω,Γ and || · ||div,Σ

defined by

|| · ||2div,Ω,Γ =

∫
Ω

(
| · |2 + (div ·)2

)
dx+

∫
Γ

(· · ν)2 ds, || · ||2div,Σ =

∫ T

0

|| · ||2div,Ω,Γ dt,

respectively.
By denoting V = {v ∈ H1(Q), v|S0

= 0} and W = L2(0, T ;Hdiv,Ω,Γ), we now consider the
relaxed mixed formulation for some ε > 0: for (g0, g1) ∈ L2(0, T ;L2(Γ)) × L2(0, T ;L2(Γ)), find
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(vε, qε) ∈ V ×W such that for all (v, q) ∈ V ×W

∫
Q

((∂tvε − div qε)∂tv + (∇vε − qε) · ∇v) dxdt+

∫
Σ

vε v dsdt

+ε

∫
Q

(∂tvε ∂tv +∇vε · ∇v) dxdt =

∫
Σ

g0 v dsdt,∫
Q

((div qε − ∂tvε)div q + (qε −∇vε) · q) dxdt+

∫
Σ

(qε · ν)(q · ν) dsdt

+ε

∫
Q

(qε · q + (div qε)(div q)) dxdt =

∫
Σ

g1(q · ν) dsdt.

(3.14)

Theorem 3.3. For any (g0, g1) ∈ H1/2
S0

(Σ)×L2(0, T ;H−1/2(Γ)), the problem (3.13) possesses

a unique solution (uε,pε) in Wg × Vg. For any (g0, g1) ∈ L2(0, T ;L2(Γ)) × L2(0, T ;L2(Γ)), the
problem (3.14) possesses a unique solution (vε, qε) in W × V . Furthermore, if there exists a
(unique) solution u ∈ H1(Q) to problem (3.1) associated with data (g0, g1), then the solution
(uε,pε) to problem (3.13) and the solution (vε, qε) to problem (3.14) associated with the same
data (g0, g1) satisfy

lim
ε→0

uε, vε = u in H1(Q), lim
ε→0

pε, qε = ∇u in L2(0, T ;Hdiv,Ω).

Proof. We prove the result in the case of formulation (3.14) for (g0, g1) ∈ L2(0, T ;L2(Γ)) ×
L2(0, T ;L2(Γ)). The proof in the other case is almost the same. Such formulation is equivalent to
find (vε, qε) ∈ V ×W such that for all (v, q) ∈ V ×W

B((vε, qε), (v, q)) = M(v, q), (3.15)

where the bilinear form B and the linear form M are defined by

B((u,p), (v, q)) =

∫
Q

(∂tu− div p)(∂tv − div q) + (∇u− p) · (∇v − q)) dxdt

+

∫
Σ

u v dsdt+

∫
Σ

(p · ν)(q · ν) dsdt

+ε

∫
Q

(∂tu ∂tv +∇u · ∇v) dxdt+ ε

∫
Q

(p · q + (div p)(div q)) dxdt

and

M(v, q) =

∫
Σ

g0 v dsdt+

∫
Σ

g1(q · ν) dsdt.

We have

B((u,p), (u,p)) ≥ min(ε, 1)
(
||u||2 + ||p||2div,Σ

)
, (3.16)

which proves the coercivity of B, so that well-posedness is a consequence of Lax-Milgram’s lemma.
Now let us prove the convergence result. By using (3.12) we obtain that the exact solution satisfies
(u,p := ∇u) ∈ V ×W and for all (v, q) ∈ V ×W ,

B0((u,p), (v, q)) = M(v, q), (3.17)

where B0 coincides with B for ε = 0. We hence obtain, by subtracting (3.17) to (3.15) and
choosing (v, q) = (vε − u, qε − p),∫

Q

|∂t(vε − u)− div(qε − p)|2dxdt+

∫
Q

|∇(vε − u)− (qε − p)|2dxdt

+

∫
Σ

(vε − u)2 dsdt+

∫
Σ

((qε − p) · ν)2 dsdt+ ε ((vε, vε − u)) + ε ((qε, qε − p))div = 0.
(3.18)



