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Abstract. The paper is devoted to a reaction-diffusion equation with delay arising in
modelling the immune response. We prove the existence of travelling waves in the bistable
case using the Leray-Schauder method. In difference with the previous works, we do not
assume here quasi-monotonicity of the delayed reaction term.
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1 Introduction

In this work we study the existence of travelling waves for the reaction-diffusion equation
with delay:

∂v

∂t
= D

∂2v

∂x2
+ kv(1− v)− f(vτ )v. (1.1)

Here v = v(x, t), vτ = v(x, t − τ), the function f(vτ) will be specified below. This equation
models the spreading of viral infection in tissues such as spleen or lymph nodes (see [7]).
The first term in the right-hand side of this equation describes virus diffusion, the second
term its production and the last term its elimination by the immune cells. The parameter
D is the diffusion coefficient (or diffusivity) and k stands for the replication rate constant.
In the sequel, without loss of generality, we can assume that D = k = 1. The parameterised
function f(vτ ) (where vτ is the concentration of virus some time τ before) characterises the
virus induced clonal expansion of T cells, i.e. the number and function of these cells upon
their maturation during some time τ . In this work we will suppose that the function f(w)
satisfies the following conditions implied by its biological meaning (Figure 1):

f(w) > 0 for 0 ≤ w < 1, f(1) = 0, f ′(1) > −1, (1.2)

f(0) > 1, f ′(0) > 0, f(w) > 1 for 0 ≤ w < w∗, (1.3)
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for some w∗ ∈ (0, 1). Furthermore,

equation f(w) = 1− w has a single solution w0 for 0 < w < 1; f ′(w0) < −1. (1.4)

Hence f(w) > 1 − w for 0 ≤ w < w0 and f(w) < 1 − w for w0 < w < 1. Under these

Figure 1: The typical form of the function f(v). It is growing for small v and decreasing for
large v.

conditions, the function F (w) = w(1 − w − f(w)) has three zeros: w = 0, w = w0, w = 1.
Moreover F ′(0) < 0, F ′(1) < 0. In the other words, we consider so-called bistable travelling
waves. We recall here that travelling wave is a solution of equation (1.1) having the form
v(x, t) = w(x− ct), where the constant c is the wave speed. Clearly, the wave profile w(z)
satisfies the relation

w′′ + cw′ + w(1− w − f(w(z + cτ))) = 0. (1.5)

Equation (1.1) is a quasi-linear functional reaction-diffusion equation. The basic concepts
of the general theory of these equations were developed in [14, 23]. In this respect, the
delayed reaction-diffusion equations whose reaction term g is either of logistic type (i.e. g is
as in (1.1), when v is not separated multiplicatively from vτ ) or of the Mackey-Glass type
(when v is separated multiplicatively from vτ , i.e. g = −kv + b(vτ )) are between the most
studied ones, e.g. cf. [8, 18]. It is an interesting point of discussion whether the Mackey-
Glass type models reflect more adequately the biological reality than the logistic models,
e.g. see [19, p. 56-58] and especially [12, Section 1.1] for further details. Importantly,
in certain relevant situations both models exhibit similar types of qualitative behaviour of
solutions. It is also worth noting that the investigation of delayed logistic models is more
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difficult and technically involved than the studies of the Mackey-Glass type systems, precisely
because of the multiplicative non-separateness of v and vτ . For example, so far no analytical
results on the existence and uniqueness of bistable waves in delayed equations which include
model (1.1) with non-monotone nonlinear response f were available in the literature, cf.
[1, 9, 13, 15, 16, 17, 24].

In order to understand what kind of results can be expected in the delayed case, first we
recall the main existence assertion [22] about bistable waves in the classical reaction-diffusion
equation without delay (τ = 0):

w′′ + cw′ + F (w) = 0, F (0) = F (1) = 0, F ′(0) < 0, F ′(1) < 0. (1.6)

In this case, for a unique value of c, there exists a unique (up to translation) monotonically
decreasing solution of problem (1.6) on the whole axis with the limits

w(−∞) = 1, w(∞) = 0. (1.7)

Furthermore, in the delayed and monotone case (i.e. when τ > 0 and f(w) is decreasing),
existence of solutions for problem (1.5), (1.7) was proved in [24, Theorem 5.8]. In such a case,
equation (1.1) admits the maximum and comparison principles, and existence of solutions
can be studied using these conventional techniques. See also recent work by Fang and Zhao
for a similar result [15, Theorem 6.4] obtained in an abstract setting of monotone bistable
semiflows. However, the properties of equation (1.5) change seriously if the function f(w)
is not monotonically decreasing. In this case, a first attempt to tackle the aforementioned
existence and uniqueness problem was recently made in [7] . The idea of [7] was to consider a
discontinuous piece-wise constant approximation instead of the original continuous function
f , in this way simplifying the model (1.1) and allowing the use of the phase plane method.

In any event, the approaches of [7, 15, 24] are not applicable in the case of continuous
non-monotone f , and the question about the existence of travelling waves remains open.

In this paper, we answer this question affirmatively, by proposing a different approach
based on the construction of the topological degree for an elliptic operator considered on a
subset containing only bistable waves monotonically decreasing on the whole real axis. Hence,
basically we are going to use the Leray-Schauder method not for all solutions of (1.5), (1.7)
but only for monotonically decreasing ones. It appears that during a continuous deformation
monotone waves are separated from the non-monotone waves in the sense that the norm of
their difference is uniformly bounded from below by a positive constant, cf. [8, 18]. This
property allows us to construct a domain in the function space which contains all monotone
waves and which does not contain any non-monotone solution of (1.5), (1.7). We prove that
the value of the topological degree of the corresponding operator is different from zero in
this domain. Then the existence of solutions to (1.5), (1.7) follows. This procedure was
successfully applied in [22] to some classes of reaction-diffusion systems while the recent
works [2, 3, 4, 21] suggested that it can also be extended to the framework of the theory
of reaction-diffusion equations with delay and bistable nonlinearity. The key ingredient of
this method is the construction of topological degree for elliptic boundary problems similar
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to (1.5), (1.7). Essentially this construction was proposed in [22] and recently developed
further in [21, Chapter 11] with [2, 3, 4]. It is worth to note that we apply the Leray-
Schauder method in a rather direct fashion, without the use of truncation argument, cf.
[1, 5]. In any case, in the theory of functional reaction-diffusion equation, the wave profile
equations (as (1.5) or equivalent integral equations) are usually solved either through the
iteration procedure or by means of the Schauder fixed point theorem. These approaches lead
to restrictive monotonicity assumptions on the delayed term (in some situations, squeezing
technique allows to weaken them and consider non-monotone delayed terms as well). In this
way, the application of the Leray-Shauder method, which is less demanding in regard to the
shape and smoothness properties of the delayed nonlinearity, seems to be an interesting new
possibility in this area of research.

Finally, we say a few words about the organisation of the paper. In the next section,
we analyse briefly the basic properties of nonlinear operators required for the degree con-
struction: by [21], these operators should be proper and their Frechet derivatives augmented
by the term −λI should be Fredholm operators with zero index for all λ ≥ 0. Section 3
is devoted to separation of monotone waves from non-monotone ones while in Section 4 we
establish a priori estimates of waves. Finally, in Section 5 we prove our main result in this
paper, Theorem 5.1: it says that if C4−smooth f satisfies (1.2), (1.3), (1.4) and f ′(w) < 0
for all w ∈ [f−1(1), 1], then at least one monotone bistable wave for problem (1.5), (1.7)
exists for every fixed delay τ ≥ 0.

2 Operators and topological degree

Fredholm property of associated linear operators. Let E be the Hölder space
C2+α(R) which consists of functions continuous in R together with their second derivatives
and the second derivative satisfies the Hölder condition with the exponent α ∈ (0, 1). Recall
that the Hölder semi-norm of some function p : R → R is defined as

[p]α := sup
x 6=y

|p(x)− p(y)|

|x− y|α
.

