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LONG TIME EVOLUTION OF CONCENTRATED EULER

FLOWS WITH PLANAR SYMMETRY

PAOLO BUTTÀ AND CARLO MARCHIORO

Abstract. We study the time evolution of an incompressible Euler fluid with
planar symmetry when the vorticity is initially concentrated in small disks.
We discuss how long this concentration persists, showing that in some cases
this happens for quite long times. Moreover, we analyze a toy model that
shows a similar behavior and gives some hints on the original problem.

1. Introduction

This paper focuses on the long time behavior of an incompressible inviscid fluid,
with planar symmetry and constant density, whose time evolution is governed by
the two-dimensional Euler equations. If the system is confined in a domain Γ ⊆ R

2,
the Euler equations expressed in term of the vorticity read,

∂tω(x, t) + (u · ∇)ω(x, t) = 0 , x = (x1, x2) ∈ Γ , (1.1)

∇ · u(x, t) = 0 , (1.2)

ω(x, 0) = ω0(x) , (1.3)

where ω := ∂1u2 − ∂2u1 is the vorticity and u = (u1, u2) denotes the velocity field.
By assuming that u vanishes at infinity and that its normal component vanishes on
∂Γ, the velocity is reconstructed from the vorticity as

u(x, t) =

∫

dy KΓ(x, y)ω(y, t) , (1.4)

with
KΓ = ∇⊥GΓ , ∇⊥ = (∂2,−∂1) , (1.5)

where GΓ is the fundamental solution of the Laplace operator in Γ vanishing on
the boundary (and at infinity if Γ is unbounded). In particular, if Γ = R

2,

KR2(x, y) = K(x− y) = ∇⊥G(x− y) , G(x) = − 1

2π
log |x| . (1.6)

Equation (1.1) means that the vorticity remains constant along the particle
paths, which are the characteristics of the Euler equations. Otherwise stated,

ω(x(x0, t), t) = ω0(x0) , (1.7)

where x(x0, t) is the trajectory of the fluid particle initially in x0, i.e.,

d

dt
x(x0, t) = u(x(x0, t), t) , x(x0, 0) = x0 . (1.8)

It is possible to consider non smooth initial data, by assuming directly (1.4),
(1.7), and (1.8) as a weak formulation of the Euler equations. Indeed, see, e.g., [31],
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given ω0 ∈ L1(Γ) ∩ L∞(Γ) and T > 0, there exists a unique triple (x(·, ·), u, ω)
solution to (1.4), (1.7), and (1.8) with ω ∈ L∞([0, T ];L1 ∩ L∞). Moreover, since
u is divergence-free, the time evolution preserves the Lebesgue measure in Γ. In
particular, given any smooth function f(x, t) with compact support in Γ× [0, T ], if

ωt[f ] :=

∫

Γ

dxω(x, t)f(x, t) =

∫

Γ

dx0 ω0(x)f(x(x0, t), t) (1.9)

then t 7→ ωt[f ] belongs to C1([0, T ]) and

d

dt
ωt[f ] = ωt[u · ∇f ] + ωt[∂tf ] . (1.10)

We remark that if ω0 has compact support then (1.9) and (1.10) are valid for any
smooth function f(x, t) (also with noncompact support).

In this paper we consider initial data in which the vorticity is supported in N
blobs, i.e., initial data of the form,

ωε(x, 0) =

N
∑

i=1

ωi,ε(x, 0) , (1.11)

where ωi,ε(x, 0), i = 1, . . . , N , are functions with definite sign such that, denoting
by Σ(z|r) the open disk of center z and radius r,

Λi,ε(0) := supp ωi,ε(·, 0) ⊂ Σ(zi|ε) , Σ(zi|ε) ∩Σ(zj |ε) = ∅ ∀ i 6= j , (1.12)

with ε ∈ (0, 1) a small parameter and the points zi ∈ Γ such that the closure of
Σ(zi|ε) does not intersect the boundary of Γ for any i = 1, . . . , N . In general, the
signs of the functions ωi,ε(x, 0) can be different among each other.

As is well known in the literature, for such initial data the dynamics can be
approximated by the following system of N differential equations in Γ, known as
the point vortex model,

żi(t) =

N
∑

j=1
j 6=i

ajKΓ(zi(t), zj(t)) +
1

2
ai∇⊥γΓ(zi(t)) , zi(0) = zi , (1.13)

where

ai =

∫

Γ

dxωi,ε(x, 0) (1.14)

is called the “intensity” of the vortex and it is assumed independent of ε, while
γΓ(x) = γΓ(x, x) with γΓ(x, y) := GΓ(x, y) − G(x, y), the “regular part” of the
Green function GΓ.

In particular, it has been proved [6, 22, 30, 31] that the time evolution of these
states has, for small ε, a similar form,

ωε(x, t) =

N
∑

i=1

ωi,ε(x, t) , (1.15)

where ωi,ε(x, t), i = 1, . . . , N , are functions with definite sign such that

Λi,ε(t) := supp ωi,ε(·, t) ⊂ Σ(zi(t)|rt(ε)) ,
Σ(zi(t)|rt(ε)) ∩ Σ(zj(t)|rt(ε)) = ∅ ∀ i 6= j ,

(1.16)

with {zi(t)}Ni=1 satisfying (1.13) and rt(ε) a nonnegative function such that the
closure of Σ(zi|rt(ε)) does not intersect the boundary of Γ for any i = 1, . . . , N .
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The point vortex model (1.13) was introduced in the eighteenth century by
Helmholtz [10], as a particular “solution” of the Euler equations, and investigated
by several authors [13,14,34], see [31] and references quoted therein for a review on
this subject. This model approximates reasonably a state with very large vorticity
concentrations.

In general, the point vortex model admits a global solution, but in some cases
collapses can happen [2]. However, it can be shown that the set of initial data and
vortex intensities that produce a blow-up is exceptional; see, respectively, [8,29,31]
for the proof in the case of the torus, the disk, and the plane. Moreover, there are
initial data for which the vortices move away from each other indefinitely (we will
return to this point later on).

In any case, for each time t chosen before a possible collapse, it can be proved
that rt(ε) → 0 for ε → 0 and the fluid converges to the point vortex system
[6,22,30,31]. For the connection between the Euler flow and the point vortices, see
also [9, 18, 19, 23–25,27, 28, 36].

Suppose now that the initial datum (1.11)-(1.12) is chosen in such a way that
the corresponding Cauchy problem (1.13) admits a global solution. For what stated
before, the fluid converges to the point vortex system for any fixed positive time. On
the other hand, in a realistic situation the parameter ε is not zero, hence a natural
question is to characterize the larger time intervals on which this approximation is
valid for small but positive values of the parameter ε.

As time goes by, small filaments of fluid could move away. We fix β ∈ (0, 1/2)
(we will see the technical reason for this limitation) and we denote by Tε,β the first
time in which a filament reaches the boundary of

⋃

i Σ(zi(t)|εβ). Clearly, Tε,β gives
a lower bound of the time horizon where the point vortex approximation is valid.
In the general case, by adapting the strategies given [6,22,30,31], we can show that
Tε,β ≥ (const.) | log ε| for small ε.

This bound is poor, and perhaps the result is too naive. Let us discuss this
point. When Γ = R

2 and there is a vortex alone, the center of the vorticity blob
remains fixed and the spread of vorticity grows in time slowly, see [12,16,20,21,35],
where it is shown that there is c > 0 such that Tε,β ≥ ε−c for ε small, that is Tε,β

admits a power-law lower bound (on this point see Section 3). The presence of the
interaction with other blobs of vorticity and/or with the boundary of Γ produces a
priori a larger spread. A possible bound is Tε,β ≥ (const.) | log ε|, but we conjecture
that it could be improved. In some particular cases, a power-law upper bound for
Tε,β can be obtained rigorously by a direct analysis of the problem. In more general
cases, it could be obtained by making an average on time of the interaction with
the other blobs. Indeed, when ε is small the fluid in a blob turns very quickly and
so the effects of the other blobs depend on the time average of the interaction. This
problem appears very challenging and it is not rigorously analyzed. To have some
hints in this direction, we introduce a very schematic toy model and we investigate,
by using a second order averaging method, the long time behavior of its solutions.

Another mechanism that should improve the convergence of the Euler flow to the
point vortex model could be a very careful preparation of the initial data. Actually,
in some textbooks in fluid mechanics (see for instance [3]), the spread of a blob of
vorticity due to the interaction with other blobs is neglected for symmetry reasons,
assuming the initial data with a radial symmetry. Of course, the time evolution
destroys this symmetry, but we can hope that until some time this property remains
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almost valid. We will show (at the end of Section 4) that the analysis of the
aforementioned toy model allows us to strengthen this conjecture.

We end this introduction observing that there are some sequences (in ε) that
imply better estimates on Tε,β. A trivial example is given by a vortex alone in the
plane with a vorticity with radial symmetry: of course, this is a stationary state of
the Euler equations and so Tε,β = ∞. We could look for different and less trivial
situations, with many blobs of vorticity that are stationary in time, but here we
are interested in not so exceptional cases.

Actually, the relation between special dynamical systems (like the point vortex
model) and the fluid mechanics is always related to some a priori assumptions.
In the present case, we study situations with planar symmetry. In other cases,
we assume other symmetries, often renouncing to study only compact blobs of
vorticity. For instance, let us consider cylindrical symmetry without swirl: using
cylindrical coordinates (z, r, θ), the motion does not depend on θ and it can be
described in the (z, r) plane, where a point represents a ring in the whole space. An
approximated ring converges as ε → 0 to a ring that performs a rigid translation
in the z-direction [4] (ε is the size of the tube of vorticity around the ring). In
this case, we must renormalize the total vorticity by a factor | log ε|−1. The same
problem has been studied for r ≈ | log ε|. With this choice, the tubes of vorticity are
expected to converge to rings whose evolution is governed by a dynamical system
similar but not equal to the point vortex system. This has been rigorously proved
in the case of one ring alone in [26], while the case of many rings remains an open
problem.