10 The inverse obstacle problem for the heat equation

This identity implies that

((vε, vε − u)) + ((qε, qε − p))div ≤ 0, (3.19)

so that vε is bounded in V and qε is bounded in L2(0, T ;Hdiv,Ω). Then there exists subsequences,
still denoted vε and qε, such that vε ⇀ w in V and qε ⇀ r in L2(0, T ;Hdiv,Ω). As a consequence,
we have ∂tvε − div qε ⇀ ∂tw − div r in L2(Q), ∇vε − qε ⇀ ∇w − r in (L2(Q))d, vε|Σ ⇀ w|Σ in
L2(0, T ;H1/2(Γ)) and qε · ν|Σ ⇀ r · ν|Σ in L2(0, T ;H−1/2(Γ)).
The identity (3.18) also implies that ∂tvε − div qε → ∂tu− div p in L2(Q), ∇vε − qε → ∇u− p in
(L2(Q))d, vε|Σ → u|Σ in L2(Σ) and qε · ν|Σ → p · ν|Σ in L2(Σ). We conclude that r · ν|Σ ∈ L2(Σ),
and that (w, r) ∈ V × W satisfies problem (3.12). By uniqueness we have (w, r) = (u,p), so
that vε ⇀ u in V and qε ⇀ p in L2(0, T ;Hdiv,Ω). Strong convergence of (vε, qε) to (u,p) in
V ×L2(0, T ;Hdiv,Ω) is again a consequence of weak convergence from (3.19), and we complete the
proof as in the proof of theorem 3.2.

Remark 3. On could regret that in the relaxed formulation (3.14) the Neumann data has to
be in L2(0, T ;L2(Γ)) instead of L2(0, T ;H−1/2(Γ)). As done in [14] in the elliptic case, a possible
strategy to cope with the less regular case g1 ∈ L2(0, T ;H−1/2(Γ)) in (3.1) is to introduce a lifting
of the Neumann data, for example by solving the forward problem ∂tU −∆U = 0 in Ω× (0, T )

∂νU = g̃1 on ∂Ω× (0, T )
U = 0 on Ω× {0},

(3.20)

where g̃1 ∈ L2(0, T ;H−1/2(∂Ω)) is an extension of g1 to ∂Ω×(0, T ). From Theorem X.9 in [7], we
obtain that problem (3.20) is well-posed in L2(0, T ;H1(Ω))∩C0([0, T ];L2(Ω)). Then the function
û = u− U , where u and U satisfy (3.1) and (3.20), respectively, satisfies

∂tû−∆û = 0 in Ω× (0, T )
û = g0 − U on Γ× (0, T )
∂ν û = 0 on Γ× (0, T )
û = 0 on Ω× {0},

with g0 − U |Γ×(0,T ) ∈ L2(0, T ;H1/2(Γ)) ⊂ L2(0, T ;L2(Γ)). We are now in a position to apply the
relaxed formulation (3.14).

3.2.3. An iterated formulation. Following the idea of [14] a refinement of the relaxed
formulation (3.14) consists in iterating it. For some ε > 0 and (g0, g1) ∈ L2(0, T ;L2(Γ)) ×
L2(0, T ;L2(Γ)), we set (v−1

ε , q−1
ε ) = (0, 0) and for all M ∈ N, we define (vMε , q

M
ε ) ∈ V ×W such

that for all (v, q) ∈ V ×W

∫
Q

(
(∂tv

M
ε − div qMε )∂tv + (∇vMε − qMε ) · ∇v

)
dxdt+

∫
Σ

vMε v dsdt

+ε

∫
Q

(
∂tv

M
ε ∂tv +∇vMε · ∇v

)
dxdt

=

∫
Σ

g0 v dsdt+ ε

∫
Q

(
∂tv

M−1
ε ∂tv +∇vM−1

ε · ∇v
)
dxdt,∫

Q

(
(div qMε − ∂tvMε )div q + (qMε −∇vMε ) · q

)
dxdt+

∫
Σ

(qMε · ν)(q · ν) dsdt

+ε

∫
Q

(
qMε · q + (div qMε )(div q)

)
dxdt

=

∫
Σ

g1(q · ν) dsdt+ ε

∫
Q

(
qM−1
ε · q + (div qM−1

ε )(div q)
)
dxdt.

(3.21)

From [14] (see the abstract theorem 4.2), we have the following theorem, which encourages us to
simultaneously choose ε small and M large.