In this section, we will use several times the following obvious estimate of [p]α for p ∈ C1(R):

[p]α ≤ max{2|p|∞, |p
′|∞}. (2.1)

Here we use the standard notation |p|∞ = supx∈R |p(x)| for bounded functions f : R → R.

Similarly, F will denote the space of Hölder continuous functions with the same exponent
α. The norms in spaces E and F are given by the formulas ‖p‖E := |p|∞+|p′|∞+|p′′|∞+[p′′]α
and ‖p‖F := |p|∞+[p]α, respectively. We also will consider weighted spaces Eµ and Fµ defined
as follows: u ∈ Eµ is and only if uµ ∈ E, µ(x) = 1 + x2. Clearly, Eµ is a Banach space
with the norm ‖f‖Eµ

= ‖µf‖E. The space Fµ is defined similarly. The choice of the weight
function is not unique. It can be any positive function with polynomial growth at infinity.
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Now, for some fixed real parameter h, consider the linear operator L : E → F ,

Lu = u′′ + a(x)u′ + b(x)u + d(x)uh,

where uh(x) = u(x + h). We assume that the coefficients a(x), b(x) and d(x) belong to the
space E. Assuming, further, that the coefficients have limits at infinity,

a(x) → a±, b(x) → b±, d(x) → d±, x → ±∞,

we can introduce the limiting operators

L±u = u′′ + a±u
′ + b±u+ d±uh.

Let us recall that the operator L is called normally solvable if its image is closed. This
definition is equivalent to the condition that the equation Lu = f is solvable if and only if f
is orthogonal to all functionals from some closed subspace of the dual space F ∗.

Condition NS. The operator L is said to satisfy Condition NS if equations L±u = 0 do not
have nonzero bounded solutions.

Proposition 2.1. The operator L is normally solvable with a finite dimensional kernel if
and only if Condition NS is satisfied.

Proof. The demonstration of this proposition is similar to the proof of Theorem 2.2 in [2]
(sufficiency) and of Theorem 2.3 in [3] (necessity), and therefore it is omitted here. �

If we substitute exp(iξ) in the equations L±u = 0, then we obtain

− ξ2 + a±iξ + b± + d±e
iξh = 0. (2.2)

Condition NS is satisfied if and only if these equations do not have solutions for any real ξ
[20]. Similarly, equations

L±u = λu (2.3)

with u = exp(iξ) are equivalent to

λ = −ξ2 + a±iξ + b± + d±e
iξh, ξ ∈ R. (2.4)

Theorem 2.2. If the curves λ(ξ) given by (2.4) are in the open left-half plane of the
complex plane for all real ξ, then the operator L − λ : E → F with λ ≥ 0 satisfies the
Fredholm property, and its index equals 0.

Proof. Note that the operator L−λ is normally solvable with a finite dimensional kernel for
all real λ ≥ 0. Therefore its index is constant for such values of λ. On the other hand, the
operator L− λ is invertible for λ sufficiently large ( to see the latter, it suffices to transform
equation (L− λ)u = f into equivalent integral equation and then apply Banach contraction
principle for all large λ > 0). Therefore its index is 0. �

Finally, recall that the set of complex numbers λ for which the operator L− λ does not
satisfy the Fredholm property is called the essential spectrum of the operator L. It is known
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that a) the essential spectrum of L coincides with the union of two curves given by (2.4)
and that b) polynomial weight does not change the essential spectrum, cf. [21, Chapter
5]. Thus Theorem 2.2 remains valid if we replace in its statement action L : E → F with
L : Eµ → Fµ.

Nonlinear operators. As we have already mentioned in the introductory section, in this
work we study the existence of solutions of the problem

w′′ + cw′ + w(1− w − f(w(x+ cτ))) = 0, w(−∞) = 1, w(∞) = 0, (2.5)

where c is an unknown constant which should be chosen to provide the existence of solution.
The function f(w) is supposed to be C4-smooth and have uniformly bounded derivatives. In
the case of equation (2.5), the limiting operators L± introduced in the previous subsection
have the following forms:

(L+u)(x) = u′′(x)+cu′(x)+(1−f(0))u(x), (L−u)(x) = u′′(x)+cu′(x)−u(x)−f ′(1)u(x+cτ).

Since f(0) > 1, the operator L+ clearly satisfies the assumption NS. The same property holds
for the operator L− (considered with arbitrary τ) because of the inequalities −1 < f ′(1) ≤ 0.
Indeed, it is immediate to see that the characteristic equation z2+cz−1 = f ′(1)ecτz associated
with L−, can not have pure imaginary solutions. Furthermore, the respective curves

λ+(ξ) = −ξ2 + icξ + 1− f(0); λ−(ξ) = −ξ2 + icξ − 1− f ′(1)eicτξ

satisfy, for all ξ ∈ R, the inequalities

ℜλ+(ξ) = −ξ2 + 1− f(0) < 0; ℜλ−(ξ) = −ξ2 − 1− f ′(1) cos(cτξ) < 0.

All the above implies that, in case of equation (2.5), Condition NS, Proposition 2.1 and
Theorem 2.2 can be used without restrictions.

In order to introduce the nonlinear operator corresponding to problem (2.5), we set
w(x) = u(x)+ψ(x), where ψ(x) is an infinitely differentiable non-increasing function, ψ(x) ≡
1 for x ≤ 0, ψ(x) ≡ 0 for x ≥ 1. Then we consider the nonlinear operator

Aτ (u) = (u+ ψ)′′ + c(u)(u+ ψ)′ + (u+ ψ)(1− u− ψ − f(u(x+ c(u)τ) + ψ(x+ c(u)τ))),

c(u) = ln

√

∫

R

(u(s) + ψ(s))2min{es, 1}ds =: 1/2 ln ρ(u),

acting from the space Eµ × R (u ∈ Eµ, τ ∈ R) into the space Fµ. The main purpose
of introducing functional c(u) in the definition of Aτ (u) instead of considering c as a real
parameter (as in (2.5)) is twofold: first, this obliges all solutions of the equation Aτ (u) = 0,
τ ∈ [0, τ∗], belong to an open bounded set D ⊂ Eµ; second, for τ = 0, it allows to calculate
topological degree γ(A0, D) by removing zero eigenvalues of some associated linear operator.
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Since γ(A0, D) was already found in [22, Chapter 3, §3.2 ]: γ(A0, D) = 1, we will use c(u)
only to obtain necessary a priori estimates of the wave solutions.

It is easy to see that functional c : Eµ → R is C1-smooth and

c′(u)h(x) =
1

ρ(u)

∫

R

(u(s) + ψ(s))h(s)min{es, 1}ds.

Therefore, to prove that the operator Aτ (u) depends C1-smoothly on u, τ it suffices to
establish that the nonlinear part of Aτ (u), i.e. N(u, τ) :=

F (u+ψ, u(·+ c(u)τ) +ψ(·+ c(u)τ)) := (u+ψ)(1− u−ψ− f(u(·+ c(u)τ) + ψ(·+ c(u)τ))),

is continuously differentiable. It is worth to mention that the above formula for N(u, τ)
contains state-depending shifts of arguments (i.e. expressions like u(x+c(u)τ)) and therefore
the differentiability question for N(u, τ) should be handled with certain care, e.g. see [10,
Section 3]. Let us show, for example, the existence of the Fréchet derivative DuN. We claim
that [DuN(u, τ)]h(x) =

F1(P0(x))h(x) + F2(P0(x)) (h(x+ c(u)τ) + τ [u′(x+ c(u)τ) + ψ′(x+ c(u)τ)]c′(u)h) ,

where Fj = Fj(v1, v2) denotes the partial derivative of F (v1, v2) with respect to vj :

Fj(P0(x)) = Fj(u(x) + ψ(x), u(x+ c(u)τ) + ψ(x+ c(u)τ)),

Ps(x) = (u(x)+sh(x)+ψ(x), u(x+c(u+sh)τ)+sh(x+c(u+sh)τ)+ψ(x+c(u+sh)τ)) ∈ R
2.

