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ON THE REGULARITY ISSUES OF A CLASS OF DRIFT-DIFFUSION

EQUATIONS WITH NONLOCAL DIFFUSION

CHANGXING MIAO AND LIUTANG XUE

Abstract. In this paper we address the regularity issues of drift-diffusion equation with nonlocal
diffusion, where the diffusion operator is in the realm of stable-type Lévy operator and the velocity
field is defined from the considered quantity by a zero-order pseudo-differential operator. Through
using the method of nonlocal maximum principle in a unified way, we prove the eventual regularity
result in the supercritical type cases and the global regularity at some logarithmically supercritical
cases. The feature of these results is that the time after which the solution is smoothly regular in the
supercritical type cases can be evaluated explicitly.

1. Introduction

We consider the Cauchy problem of the following drift-diffusion equation with nonlocal diffusion

(1.1) ∂tθ + u · ∇θ + Lθ = 0, θ|t=0(x) = θ0(x),

where x ∈ R
d (or Td), d ∈ N

+, t ∈ R
+, θ : R+ × R

d → R is a scalar-valued quantity, and the velocity
field u = P(θ) : R+ × R

d → R
d is defined from θ by the zero-order pseudo-differential operator:

(1.2) u(x) = P(θ)(x) = a θ(x) + p.v.

∫

Rd

S(y) θ(x+ y) dy,

with a = (a1, · · · , ad) ∈ R
d, and S(x) = Ψ(x/|x|)

|x|d
=
(
Ψ1(x/|x|)

|x|d
, · · · , Ψd(x/|x|)

|x|d

)
∈ C

(
R
d \ {0};Rd

)

composed of Calderón-Zygmund kernels ([36]). The nonlocal diffusion operator L is given by

(1.3) Lf(x) = p.v.

∫

Rd

(
f(x)− f(x+ y)

)
K(y) dy,

where the radially symmetric kernel function K(y) = K(|y|) defined on R
d \ {0} satisfies that there

exist some α ∈]0, 1], α̃ > 0 and c0 > 0 (c0 may be dependent on α and σ), c1 ≥ 1 such that

(1.4) c−1
1

m(|y|−1)

|y|d
≤ K(y) ≤ c1

m(|y|−1)

|y|d
, ∀0 < |y| ≤ c0, and

(1.5) 0 ≤ K(y) ≤
c1

|y|d+α̃
, ∀|y| ≥ c0,

with m(y) = m(|y|) a radially symmetric function satisfying the following assumptions

(A1) m(|y|) is smooth away from zero, non-decreasing, with m(0) = 0, lim|y|→∞m(|y|) = ∞;
(A2) there exists σ ∈ [0, α[ such that

(1.6) (α− σ)
m(|y|)

|y|
≤ m′(|y|) ≤ α

m(|y|)

|y|
, ∀|y| ≥ c−1

0 .
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2 CHANGXING MIAO AND LIUTANG XUE

In some cases concerned, the condition (1.5) can be replaced by a more general condition

(1.7) −
c1

|y|d+α̃
≤ K(y) ≤

c1
|y|d+α̃

, ∀|y| ≥ c0.

Besides, we also consider the nonlocal operator L defined by (1.3)-(1.6) with “c0 = ∞”, i.e., the kernel
K(y) = K(|y|) is given by

(1.8) c−1
1

m(|y|−1)

|y|d
≤ K(y) ≤ c1

m(|y|−1)

|y|d
, ∀ |y| > 0,

with c1 ≥ 1 and m(y) = m(|y|) satisfying (A1) and

(A3) there exists a constant σ ∈ [0, α[ such that

(1.9) (α− σ)
m(|y|)

|y|
≤ m′(|y|) ≤ α

m(|y|)

|y|
, ∀|y| > 0.

The diffusion operator (1.3) defined above is in the realm of Lévy operator; indeed, according to
(1.6) and Lemma 2.2 below, we deduce that for α ∈]0, 1] and σ ∈ [0, α[,

(1.10) cα−σ
0 m(c−1

0 )
1

|y|α−σ
≤ m(|y|−1) ≤ cα0m(c−1

0 )
1

|y|α
, ∀0 < |y| ≤ c0,

which leads to

(1.11) c−1
1 cα−σ

0 m(c−1
0 )

1

|y|d+α−σ
≤ K(y) ≤ c1c

α
0m(c−1

0 )
1

|y|d+α
, ∀0 < |y| ≤ c0,

and we know that the operator given by (1.3) satisfying (1.11) and
∫
Rd

(
min{1, |y|2}

)
K(y)dy ≤ C

corresponds to the infinitesimal generator of the stable-type Lévy process ([8]). By taking the Fourier
transform on L, we get

(1.12) L̂ f(ζ) = A(ζ)f̂(ζ), ∀ζ ∈ R
d,

where the symbol A(ζ) is given by the following Lévy-Khintchine formula ([25, Eq. 3.217])

(1.13) A(ζ) :=

∫

Rd\{0}
(1− cos(ζ · y))K(y)dy.