For other examples of dynamical systems related to fluid mechanics, see for
instance [15,17] and the references quoted in the recent paper [7]. Their connection
with the fluid physics, proved in some particular cases, is in general an open issue.

We conclude with a final remark. Here, we discuss the fluid mechanics with
planar symmetry, i.e., when a point vortex in R

2 represents an infinite straight line
in R

3. We could also study the aforementioned case with cylindrical symmetry
without swirl, in which the straight line becomes a circle of radius r, and consider
the case of N blobs of vorticity in the plane (z, r) of size ε and centered around the
points (zi, ri). Let us make the change of variable z = x, r = r0 + y. We increase
r0 as ε decreases choosing r0 = ε−b, b > 0. It has been proved in [24] that in the
limit ε → 0 the Euler flow converges to the point vortex system (1.13). Hence, we
could apply also in this case our investigation.

The plan of the paper is the following. In the next section we discuss how to
obtain, in general, the logarithmic lower bound on Tε,β . In Section 3, we give
examples, in the whole plane and in a disk, where a power-law lower bound on
Tε,β holds true. In Section 4, we introduce the toy model whose long-time behavior
suggests similar features of the fluid dynamics.

2. Persistence of vortices on logarithmic time scales

In this section we consider the general case of initial data of the form (1.11),
(1.12), with the only requirement that the associated Cauchy problem (1.13) of the
point vortex dynamics admits a global solution such that

rmin := inf
t≥0

min
i6=j

min{|zi(t)− zj(t)|; dist(zi(t); ∂Γ)} > 0 . (2.1)
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To each initial data (1.11), (1.12) satisfying the above assumption and β > 0 we
associate the variable Tε,β defined in the Introduction, i.e.,

Tε,β := min
i

sup{t > 0: |x(x0, s)− zi(s)| < εβ ∀ s ∈ [0, t] ∀x0 ∈ Λi,ε(0)} . (2.2)

Our task is a lower bound on Tε,β . For simplicity, we analyze here the case Γ = R
2,

but the proof can be easily adapted to the case of a general domain.
We recall that for vortices with intensities of the same sign, (2.1) is a well known

property of the dynamics. In the general case, the existence of a unique global
solution to the Cauchy problem (1.13) is proved for any choice of initial data and
intensities {zi, ai}Ni=1, outside a set of Lebesgue measure zero [31]. This fact does
not implies (2.1), but it makes this assumption very reasonable.

Theorem 2.1. Let Γ = R
2 and assume that the initial data of the Euler equations

verify the above assumptions. Suppose also that there are M, ν > 0 such that

|ωi,ε(x, 0)| ≤ Mε−ν . (2.3)

Then, for each β ∈ (0, 1/2) there exist ε0 > 0 and ζ0 > 0 such that

Tε,β > ζ0| log ε| ∀ ε ∈ (0, ε0) . (2.4)

We split the proof into two steps. First, in the next subsection, we prove an
analogous result for a reduced system: the motion of a single blob of vorticity in an
external time-dependent divergence-free vector field. The original problem is then
solved by using the reduced system to simulate the force acting on a given blob of
vorticity due to its interaction with the other blobs.

2.1. The reduced system. We consider a single blob of vorticity which evolves
in R

2 in presence of an external time-dependent divergence-free vector field F (x, t).
This means that (i) the initial configuration ωε(x, 0) is a function of definite sign
such that Λε(0) := suppωε(·, 0) ⊂ Σ(z∗|ε) for some z∗ ∈ R

2 and (ii) the evolved
configuration ω(x, t) = ωε(x, t) satisfies (1.7), and with in this case x(x0, t) solution
to

d

dt
x(x0, t) = u(x(x0, t), t) + F (x(x0, t), t) , x(x0, 0) = x0 , (2.5)

where u(x, t) =
∫

dy K(x − y)ωε(y, t) with K as in (1.6). As a consequence, the
weak formulation (1.10) is replaced by

d

dt
ωt[f ] = ωt[(u+ F ) · ∇f ] + ωt[∂tf ] . (2.6)

Since the auxiliary field F (x, t) will be used to simulate the action of the other
blobs of vorticity, we can assume that it is bounded and, with respect to the spatial
variable, divergence-free and Lipschitz,

‖F‖∞ < +∞ , |F (x, t)−F (y, t)| ≤ Dt|x− y| , D := sup
t∈[0,+∞)

Dt < +∞ . (2.7)

The point vortex dynamics associated to the reduced system is defined by the
planar motion B(t), solution to the following equation,

Ḃ(t) = F (B(t), t) , B(0) = z∗ . (2.8)

Without loss of generality, we also assume that initially, and hence at any time, the
blob has intensity one,

ωε(x, t) ≥ 0 ,

∫

dxωε(x, t) = 1 . (2.9)
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For this reduced system we prove the following result.

Theorem 2.2. Let Λε(t) := suppωε(·, t), suppose there are M, ν > 0 such that

ωε(x, 0) ≤ Mε−ν , (2.10)

and define

T ∗
ε,β := sup{t > 0: Λε(s) ⊂ Σ(B(s)|εβ) ∀ s ∈ [0, t]} . (2.11)

Then, for each β ∈ (0, 1/2) there exist ε1 > 0 and ζ1 > 0 such that

T ∗
ε,β > ζ1| log ε| ∀ ε ∈ (0, ε1) . (2.12)

The proof is similar to that in [6] and it is based on a bootstrap argument. For
later purposes, it is useful to separate the principal estimates in different lemmas,
giving the proof of the theorem at the end of the subsection.

We denote by Bε(t) the center of vorticity of the blob, defined by

Bε(t) =

∫

dxxωε(x, t) , (2.13)

and by Iε(t) the moment of inertia with respect of Bε, i.e.,

Iε(t) =

∫

dx |x−Bε(t)|2ωε(x, t) . (2.14)

Lemma 2.3. For any t ≥ 0, the following estimates hold,

Iε(t) ≤ 4ε2 exp

[

2

∫ t

0

dsDs

]

, (2.15)

|Bε(t)−B(t)| ≤ 2ε

(

1 +

∫ t

0

dsDs

)

exp

[
∫ t

0

dsDs

]

, (2.16)

where Dt is the Lipschitz constant introduced in (2.7).

Proof. From (1.7), (2.5), and since u+ F is divergence-free we have,

Bε(t) =

∫

dx0 x(x0, t)ωε(x0, 0) , Iε(t) =

∫

dx0 |x(x0, t)−Bε(t)|2ωε(x0, 0) .

Therefore, by (2.5) and using the identities
∫

dxu(x, t)ωε(x, t) = 0 ,

∫

dxx · u(x, t)ωε(x, t) = 0, (2.17)

the time derivatives of Bε(t) and Iε(t) are easily computed,

Ḃε(t) =

∫

dxF (x, t)ωε(x, t) , (2.18)

İε(t) = 2

∫

dx (x −Bε(t)) · F (x, t)ωε(x, t) . (2.19)

By (2.7) and the obvious identity,
∫

dx (x−Bε(t)) · F (Bε(t), t)ωε(x, t) = 0 ,

we have,

|İε(t)| ≤ 2Dt

∫

dx |x−Bε(t)|2 ωε(x, t) = 2DtIε(t) ,
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which can be integrated, giving

Iε(t) ≤ Iε(0) exp

[

2

∫ t

0

dsDs

]

,

which implies (2.15) because of the (not optimal) estimate Iε(0) ≤ 4ε2, following
immediately from the fact that Λε(0) ⊂ Σ(z∗|ε) and in view of (2.9).

To prove (2.16), we observe that, by (2.8), (2.18), and (2.9),

Ḃε(t)− Ḃ(t) = F (Bε(t), t)− F (B(t), t) +

∫

dx [F (x, t) − F (Bε(t), t)]ωε(x, t) .

Therefore, by (2.7),

|Ḃε(t)− Ḃ(t)| ≤ Dt|Bε(t)−B(t)|+Dt

∫

dx |Bε(t)− x|ωε(x, t)

≤ Dt|Bε(t)−B(t)|+Dt

√

Iε(t) ,

where in the last estimate we used the Cauchy-Schwarz inequality and (2.9). The
last differential inequality can be integrated, getting

|Bε(t)−B(t)| ≤ |Bε(0)− z∗| exp
[
∫ t

0

dsDs

]

+

∫ t

0

dsDs

√

Iε(s) exp

[
∫ t

s

dτ Dτ

]

,

which implies (2.16) in view of (2.15) and since |Bε(0)− z∗| ≤ 2ε. �

Remark 2.4. In the proofs of Theorems 2.1 and 2.2, the estimates of Lemmas 2.3
and 2.5 will be used with D as in (2.7) instead of Dt. Nevertheless, we keep
the formulation involving the integral of Dt because this will be used later in the
proof of Theorem 3.1. We also remark that the identities (2.17) follow from the
antisymmetry of K = KR2 . We observe that these are no longer true for a general
domain Γ. On the other hand, in this case KΓ = K + K̃ with K̃ a kernel which
is regular away from the boundary, so that its contribution can be treated as an
external (bounded, divergence-free, and Lipschitz) field, see also the Remark 2.7 at
the end of this section.

Now, we introduce a positive parameter α, to be chosen small enough, and study
the system for times 0 ≤ t ≤ α| log ε|. Recalling the definition of D in (2.7), by
(2.15) and (2.16) we have,

Iε(t) ≤ 4εδ ∀ t ∈ [0, α| log ε|] , (2.20)

|Bε(t)−B(t)| ≤ 2(1 +Dα| log ε|)εδ/2 ∀ t ∈ [0, α| log ε|] , (2.21)

with δ = 2− 2Dα > 0, provided α is small enough.
The bound (2.20) implies that for small ε the main part of the vorticity remains

concentrated around Bε(t), which, in turn, remains close to B(t) in view of (2.21).
We now prove that not only the main part but all the filaments of vorticity remain
close to Bε(t).