Indeed, a straightforward computation shows that

N(u+ h, τ)(x)−N(u, τ)(x)− [DuN(u, τ)]h(x) = R1(u, h)(x)h(x) +R2(u, h)(x),

where R1(u, h)(x) =
∫ 1

0
(F1(Ps(x))− F1(P0(x)))ds,

R2(u, h)(x) =

∫ 1

0

(F2(Ps(x))− F2(P0(x)))Λ(x, s)ds+

∫ 1

0

F2(P0(x))(Λ(x, s)− Λ(x, 0))ds,

Λ(x, s) = τ(u′(x+ c(u+ sh)τ) + sh′(x+ c(u+ sh)τ) + ψ′(x+ c(u+ sh)τ))(c′(u+ sh)h)+

h(x+ c(u+ sh)τ).

Since f ∈ C4(R), u ∈ Eµ, we find that, for some positive ku and δu depending only on u,

|R1(u, h)|∞ ≤ ku|h|∞, |µR2(u, h)|∞ ≤ ku‖h‖Eµ
|h|∞, for all ‖h‖Eµ

≤ δu;

|R′
1(u, h)|∞ ≤ ku(|h|∞ + |h′|∞), |µR′

2(u, h)|∞ ≤ ku‖h‖
1+α
Eµ

, for all ‖h‖Eµ
≤ δu.

In view of (2.1), the above estimates imply that ‖R1(u, h)h+R2(u, h)‖Fµ
= O(‖h‖1+α

Eµ
). This

assures the differentiability of N(u, τ) with respect to u. A similar reasoning also shows that
DuN depends continuously on u, τ in the operator norm. Finally,

[DuAτ (u)]h(x) = h′′(x) + c(u)h′(x) + (c′(u)h)u′(x) + [DuN(u, τ)]h(x) =
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h′′(x) + a(x)h′(x) + b(x)h(x) + d(x)h(x+ c(u)τ) + (Kh)(x) = (Lh)(x) + (Kh)(x),

where a(x) = c(u), b(x) = F1(P0(x)), d(x) = F2(P0(x)) and K : Eµ → Fµ defined by

(Kh)(x) = (c′(u)h) [u′(x) + τu′(x+ c(u)τ) + τψ′(x+ c(u)τ)]

is one-dimensional linear operator. Since finite dimensional perturbations of the Fredholm
operator does not change its index, we obtain the following version of Theorem 2.2:

Theorem 2.3. If the curves λ(ξ) given by (2.4) are in the open left-half plane of the complex
plane for all real ξ, then the operator DuAτ − λ : Eµ → Fµ with λ ≥ 0 satisfies the Fredholm
property, and its index equals 0. Moreover, there exists C0, λ0 > 0 such that

‖(DuAτ − λ)−1‖ ≤ C0 for all λ > λ0, τ ∈ [0, τ∗]. (2.6)

Proof. In view of the above said, we only have to prove inequality (2.6). We have that

(DuAτ )h(x)− λ2h(x) = h′′(x)− λ2h(x) + a(x)h′(x) + b(x)h(x) + d(x)h(x+ cτ) + φ(x)l(h),

where linear functional l(h) := c′(u)h, l : Eµ → Fµ, is continuous and φ, φ′ ∈ Fµ. Set
v = µh, then

h′′(x)− λ2h(x) + a(x)h′(x) + b(x)h(x) + d(x)h(x+ cτ) + φ(x)l(h) = g(x)

if and only if

v′′(x)− λ2v(x) + a1(x)v
′(x) + b1(x)v(x) + d1(x)v(x+ cτ) + φ1(x)l1(v) = g1(x), (2.7)

where g1(x) = µ(x)g(x), φ1(x) = µ(x)φ(x), l1(v) = l(v/µ) and

a1(x) = a(x)−
2µ′(x)

µ(x)
, b1(x) = b(x)+

2(µ′(x))2

(µ(x))2
−
µ′′(x)

µ(x)
−a(x)

µ′(x)

µ(x)
, d1(x) = d(x)

µ(x)

µ(x+ cτ)
.

Each bounded solution of equation (2.7) should satisfy the integral equation

v =
1

2λ
(M+Tv −M+g1), (2.8)

where

M±w(t) =

(

±

∫ t

−∞

e−λ(t−s)w(s)ds+

∫ +∞

t

eλ(t−s)w(s)ds

)

,

T (x, v(x), v′(x)) = a1(x)v
′(x) + b1(x)v(x) + d1(x)v(x+ cτ) + φ1(x)l1(v).

After differentiating (2.8), we find that

v′ =
1

2
(M−Tv −M−g1). (2.9)
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Consider M : C(R,R2) → C(R,R2) defined by

M(v, w) =
1

2
(
1

λ
M+Tv,M−Tv),

it is immediate to see that ‖M || ≤ Kλ−1, where K = 1 + |a1|∞ + |b1|∞ + |d1|∞ + |φ1|∞‖l1‖
does not depend on τ . Therefore system (2.8), (2.9) has a unique solution (v, v′) ∈ C(R,R2)
once λ > K = λ∗. Moreover,

|(v, v′)|∞ ≤ 2|(M+g1,M−g1)|∞ ≤
4

λ
|g1|∞ for all λ > 2λ∗.

Using this inequality in equation (2.8) again, we can improve the estimate for |v|∞ as fol-
lows: |v|∞ ≤ K1λ

−2|g1|∞, [v]α ≤ λ−2([g1]α + [Tv]α), λ > 2λ∗. Then (2.7) yields that
|v′′|∞ ≤ K2|g1|∞ for all λ > 2λ∗. Therefore, using (2.1), we also find that [Tv]α ≤ K3[g1]∞.
Hence, [v]α ≤ K4λ

−2‖g‖Fµ
for all λ > 2λ∗. Here Kj , j = 1, 2, 3, 4, stand for some universal

constants. In this way,

[v′′]α ≤ λ2[v]α + [a1v
′]α + [b1v]α + [d1v]α + [φ1]α|l1(v)|+ [g1]α ≤ K5‖g‖Fµ

, λ > 2λ∗,

so that
‖(DuAτ − λ)−1g‖Eµ

= ‖h‖Eµ
= ‖v‖E ≤ K5‖g‖Fµ

, λ > 2λ∗.

The latter estimate completes the proof of Theorem 2.3. �

The nonlinear operator Aτ has another useful property: it is a proper operator in the
sense that the inverse image of compact sets is compact in any bounded closed set:

Theorem 2.4. Let the condition NS be satisfied for Du0
Aτ0. Assume Aτn(un) = gn for

converging sequences of elements gn ∈ Fµ, τn ≥ 0. If, in addition, sequence {un} is bounded
in Eµ, then it has a subsequence converging in Eµ.