Theorem 3.4. For any (g0, g1) ∈ L2(0, T ;L2(Γ))×L2(0, T ;L2(Γ)) and any ε > 0 and M ∈ N,
the problem (3.21) possesses a unique solution (vMε , q

M
ε ) in W × V . Furthermore, if there exists
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a (unique) solution u ∈ H1(Q) to problem (3.1) associated with data (g0, g1), then the solution
(vMε , q

M
ε ) to problem (3.21) associated with data (g0, g1) satisfies for all fixed M ∈ N

lim
ε→0

vMε = u in H1(Q), lim
ε→0

qMε = ∇u in L2(0, T ;Hdiv,Ω)

and for all fixed ε > 0

lim
M→+∞

vMε = u in H1(Q), lim
M→+∞

qMε = ∇u in L2(0, T ;Hdiv,Ω).

Remark 4. As emphasized in [14], an advantage of the iterated formulation is that the
convergence with respect to M is achieved for any ε > 0. Hence it enables us to choose ε not too
small in problem (3.21), which as a result will be not too ill-posed.

4. The “exterior approach”. Let us consider, for some data (g0, g1) on Γ × (0, T ), an
obstacle O and an associated function u ∈ L2(0, T ;H1(Ω)) which satisfy problem (2.1). Our aim
is, following the idea first introduced in [5], to define with the help of u a decreasing sequence of
open domains On which converge in the sense of Hausdorff distance (for open domains) to the
actual obstacle O. The notion of Hausdorff distance for open domains is for example defined in
[19]. In practice, of course, the true solution u cannot be used to identify our obstacle O since it
cannot be computed from our data (g0, g1). However, as it was seen in the previous section, the
true solution u can be approximated with the help of some quasi-reversibility formulation. This
is the basic idea of the “exterior approach”.

Let us consider a function V ∈ H1(D) such that V =

√∫ T

0

(u(·, t))2 dt in Ω

V ≤ 0 in O.

(4.1)

Let us verify that such a function exists.
Lemma 4.1. The function V which satisfies the first equality of (4.1) and V = 0 in O belongs

to H1(D).
Proof. First of all, since u = 0 on ∂O × (0, T ), we obtain that V is continuous across the

boundary ∂O of O. As a consequence, it suffices to prove that V |Ω ∈ H1(Ω). It is readily seen
that V |Ω ∈ L2(Ω). Now, for i = 1, ..., d and x ∈ Ω,(

∂V

∂xi
(x)

)2

=
1∫ T

0
(u(x, t))2 dt

(∫ T

0

u(x, t)
∂u

∂xi
(x, t) dt

)2

≤
∫ T

0

(
∂u

∂xi
(x, t)

)2

dt.

That u ∈ L2(0, T ;H1(Ω)) implies that ∂V/∂xi ∈ L2(Ω) for all i, which completes the proof.
Let us choose f ∈ H−1(D) such that in the sense of H−1(D),

f −∆V ≥ 0. (4.2)

For some open domain ω ⊂ D and g ∈ H−1(D), let us define by vg,ω the solution v ∈ H1
0 (ω) of the

Poisson problem ∆v = g. We now define a sequence of open domains On by following induction.
We first consider an open domain O0 such that O ⊂ O0 b D. The open domain On being given,
we define

On+1 = On \ supp(sup(φn, 0)), (4.3)

where φn = V + vg,On and g := f −∆V (supp denotes the support of a function). Equivalently,
if the open domain On is Lipschitz smooth, the function φn is defined as the unique solution in
H1(On) of the boundary value problem{

∆φn = f in On
φn = V on ∂On.

(4.4)
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Since the open domains On form a decreasing sequence, we know from [19] that such sequence
converges, in the sense of Hausdorff distance for open domains, to some open domain O∞. Besides,
the definition of the open sets On implies that they all contain the obstacle O. Therefore it can
be seen from (4.4) that φn only depends on the fixed distribution f and on the values of u on the
boundary ∂On. Furthermore O ⊂ O∞. The convergence of the sequence of open domains On to
the actual obstacle O (in other words O∞ = O) is given by the following theorem, provided we
assume convergence of the functions vg,On

with respect to the domain.
Theorem 4.2. Let us consider a Lipschitz domain O and a function u ∈ L2(0, T ;H1(Ω))

which satisfy problem (2.1). Let us choose some V ∈ H1(D) and f ∈ H−1(D) which satisfy (4.1)
and (4.2), respectively, and let us denote g = f −∆V . Now we choose an open domain O0 such
that O ⊂ O0 b D and consider the decreasing sequence of open domains On defined by (4.3).
Let us denote by O∞ the limit of the sequence (On) in the sense of Hausdorff distance for open
domains.
If we assume that the sequence of functions vg,On converge in H1

0 (D) to the function vg,O∞ , then
O∞ = O.