To this purpose, we study the growth in time of the distance from Bε(t) of a fluid
particle. The key point is to show that this growth is very small for the particles
sufficiently away from the center of vorticity. This is a consequence of the following
two lemmas.

Lemma 2.5. Recall Λε(t) = suppωε(·, t) and define

Rt := max{|x−Bε(t)| : x ∈ Λε(t)} . (2.22)
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Given x0 ∈ Λε(0), suppose at time t > 0 it happens that

|x(x0, t)−Bε(t)| = Rt . (2.23)

Then, at this time t,

d

dt
|x(x0, t)−Bε(t)| ≤ 2DtRt +

5Iε(t)

πR3
t

+

√

Mε−ν mt(Rt/2)

π
, (2.24)

with M, ν as in (2.10) and the function mt(·) on R+ defined by

mt(h) =

∫

|y−Bε(t)|>h

dy ωε(y, t) . (2.25)

Proof. We observe that part of the proof is similar to that given in [12] (with
Bε(t) = 0). Letting x = x(x0, t), by (2.5), (2.18), and (2.9) we have,

d

dt
|x(x0, t)−Bε(t)| =

(

u(x, t) + F (x, t)− Ḃε(t)
)

· x−Bε(t)

|x−Bε(t)|

=

[
∫

dy
(

F (x, t)− F (y, t) +K(x− y)
)

ωε(y, t)

]

· x−Bε(t)

|x−Bε(t)|
.

(2.26)

The first term in the second line, due the external field, is easily bounded by using
(2.7), (2.9), and (2.22),

∣

∣

∣

∣

∫

dy [F (x, t)− F (y, t)]ωε(y, t)

∣

∣

∣

∣

≤ Dt

∫

dy |x− y|ωε(y, t) ≤ 2DtRt . (2.27)

For the second term, we split the integration region into two parts, the disk A1 =
Σ(Bε(t)|Rt/2) and the annulus A2 = Σ(Bε(t)|Rt) \ Σ(Bε(t)|Rt/2). Then,

x−Bε(t)

|x−Bε(t)|
·
∫

dy K(x− y)ωε(y, t) = H1 +H2 , (2.28)

where

H1 =
x−Bε(t)

|x−Bε(t)|
·
∫

A1

dy K(x− y)ωε(y, t) (2.29)

and

H2 =
x−Bε(t)

|x−Bε(t)|
·
∫

A2

dy K(x− y)ωε(y, t) . (2.30)

We first evaluate the contribution of the integration on A1. Recalling (1.6) and
the notation x⊥ = (x2,−x1) for x = (x1, x2), after introducing the new variables
x′ = x−Bε(t), y

′ = y −Bε(t), and using that x′ · (x′ − y′)⊥ = −x′ · y′⊥, we get,

H1 =
1

2π

∫

|y′|≤Rt/2

dy′
x′ · y′⊥

|x′||x′ − y′|2 ωε(y
′ +Bε(t)) . (2.31)

By (2.13),
∫

dy′ y′⊥ ωε(y
′ +Bε(t)) = 0, so that

H1 = H ′
1 −H ′′

1 , (2.32)

where

H ′
1 =

1

2π

∫

|y′|≤Rt/2

dy′
x′ · y′⊥
|x′|

y′ · (2x′ − y′)

|x′ − y′|2 |x′|2 ωε(y
′ +Bε(t)) ,

H ′′
1 =

1

2π

∫

|y′|>Rt/2

dy′
x′ · y′⊥
|x′|3 ωε(y

′ +Bε(t)) .
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From (2.23) we have |x′| = Rt, and hence |y′| ≤ Rt/2 implies |x′ − y′| ≥ Rt/2 and
|2x′ − y′| ≤ |x′ − y′|+ |x′| ≤ 3|x′ − y′|, so that

|H ′
1| ≤

3

πR3
t

∫

|y′|≤Rt/2

dy′ |y′|2 ωε(y
′ +Bε(t)) ≤

3Iε(t)

πR3
t

.

To bound H ′′
1 we note that, in view of (2.22), the integration is restricted to |y′| ≤

Rt, so that

|H ′′
1 | ≤

1

2πRt

∫

|y′|>Rt/2

dy′ ωε(y
′ +Bε(t)) ≤

2Iε(t)

πR3
t

,

where in the last inequality we used the Chebyshev’s inequality. By (2.32) and the
previous estimates we conclude that

|H1| ≤
5Iε(t)

πR3
t

. (2.33)

We now evaluate H2. Recalling the definition of K,

|H2| ≤
1

2π

∫

A2

dy
1

|x− y| ωε(y, t) .

The integrand is monotonically unbounded as y → x, and so the maximum of the
integral is obtained when we rearrange the vorticity mass as close as possible to
the singularity. In view of the assumption (2.10) and since, by (2.25), mt(Rt/2) is
equal to the total amount of vorticity in A2, this rearrangement gives,1

|H2| ≤
Mε−ν

2π

∫

Σ(0|r)

dy′
1

|y′| = Mε−νr , (2.34)

where the radius r is such that Mε−νπr2 = mt(Rt/2). The estimate (2.24) now
follows by (2.26), (2.27), (2.28), (2.33), and (2.34). �

A warning on the notation. Hereafter in the paper, we shall denote by Ci, i an
integer index, positive constants which are independent of the parameter ε and the
time t.

Lemma 2.6. Let mt be defined as in (2.25). For each β ∈ (0, 1/2) and ℓ > 0 there
exists α > 0 such that

lim
ε→0

ε−ℓmt(ε
β) = 0 ∀ t ∈ [0, α| log ε|] . (2.35)

Proof. Given h > 0, let x 7→ Wh(x), x ∈ R
2, be a nonnegative smooth function,

depending only on |x|, such that

Wh(x) =

{

1 if |x| ≤ h,

0 if |x| ≥ 2h,
(2.36)

1Here, we estimate
∫

A2

dy
ωε(y, t)

|x− y|
≤ max

{
∫

dy′
ω(y′)

|y′|
:

∫

dy′ ω(y′) = mt(Rt/2) , 0 ≤ ω(·) ≤ Mε−ν

}

,

and we explicitly find the distribution of vorticity that realizes this maximum. By rearrangement,

this is the piecewise constant function given by the maximum value Mε−ν on the disk Σ(0|r)
and zero otherwise, with r such that the mass constraint is satisfied. Alternatively, we could
use [12, Lemma 2.1], getting a little bit worst estimate for the integral in the left-hand side, giving
rise to a constant greater than one in front of the third term in the right-hand side of (2.24).
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and, for some C1 > 0,

|∇Wh(x)| <
C1

h
, (2.37)

|∇Wh(x) −∇Wh(x
′)| < C1

h2
|x− x′| . (2.38)

We define the quantity

µt(h) = 1−
∫

dxWh(x− Bε(t))ωε(x, t) , (2.39)

which is a mollified version of mt, satisfying

µt(h) ≤ mt(h) ≤ µt(h/2) . (2.40)

In particular, it is enough to prove (2.35) with µt instead of mt.
To this purpose, we study the time derivative of µt(h). By applying (2.6) with

test function f(x, t) = Wh(x−Bε(t)), and recalling u(x, t) =
∫

dy K(x− y)ωε(y, t)
and (2.18), we have,

d

dt
µt(h) = −

∫

dx∇Wh(x −Bε(t)) · [u(x, t) + F (x, t)− Ḃε(t)]ωε(x, t)

= −H3 −H4 ,
(2.41)

with

H3 =

∫

dx∇Wh(x−Bε(t)) ·
∫

dy K(x− y)ωε(y, t)ωε(x, t)

=
1

2

∫

dx

∫

dy ωε(x, t)ωε(y, t) [∇Wh(x−Bε(t))−∇Wh(y −Bε(t))] ·K(x− y) ,

H4 =

∫

dx∇Wh(x−Bε(t)) ·
∫

dy [F (x, t)− F (y, t)]ωε(y, t)ωε(x, t) ,

where the second expression of H3 is due to the antisymmetry of K.
Concerning H3, we introduce the new variables x′ = x − Bε(t), y

′ = y − Bε(t),
and let

F (x′, y′) =
1

2
ωε(x

′ +Bε(t), t)ωε(y
′ +Bε(t), t) [∇Wh(x

′)−∇Wh(y
′)] ·K(x′ − y′) ,

so that H3 =
∫

dx′
∫

dy′ F (x′, y′). We observe that F (x′, y′) is a symmetric function
of x′ and y′ and that, by (2.36), a necessary condition to be different from zero is
if either |x′| ≥ h or |y′| ≥ h. Therefore,

H3 =

[
∫

|x′|>h

dx′

∫

dy′ +

∫

dx′

∫

|y′|>h

dy′ −
∫

|x′|>h

dx′

∫

|y′|>h

dy′
]

F (x′, y′)

= 2

∫

|x′|>h

dx′

∫

dy′ F (x′, y′)−
∫

|x′|>h

dx′

∫

|y′|>h

dy′ F (x′, y′)

= H ′
3 +H ′′

3 +H ′′′
3 .

with

H ′
3 = 2

∫

|x′|>h

dx′

∫

|y′|≤h/2

dy′ F (x′, y′) , H ′′
3 = 2

∫

|x′|>h

dx′

∫

|y′|>h/2

dy′ F (x′, y′) ,

H ′′′
3 = −

∫

|x′|>h

dx′

∫

|y′|>h

dy′ F (x′, y′) .
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By the assumptions on Wh, we have ∇Wh(z) = ηh(|z|)z/|z| with ηh(|z|) = 0 for
|z| ≤ h. In particular, ∇Wh(y

′) = 0 for |y′| ≤ h/2. Therefore,

H ′
3 =

∫

|x′|>h

dx′ ωε(x
′+Bε(t), t)ηh(|x′|) x′

|x′| ·
∫

|y′|≤h/2

dy′ K(x′−y′)ωε(y
′+Bε(t), t) .