Proof. Suppose that |un|Eµ
≤ K. Since the inclusion Eµ ⊂ C2(R) is compact, there exists

a subsequence unj
converging in C2(R) to some element u0. Clearly, v0 = µu0 ∈ C2,α and

|v0|E ≤ K. Without loss of generality, we can assume that un → u0, then cn := c(un) →
c0 = c(u0) and also vn := µun → v0 uniformly on compact subsets of R. The same type of
convergence holds for the first and second derivates of vn. To prove that vn := µun → v0
uniformly on R, we consider the following relation:

µ

[

Aτn

(

vn
µ

)

− Aτ0

(

v0
µ

)]

= µ(gn − g0). (2.10)

Suppose for a moment that Vn = vn − v0 does not converge, uniformly on R, to the zero
function. Then there exist positive ǫ0 and some sequence xn such that |Vn(xn)| ≥ ǫ0 for
all n. Since sequence {xn} can not be bounded, we may suppose first that xn → +∞.
Now, since Wn(x) = Vn(x+ xn) satisfies |Wn|E ≤ 2K, without restricting generality, we can
assume that Wn(x), together with their first and second derivatives, converges uniformly on
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compact subsets of R. Let W0(x) be the limit function for {Wn(x)}, then |W0(x)| ≤ 2K,
|W ′

0(x)| ≤ 2K, x ∈ R, and |W0(0)| ≥ ǫ0. After taking limit n → +∞ in (2.10), since
ψ(x+ xn) → 0 uniformly on compact sets, it is easy to find that

W ′′
0 (x) + c0W

′
0(x) + (1− f(0))W0(x) = 0,

where (1− f(0))W0(x) = limn→+∞Rn(x+ xn) and

Rn(x) = (vn(x) + µ(x)ψ(x))(1− un(x)− ψ(x)− f(un(x+ cnτn) + ψ(x+ cnτn)))−

(v0(x) + µ(x)ψ(x))(1− u0(x)− ψ(x)− f(u0(x+ c0τ0) + ψ(x+ c0τ0))).

Since the only bounded solution of the latter differential equation is W0(x) ≡ 0, we arrive to
a contradiction (recall that W0(0) 6= 0).

Now, if xn → −∞, then ψ(x+ xn) → 1 uniformly on compact sets and therefore

lim
n→+∞

Rn(x+ xn) = −W0(x)(1 + f(1))−

lim
n→+∞

W̃n(x)

(

f(un(x+ xn + cnτn) + 1))− f(u0(x+ xn + c0τ0) + 1))

un(x+ xn + cnτn)− u0(x+ xn + c0τ0)

)

=

−W0(x)(1 + f(1))−W0(x+ c0τ0)f
′(1),

where lim W̃n(x) =W0(x+ c0τ0) because of

W̃n(x) := µ(x+ xn)(un(x+ xn + cnτn)− u0(x+ xn + c0τ0)) =

Wn(x+ cnτn) + µ(x+ xn)(u0(x+ xn + cnτn)− u0(x+ xn + c0τ0)) =

Wn(x+ cnτn) + µ(x+ xn)u
′
0(x+ xn + θn)(cnτn − c0τ0).

Observe here that un(x+ xn + cnτn), u0(x+ xn + c0τ0) → 0 as n→ +∞.
Hence, W0(x) satisfies the functional differential equation

W ′′
0 (x) + c0W

′
0(x)−W0(x)(1 + f(1))−W0(x+ c0τ0)f

′(1) = 0,

which in view of condition NS can have only zero bounded solution. The obtained contra-
diction shows that Wn(x) converges to 0 uniformly on R (so that vn = µun → v0 = µu0
uniformly on R).

Similarly, if V ′
n(x) does not converge uniformly on R to 0, then |V ′

n(xn)| ≥ ǫ0 > 0 for
some ǫ0 and {xn}. Considering Wn(x) = Vn(x + xn), we obtain from the the previous
part of the proof that Wn(x) → 0, n → +∞ (uniformly on R). Therefore, since W ′

n(x)
converges, uniformly on compact sets, to some continuous function W∗(x), we conclude that
W∗(x) ≡ 0. Clearly, this contradicts to the inequalities |W ′

n(0)| ≥ ǫ0, n = 1, 2, . . . Hence,
we can conclude that V ′

n(x) converges to 0 uniformly on R. The proof of the uniform (on
R) convergence V ′′

n (x) → 0 is based on the same argument. Finally, in order to estimate the
Hölder semi-norm [V ′′

n ]α, it suffices to use the following equivalent form of (2.10):

V ′′
n (x) = µ(x)(gn(x)− g0(x)) + V ′

n(x)

(

2µ′(x)

µ(x)
− c0

)

+ (c0 − cn)

(

ψ′(x)µ(x)− vn
µ′(x)

µ(x)
+ v′n(x)

)

+
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Vn(x)

(

µ′′(x)

µ(x)
−

2(µ′(x))2

µ2(x)
+ 2ψ(x) − 1 + c0

µ′(x)

µ(x)
− u0(x)− un(x) + f(u0(x+ c0τ0) + ψ(x+ c0τ0))

)

+(µ(x) + vn(x)) (f(un(x+ cnτn) + ψ(x+ cnτn))− f(u0(x+ c0τ0) + ψ(x+ c0τ0))) .

It is easy to see from this representation (directly leading to a Schauder type interior estimate)
that limn→+∞[V ′′

n ]α = 0. For instance, we can estimate the Hölder semi-norm of the third line in
the above expression by using inequality (2.1) and the uniform on R convergences

µ(x) ((un(x+ cnτn) + ψ(x+ cnτn))− (u0(x+ c0τ0) + ψ(x+ c0τ0))) → 0, n→ +∞,

µ(x)
(

(u′n(x+ cnτn) + ψ′(x+ cnτn))− (u′0(x+ c0τ0) + ψ′(x+ c0τ0))
)

→ 0, n→ +∞.

This completes the proof of Theorem 2.4. �

Theorems 2.3 and 2.4 show that, according to the abstract theory developed in [21, §3.3 of
Chapter 11], the Leray-Schauder type topological degree can defined for the operator Aτ . Indeed,
in terms of [21], Theorems 2.3 and 2.4 imply that, for a fixed τ ≥ 0, the operator Aτ belongs to
the class F while the family of operators Aτ with τ ∈ [0, τ0] belongs to the class H.

3 Monotonicity of solutions

In this section, we will consider the wave profile equation

w′′ + cw′ + w(1 − w − f(w(x+ cτ))) = 0 (3.1)

with the boundary conditions
w(−∞) = 1, w(+∞) = 0. (3.2)

Lemma 3.1. Suppose that c ≥ 0, f ′(w) < 0 for w0 ≤ w < 1. If solution w(x) of problem (3.1),
(3.2) satisfies condition w′(x) ≤ 0 for all x ∈ R, then w′(x) < 0, x ∈ R.

Proof. Suppose that the assertion of the lemma does not hold and w′(x0) = 0 for some x0. Then
w′′(x0) = 0 and from the equation (3.1) we obtain the equality

w(x0)(1− w(x0)− f(w(x0 + cτ))) = 0.

If w(x0) = 0, then by virtue of the uniqueness of solution w(x) ≡ 0, and we obtain a contradiction
with (3.2). Hence

1− w(x0) = f(w(x0 + cτ)). (3.3)

Since cτ > 0, then w(x0+ cτ) ≤ w(x0). Set w2 = w(x0+ cτ). Then w2 ≤ w(x0). From (3.3) we get

1− w2 ≥ f(w2). (3.4)

Suppose that w(x0) < w0. Since 1 < f(0), that is 1−w < f(w) for w = 0, then by virtue of (3.4),
equation f(w) = 1− w has a solution in the interval 0 < w ≤ w2 (≤ w(x0) < w0). This conclusion
contradicts the assumption on the function f(w). Hence w(x0) ≥ w0.

Next, we show that w2 ≥ w0. Indeed, suppose that w2 < w0. Then (3.4) contradicts the
assumption that 1− w < f(w) for 0 ≤ w < w0. Thus, f

′(w2) < 0.
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Set u(x) = −w′(x). Differentiating equation (3.1), we obtain

u′′ + cu′ + a(x)u+ b(x) = 0, (3.5)

where
a(x) = k(1 − 2w(x) − f(w(x+ cτ))), b(x) = −w(x)f ′(w(x+ cτ))u(x + cτ).

Let us recall that u(x) ≥ 0 for all x, u(x0) = 0, u′(x0) = 0, f ′(w(x0 + cτ)) < 0. Since the function
w(x) satisfies (3.2), then u(x) 6≡ 0.