We omit the proof of theorem 4.2 since it is very close to that of theorem 2.5 in [5]. The
only difference in the proof concerns the unique continuation argument which is employed: it was
related to the Laplace equation in [5] while it is related to the heat equation in the present paper.

Remark 5. In [19] (see also [5]), several situations in which the sequence of functions vg,On

converge in H1
0 (D) to the function vg,O∞ are analyzed. For d = 2, it suffices that all the open

domains D \ On, n ∈ N, be connected. For arbitrary d ≥ 2, it suffices that all the open domain
On, n ∈ N, be uniformly Lipschitz with respect to n.

The theorem 4.2 suggests the following “exterior approach” algorithm:

Algorithm

1. Choose an initial guess O0 such that O ⊂ O0 b D.
2. Step 1: for a given On, compute some quasi-reversibility solution un in Ωn× (0, T ), where

Ωn := D \On.
3. Step 2: for a given un in Ωn × (0, T ), compute Vn(x) = ||un(x, ·)||L2(0,T ) in Ωn and the

solution φn in On of the Poisson problem{
∆φn = f in On
φn = Vn on ∂On

(4.5)

for sufficiently large f . Compute On+1 = {x ∈ On, φn(x) < 0}.
4. Go back to step 1 until some stopping criterion is satisfied.

5. Some numerical applications.

5.1. A tensorized finite element method. Our numerical experiments will be based on
the iterated mixed formulation (3.21). However the discretization is presented for M = 0 for sake
of simplicity, which corresponds to formulation (3.14). In this section we restrict ourselves to a
polygonal domain Ω in R2. We consider a family of triangulations Th of the domain Ω such that
the diameter of each triangle K ∈ Th is bounded by h > 0 and such that Th is regular in the sense
of [12]. We also introduce a subdivision Ih of the domain [0, T ] such that the size of each interval
L ∈ Ih is also bounded by h. We assume that Γ is formed by the union of edges of some triangles of
Th. As can be seen in the algorithm of the “exterior approach” above, we have to compute several
integrals of the solutions of the quasi-reversibility method over t ∈ [0, T ]. For practical reasons we
are hence tempted to use some tensorized finite elements to discretize the spaces V and W . More
precisely, the discretized space Vh ⊂ V in the domain Ω × (0, T ) is the set denoted Vh,Ω ⊗ Vh,T
formed by the linear combination of standard products of all basis functions of the discretized
space Vh,Ω in Ω by all basis functions of the discretized space Vh,T in (0, T ), where: Vh,Ω consists
of the standard P 1 triangular finite element on Ω and Vh,T consists of the P 1 finite element on
(0, T ). Similarly, the discretized space Wh ⊂W in the domain Ω× (0, T ) is the set Wh,Ω ⊗Wh,T ,
where: Wh,Ω consists of the Raviart-Thomas finite element RT 0 on Ω and Vh,T consists of the
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standard P 0 finite element on (0, T ). The finite elements P k and RT k for k ∈ N are for example
described in [8], the finite element RT k being introduced in [23]. Since the maximal diameter h
of the two-dimensional triangular mesh of Ω coincides with that of the subdivision of (0, T ) and
since both finite elements in space and time provide a linear error estimate with respect to h, we
expect that the resulting tensorized finite element will also provide a linear error estimate with
respect to h. For each triangle K ∈ Th or interval L ∈ Ih and k ∈ N, Pk(K) and Pk(L) denote
the space of polynomial functions of degree lower or equal to k. The spaces Vh,Ω, Vh,T , Wh,Ω and
Wh,T are defined as follows:

Vh,Ω = {fh ∈ H1(Ω), fh|K ∈ P1(K), ∀K ∈ Th},

Vh,T = {φh ∈ H1(0, T ), φh|L ∈ P1(L), ∀L ∈ Ih, φh(0) = 0},

Wh,Ω = {fh ∈ (L2(Ω))2, divfh ∈ L2(Ω), fh ∈ (P0(K))2 + xP0(K), ∀K ∈ Th},

Wh,T = {φh ∈ L2(0, T ), φh|L ∈ P0(L), ∀L ∈ Ih},

where x ∈ R2 is the spatial coordinate. We recall that the trace of some fh ∈ Vh,Ω or φh ∈ Vh,T is
continuous across the intersection of two elements, while for some fh ∈ Wh,Ω, the trace of fh · ν
is continuous across such intersection, where ν is the corresponding normal vector.