In view of (2.37), |ηh(|z|)| ≤ C1/h, so that

|H ′
3| ≤

C1

h
mt(h) sup

|x′|>h

∣

∣

∣

∣

x′

|x′| ·
∫

|y′|≤h/2

dy′ K(x′ − y′)ωε(y
′ +Bε(t), t)

∣

∣

∣

∣

.

We now observe that the expression inside the modulus in the right-hand side is
equal to the term H2 in (2.31) (with h in place of Rt), which has been bounded in
(2.33) (it is readily seen that the proof works also if the assumption |x′| = Rt is
relaxed to |x′| ≥ Rt). We conclude that

|H ′
3| ≤

5C1Iε(t)

πh4
mt(h) .

Now, by (2.38) and then applying the Chebyshev’s inequality,

|H ′′
3 |+ |H ′′′

3 | ≤ 3C1

2πh2

∫

|x′|≥h

dx′

∫

|y′|≥h/2

dy′ ωε(y
′ +Bε(t), t)ωε(x

′ +Bε(t), t)

=
3C1

2πh2
mt(h)

∫

|y′|≥h/2

dy′ ωε(y
′ +Bε(t), t) ≤

6C1Iε(t)

πh4
mt(h) .

In conclusion,

|H3| ≤
11C1Iε(t)

πh4
mt(h) . (2.42)

Concerning H4, we observe that by (2.36) the integrand is different from zero
only if h ≤ |x−Bε(t)| ≤ 2h. Therefore, by (2.7) and (2.37) we have,

|H4| ≤
C1

h
2‖F‖∞

∫

|x′|≥h

dx′ωε(x
′ +Bε(t), t)

∫

|y′|≥h

dy′ ω(y′ +Bε(t), t)

+
C1

h
Dt

∫

h≤|x′|≤2h

dx′ωε(x
′ +Bε(t), t)

∫

|y′|≤h

dy′ |x′ − y′|ω(y′ +Bε(t), t) .

Since |x′ − y′| ≤ 3h in the domain on integration of the last integral and using the
Chebyshev’s inequality in the first one we get,

|H4| ≤
2C1‖F‖∞Iε(t)

h3
mt(h) + 3C1Dtmt(h) . (2.43)

Given 0 < β < 1/2 as in the claim of the lemma, we fix β∗ ∈ (β, 1/2) and choose
α > 0 so small that (2.20) holds with δ = 2− 2Dα > 4β∗. Then, by (2.41), (2.42),
(2.43), and using that Dt ≤ D, see (2.7), we have,

d

dt
µt(h) ≤ A(h)mt(h) ∀ t ∈ [0, α| log ε|] , (2.44)

where, for some C2 > 0,

A(h) = C2

(

εδ

h4
+

εδ

h3
+ 1

)

. (2.45)
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Moreover, there is a constant A∗ > 0 such that A(h) ≤ A∗ for any h ≥ εβ∗ .
Therefore, by (2.40) and (2.44),

µt(h) ≤ µ0(h) +A∗

∫ t

0

ds µs(h/2) ∀ t ∈ [0, α| log ε|] ∀h ≥ εβ∗ , (2.46)

which can be iterated n times, provided 2−nh ≥ εβ∗ , so that, for any t ∈ [0, α| log ε|],

µt(h) ≤ µ0(h) +

n
∑

j=1

µ0(2
−jh)

(A∗t)
j

j!
+

An+1
∗

n!

∫ t

0

ds (t− s)nµs(2
−(n+1)h)

=
An+1

∗

n!

∫ t

0

ds (t− s)nµs(2
−(n+1)h) ≤ (A∗α| log ε|)n+1

(n+ 1)!
,

(2.47)

where we used that since Λε(0) ⊂ Σ(z∗|ε) and ε < 1 then µ0(2
−jh) = 0 for

any j = 0, . . . , n, and that µs(2
−(n+1)h) ≤ 1. By applying (2.47) with h = εβ,

n = ⌊(β∗ − β)| log2 ε|⌋, and using the Stirling approximation for (n+1)!, we obtain
that, given ℓ > 0, for α small enough,

lim
ε→0

ε−ℓµt(ε
β) = 0 ∀ t ∈ [0, α| log ε|] ,

which concludes the proof. �

Proof of Theorem 2.2. By (2.20), (2.23), (2.24), and recalling Dt ≤ D, see (2.7),
we have, whenever |x(x0, t)−Bε(t)| = Rt,

d

dt
|x(x0, t)−Bε(t)| ≤ 2DRt+

20εδ

πR3
t

+

√

Mε−ν mt(Rt/2)

π
∀ t ∈ [0, α| log ε|] , (2.48)

with δ = 2 − 2Dα and α > 0 small. This implies that Λε(t) ⊂ Σ(Bε(t)|R(t)) for
any t ∈ [0, α| log ε|], where R(t) is a solution to

Ṙ(t) = 2DR(t) +
20εδ

πR(t)3
+

√

Mε−ν mt(R(t)/2)

π
, R(0) = ε . (2.49)

Indeed, this is true for t = 0 and, if at some time t ∈ (0, α| log ε|] a fluid particle
initially located at x0 ∈ Λε(0) reaches the boundary of Σ(Bε(t)|R(t)), then R(t) =
|x(x0, t) − Bε(t)| = Rt necessarily and hence, by (2.48), the radial velocity of

x(x0, t)−Bε(t) is less than or equal to Ṙ(t).
We now claim that given β′ ∈ (0, 1/2) there are ε′ ∈ (0, 1) and α such that

R(t) < εβ
′

for any t ∈ [0, α| log ε|] and ε ∈ (0, ε′). To prove the claim, we give
a proof by contradiction. Let us suppose there is a time t1 ∈ (0, α| log ε|] such
that R(t1) = εβ

′

and define t0 = inf{t ∈ [0, t1] : R(s) > εβ∗ ∀ s ∈ [t, t1]} with
β∗ ∈ (β′, 1/2). Then R(t) ≥ εβ∗ for any t ∈ [t0, t1], which implies mt(R(t)/2) ≤
mt(ε

β∗/2) for any t ∈ [t0, t1]. We then apply Lemma 2.6 with ℓ = ν + 4 provided
α is small enough, so that the last term in the right-hand side of (2.49) is bounded
by (const.) ε2 on [t0, t1]. Therefore, we can find a constant C3 > 20/π such that

Ṙ(t) ≤ 2DR(t) + C3ε
δ−3β∗ ∀ t ∈ [t0, t1] .

Integrating the above differential inequality we get,

R(t1) ≤ e2D(t1−t0)
(

R(t0) + (t1 − t0)C3ε
δ−3β∗

)

≤ ε−2Dα
(

εβ∗ + C3α| log ε|εδ−3β∗

)

.
(2.50)
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As δ = 2−2Dα, we can choose α so small to have min{β∗−2Dα; δ−3β∗−2Dα} > β′.
Then, there exists ε′ ∈ (0, 1) such that the right-hand side of (2.50) is strictly

smaller than εβ
′

for any ε ∈ (0, ε′), which contradicts the assumption R(t1) = εβ
′

.
By the claim just proved and (2.21), we have that Λε(t) ⊂ Σ(B(t)|rε) for any ε ∈

(0, ε′), α small enough, and t ∈ [0, α| log ε|], where rε = εβ
′

+ 2(1 +Dα| log ε|)εδ/2.
Clearly, this concludes the proof of the theorem. Indeed, given β ∈ (0, 1/2), by
choosing β′ ∈ (β, 1/2) and α small enough, there exists ε1 ∈ (0, ε′) such that
rε < εβ for any ε ∈ (0, ε1), and hence (2.12) is proved with ζ1 = α. �

2.2. Proof of Theorem 2.1. Theorem 2.1 follows quite easily from Theorem 2.2
and we only give a sketch of the proof. Let β ∈ (0, 1/2) be fixed as in the statement
of the theorem. We notice that, by continuity, Tε,β > 0 for any ε ∈ (0, 1). Recalling
(2.1), let now ε′0 ∈ (0, 1) be such that dist(Σ(zi(t)|εβ),Σ(zj(t)|εβ)) ≥ rmin/2 for
any t ≥ 0, i 6= j, and ε ∈ (0, ε′0). Therefore, for any ε ∈ (0, ε′0) and t ∈ [0, Tε,β],
the blobs evolve with supports Λi,ε(t) that remain separated by a distance larger
than or equal to rmin/2, and hence their mutual interaction remains bounded and
Lipschitz. Otherwise stated, during the time interval [0, Tε,β], the i-th blob of
vorticity ωi,ε(x, t) evolves according to a reduced system as in Subsection 2.1, with
z∗ = zi and external field

Fi,ε(x, t) =

N
∑

j=1
j 6=i

∫

dyK1(x, y)ωj,ε(y, t) , (2.51)

where K1(x, y) is any smooth kernel such that K1(x, y) = K(x − y) if |x − y| ≥
rmin/2. Therefore, for some constant D′ > 0,

|Fi,ε(x, t)| ≤ D′ ∀ (x, t) ∈ R
2 × [0, Tε,β] ∀ ε ∈ (0, ε′0)

and

|Fi,ε(x, t)− Fi,ε(y, t)| ≤ D′|x− y| ∀ (x, y, t) ∈ R
2 × R

2 × [0, Tε,β] ∀ ε ∈ (0, ε′0] .