Let I0 be the maximal interval containing the point x = x0 and such that u(x) = 0 for all
x ∈ I0. Similar to the arguments presented above we can verify that f ′(w(x + cτ)) < 0 for x ∈ I0.
We take an interval I slightly larger than I0 such that f ′(w(x+ cτ)) < 0 and u(x) 6≡ 0 for x ∈ I. If
this set is reduced to a single point x = x0, then it is a sufficiently small interval around this point.
Since b(x) ≥ 0 in this interval, u(x) ≥ 0 and not identically 0, then we obtain a contradiction with
the maximum principle for equation (3.5). �

Lemma 3.2. Suppose that c ≤ 0, f ′(w) < 0 for w∗ ≤ w ≤ w0, where f(w∗) = 1 and f(w) > 1 for
0 ≤ w < w∗. If solution w(x) of problem (3.1), (3.2) satisfies condition w′(x) ≤ 0 for all x ∈ R,
then w′(x) < 0, x ∈ R.

Proof. Suppose that the assertion of the lemma does not hold and w′(x0) = 0 for some x0. Then
we obtain equality (3.3). Since cτ ≤ 0, then w(x0 + cτ) ≥ w(x0). Set w2 = w(x0 + cτ). It follows
from (3.3) that

1− w2 ≤ f(w2).

Hence w2 ≤ w0. From (3.3) we get that f(w(x0 + cτ)) ≤ 1. Therefore, w(x0 + cτ) ≥ w∗. Thus,
f ′(w(x0 + cτ)) < 0 and we proceed with equation (3.5) as in the proof of Lemma 3.1. �

Lemma 3.3. Let wn(x) be solutions of problem (3.1), (3.2) for some τn ∈ [0, τ∗], c = cn, |cn| ≤ c∗
(for some c∗), n = 1, 2, .... Suppose that w′

0(x) < 0 for all x ∈ R and wn(x) → w0(x) in C1(R),
cn → c0, τn → τ0. If f ′(1) > −1, then there exists x = x0 such that w′

n(x) < 0 for x ≤ x0 and n
sufficiently large.

Proof. Let ǫ > 0 be such that

1−w > f(w), 1− ǫ ≤ w < 1; 1− w < f(w), 1 < w < 1 + ǫ. (3.6)

We choose such x0 that w0(x) > 1− ǫ/2 for all x ≤ x0. Then for n sufficiently large

1− ǫ < wn(x) < 1 + ǫ, x ≤ x0.

Denote by M a positive constant such that |cnτn| < M for all n. Then for all n sufficiently large,
wn(x) < 1 and w′

n(x) < 0 for x0 −M ≤ x ≤ x0.
Suppose that the assertion of the lemma does not hold. We consider two cases: wn(x) > 1 for

some x ≤ x0 and wn(x) ≤ 1 for all x ≤ x0. In the first case, since wn(x) → 1 as x → −∞, then
there is a global maximum of this function for x ≤ x0:

w′
n(xn) = 0, wn(x) ≤ wn(xn), x ≤ x0, wn(xn) > 1.

We have:
1− wn(xn) < f(wn(xn)) ≤ f(wn(xn + cnτn)).
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Hence w′′
n(xn) > 0 and we obtain a contradiction.

Suppose now that wn(x) ≤ 1 for x ≤ x0 and all n sufficiently large. If w′
n(x) ≤ 0 for x ≤ x0

and w′
n(xn) = 0 for some xn < x0, then we obtain a contradiction with Lemma 3.1. Therefore, if

the assertion of this lemma is not satisfied, then the function wn(x) has a minimum for x < x0.
Suppose that there exists the most right minimum x∗ of this function for x ≤ x0. By virtue of the
construction above, x∗ < x0 −M . Since w′′

n(x∗) ≥ 0, then we conclude from the equation that

1− wn(x∗) ≤ f(wn(x∗ + cnτn)).

It follows from condition (3.6) that

1− wn(x∗ + cnτn) > f(wn(x∗ + cnτn)).

Therefore
wn(x∗ + cnτn) ≤ wn(x∗). (3.7)

If cn < 0, then there is another minimum x∗∗ < x∗ of this function, and wn(x∗∗) ≤ wn(x∗).
Repeating the same arguments, we will obtain a sequence of minima going to −∞. This contradicts
the convergence wn(x) → 1 as x→ −∞.

If cn > 0, then there is a single maximum x∗ of this function in the interval x∗ < x∗ < x0
since x∗ is the most right minimum and w′

n(x0) < 0. Suppose first that x∗ + cnτn ≤ x∗. Then
wn(x∗ + cnτn) > wn(x∗), and we obtain a contradiction with (3.7). Let now x∗ + cnτn > x∗. Since
wn(x) is decreasing for x > x∗, then

wn(x
∗ + cnτn) < wn(x∗ + cnτn)

and
1− wn(x

∗) < 1− wn(x∗) ≤ f(wn(x∗ + cnτn)) < f(wn(x
∗ + cnτn)).

Therefore, w′′
n(x

∗) > 0 and we obtain a contradiction since x∗ is a point of maximum.
If the most right minimum does not exist and there is a sequence of extrema converging to some

x̂, then it is sufficient to take a minimum sufficiently close to x̂ and to repeat similar arguments as
above. Let us also note that for cn < 0 it is not necessary to take the most right minimum. Finally,
if cn = 0, then we obtain the equation without delay for which the assertion of the lemma is known
[22]. �

Lemma 3.4. Let wn(x) be solutions of problem (3.1), (3.2) for some τn ∈ [0, τ∗], c = cn, |cn| ≤ c∗
(for some c∗), n = 1, 2, .... Suppose that τn → τ0, cn → c0 and wn(x) → w0(x) in C1(R), where
w0(x) is a solution of problem (3.1), (3.2) for τ = τ0, c = c0. If w′

0(x) < 0 for all x ∈ R, then
w′
n(x) < 0 for all x ∈ R and n sufficiently large.

Proof. Suppose that the assertion of the lemma does not hold, and there is a sequence xn such that
w′
n(xn) = 0. If this sequence is bounded, then we can choose a convergent subsequence, xnk

→ x0.
Then w′

0(x0) = 0, and we obtain a contradiction with the assumption of the lemma.
Consider next the case where xn → ∞. Let x = x∗ be the solution of the equation w0(x) = w∗−ǫ

for some ǫ > 0 sufficiently small. Let us recall that f(w) > 1 for 0 ≤ w < w∗. Then for all n
sufficiently large and for all x ≥ x∗, wn(x) ≤ w∗. Hence

f(wn(x+ cτ)) > 1 for x ≥ x∗ = x∗ + c∗τ∗
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and for n sufficiently large since

x+ cτ ≥ x∗ + cτ = (x∗ + c∗τ∗) + cτ ≥ x∗.

We use here the assumption that |cτ | ≤ c∗τ∗. Furthermore, wn(x
∗) → w0(x

∗) > 0, w′
n(x

∗) →
w′
0(x

∗) < 0.
Let xn > x∗. If wn(xn) > 0, then w′′

n(xn) = −wn(xn)(1−wn(xn)− f(wn(xn + cτ))) > 0. Hence
any positive extremum is a minimum, and the function wn(x) cannot converge to 0 at infinity.

Suppose now that wn(xn) < 0. Since wn(x) → 0 as x → ∞, without loss of generality we
can assume that xn is a global minimum of the function wn(x). Hence wn(xn) ≤ wn(xn + cτ).
Therefore,

1− wn(xn) < f(wn(xn)) ≤ f(wn(xn + cτ)). (3.8)

The first inequality in (3.8) holds since f(w) > 1 − w in some neighborhood of w = 0 (including
small negative w). The second inequality in (3.8) takes place for sufficiently small in absolute value
wn(xn) and wn(xn+cτ) since f

′(0) > 0. Thus, w′′
n(xn) = −wn(xn)(1−wn(xn)−f(wn(xn+cτ))) < 0.