The discretized formulation of (3.14) for ε, h > 0 is the following: for (g0, g1) ∈ L2(0, T ;L2(Γ))×
L2(0, T ;L2(Γ)), find (vε,h, qε,h) ∈ Vh ×Wh such that for all (vh, qh) ∈ Vh ×Wh

∫
Q

(
(∂tvε,h − div qε,h)∂tvh + (∇vε,h − qε,h) · ∇vh

)
dxdt+

∫
Σ

vε,h vh dsdt

+ε

∫
Q

(∂tvε,h ∂tvh +∇vε,h · ∇vh) dxdt =

∫
Σ

g0 vh dsdt,∫
Q

(
(div qε,h − ∂tvε,h)div qh + (qε,h −∇vε,h) · qh

)
dxdt+

∫
Σ

(qε,h · ν)(qh · ν) dsdt

+ε

∫
Q

(
qε,h · qh + (div qε,h)(div qh)

)
dxdt =

∫
Σ

g1(qh · ν) dsdt.

(5.1)

The error estimate due to the discretization, that is the discrepancy between the solution to
problem (5.1) and the solution to problem (3.14), is given by the following theorem.

Theorem 5.1. For all ε, h > 0, the problem (5.1) has a unique solution (vε,h, qε,h) ∈ Vh×Wh.
Furthermore, if ε ≤ 1 and (vε, qε) belongs to H2(Q)×{H1(0, T ; (H1(Ω))2)∩L2(0, T ; (H2(Ω))2)},
then

||vε,h − vε||+ ||qε,h − qε||div ≤ C
h√
ε

(
||vε||H2(Q) + ||qε||H1(0,T ;(H1(Ω))2)∩L2(0,T ;(H2(Ω))2)

)
,

where C > 0 is independent of ε and h.
In order to prove theorem 5.1, we first need to prove the following lemma which specifies the

interpolation error provided by the tensor product of two finite elements, from the knowledge of
the interpolation error for each one.

Lemma 5.2. Let us consider two Hilbert spaces F ⊂ H and a family of discretization subspaces
Hh,1 ⊂ H depending on h such that for all f ∈ F ,

||f − πh,1 f ||H ≤ c1 h||f ||F , (5.2)

where πh,1 f is the orthogonal projection of f onto Hh,1 in H. We also consider a family of
discretization subspaces Hh,2 ⊂ L2(0, T ) depending on h such that for all φ ∈ H1(0, T ;H),

||φ− πh,2 φ||L2(0,T ;H) ≤ c2 h
∥∥∥∥∂φ∂t

∥∥∥∥
L2(0,T ;H)

, (5.3)



14 The inverse obstacle problem for the heat equation

where πh,2 φ is the orthogonal projection of φ onto Hh,2 in L2(0, T ).
Then for p ∈ L2(0, T ;F ) ∩H1(0, T ;H), we have

||p− πh p||L2(0,T ;H) ≤ c h||p||L2(0,T ;F )∩H1(0,T ;H),

where πh is the orthogonal projection of p onto the tensor product Hh,1 ⊗Hh,2 in L2(0, T ;H).
Proof. Since πh,2(πh,1 p) ∈ Hh,1 ⊗Hh,2, we have

||p− πh p||L2(0,T ;H) = inf
ph∈Hh,1⊗Hh,2

||p− ph||L2(0,T ;H) ≤ ||p− πh,2(πh,1 p)||L2(0,T ;H).

Hence

||p− πh p||L2(0,T ;H) ≤ ||p− πh,1 p||L2(0,T ;H) + ||πh,1 p− πh,2(πh,1 p)||L2(0,T ;H)

As for the first term, we have

||p− πh,1 p||2L2(0,T ;H) =

∫ T

0

||p− πh,1 p||2H dt ≤ c21 h2

∫ T

0

||p(., t)||2F dt

by using (5.2) for f = p(., t). We end up with

||p− πh,1 p||L2(0,T ;H) ≤ c1 h||p||L2(0,T ;F ).