It is now easy, with minor adjustments detailed below, to adapt the proof of
Theorem 2.2 and show that there are ε0 ∈ (0, ε′0] and ζ0 > 0 such that Λi,ε(t) ⊂
Σ(zi(t)|εβ) for any ε ∈ (0, ε0), i = 1, . . . , N , and t ≤ min{Tε,β; ζ0| log ε|}. By
the definition of Tε,β, this clearly implies Tε,β > ζ0| log ε| for any ε ∈ (0, ε0), thus
completing the proof of the theorem.

The main difference in repeating the analysis of Subsection 2.1 is that here the ex-
ternal fields depend on ε, and are only close to the fields appearing in the right-hand
side of the vortex model (1.13) in the case Γ = R

2. This modifies the estimation of
the nearness between the centers of vorticity Bi,ε(t) := a−1

i

∫

dxxωi,ε(x, t) and the
corresponding vortices zi(t), so we discuss only this point. By (1.13) and (2.51),
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for any i = 1, . . . , N and t ∈ [0, Tε,β],

Ḃi,ε(t)− żi(t) = a−1
i

∫

dy [Fi,ε(y, t)− Fi,ε(Bi,ε(t), t)]ωi,ε(y, t)

+

N
∑

j=1
j 6=i

∫

dy [K1(Bi,ε(t), y)−K1(Bi,ε(t), Bj,ε(t))]ωj,ε(y, t)

+

N
∑

j=1
j 6=i

aj [K1(Bi,ε(t), Bj,ε(t))−K1(Bi,ε(t), zj(t))]

+
N
∑

j=1
j 6=i

aj [K1(Bi,ε(t), zj(t))−K1(zi(t), zj(t))] ,

where we used that K(zi(t) − zj(t)) = K1(zi(t), zj(t)) for j 6= i and t ∈ [0, Tε,β].
Integrating the above identity and arguing as in Lemma 2.3, we now obtain, for
some constant C > 0 and any t ∈ [0, Tε,β],

∆(t) ≤ ∆(0)eCt + CeCt

∫ t

0

ds
N
∑

j=1

√

Ij,ε(s) ,

where ∆(t) = max
i

|Bi,ε(t) − zi(t)| and Ij,ε(t) :=
∫

dx |x − Bj,ε(t)|2 ωj,ε(x, t). This

estimate, together with an a priori bound on the moments of inertia Ij,ε(t), gives
an estimate like (2.21) for ∆(t). �

Remark 2.7. In the case of a generic domain, for ε small enough the system remains
far from the boundary until the time Tε,β , so that also the effect of the boundary
can be treated as a regular external (bounded, divergence-free, and Lipschitz) field.
A few words on the meaning of the assumption (2.1) are due in this case. Unlike
the case Γ = R

2, explicit cases where (2.1) is true are not present in the literature,
but it seems very reasonable that this assumption is “generic”, i.e., it holds almost
everywhere. Actually, in presence of boundaries, the global existence of solutions
for any choice of initial data and intensities {zi, ai}Ni=1, outside a set of Lebesgue
measure zero, has been proved only in the case of a circular domain [29], but this
lack of results does not appear substantial (any regular boundary looks locally like
a circle).

3. Examples of persistence of vortices on power-law time scales

In this section we provide examples in which the results of the previous section
can be improved, proving that the maximal time for which the blobs of vorticity
remain concentrated is not less than an inverse power of the initial size ε of the
blobs.

3.1. Examples of flow in R
2. The simplest example in R

2 is given by a blob of
vorticity with compact support and alone in the plane. The time goes by and the
support could increase. Bounds on the growth are given in [12,16,20,21,35]. In this
case, when the vorticity is concentrated around a point, we can obtain a power-law
lower bound on the maximal time quoted above. An explicit proof follows by the
analysis of the example that we discuss next.
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The dynamical system (1.13) admits particular choices of intensities and initial
data for which the system evolves in a self-similar configuration, i.e., the polygon
with vertices formed by the point vortices rotates and changes its size but remains
similar in shape. Denoting by N the number of point vortices, this property has
been known for a long time for N ≤ 3, and more recently for N = 4, 5, and it has
been conjectured for larger N , see [2, 32, 33]; some properties have been recently
discussed in [11].

For concreteness, we study the case N = 3, but similar considerations can be
made for every N . Consider three point vortices of intensities ai posed in zi(t). As
well known, there exist intensities and initial data for which the bodies approach
each other and collide, while for other initial conditions they move away from
each other. More precisely, there are intensities and positions for which the three
vortices, initially posed on the vertices on a triangle of sides of length Lij , in the
future remain posed in the vertices of a triangle of side of length Lij(t), where

Lij(t) = Lij(0)
√

1 + gt , g > 0 , (3.1)

that is, the triangle grows in the future (and shows a collapse for t = −g−1), but
remains similar in form. For the time evolution of three point vortices see [1] and
also [2, 31].2

Theorem 3.1. Under the same hypothesis and notation of Theorem 2.1 with N =
3, we further assume that the three point vortices evolve according to (3.1). Then,
for each β ∈ (0, 1/2) there exist ε0 > 0 and ζ0 > 0 such that

Tε,β > ε−ζ0 ∀ ε ∈ (0, ε0) . (3.2)

The proof is achieved like that of Theorem 2.1, i.e., through the analysis of a
reduced problem: a single blob of unitary vorticity moving in an external time
dependent vector field F (x, t), that simulates the action of the other two blobs of
vorticity. Therefore, it is a divergence-free field, with norm and Lipschitz constant
decreasing in time, i.e., for suitable constants b, L > 0,

|F (x, t)| ≤ b√
1 + t

, (3.3)

|F (x, t) − F (y, t)| ≤ Dt|x− y| , Dt =
L

1 + t
. (3.4)

The main point is the decreasing in time of the Lipschitz constant Dt, which
allows one to improve the content of Theorem 2.2 in the following way.

2We recall the main conditions for a system of three point vortices to go to infinity [1, 2]. We
denote by (a1, a2, a3) the intensities of the vortices and by Lij the distance between vortices i
and j. There are conditions under which the triangle whose vertexes are given by the positions
of the vortices changes size but remains similar in form. These conditions can be easily expressed
in terms of the intensities and the reciprocal distances: a1a2 + a1a3 + a2a3 = 0 and a1a2L2

12
+

a1a3L2

13
+a2a3L2

23
= 0. The dynamical system collapses in the past at a critical time and increases

its size in the future as the square root of t. More precisely, the equations of motion imply

d

dt
L2

i,j =
2Aak

π
[L−2

jk
− L−2

ki
] ,

where A is the area of the triangle determined by the positions of the three vortices with orien-
tation, i.e., reckoned positive if (i, j, k) appear counterclockwise and negative if (i, j, k) appears
clockwise. The previous equation implies (3.1).
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Theorem 3.2. Under the same hypothesis and notation of Theorem 2.2, we further
assume that the external field satisfies (3.4). Then, for each β ∈ (0, 1/2) there exist
ε1 > 0 and ζ1 > 0 such that

T ∗
ε,β > ε−ζ1 ∀ ε ∈ (0, ε1) . (3.5)

Proof. We only give a sketch of the proof, by focusing on those parts where the
decreasing in time of Dt allows us to improve the result. In what follows, we use
the same notation of Section 2.

By Lemma 2.3,

Iε(t) ≤ 4ε2(1 + t)2L , |Bε(t)−B(t)| ≤ 2ε[1 + L log(1 + t)](1 + t)L ,

which gives, for some constant C4 > 0,

Iε(t) ≤ C4ε
δ , |B(t)−Bε(t)| ≤ C4(1 + α| log ε|)εδ/2 ∀ t ∈ [0, ε−α] , (3.6)

with δ = 2− 2Lα > 0, provided α is small enough.
We now turn to the content of Lemma 2.6, obtaining in this case a better result;

more precisely, we assert that for each β ∈ (0, 1/2) and ℓ > 0 there exists α > 0
such that

lim
ε→0

ε−ℓmt(ε
β) = 0 ∀ t ∈ [0, ε−α] . (3.7)

To this purpose, arguing as in that lemma, we fix β∗ ∈ (β, 1/2) and assume
α > 0 so small that (3.6) holds with δ = 2 − 2αL > 0. We then observe that, by
(2.42) and (2.43),

d

dt
µt(h) ≤ At(h)mt(h) ∀ t ∈ [0, ε−α] , (3.8)

where, for some constant C5 > 0,

At(h) = C5

(

εδ

h4
+

εδ

h3
+

1

1 + t

)

≤ C5

(

2εδ−4β∗ +
1

1 + t

)

∀h ≥ εβ∗ .

We choose α > 0 and ε∗ ∈ (0, 1) small enough to have

At(h) ≤
2C5

1 + t
∀ t ∈ [0, ε−α] ∀h ≥ εβ∗ ∀ ε ∈ (0, ε∗) ,

and hence,

µt(h) ≤ µ0(h) + 2C5

∫ t

0

ds
1

1 + s
µs(h/2) ∀ t ∈ [0, ε−α] ∀h ≥ εβ∗ ,

which can be iterated n times, provided 2−nh ≥ εβ∗ , as done in (2.47), getting now
that, for any t ∈ [0, ε−α],

µt(h) ≤ (2C5)
n

∫ t

0

ds1
1 + s1

· · ·
∫ sn

0

dsn+1

1 + sn+1
µsn+1

(h/2n+1) ≤ [2C5 log(1 + t)]n+1

(n+ 1)!
.

Choosing h = εβ, n = ⌊(β∗ − β)| log2 ε|⌋ and using the Stirling approximation
for (n + 1)!, we obtain that for any ℓ > 0 there is α small enough such that
limε→0 ε

−ℓµt(ε
β) = 0 for any t ∈ [0, ε−α], which implies (3.7) in view of (2.40).