Therefore xn is a point of maximum, and it cannot be the global minimum, as supposed.
It remains to note that convergence xn → −∞ cannot hold due to Lemma 3.3. �

4 A priori estimates

4.1 Estimate of the wave speed

Let us introduce functions f0(w) and f1(w) such that

f0(w) ≤ f(w) ≤ f1(w), f ′0(w) ≤ 0, f ′1(w) ≤ 0, 0 ≤ w ≤ 1, (4.1)

f0(0) > 1, f1(0) > 1, and equations

1− w = f0(w), 1− w = f1(w)

have unique solutions in the interval 0 ≤ w < 1. Then the problem

w′′ + cw′ + w(1 − w − f0(w)) = 0, w(−∞) = 1, w(∞) = 0 (4.2)

(without delay) has a unique solution (up to translation in space) w0(x) for a unique value c = c0.
Similarly, the problem

w′′ + cw′ + w(1 − w − f1(w)) = 0, w(−∞) = 1, w(∞) = 0 (4.3)

(without delay) has a unique solution (up to translation in space) w1(x) for a unique value c = c1.

Lemma 4.1. If there exists a monotonically decreasing solution w(x) of problem (3.1), (3.2) for
some c > 0, then c ≤ c0.

Proof. Since cτ > 0 and w(x) is a decreasing function, then w(x+ cτ) < w(x). Hence

f(w(x+ cτ)) ≥ f0(w(x+ cτ)) > f0(w(x)). (4.4)
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Consider the Cauchy problem

∂u

∂t
=
∂2u

∂x2
+ c

∂u

∂x
+ u(1− u− f0(u)) (4.5)

(without delay) with the initial condition

u(x, 0) = w(x). (4.6)

Taking into account equation (3.1) and inequality (4.4), we obtain:

w′′ + cw′ + w(1− w − f0(w)) = w′′ + cw′ + w(1− w − f(w(x+ cτ)))+

w(f(w(x+ cτ))− f0(w(x))) > 0, x ∈ R.

Hence w(x) is a lower function, and solution u(x, t) of problem (4.5), (4.6) is monotonically increas-
ing with respect to t for each x.

On the other hand, by virtue of global stability of monotone waves for the bistable equation,
u(x, t) → w0(x + (c − c0)t) as t → ∞ uniformly on the whole axis. From this convergence we can
conclude that c ≤ c0. Indeed, if c > c0, then for each x fixed w0(x + (c − c0)t) → 0 as t → ∞.
However, u(x, t) ≥ w(x) for all x and t. This contradiction completes the proof of the lemma. �

Lemma 4.2. If there exists a monotonically decreasing solution w(x) of problem (3.1), (3.2) for
some c < 0, then c ≥ c1.

Proof. Since cτ < 0 and w(x) is a decreasing function, then w(x+ cτ) > w(x). Hence

f(w(x+ cτ)) ≤ f1(w(x+ cτ)) < f1(w(x)). (4.7)

Consider the Cauchy problem

∂u

∂t
=
∂2u

∂x2
+ c

∂u

∂x
+ u(1− u− f1(u)) (4.8)

(without delay) with the initial condition

u(x, 0) = w(x). (4.9)

Taking into account equation (3.1) and inequality (4.7), we obtain:

w′′ + cw′ + w(1− w − f1(w)) = w′′ + cw′ + w(1− w − f(w(x+ cτ)))+

w(f(w(x+ cτ))− f1(w(x))) < 0, x ∈ R.

Hence w(x) is an upper function, and solution u(x, t) of problem (4.5), (4.6) is monotonically
decreasing with respect to t for each x.

On the other hand, by virtue of global stability of monotone waves for the bistable non-delayed
equation, u(x, t) → w1(x+(c− c1)t) as t→ ∞ uniformly on the whole axis. From this convergence
we can conclude that c ≥ c1. Indeed, if c < c1, then for each x fixed w0(x+(c−c1)t) → 1 as t→ ∞.
However, u(x, t) ≤ w(x) for all x and t. This contradiction completes the proof of the lemma. �

From the last two lemmas we obtain the following estimate for the wave speed:

|c| ≤ c∗ := max{|c0|, |c1|}. (4.10)

We note that c ≥ 0 if c1 ≥ 0 and c ≤ 0 if c0 ≤ 0.
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4.2 Estimates of solutions

In this section, we will use repeatedly the following simple observation:

Lemma 4.3. Let w(x) be a monotonically decreasing solution of equation (3.1) with the limits
w(−∞) = w0, w(+∞) = 0 at infinity. Then c < 0. If w(−∞) = 1, w(+∞) = w0, then c > 0.

Proof. Consider a decreasing wave w(x) connecting w0 and 0 and suppose that c ≥ 0. Then
0 ≤ w(x+ cτ) ≤ w(x) ≤ w0 and therefore 1− w(x) ≤ f(w(x+ cτ)) so that

w′′(x) = −cw′(x)− w(x)(1 − w(x) − f(w(x+ cτ))) ≥ 0.

Since a convex function cannot connect two final equilibria, we have got a contradiction. Thus
c < 0.

Similarly, suppose that some decreasing wave w(x) connects 1 and w0 with the speed c ≤ 0.
Then 1 ≥ w(x + cτ) ≥ w(x) ≥ w0 and therefore 1− w(x) ≥ f(w(x+ cτ)), see Fig. 1. In this way,
we will get a contradiction again:

w′′(x) = −cw′(x)− w(x)(1 − w(x) − f(w(x+ cτ))) ≤ 0.

This completes the proof of Lemma 4.3. �

We can now estimate the weighted norm of wave profiles:

Lemma 4.4. Let wτ (x) be a monotonically decreasing solutions of problem (3.1), (3.2) for possibly
different values of τ ∈ [0, τ∗] such that wτ (0) ∈ [α, β] ∈ (0, 1) for some fixed α, β and all admissible
τ ∈ [0, τ∗]. Then there exists a positive constant M independent of τ such that

sup
x∈R

|w′
τ (x)− ψ′(x)|µ(x) + sup

x∈R

|wτ (x)− ψ(x)|µ(x) ≤M. (4.11)

Proof. Let c∗ be as defined in (4.10). Denote by x1(τ) the solution of the equation wτ (x) = w1

and by x2(τ) the solution of the equation wτ (x) = w2 where 0 < w2 < min{w0, α} ≤ max{w0, β} <
w1 < 1 are some fixed numbers.

Clearly, x1(τ) < 0, x2(τ) > 0. Moreover, we claim that the difference x1(τ)−x2(τ) is uniformly
bounded. Suppose that this in not the case and this difference tends to infinity for some convergent
sequence of τn ∈ [0, τ∗]: τn → τ0. Set

vn(x) = wτn(x+ x2(τn)).

Then vn(0) = w2, vn(x1(τn)− x2(τn)) = w1. We can choose a locally convergent subsequence from
the sequence vn(x). Denote its limit by v0(x). Then it is a solution of equation (3.1), v0(0) = w2,
v0(−∞) ≤ w1 since x1(τn) − x2(τn) → −∞. Then v0(−∞) = w0 and therefore c < 0 in view of
Lemma 4.3.

Similarly, consider the sequence

zn(x) = wτn(x+ x1(τn)).

Then zn(0) = w1, zn(x2(τn)− x1(τn)) = w2. We can choose a locally convergent subsequence from
the sequence zn(x). Let z0(x) denote its limit. Then it is a solution of equation (3.1), z0(0) = w1,
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z0(+∞) ≥ w2 since x2(τn) − x1(τn) → ∞. Then z0(−∞) = 1, z0(+∞) = w0 and by virtue of
Lemma 4.3, c > 0.