As for the second term, we have

||πh,1 p− πh,2(πh,1 p)||L2(0,T ;H) ≤ c2 h
∥∥∥∥∂(πh,1 p)

∂t

∥∥∥∥
L2(0,T ;H)

,

with the help of (5.3) for φ = πh,1 p. By using the fact that ∂(πh,1 p)/∂t = πh,1(∂p/∂t) and the
boundedness of the operator πh,1 from H to itself with a bound ≤ 1, we obtain

||πh,1 p− πh,2(πh,1 p)||L2(0,T ;H) ≤ c2 h
∥∥∥∥∂p∂t

∥∥∥∥
L2(0,T ;H)

≤ c2 h||p||H1(0,T ;H),

which completes the proof.
Proof. [Theorem 5.1] Well-posedness of problem (5.1) is based on the same arguments as

in the proof of theorem 3.3. By denoting Xε = (vε, qε) ∈ V × W and Xε,h = (vε,h, qε,h) ∈
Vh ×Wh, and since the bilinear form B is symmetric, the solution Xε,h minimizes the functional
B(Xε − Yh, Xε − Yh) over all Yh ∈ Vh ×Wh. With the help of (3.16) and the fact that ε ≤ 1, we
obtain a constant c > 0 such that

||Xε −Xε,h||V×W ≤
c√
ε

inf
Yh∈Vh×Wh

||Xε − Yh||V×W .

We have now to estimate the interpolation errors vε − πhvε ∈ V and qε − πhqε ∈W , where πh is
the generic projection operator of an element which belongs to an infinite dimensional space onto
the corresponding finite element space. The first error is simple to obtain since the finite element
defined as the tensor product of the P 1 element in 2D by the P 1 element in 1D coincides with
the prismatic finite element in 3D (see for example [12]). The error estimate for such 3D finite
element is well-known and we have for vε ∈ H2(Q),

||vε − πhvε|| ≤ C h||vε||H2(Q).

for some constant C > 0. Let us consider the second error. For f ∈ (H1(Ω))2 such that divf ∈
H1(Ω), we have the inequality (see for example [8, 23])

||f − πhf ||Hdiv,Ω
≤ C ′Ω h(||f ||(H1(Ω))2 + ||divf ||H1(Ω)), (5.4)
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where πhf is the interpolate of f on Wh,Ω. Given the definition of space W we also need to
estimate the trace of (f − πhf) · ν on Γ. If in addition we assume that f ∈ (H2(Ω))2, then the
trace of f · ν on each segment ΓK of Γ belongs to H1(ΓK), and the interpolation error on each
such segment amounts, since (πhf) · ν is the mean value of f · ν on each segment (see [8, 23]), to
an interpolation of a H1 function on a segment by a constant. We hence have, by denoting τ the
curvilinear abscissa,

||(f − πhf) · ν||2L2(Γ) =
∑

ΓK⊂Γ

∫
ΓK

|(f − πhf) · ν|2 dτ

≤
∑

ΓK⊂Γ

c2 h2

∫
ΓK

∣∣∣∣∂(f · ν)

∂τ

∣∣∣∣2 dτ = c2 h2
∑

ΓK⊂Γ

∫
ΓK

∣∣∣∣∂f∂τ · ν
∣∣∣∣2 dτ ≤ c2 h2||f ||2(H1(Γ))2 .

By using the continuity of the trace from H2(Ω) to H1(Γ), we obtain

||(f − πhf) · ν||L2(Γ) ≤ C ′′Ω h||f ||(H2(Ω))2 . (5.5)

Gathering the estimates (5.4) and (5.5) we obtain that

||f − πhf ||Hdiv,Ω,Γ
≤ CΩ h||f ||(H2(Ω))2 .

We also have, for H = Hdiv,Ω,Γ and φ ∈ H1(0, T ;H),

||φ− πhφ||L2(0,T ;H) ≤ CT h
∥∥∥∥∂φ∂t

∥∥∥∥
L2(0,T ;H)

,

where πhφ is the interpolate of φ on Wh,T . By applying lemma 5.2 with H = Hdiv,Ω,Γ, F =
(H2(Ω))2, Hh,1 = Wh,Ω and Hh,2 = Wh,T , we obtain that there exists a constant C such that

||qε − πhqε||div,Σ ≤ C h||qε||H1(0,T ;Hdiv,Ω,Γ)∩L2(0,T ;(H2(Ω))2).