By (2.23) and (2.24), using Dt = L(1 + t)−1 and the bound (3.6) on Iε(t), we
have now that, whenever |x(x0, t)−Bε(t)| = Rt,

d

dt
|x(x0, t)−Bε(t)| ≤

2L

1 + t
Rt +

5C4ε
δ

πR3
t

+

√

Mε−ν mt(Rt/2)

π
∀ t ∈ [0, ε−α] ,
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with δ = 2− 2Lα and α > 0 small. Reasoning as in Theorem 2.2, this implies that
Λε(t) ⊂ Σ(Bε(t)|R(t)) for any t ∈ [0, ε−α], where R(t) is a solution to

Ṙ(t) =
2L

1 + t
R(t) +

5C4ε
δ

πR(t)3
+

√

Mε−ν mt(R(t)/2)

π
, R(0) = ε . (3.9)

We now show that given β′ ∈ (0, 1/2) there are ε′ ∈ (0, 1) and α such that

R(t) < εβ
′

for any t ∈ [0, ε−α] and ε ∈ (0, ε′). We give a proof by contradiction.

Let us suppose there is a time t1 ∈ (0, ε−α] such that R(t1) = εβ
′

and define
t0 = inf{t ∈ [0, t1] : R(s) > εβ∗ ∀ s ∈ [t, t1]} with β∗ ∈ (β′, 1/2). Then R(t) ≥ εβ∗

for any t ∈ [t0, t1], which implies mt(R(t)/2) ≤ mt(ε
β∗/2) for any t ∈ [t0, t1]. We

then apply (3.7) with ℓ = ν + 4 provided α is small enough, so that the last term
in the right-hand side of (3.9) is bounded by (const.) ε2 on [t0, t1]. Therefore, we
can find a constant C6 > 5C4/π such that

Ṙ(t) ≤ 2L

1 + t
R(t) + C6ε

δ−3β∗ ∀ t ∈ [t0, t1] .

Integrating the above differential inequality we get,

R(t1) ≤
(

1 + t1
1 + t0

)2L
(

R(t0) + (t1 − t0)C6ε
δ−3β∗

)

≤ (1 + ε−α)2L
(

εβ∗ + C6ε
δ−3β∗−α

)

.

(3.10)

As δ = 2−2Lα, we can choose α so small to have min{β∗−2Lα; δ−3β∗−(2L+1)α} >
β′. Then, there exists ε′ ∈ (0, 1) such that the right-hand side of (3.10) is strictly

smaller than εβ
′

for any ε ∈ (0, ε′), which contradicts the assumption R(t1) = εβ
′

.
We can now conclude as in the proof of Theorem 2.2. Given β ∈ (0, 1/2),

by choosing β′ ∈ (β, 1/2) and α small enough, from the above estimate on R(t)
and the second estimate in (3.6) it follows that there is ε1 ∈ (0, ε′) such that
Λε(t) ⊂ Σ(B(t)|εβ) for any t ∈ [0, ε−α] and ε ∈ (0, ε1), thus proving (3.5) with
ζ1 = α. �

We omit the proof of how to deduce Theorem 3.1 from Theorem 3.2: it can
be easily obtained by adapting to the present context the proof of Theorem 2.1
discussed in Subsection 2.2.

3.2. An example of flow in a bounded region. Consider a single blob of vor-
ticity in a bounded domain Γ, initially concentrated around a point z0 ∈ Γ. In
this case, denoting by m the total mass of the blob, the corresponding point vortex
system (1.13) reads,

ż(t) =
m

2
∇⊥γ(z(t)) , z(0) = z0 , (3.11)

where γ(x) = γΓ(x, x), with γΓ(x, y) = GΓ(x, y) +
1
2π log |x− y| and GΓ the funda-

mental solution of the Laplace operator in Γ vanishing on the boundary.
In what follows, we assume that Γ = Σ(0, 1), the disk of unitary radius centered

in the origin. In this case, GΓ is the sum of the Green function in the whole plane
plus a contribution given by a negative mirror charge posed in ȳ = y/|y|2, and
hence γΓ(x, y) =

1
2π log |x− ȳ|.

If initially the blob of vorticity is contained in Σ(0, ε), the time evolution is
similar to that of a blob which moves in the whole plane and it is subjected to an
external field which is vanishing as ε → 0. The origin is an equilibrium for the
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vortex dynamics (3.11), and the states with radial symmetric vorticity distribution
are stationary for the Euler dynamics. Instead, a blob of vorticity without such
symmetry is not stationary in general, and small filaments of vorticity can move
away. Nonetheless, by adapting the techniques of previous sections, we can prove
that the blob remains concentrated up to times of the order of an inverse power of
ε.

Theorem 3.3. Let Γ = Σ(0, 1) and assume that the initial datum ωε(x, 0) of the
Euler equations is given by a single blob of vorticity with support Λε(0) ⊂ Σ(0|ε).
Suppose also that there are M, ν > 0 such that

|ωi,ε(x, 0)| ≤ Mε−ν .

Then, for each β ∈ (0, 1/2) there exist ε0 > 0 and ζ0 > 0 such that

Tε,β > ε−ζ0 ∀ ε ∈ (0, ε0) , (3.12)

with Tε,β as defined in (2.2), which in this case reduces to

Tε,β = sup{t > 0: |x(x0, s)| < εβ ∀ s ∈ [0, t] ∀x0 ∈ Λε(0)} .

Proof. Without lack of generality we assume that the total mass of vorticity equals
one.

Each fluid particle moves in the velocity field produced by the vorticity via
KΓ(x, y),

KΓ(x, y) = −∇⊥
x

1

2π
log |x− y|+∇⊥

x

1

2π
log |x− ȳ| , (3.13)

with ȳ = y/|y|2 as previously defined. Therefore, as long as Λε(t) does not intersect
the boundary of the disk Γ (in particular, up to time Tε,β), the vorticity ωε(x, t)
evolves as in the reduced problem in R

2 defined by (2.5), (2.6), with the role of
external field played by

F (x, t) =

∫

Γ

dy F1(x, y)ωε(y, t) , (3.14)

where

F1(x, y) = ∇⊥
x

1

2π
log |x− ȳ| . (3.15)

Since ȳ = y/|y|2, a straightforward computation shows that there is κ > 0 such
that, for any δ ∈ (0, 1/2),

|F1(x, y)− F1(z, y)| ≤ κδ2|x− z| ∀x, y, z ∈ Σ(0|δ) , (3.16)

which is the key property of F1(x, y) that will be used in the subsequent analysis.
We study the dynamics in the time interval [0, Tε,β ∧ ε−α], α > 0. Our task is

to prove that there is α such that Λε(t) ⊂ Σ(0|εβ) for any t ∈ [0, Tε,β ∧ ε−α] and ε
small enough, which implies, by continuity, Tε,β > ε−α.

Hereafter, we assume ε small enough to have εβ ≤ 1/2, so that, from (3.14) and
(3.16),

|F (x, t)− F (z, t)| ≤ κε2β|x− z| ∀x, y ∈ Λε(t) ∀ t ∈ [0, Tε,β ∧ ε−α] .

This implies that we can apply Lemma 2.3 with Dt = κε2β for any t ∈ [0, Tε,β∧ε−α].
Indeed, both the proofs of the estimates for Iε(t) and |Bε(t)−B(t)| = |Bε(t)| require
the control of |F (x, t) − F (y, t)| only for x, y ∈ Λε(t). Therefore,

Iε(t) ≤ 4ε2e2κε
2βt , |Bε(t)| ≤ 2ε(1 + κε2βt)eκε

2βt ∀ t ∈ [0, Tε,β ∧ ε−α] ,



LONG TIME EVOLUTION OF CONCENTRATED EULER FLOWS 19

from which we get, assuming α < 2β,

Iε(t) ≤ 4e2κε2 , |Bε(t)| ≤ 2(1 + κ)e2κε ∀ t ∈ [0, Tε,β ∧ ε−α] . (3.17)

By the first estimate in (3.17), the analysis of Lemma 2.6 can be repeated in this
case, obtaining the following result: for each β ∈ (0, 1/2) there exists α > 0 such
that

lim
ε→0

sup
ℓ>0

ε−ℓmt(ε
β) = 0 ∀ t ∈ [0, Tε,β ∧ ε−α] . (3.18)

Indeed, arguing as in the proof of that lemma, in view of (2.42) and (2.43) we
have,

d

dt
µt(h) ≤ A(h)mt(h) ∀ t ∈ [0, Tε,β ∧ ε−α] ,

where, in this case, for some constant C7 > 0,

A(h) = C7

(

ε2

h4
+

ε2

h3
+ ε2β

)

≤ 3C7ε
η ∀h ≥ εβ∗ ,

provided η ≤ min{2β, 2− 4β∗}. Hence,

µt(h) ≤ µ0(h) + 3C7ε
η

∫ t

0

ds µs(h/2) ∀ t ∈ [0, Tε,β ∧ ε−α] ∀h ≥ εβ∗ ,

which can be iterated n times, provided 2−nh ≥ εβ∗ , as done in (2.47), getting now,
for any t ∈ [0, Tε,β ∧ ε−α],

µt(h) ≤
(3C7ε

ηt)n+1

(n+ 1)!
≤ (3C7ε

η−α)n+1

(n+ 1)!
.

Choosing h = εβ, n = ⌊(β∗ − β)| log2 ε|⌋ and using the Stirling approximation for
(n+1)!, we obtain that there is α small enough such that limε→0 ε

−ℓµt(ε
β) = 0 for

any ℓ > 0 and t ∈ [0, Tε,β ∧ ε−α], which implies (3.18) in view of (2.40).
Now, by (2.23) and (2.24), using Dt = κε2β and the bound (3.17) on Iε(t), we

have that, whenever |x(x0, t)−Bε(t)| = Rt and t ∈ [0, Tε,β ∧ ε−α],

d

dt
|x(x0, t)−Bε(t)| ≤ 2κε2βRt +

20e2κε2

πR3
t

+

√

Mε−ν mt(Rt/2)

π
.