The obtained contradiction (0 < c < 0) shows that functions x1(τ) and x2(τ) are uniformly
bounded. Hence, for some fixed T independent of τ , it holds

wτ (x) ≤ w2, t ≥ T − c∗τ∗, wτ (x) ≥ w1, t ≤ −T + c∗τ∗, for all τ ∈ [0, τ∗]. (4.12)

A useful consequence of this result is compactness of the set T of all ‘admissible’ delays and speeds:

T = {(τ, c) ∈ [0, τ∗]× [−c∗, c∗] : system (3.1), (3.2) has a monotone wave for these τ, c}.

Indeed, if wτn(x), wτn(0) ∈ [α, β], is a sequence of monotone bistable waves propagating with
speeds cn, then each converging subsequence of wτn(x), τn, cn, has a limit also satisfying, in view of
inequalities (4.12), the boundary conditions (3.2).

We claim that if the parameters 1 − w1 and w2 are sufficiently small then the functions uτ =
wτ − ψ, w′

τ admit exponential estimates for x ≤ −T and x ≥ T which are uniform uniform with
respect to τ ∈ [0, τ∗]. This means that there exist some positive numbers K1, γ1 independent on τ
such that

|1− wτ (x)|+ |w′
τ (x)| ≤ K1e

γ1x, x ≤ −T ; |wτ (x)|+ |w′
τ (x)| ≤ K1e

−γ1x, x ≥ T. (4.13)

These estimates follow from the assumptions f(0) > 0, f ′(1) ∈ (−1, 0], and their proof is based on
arguments adapted from the exponential dichotomy theory [6, 11]. Since the set of all admissible
delays T is compact, it suffices to establish (4.13) locally, i.e. to prove that estimate (4.13) is true
within sufficiently small neighbourhood O of each point (h0, c0) ∈ [0, c∗τ∗] × [−c∗, c∗] (so that K1

and γ1 may depend on (h0, c0)). In the appendix, we briefly outline the proof of the first inequality
in (4.13) in more difficult case when cτ0 ≥ 0 and cτ > 0. Finally, since functions wτ (x), w

′
τ (x) are

uniformly (in x and τ) bounded, Lemma 4.4 is an immediate consequence of inequalities (4.13). �

Corollary 4.5. Assume all the conditions of Lemma 4.4. Then the functions uτ = wτ − ψ are
uniformly (in τ ∈ [0, τ∗]) bounded in the norm of C2+α

µ (R).

Proof. We have
(u+ ψ)′′ + c(u+ ψ)′ +w(1 − w − f(w(x+ cτ))) = 0.

Set v = uµ and multiply the last equation by µ. Then we obtain

v′′ + cv′ + g(x, c, τ) = 0, (4.14)

where
g(x, c, τ) = −2u′µ′ − uµ′′ − cuµ′ + ψ′′µ+ cψ′µ+w(1 − w − f(w(x+ cτ)))µ.

In view of (4.13), this function is uniformly (in τ, c) bounded in the norm of C1(R). Therefore the
norm of v in C2+α(R) is also uniformly bounded due to the Schauder estimate. �

Lemma 4.5. Let wτ : R → (0, 1) be monotonically decreasing wave solutions of equation Aτ (wτ −
ψ) = 0 for possibly different values of τ ∈ [0, τ∗]. Then uτ = wτ − ψ are uniformly bounded in the
norm of C2+α

µ (R).

Proof. Clearly, wτ (x) is a bistable wave of equation (1.5) propagating with the speed c(uτ ). In
view of (4.10), |c| ≤ c∗ for some c∗ > 0.
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Suppose now that the set {uτ : τ ∈ [0, τ∗]} is not uniformly bounded in Eµ = C2+α
µ (R). Then

there exist sequences τn and un := uτn such that c(un) → c⋆ and ‖un‖Eµ → +∞ as n → +∞.

Moreover, without loss of generality, we can assume that w
(j)
n (x) := w

(j)
τn (x) → w

(j)
⋆ (x), j = 0, 1, 2,

uniformly on compact subsets of R. Here w⋆ denotes some non-increasing bounded solution of (1.5)
with c = c⋆.

We claim that w⋆(−∞) = 1, w⋆(+∞) = 0. Indeed, if w⋆(+∞) > 0 then, applying the Fatou’s
lemma, we get the following contradiction:

+∞ = c(w⋆ − ψ) ≤ lim inf c(un) = lim cn = c⋆ < c∗.

On the other hand, if w⋆(−∞) = 0 then w⋆ ≡ 0 so that w′
n(0) → 0 and wn(x) → 0, n → +∞,

uniformly on each half-line [s,+∞). In addition, since each wn(x) satisfies

w′′ + cnw
′ + an(x)w = 0, an(x) := 1− wn(x)− f(wn(x+ cnτn)), (4.15)

where an(x) → 1 − f(0) uniformly on [0,+∞), we can conclude (e.g. see [6, Proposition 1, p.34])
that, for some positive constant K, γ, it holds

|wn(x)| ≤ Ke−γt(wn(0) + |w′
n(0)|), t ≥ 0, n = 1, 2, . . .

This implies, however, that c(un) → −∞, in view of the Lebesgue’s dominated convergence the-
orem. The obtained contradiction shows that w⋆(−∞) ∈ {w0, 1}. For a moment, let suppose
that w⋆(−∞) = w0. In this case, for each positive ǫ, the intervals Tn(ǫ) := {x : w0 − ǫ <
wn(x) < w0 + ǫ} have lengths dn(ǫ) converging to +∞ as n → +∞. Consequently, the intervals
Qn := {x : w0 − ǫ < wn(x) ≤ (w0 + 1)/2} have lengths qn > dn. If xn denotes the unique solution
of equation wn(xn) = (w0 + 1)/2, then the sequence of shifted waves {wn(x+ xn)} converges, uni-
formly on compact subsets of R, to a bounded non-increasing solution wl : R → [0, 1] of equation
(1.5) considered with c = c⋆. Since wl(0) = (w0 + 1)/2 and wl(x) ≥ w0 − ǫ for all x ∈ [0, qn] with
qn → +∞, we conclude that wl(−∞) = 1 and wl(+∞) = w0. However, the simultaneous exis-
tence of non-increasing waves wl and w⋆ of equation (1.5) considered with the same speed c = c⋆
contradicts conclusions of Lemma 4.3.

Consequently, w⋆(−∞) = 1, w⋆(+∞) = 0 so that wn(0) → w⋆(0) ∈ (0, 1), n → +∞. This
means that wn(0) ∈ [α, β] ∈ (0, 1), n = 1, 2, 3 . . . for some appropriate fixed α, β. By Corollary 4.5,
un, n = 1, 2, 3 . . . must be uniformly bounded in the norm C2+α

µ (R) that contradicts our choice of
this sequence. �

5 Existence of solutions

Once topological degree is defined and a priori estimates of solutions are obtained, we can use the
Leray-Schauder method.

Theorem 5.1. Suppose that f ∈ C4(R+) satisfies conditions (1.2), (1.3), (1.4) and, in addition,
f ′(w) < 0 for w∗ ≤ w < 1, where w∗ = f−1(1). Then problem (3.1), (3.2) has a monotonically
decreasing solution for any τ ≥ 0.

Proof. Fix an arbitrary positive number τ∗. With operator Aτ : Eµ → Fµ defined in Section 2, we
consider all solutions of the equation

Aτ (u) = 0, τ ∈ [0, τ∗], (5.16)
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such that the functions w = u+ψ are monotonically decreasing. We denote such solutions by uM .
It follows from Lemma 4.5 that ‖uM‖Eµ ≤ K, where a positive constant K does not depend on
solution and on τ ∈ [0, τ∗]. If the function w = u + ψ is not monotonically decreasing, then we
denote such solutions uN .