The continuous embeddings (H1(Ω))2 ⊂ Hdiv,Ω,Γ ⊂ Hdiv,Ω enable us to complete the proof.
Remark 6. The convergence result of theorem 5.1 relies on some regularity assumptions on

the quasi-reversibility solution (vε, qε). Hence, an analysis of the regularity of such solution in a
polygonal domain by using the technique of [17] would be interesting though challenging, since the
two functions vε and qε are coupled by the boundary conditions. Such analysis is postponed to
some future contribution.

5.2. A few numerical experiments. We now present some numerical illustrations of the
“exterior approach” algorithm in a domain D delimited by the curve defined in polar coordinates
by

r(θ) = 1 + 0.1 sin(3θ), θ ∈ [0, 2π]. (5.6)

Two different obstacles O are considered (an easy convex case and a more difficult non convex
one): the obstacle O1 defined by

r(θ) = 0.5 + 0.1 cos(θ)− 0.02 sin(2θ), θ ∈ [0, 2π]

and the obstacle O2 defined as the union of the disk centered at (−0.3,−0.3) of radius 0.2 and the
disk centered at (0.4, 0.3) of radius 0.15. The synthetic data of our inverse problem are obtained by
solving the following forward problem: for a Dirichlet data gD on ∂D× (0, T ), find u in Ω× (0, T )
such that 

∂tu−∆u = 0 in Ω× (0, T )
u = gD on ∂D × (0, T )
u = 0 on ∂O × (0, T )
u = 0 on Ω× {0}.

(5.7)
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Such problem is solved numerically by using a standard 2D finite element method in space and
a finite difference scheme in time. It should be noted that in order to avoid an inverse crime,
the mesh used to solve the inverse problem is different from the mesh used to solve the forward
problem (5.7) that provides the artificial data. Two kinds of Dirichlet data are used: an easy case
g1
D(r, θ, t) = 4t(1− t) and a more difficult case

g2
D(r, θ, t) = 4t(1− t) cos(θ − 4π t).

The data of our inverse problems are given by (g0, g1) on Γ, where g0 is the restriction of gD
on Γ and g1 is the normal derivative ∂νu on Γ, where u is the solution to problem (5.7). Some
pointwise Gaussian noise is added to the Dirichlet data g0 such that the contaminated data gδ0
satisfies ||gδ0 − g0||L2(Γ) = δ. Concerning Γ, for the obstacle O1 two situations are analyzed: the
case of complete data, that is Γ = ∂D, and the case of partial data, that is Γ is the subpart of
∂D defined by (5.6) for θ ∈ (0, π/2)∪ (π, 3π/2). Let us now give some details about the “exterior
approach” algorithm. The initial guess O0 is the circle centered at (0, 0) and of radius 0.8. Both
the quasi-reversibility problem (3.21) in step 1 and the Poisson problem (4.5) in step 2 are solved
on the same fixed mesh based on a polygonal domain that approximates D, where D is given by
(5.6). At each step n, the updated domain On is approximated by a polygonal line defined on such
mesh. In addition, while a simple P1 triangular finite element is used to solve the 2D problem
(4.5), the tensorized finite elements described in section 5.1 are used to solve the 3D problem
(3.21). If not specified, the final time T is equal to 1. The size of the mesh is such that the
number of segments of the polygonal line that approximates the exterior boundary ∂D is around
100, while the number of time intervals is around 70 for T = 1. The right-hand side f in problem
(4.5) is chosen as a sufficiently large constant which can slightly differ from one case to another and
will be given in each case. If not specified, the parameters in problem (3.21) are chosen as ε = 0.01
and M = 20. For a study of the different parameters of the “exterior approach”, in particular the
selection of f , ε and the stopping criterion, the reader will refer to previous articles, especially [5]
and [2]. Before testing the “exterior approach” algorithm, let us first test the quasi-reversibility
method only, that is the step 1 of the algorithm, for a known and fixed obstacle O. More precisely,
we are interested in the discrepancy between the solution of problem (3.21) and the exact solution
in the domain Ω× (0, T ), for obstacle O1 and complete data on ∂D obtained from Dirichlet data
g1
D. This discrepancy is represented in figure 5.1 in the space domain Ω at fixed time t = 0.5T for