Arguing as in the proof of Theorem 2.2, this implies that Λε(t) ⊂ Σ(Bε(t)|R(t)) for
any t ∈ [0, Tε,β ∧ ε−α], where R(t) is a solution to

Ṙ(t) = 2κε2βR(t) +
20e2κε2

πR(t)3
+

√

Mε−ν mt(R(t)/2)

π
, R(0) = ε . (3.19)

We now show that given β′ ∈ (0, 1/2) there are ε′ ∈ (0, 1) and α such that

R(t) < εβ
′

for any t ∈ [0, Tε,β ∧ ε−α] and ε ∈ (0, ε′). By contradiction, let us

suppose there is a time t1 ∈ (0, ε−α] such that R(t1) = εβ
′

and define t0 = inf{t ∈
[0, t1] : R(s) > εβ∗ ∀ s ∈ [t, t1]} with β∗ ∈ (β′, 1/2). Then R(t) ≥ εβ∗ for any
t ∈ [t0, t1], which implies mt(R(t)/2) ≤ mt(ε

β∗/2) for any t ∈ [t0, t1]. We then
apply (3.18) with ℓ = ν + 4 provided α is small enough, so that the last term in
the right-hand side of (3.19) is bounded by (const.) ε2 on [t0, t1]. Therefore, we can
find a constant C8 > 0 such that

Ṙ(t) ≤ 2κε2βR(t) + C8ε
2−3β∗ ∀ t ∈ [t0, t1] ,
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which implies,

R(t1) ≤ e2κε
2β(t1−t0)

(

R(t0) + (t1 − t0)C8ε
2−3β∗

)

≤ e2κε
2β−α(

εβ∗ + C7ε
2−3β∗−α

)

.
(3.20)

As 2 − 3β∗ > 1/2 > β′, there exist α > 0 and ε′ ∈ (0, 1) such that the right-hand

side of (3.20) is strictly smaller than εβ
′

for any ε ∈ (0, ε′), which contradicts the

assumption R(t1) = εβ
′

.
We can now conclude the proof of the theorem. Given β ∈ (0, 1/2), by choosing

β′ ∈ (β, 1/2) and α small enough, from the above estimate on R(t) and the second
estimate in (3.17) it follows that there is ε0 ∈ (0, ε′) such that Λε(t) ⊂ Σ(0|εβ) for
any t ∈ [0, Tε,β ∧ ε−α] and ε ∈ (0, ε0), thus proving (3.12) with ζ0 = α. �

4. Analysis of a toy model

As discussed before, it is too difficult to improve rigorously the estimate (2.4)
in general. The difficult task is to control the self-energy of a blob. Perhaps, some
better results could be obtained by well-preparing the initial state: blobs of vorticity
with a radial symmetry. In this case, the self energy is exactly zero and this trick is
used in [3] to justify the point vortex model. Of course, the time evolution destroys
this symmetry and the justification is weak. However, we can hope that these bad
effects, as the initial concentration is large, become important only after a long
time, but there is not rigorous proof of this.

To have some hint in the study of the problem, we introduce a very schematic
toy model: a point x in the plane moving under the action of two velocity fields
F (x, t) and g(x,B(t)), where B(t) is a solution of the equation,

Ḃ(t) = F (B(t), t) . (4.1)

The field F simulates the action of other vortices and it is assumed smooth and
divergence-free, the field g simulates the action of the vorticity belonging to the
blob itself,

g(x,B(t)) = −∇⊥ log |x−B(t)| = − (x−B(t))⊥

(x−B(t))2
, (4.2)

where, to simplify the notation, we assumed the intensity of the blob equals to 2π.
We refer the reader to Remark 4.4 below for more details on the justification of the
choice (4.2).

Theorem 4.1. Let F (x, t) ∈ R
2, (x, t) ∈ R

2 × R, be a (time-dependent) smooth
vector field such that divF (x, t) = 0. We also assume that F , ∂tF , DxF , ∂tDxF ,
D2

xF , ∂tD
2
xF , and D3

xF are uniformly bounded. Given z∗ ∈ R
2, we denote by

t 7→ B(t), t ∈ R, the solution to (4.1) with initial condition B(0) = z∗.
Let x(t), t ∈ I, be the maximal solution to the Cauchy problem,

ẋ(t) = F (x(t), t) −∇⊥ log |x(t)−B(t)| , x(0) = x0 , (4.3)

with ε := |x0 − z∗| > 0. For each β ∈ (0, 1) there exist ε0 ∈ (0, 1] and c0 > 0 such
that, for any ε ∈ (0, ε0) we have,

(i) [0, ε−β] ⊂ I;
(ii) |x0 − z∗| − c0ε

3−β ≤ |x(t)−B(t)| ≤ |x0 − z∗|+ c0ε
3−β for any t ∈ [0, ε−β].
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Proof. A straightforward computation shows that the problem (4.3) written in term
of the unknown ξ(t) := ε−1(x(t)−B(t)) reads,

ξ̇(t) = A(t)ξ(t) +
ε

2
ξ(t) ·H(t)ξ(t) + ε2Qε(ξ(t), t) −

ξ(t)⊥

ε2|ξ(t)|2 , ξ(0) = ξ0 , (4.4)

where

A(t) := DxF (B(t), t) , H(t) := D2
xF (B(t), t) =

(

H(1)(t)
H(2)(t)

)

,

with H(i)(t) = D2
xFi(B(t), t), i = 1, 2, and the short notation ξ(t) ·H(t)ξ(t) means

ξ(t) ·H(t)ξ(t) =

(

ξ(t) ·H(1)(t)ξ(t)

ξ(t) ·H(2)(t)ξ(t)

)

.

Finally, the remainder

Qε(ξ, t) := ε−2

[

F (B(t) + εξ, t)− F (B(t), t)− εA(t)ξ − ε

2
ξ ·H(t)ξ

]

is a smooth function of ξ, t, and ε, such that Qε(ξ, t) = O(|ξ|3) (uniformly with
respect to (t, ε) ∈ R× [0, 1]).

Since divF = 0 the matrix A(t) is traceless, i.e., it has the form

(

a(t) b(t)
c(t) −a(t)

)

.

Moreover, by differentiating the identity divF = 0 with respect to the spatial
variables, we have that

∂2F1

∂x1∂x2
= −∂2F2

∂x2
2

,
∂2F2

∂x1∂x2
= −∂2F1

∂x2
1

,

so that the matrices H(i)(t), i = 1, 2 take the form,

H(1)(t) =

(

h(t) −p(t)
−p(t) q(t)

)

, H(2)(t) =

(

r(t) −h(t)
−h(t) p(t)

)

.

The dynamics defined by (4.4) is characterized by the fact that the polar angle of
ξ evolves in time much more quickly than the radius |ξ|. By the averaging principle,
we then expect the existence of a slowly varying quantity which remains close to
the radius |ξ|. This quantity can be easily identified by standard perturbation
theory, but, for the sake of brevity, we prefer to give its explicit expression without
justification, and then proving, by direct inspection, that it is slowly varying in
time when computed along the solutions to (4.4). With this premise, we introduce
the following quantity

̺(ξ, t) := |ξ|
[

1− ε2

2
ξ⊥ ·A(t)ξ+ ε3

2

(

r(t)

3
ξ31 − h(t)ξ21ξ2 + p(t)ξ1ξ

2
2 −

q(t)

3
ξ32

)]

(4.5)
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and compute its time derivative along the solution to (4.4). We have (omitting the
explicit dependence on t),

˙̺ =
ξ · ξ̇
|ξ|

[

1− ε2

2
ξ⊥ ·Aξ + ε3

2

(

r

3
ξ31 − hξ21ξ2 + pξ1ξ

2
2 − q

3
ξ32

)]

− ε2

2
|ξ| ξ⊥ · Ȧξ − ε2

2
|ξ|

(

ξ⊥ · Aξ̇ + ξ̇⊥ · Aξ
)

+
ε3

2
|ξ|

(

ṙ

3
ξ31 − ḣξ21ξ2 + ṗξ1ξ

2
2 − q̇

3
ξ32

)

+
ε3

2
|ξ|

(

rξ21 ξ̇1 − hξ21 ξ̇2 − 2hξ1ξ2ξ̇1 + pξ̇1ξ
2
2 + 2pξ1ξ2ξ̇2 − qξ22 ξ̇2

)

.

Using the right-hand side of (4.4) to express the time derivatives of ξ(t), after some
straightforward computations we get,

˙̺ =
ξ · Aξ
|ξ| + ε

ξ · (ξ ·Hξ)

2|ξ| +
ξ⊥ ·Aξ⊥

2|ξ| +
(ξ⊥)⊥ · Aξ

2|ξ|
− ε

2|ξ|
(

rξ21ξ2 + hξ31 − 2hξ1ξ
2
2 + pξ32 − 2pξ21ξ2 + qξ1ξ

2
2

)

+ ε2Pε(ξ) ,

where Pε(ξ) is a smooth function of ξ, t, and ε, such that Pε(ξ, t) = O(|ξ|3).
Using that A is traceless, a calculation shows that (Aξ)⊥ = −AT ξ⊥, with AT

the transpose of A. Therefore, noticing also that (ξ⊥)⊥ = −ξ,

ξ⊥ ·Aξ⊥ = AT ξ⊥ · ξ⊥ = −(Aξ)⊥ · ξ⊥ = −ξ ·Aξ , (ξ⊥)⊥ ·Aξ = −ξ ·Aξ .

Moreover,

ξ · (ξ ·Hξ) = ξ1(hξ
2
1 + qξ22 − 2pξ1ξ2) + ξ2(rξ

2
1 + pξ22 − 2hξ1ξ2)

= rξ21ξ2 + hξ31 − 2hξ1ξ
2
2 + pξ32 − 2pξ21ξ2 + qξ1ξ

2
2 .