The diffusion operator L defined by (1.3) under (1.4)-(1.5) or (1.4), (1.7) contains a large class of
multiplier operators L = m(D) such as

L = |D|β, (β ∈ [α− σ, α]), and L =
|D|α

(log(λ+ |D|))µ
, (α ∈]0, 1], µ > 0, λ ≥ 1) ,

which we shall explain in the subsection 2.1 below. Among them, an important case, which is also
a particular case of L under (1.8)-(1.9), is the fractional Laplacian operator |D|α := (−∆)

α
2 with

α ∈]0, 1], which has the following representation formula

(1.14) |D|αf(x) = cd,α p.v.

∫

Rd

f(x)− f(x+ y)

|y|d+α
dy,

with cd,α > 0. The operator L = |D|α corresponds to the infinitesimal generator of the symmetric
stable Lévy process, and recently has been intensely studied in many theoretical problems. For the
drift-diffusion equation (1.1)-(1.2) with L = |D|α, we conventionally call the cases α < 1, α = 1 and
α > 1 as supercritical, critical and subcritical cases, respectively.

The drift-diffusion equation (1.1)-(1.2) has various physical background from the geophysics, fluid
dynamics, dislocation theory and other fields. The typical examples are the surface quasi-geostrophic
equation, the Burgers equation, the Córdoba-Córdoba-Fontelos equation and the incompressible porous
media equation, and below we will specifically review some noticeable results related to these models.
For other interesting models expressed as (1.1)-(1.2), one can also to [3, 23, 30] etc.
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The surface quasi-geostrophic (SQG) equation writes as the equation (1.1) with

(1.15) d = 2 and u = R⊥θ = (−R2,R1)θ,

whereRi = ∂i|D|−1 (i = 1, 2) is the usual Riesz transform ([36]). The inviscid model (i.e. L = 0) arises
from the geostrophic study of the highly rotating fluid ([34]), and partially due to the formal analogue
with 3D Euler/Navier-Stokes equations ([9]) and its simple form, the SQG equation has received much
attention. For the SQG equation with fractional operator L = |D|α, the subcritical case (i.e. α ∈]1, 2])
has been known for decades that it is globally well-posed for suitably regular data (e.g. [35]); while
for the subtle critical case (i.e. α = 1), the issue of global regularity was independently settled by
[29] and [4]: Kiselev et al [29] developed an original method called the “nonlocal maximum principle”;
and Caffarelli et al [4] exploited the De Giorgi’s iteration method and a novel extention. For other
different proofs resolving the critical problem, one can refer to [27] which uses the duality method, and
[11, 10] which apply the “nonlinear maximum principle” method. However, the global regularity issue
in the supercritical case remains to be an outstanding open problem. So far, for the SQG equation
with supercritical diffusion (i.e. α ∈]0, 1[), we only know some partial results: the local well-posedness
result for large data and global well-posedness result under some smallness condition (e.g. [7]), the
conditional regularity criterion (e.g. [12]), and the eventual regularity of the global weak solution
([18, 26, 17]). More precisely, for the eventual regularity issue, which means the global weak solution
is smoothly regular after some finite time, the progress was first made by Dabkowski [18] by adapting
the duality method of [27] and later achieved by Kiselev [26] by using the nonlocal maximum principle
method, and one refer to [17] for a third proof by applying the method of [10]. Notice that Coti Zelati

and Vicol [17] also proved a somewhat global result that for θ0 ∈ H2 with ‖θ0‖
α/2
L2 ‖θ0‖

1−α/2

Ḣ2
≤ R,

the supercritical SQG equation has a unique global solution as long as α depending on R sufficiently
close to 1. For the SQG equation with general diffusion operator L, Dabkowski et al [19] considered
the slightly supercritical case, where the operator L defined by (1.3) and (1.8) satisfies (1.26) below,
and they obtained the global well-posedness of smooth solution by applying the method of nonlocal
maximum principle. They also showed the global result for the multiplier operator L = m(D) under
some suitable assumptions on m(ζ) = m(|ζ|).