three different amplitudes of noise, that is δ = 0 (no noise), δ = 0.05 and δ = 0.1 and at fixed time
t = T for δ = 0.1 only (the results for δ = 0 and δ = 0.05 are almost the same when t = T ). We
observe that the quality of the solution to problem (3.21) strongly deteriorates from the exterior
boundary to the interior boundary and from t = 0.5T to t = T , which is expected since we are here
concerned with the ill-posed problem of the heat equation with exterior lateral Cauchy data and
initial condition (3.1). Now let us perform the “exterior approach” algorithm. Since the quality
of the solution to problem (3.21) seems unsatisfactory near t = T , in step 2 of the algorithm we
compute Vn as ||un(x, ·)||L2(0,T/2) instead of ||un(x, ·)||L2(0,T ) in order to improve the accuracy
of the velocity of the level fronts. In the following numerical experiments, convergence of the
sequence of obstacles On is achieved for at least n = 10 and at most n = 20 iterations. In figure
5.2, starting from the initial guess O0 we have plotted the successive level fronts as well as the
reconstructed obstacle O1 compared to the exact one, in the case of complete Cauchy data based
on the Dirichlet data g1

D (we have chosen f = −20). For T = 1, we test three different amplitudes
of noise (δ = 0, δ = 0.05 and δ = 0.1) and for T = 0.5 instead of T = 1, we only consider the
worst case δ = 0.1. We observe that the obstacle is well reconstructed, even in the presence of
noisy data, which is a consequence of our relaxed formulation of quasi-reversibility which takes
our noisy Cauchy data in a weak way. Figure 5.3 represents the same results as in figure 5.2 but in
the case of complete Cauchy data based on the Dirichlet data g2

D (we have chosen f = −15). The
same conclusions as before can be drawn in this second case. Besides, as we observed in [2] for
the 1D case, increasing the duration of measurements improves the quality of the identification.
In figure 5.4 we reconstruct the obstacle O1 with uncontaminated partial Cauchy data (instead of
complete data) based on the Dirichlet data g1

D (f = −23) or g2
D (f = −17). The obtained results

have to be compared to the top left figures of 5.2 and 5.3, respectively. It can be seen that the
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Fig. 5.1. Discrepancy between the reconstructed solution and the exact one for known obstacle O1 and
complete Cauchy data obtained from Dirichlet data g1D. Top left: exact data and t = 0.5T . Top right: noisy data
of amplitude δ = 0.05 and t = 0.5T . Bottom left: noisy data of amplitude δ = 0.1 and t = 0.5T . Bottom right:
noisy data of amplitude δ = 0.1 and t = T .

quality of the reconstructions strongly decreases, particularly for the most difficult case of data:
we recall that no boundary data at all is prescribed on half of the boundary of D. Lastly, in
picture 5.5 we present the result of the identification of obstacle O2 with complete Cauchy data
based on the Dirichlet data g1

D, either without noise or with noise of amplitude δ = 0.1 (f = −0.14
and ε = 0.1), and with the complete data based on the Dirichlet data g2

D with noise of amplitude
δ = 0.1 (with the same parameters f and ε).

6. Conclusion and perspectives. We have shown in this paper that our “exterior ap-
proach” is applicable to the inverse obstacle problem for the heat equation with lateral Cauchy
data and initial condition. A specificity of our method is that those lateral Cauchy data may be
known only on a subpart of the boundary while no data at all are known on the complementary
part (as in figure 5.4). In addition, our “relaxed” formulation of quasi-reversibility, which consists
in taking into account our noisy boundary conditions in a weak way, seems quite robust with
respect to the amplitude of the noise. However, if we compare our results for the heat equation
and those obtained in [5] for the Laplace equation, it seems that the quality of the identification is
slightly worse in the first case than in the second one (see figure 5.5). Maybe the ill-posedness of
the inverse obstacle problem is intrinsically more severe for the heat equation than for the Laplace
equation. Our aim is now to try the “exterior approach” to solve the inverse obstacle problem for
the wave equation in 2D, expecting better numerical results than for the heat equation.
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Fig. 5.2. Reconstructed obstacle O1 with complete Cauchy data obtained from Dirichlet data g1D. Top left:
exact data with T = 1. Top right: noisy data of amplitude δ = 0.05 and T = 1. Bottom left: noisy data of
amplitude δ = 0.1 and T = 1. Bottom right: noisy data of amplitude δ = 0.1 and T = 0.5.
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