We claim that there exists a positive constant r such that

‖uM − uN‖Eµ ≥ r (5.17)

for any solutions uM and uN . Indeed, if this is not the case, then there are two sequences of
solutions uiM and uiN such that

‖uiM − uiN‖Eµ → 0, i→ ∞. (5.18)

Therefore, since |uiM |Eµ ≤ K for all i and Aτ (u) is a proper operator with respect to (u, τ) (see
Theorem 2.4), we can choose convergent subsequence of solutions. Without loss of generality we
assume that uiM → u0 in Eµ, τi → τ0. Then the function w0 = u0+ψ is a solution of problem (3.1),
(3.2) for some τ0 and c. Hence w′

0(x) ≤ 0, and by virtue of Lemmas 3.1, 3.2, we have w′(x) < 0 for
all x ∈ R.

Set wi = uiN + ψ. It follows from (5.18) that ‖wi − w0‖C2 → 0 as i → ∞. This convergence
contradicts Lemma 3.4 and proves (5.17).

We construct an open ball of the radius r/2 around each solution uM . Since the set of solutions
is compact, we can choose a finite subcovering of the set of solutions by the balls. Denote this
domain by D. It contains all solutions uM and it does not contain solutions uN .

Consider the topological degree γ(Aτ ,D). Since Aτ (u) 6= 0 on ∂D, then this degree does not
depend on τ . It remains to verify that it is different from 0. Indeed, in the non-delayed case (τ = 0),
equation (5.16) has a unique solution u0 = w0 − ψ, where w0 is the unique solution of problem
(3.1), (3.2) with τ = 0. The value of the degree γ(A0,D) equals the index of this solution which
can be found through the eigenvalues of the linearized operator. This computation was already
done in [22, Chapter 3, §3.2 ] where it was shown that γ(A0,D) = 1. Hence, γ(Aτ ,D) = 1 for any
τ ∈ [0, τ∗]. This proves the existence of solutions uM of equation (5.16) for each τ ∈ [0, τ∗]. �

We note that if we consider the case where c > 0 or c < 0, the conditions on the function f(w)
can be somewhat weakened (see Lemmas 3.1, 3.2).

Appendix

In this section, we briefly outline the proof of the first inequality in (4.13) in the case when (h, c) :=
(τcτ , c), cτ > 0, belongs to some small neighbourhood O of the point (h0, cτ0) with cτ0 ≥ 0. In
such a case, it is convenient to transform equation (3.1) into usual delayed differential equation by
inverting the time: w(t) = v(−t). In this way, instead of system (3.1), (3.2), we obtain

v′′(x)− cv′(x) + v(x)(1 − v(x)− f(v(x− h))) = 0, v(−∞) = 0, v(+∞) = 1. (5.19)

Thus, for x ≥ T , the function u(t) = v(t)− 1 satisfies the following delay differential equation:

u′′(x)− cu′(x)− (1 + a(x))u(x) − (f ′(1) + b(x))u(x − h) = 0, (5.20)
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where, uniformly with respect to x ≥ T , it holds

a(x) = u(x) = O(|1− w1|), b(x) = −f ′(1) + (1 + u(x))f ′(1 + θu(x− h)) = O(|1− w1|), θ ∈ (0, 1).

We will extend a(x), b(x) continuously on the whole R in such a way that |a|∞, |b|∞ = O(|1−w1|).
In the standard way, equation (5.20) generates a semi-flow on the extended phase space R × X ,
where X := C × R and C stands for the space of scalar continuous functions C[−c∗τ∗, 0] provided
with the sup-norm |φ|∞ = sup{φ(s) : s ∈ [−c∗τ∗, 0]}. In view of the assumption f ′(1) ∈ (−1, 0],
the ‘ω-limit’ equation of (5.20),

u′′(x)− c0u
′(x)− u(x)− f ′(1)u(x − h0) = 0, (5.21)

has only the trivial bounded solution and therefore it possesses an exponential dichotomy with
some projection Ph0

(s) : X → X , s ∈ R, and positive constants K0, γ0. The latter amounts to the
following two properties:

• If (φ+, a+) = Ph0
(s)(ψ, b), with (ψ, b) being an arbitrary fixed element of X , then the solution

u(t, s, φ+, a+), t ≥ s, of the initial value problem u(s+x) = φ+(x), x ∈ [−c∗τ∗, 0], u
′(s) = a+,

for equation (5.21) satisfies the inequality

|u(t+ ·, s, φ+, a+)|∞ + |u′(t, s, φ+, a+)| ≤ K0e
−γ0(t−s)(|b|+ |ψ|∞), t ≥ s.

• On the other hand, if (φ−, a−) = (ψ, b)− Ph0
(s)(ψ, b) then the solution u(t, s, φ−, a−) of the

initial value problem u(s+x) = φ−(x), x ∈ [−c∗τ∗, 0], u
′(s) = a−, for equation (5.21) can be

extended for all t ≤ s and satisfies the inequality

|u(t+ ·, s, φ−, a−)|∞ + |u′(t, s, φ−, a−)| ≤ K0e
γ0(t−s)(|b|+ |ψ|∞), t ≤ s.

Observe that since equation (5.21) has constant coefficients, Ph0
(s) is also a constant function,

Ph0
(s) ≡ P0. We claim that P0(0, 1) 6= (0, 1). Indeed, if P0(0, 1) = (0, 1), then the solution

û(t) := u(t, 0, 0, 1), t ≥ 0, of equation (5.21) is exponentially converging to 0 as t → +∞ while
û(s) = 0 for s ∈ [−h0, 0] and û

′(0) = 1. This means that û(t) reaches its positive absolute maximum
at some leftmost point tM > 0. At this point, û′′(tM ) ≤ 0, û′(tM ) = 0, so that, taking into account
the inequality 0 ≤ −f ′(1) < 1, we get the following contradiction

û(tM ) = û′′(tM )− c0û
′(tM )− f ′(1)û(tM − h0) ≤ −f ′(1)û(tM − h0) < û(tM ).

Next, the roughness property of the exponential dichotomy guarantees (cf. [11, Theorem 7.6.10])
the existence of small δ > 0 such that equation (5.20) possesses an exponential dichotomy with
some projection Ph(s) : X → X , s ∈ R, and constants 2K0, 0.5γ0 for all non-negative c, h, w1 such
that

max{|c− c0|, |h − h0|, |w1 − 1|} < δ. (5.22)

Moreover, sups∈R |P0 − Ph(s)| → 0 as δ → 0. In particular, since (Id − P0)(0, 1) 6= (0, 0), we can
take δ sufficiently small to have i∗ = infs∈R |(Id− Ph(s))(0, 1)| > 0 once (5.22) is satisfied.

Hence, assuming (5.22) and taking arbitrary solution u(t) < 1 − w1, t ≥ T − h, u(+∞) =
u′(+∞) = 0 of equation (5.20), we can conclude that Ph(t)(u(t+ ·), u′(t)) = (u(t+ ·), u′(t)) so that,
for all t ≥ T ,

i∗|u
′(t)| ≤ |u′(t)||(Ph(t)− Id)(0, 1)| = |(Id− Ph(t))(u(t + ·), 0)| ≤ |Ph(t)− Id||u(t+ ·)|∞.
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Thus we obtain that, for all c, h satisfying (5.22) there exists some universal constant C > 0 such
that |u′(t)| ≤ C|u(t+ ·)|∞, t ≥ T. This yields the required uniform exponential estimate

|u(t+ ·)|∞ + |u′(t)| ≤ 2K0e
−0.5γ0(t−T )(|u(T + ·)|∞ + |u′(T )|) ≤

2(1 + C)K0e
−0.5γ0(t−T )|u(T + ·)|∞ ≤ 2(1 +C)(1− w1)K0e

−0.5γ0(t−T ), t ≥ T,

which holds for all c ≥ 0, h satisfying (5.22).
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