The Burgers equation is just the equation (1.1) with

(1.16) d = 1, and u = θ,

which was studied by Burgers in 1940s as a 1D equation modeling the nonlinearity of 3D Euler/Navier-
Stokes equations. It is known that the inviscid Burgers equation with some smooth data forms the
shock singularity at finite time. For the Burgers equation with fractional diffusion, the subcritical and
critical cases can be treated as the corresponding cases of SQG equation to obtain the global results;
while for the supercritical case, Kiselev et al [28] proved that the shock singularity similar to the inviscid
case occurs in the supercritical case (see also [22, 1]). For the Burgers equation with a general L defined
by (1.3) and (1.8), the authors in [19] proved that under (1.26) below and other mild conditions on m,

the equation is globally well-posed for smooth data; whereas under limν→0+

∫ 1
ν m(r−1)dr < ∞, finite

time blowup will also happen for some smooth data.
The Córdoba-Córdoba-Fontelos (CCF) equation corresponds to the equation (1.1) with

(1.17) d = 1, and u = Hθ,

and H is the usual 1D Hilbert transform. Córdoba et al [16] introduced this model as a 1D simple
equation of 3D Euler/Navier-Stokes equations which has the nonlocal velocity; and they proved there
exists smooth data so that the inviscid CCF equation forms singularity at finite time. For the CCF
equation with fractional diffusion, Dong [21] considered the subcritical and critical cases, and showed
the global results, while in the supercritical case with α ∈]0, 1/2[, Li et al [31] showed there is an
occurrence of finite-time blowup similar to the inviscid case. Up to now, the problem concerning
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the global regularity of solution for the supercritical CCF equation with α ∈ [1/2, 1[ is still open.
We mention that Do [20] proved the eventual regularity of the limit function of regularized solution
θǫ at the supercritical case α ∈]0, 1[ by applying the method of [26], and also obtained the global
well-posedness result of CCF equation at slightly supercritical cases equipped with smooth data.

The incompressible porous media equation is the equation (1.1) with the following velocity field

(1.18) u = ∇p+ θed, div u = 0,

where p is a scalar quantity and ed is the last canonical vector of Rd. By a direct computation, we
can show that the velocity u can be exactly expressed as (1.2), e.g., for d = 2 ([15]),

a =

(
0,−

1

2

)
, S(x) =

1

2π

(
2x1x2
|x|4

,
x22 − x21
|x|4

)
,

and for d = 3 ([5]),

a =

(
0, 0,−

2

3

)
, S(x) =

1

4π

(
3x1x3
|x|5

,
3x2x3
|x|5

,
2x23 − x21 − x22

|x|5

)
.

In [5, 15], Córdoba et al, among other issues, proved the global well-posedness result for the equation
in the subcritical and critical cases. Similarly as the SQG equation, the issue of global regularity in
the supercritical case remains unsolved.

In this paper we focus on the drift-diffusion equation (1.1)-(1.2) with general L defined by (1.3),
and we mainly are concerned with the following cases

Case (I):
(
K(y),m(y)

)
satisfies (1.8) and (A1), (A3);(1.19)

Case (II):
(
K(y),m(y)

)
satisfies (1.4)-(1.5) and (A1)-(A2);(1.20)

Case (III):
(
K(y),m(y)

)
satisfies (1.4), (1.7) and (A1)-(A2), symbol A(ζ) ≥ 0, div u = 0.(1.21)

By applying the method of nonlocal maximum principle in a unified way, we show the eventual
regularity of global weak solution for the supercritical type equation (1.1)-(1.2) at Case (I). Compared
with the eventual result obtained in [26] for the supercritical SQG equation, we have an explicit control
on the eventual regularity time (i.e., the time after which the solution is regular) which is small enough
as σ → 0, α = 1. In accordance with this point, we further prove the global regularity result for the
logarithmically supercritical drift-diffusion equation (1.1)-(1.2) at either Case (II) or Case (III).

More precisely, our first main result is the eventual regularity of the vanishing viscosity weak solution
for the drift-diffusion equation (1.1)-(1.2).

Theorem 1.1. Assume that Case (I) is considered with α ∈]0, 1], σ ∈ [0, 1[, θ0 ∈ L2(Rd) and div u =
0. Then for every T > 0 large, the drift-diffusion equation (1.1)-(1.2) admits a weak solution θ ∈

L∞([0, T ];L2(Rd))∩L2([0, T ]; Ḣ
α−σ
2 (Rd)), which satisfies θ ∈ C∞(]t0 + t1, T ]×R

d), where t0 > 0 can
be chosen arbitrarily small and t1 > 0 is a number depending only on α, σ, d, t0 and ‖θ0‖L2 .