Inserting the above identities in the expression for ˙̺ we obtain,

˙̺ = ε2Pε(ξ) . (4.6)

Now we set

τ := sup{t ∈ I ∩ R+ : |ξ(s)| < 2 ∀ s ∈ [0, t]} ,

noticing that τ > 0 since |ξ0| = 1 and ξ(t) is continuous. By (4.5) and (4.6) there
are ε1 ∈ (0, 1] and C > 0 such that, for any ε ∈ (0, ε1] and t ∈ [0, τ),

|̺(t)− |ξ(t)|| ≤ Cε2|ξ(t)| , 1

2
|ξ(t)| ≤ ̺(t) ≤ 3

2
|ξ(t)| , | ˙̺(t)| ≤ Cε2|ξ(t)| (4.7)

(the second inequality comes from the first one for 2Cε21 < 1). From the above
estimates we obtain the following integral inequality, valid for any ε ∈ (0, ε1],

|̺(t)− ̺(0)| ≤ 2Cε2τ̺(0) + 2Cε2
∫ t

0

ds |̺(s)− ̺(0)| ∀ t ∈ [0, τ) ,

which implies,

max
s∈[0,t]

|̺(s)− ̺(0)| ≤ 2Cε2τ̺(0) + 2Cε2τ max
s∈[0,t]

|̺(s)− ̺(0)| ∀ t ∈ [0, τ) . (4.8)
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Given β ∈ (0, 1) we choose ε0 ∈ (0, ε1] such that K0 := 12Cε2−β
0 < 1. Then, setting

τ0 = τ ∧ ε−β, from (4.8) we deduce that, for any ε ∈ (0, ε0),

|̺(t)− ̺(0)| ≤ 4Cε2−β̺(0) ∀ t ∈ [0, τ0) .

Moreover, recalling |ξ0| = 1 and using the first two inequalities in (4.7), for any
ε ∈ (0, ε0),

||ξ(t)| − 1| ≤ ||ξ(t)| − ̺(t)|+ |̺(t)− ̺(0)|+ |̺(0)− |ξ(0)||
≤ 2Cε2̺(t) + 4Cε2−β̺(0) + 2Cε2̺(0)

≤ 6C(ε2 + ε2−β) ≤ K0 < 1 ∀ t ∈ [0, τ0) .

This implies τ0 ∈ I and, by continuity, |ξ(τ0)| < 2. From the definition of τ we
conclude that τ0 = ε−β for any ε ∈ (0, ε0). As |x(t)−B(t)|−|x0−z∗| = ε(|ξ(t)|−1),
this proves both claims (i) and (ii) of the theorem. �

Remark 4.2. It is worthwhile to remark that the condition divF (x, t) = 0 plays a
crucial role for the validity of the above result. Indeed, if the matrix A(t) is not
traceless, the averaging effect does not cancel, in general, the lowest order of the
expansion of ˙̺, due to the possible presence of secular terms in the averaged system.
Moreover, the not trivial fact is that such cancellation turns out to be valid up to
the second order and not only to the first one as expected in general. As we shall
see in the next remarks, this fact allow one to enhance the justification of the point
vortex model via radially symmetry given in textbooks such as [3].

Remark 4.3. We observe that from the proof of the theorem, more precisely in
view of the estimates (4.7) and (4.8), it is easy to deduce also that if c > 0 is
chosen sufficiently small then |x(t) − B(t)| < 2ε for any t ∈ [0, c ε−2] and any ε
small enough. On the other hand, only the better estimates obtained in the shorter
time interval [0, ε−β], β ∈ (0, 1), as stated in claims (i) and (ii) of the theorem, are
physically relevant, since they allow one to deduce - at least heuristically - features
of the long time behavior of the Euler dynamics. See the next two remarks.

Remark 4.4. To better understand the connection between the toy model and the
underlying Euler dynamics, we come back to the situation depicted at the beginning
of the section. More precisely, we consider the reduced model of Subsection 2.1 with
initial configuration,

ωε(x, 0) = ε−2γ(|x− z∗|/ε) , (4.9)

where γ(r), r ≥ 0, is a nonnegative smooth function with support [0, 1] such that
∫

dx γ(|x|) = 2π
∫ 1

0 dr γ(r) = 2π.
Consider the trajectory x(x0, t) of the fluid particle initially in x0, i.e., the so-

lution to (2.5) with u(x, t) =
∫

dyK(x − y)ωε(y, t). We next show that the toy
model is consistent with (2.5) if the vorticity remains radially distributed around
the moving center B(t).

To this purpose, we assume that ωε(x, t) = ε−2γt(|x−B(t)|/ε), where γt is a non-
negative smooth function with support in [0, qt] for some qt > 0, and

∫ 1

0
dr γt(r) = 1.

The corresponding velocity field can be easily computed, see, e.g., [5, Eq. (2.14)]:
letting x−B(t) = re with e = (cos θ, sin θ), it is readily seen that u(x, t) = α(r) e⊥

with

α(r) = − 1

ε2

∫ 1

0

dσ σ γt(rσ/ε) =

{

−r−1 if r > εqt ,

−r−1
∫ r/ε

0
dk k γt(k) if r ≤ εqt .
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This shows that the field u(x, t) produced by a symmetric blob is approximately
equals to g(x,B(t)), see (4.2), provided x is far away from the center of vorticity.

In absence of the external field F , the symmetry assumption is rigorously true at
any time, since the vorticity distribution is stationary, ωε(x, t) = ε−2γ(|x− z∗|/ε),
and each fluid particle performs a uniform circular motion around z∗.

In presence of an external field F , each fluid particle departs, in general, from a
uniform circular motion, thus destroying the initial symmetry of the vorticity distri-
bution; this, in turn, produces a velocity u(x, t) with a non-zero radial component,
that enhances this effect.

On the other hand, assuming the vorticity “frozen” in a symmetric distribution,
Theorem 4.1 establishes that each fluid particle remains very close to a circular
motion for a very long time, due to an averaging mechanism that reduces the effect
of the external field. Of course, this is only a toy model, because in the real case the
vorticity distribution does not remain radially symmetric, and the problem becomes
much more difficult.

However, the analysis of the toy model suggests that this averaging mechanism
could decrease the development of a non-symmetric component of the vorticity,
thus preserving its concentration on long time scales. In Remark 4.5 below, we
strengthen this conjecture by giving a more quantitative argument in the special
case of the vortex patch dynamics.

Remark 4.5. The name vortex patch dynamics refers to the evolution of piecewise-
constant vorticity configurations. It is well known that such configurations preserve
their structure in time, and the problem of their time evolution is reduced to the
so-called contour dynamics, which governs the evolution of the boundaries of the
regions with constant vorticity.

With this premise, we consider the reduced model of Subsection 2.1, but now
with initial configuration uniformly distributed in the disk Σ(z∗|ε), i.e.,

ωε(x, 0) =

{

1/ε2 if |x− z∗| ≤ ε ,

0 otherwise .
(4.10)

The evolved configuration ωε(x, t) is a step function, equals to 1/ε2 on its support
Λε(t). Clearly, Λε(t) = Σ(z∗|ε) in the absence of the external field F . Now, the
study of the toy model in Theorem 4.1 suggests that the effect of the external
field F is such that Σ−

ε (t) ⊂ Λε(t) ⊂ Σ+
ε (t) for any t ∈ [0, ε−β], where Σ±

ε (t) =
Σ(B(t)|ε± c ε3−β) for a suitable c > 0.

Let us evaluate the velocity u(x, t) of a fluid particle located at x ∈ Σ+
ε (t)\Σ−

ε (t).
We decompose u(x, t) = u−(x, t) + u+(x, t) with

u−(x, t) =
1

ε2

∫

Σ−

ε (t)

dy K(x− y) , u+(x, t) =
1

ε2

∫

Λε(t)\Σ
−

ε (t)

dy K(x− y) .

The component u−(x, t) is directed along (x − B(t))⊥ by symmetry, and its
intensity can be computed by arguing as in Remark 4.4, getting

u−(x, t) = − 1− c ε2−β

ε|x−B(t)|
(x−B(t)⊥

|x−B(t)| = (1− c ε2−β) g(x,B(t)) ,

with g as in in (4.2).
The component u+(x, t), due to the fluid particles in the annulus Σ+

ε (t) \Σ−
ε (t),

is the “dangerous part” of u(x, t), since it has nonzero component along x− B(t),
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but we claim that it is negligible as ε → 0. To this purpose, we decompose the
annulus into the union of 2N + 1 disjoint annulus sectors Bj, j = −N, . . . , N , of
equal length 2πε/(2N + 1) ≃ ε3−β and such that x ∈ B0. We then estimate,

|u+(x, t)| ≤
1

2πε2

∫

B−1∪B0∪B1

dy
1

|x− y| +
N
∑

|j|=2

1

2πε2

∫

Bj

dy
1

|x− y| .

The first integral can be bounded by a rearrangement as done in (2.34), while
the other integrals are easily controlled noticing that |y − x| ≥ (const.) ε3−β |j| for
y ∈ Bj and |j| = 2, . . . , N . Therefore, denoting by |Bj | the area of Bj ,

|u+(x, t)| ≤
1

ε2

√

|B−1 ∪B0 ∪B1|/π + (const.)
1

ε2

N
∑

|j|=2

|Bj |
ε3−β |j|

≤ (const.)
(

ε1−β + ε1−β logN
)

≤ (const.) ε1−β| log ε| ,
having used that |Bj | ≤ (const.) ε6−2β and N ≤ (const.) ε−2+β .

In conclusion, we have shown that the difference δu(x, t) = u(x, t) − g(x,B(t))
is negligible in the limit ε → 0, validating the initial assumption of neglecting
its effect with respect to that of the external force F . Clearly, this remains a
heuristic argument, to make a rigorous proof we should get also a good control on
the smoothness properties of δu(x, t).
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