Moreover, if α ∈]0, 1[ and σ = 0 in condition (A3), i.e., m(y) ≡ C0|y|
α, ∀y 6= 0, we can set T = ∞,

and we explicitly have

(1.22) t1 ≤
C

α

(
C2d/αt−1

0

) d
2(1−α)

(C(1− α)

α5

) α
1−α

‖θ0‖
α

1−α

L2 ,

with C > 0 some constant depending only on d.

Our second result is the global regularity of the solution for some logarithmically supercritical
drift-diffusion equations (1.1)-(1.2).
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Theorem 1.2. Assume that either Case (II) or Case (III) is considered for α = 1 and σ ∈ [0, 1[ with
some constant c0 = c0(σ) > 0. Additionally suppose that there exist µ ∈ [0, 1] and c2 ≥ 1 such that

(1.23)
1

c2

|y|

(log |y|)µ
≤ m(y) ≤ c2|y|, ∀|y| ≥ c2.

We have the following two statements.

(1) If Case (III) is considered and θ0 ∈ L2 ∩ L∞(Rd). Then for any t∗ > 0 small and T > 0 large,

the vanishing viscosity solution θ ∈ L∞([0, T ];L2(Rd))∩L2([0, T ]; Ḣ
1−σ
2 (Rd)) of the drift-diffusion

equation (1.1)-(1.2) satisfies θ ∈ C∞([t∗, T ]×R
d).

(2) If Case (II) is considered, θ0 ∈ C0(R
d) (i.e., the space composed of continuous functions which

decay to zero at infinity) and let θ be the limit function of θǫ which solves the regularized drift-
diffusion equation

(1.24) ∂tθ
ǫ + uǫ · ∇θǫ + Lθǫ − ǫ∆θǫ = 0, uǫ = P(θǫ), θǫ|t=0 = φǫ ∗

(
θ01B1/ǫ

)
,

where ǫ > 0, φ ∈ C∞
c (Rd) is the standard mollifier, φǫ(x) = ǫ−dφ(x/ǫ), and 1B1/ǫ

is the indicator

function on the ball B1/ǫ. Then for any t∗ > 0 small, we have θ ∈ C∞([t∗,∞[×R
d) and θ on the

time period [t∗,∞[ satisfies the drift-diffusion equation (1.1)-(1.2).

The main method in proving the above results is the nonlocal maximum principle originated from
[29, 26], whose basic idea is to show the evolution strictly preserves some appropriate modulus of
continuity (abbr. MOC, see Subsection 2.3 below).

In the proof of Theorems 1.1 and 1.2, the following proposition concerned with the uniform-in-ǫ
improvement of the eventual Hölder regularity from the L∞-estimate plays a core role.

Proposition 1.3. Assume that Case (I) is considered with α ∈]0, 1], σ ∈ [0, 1[, and θǫ ∈ C([0,∞[;Hs(Rd)),
s > 1 + d

2 is a smooth solution for the regularized drift-diffusion equation (1.24) with ǫ > 0, θ0 ∈

L∞(Rd). Then there exists a time t1 > 0 independent of ǫ such that for every β ∈]1− α+ σ, 1[,

(1.25) sup
t∈[t1,∞[

‖θǫ(t)‖Ċβ(Rd) ≤ C(‖θ0‖L∞ , d, α, β, σ),

with C independent of ǫ. Moreover, if α ∈]0, 1[ and σ = 0 in the condition (A3), we have the explicit
estimates on t1 and supt∈[t1,∞[ ‖θ

ǫ(t)‖Ċβ as (3.19)-(3.20) below.

For the proof of Proposition 1.3, the new ingredient is the MOC ω(ξ, ξ0) given by (3.8)-(3.9), which
is derived from suitably modifying the MOC ω(ξ) defined by (3.2), and by virtue of a careful analysis
according to the values of ξ and ξ0, we manage to show that the solution θǫ(x, t) of the regularized
equation (1.24) uniformly-in-ǫ strictly obeys the MOC ω(ξ, ξ0(t)), which combined with the regularity
preservation criterion in terms of MOC (3.2) (see Lemma 3.1) further guarantees the desired uniform-
in-ǫ Hölder regularity estimate after some time. We stress that there is no factor like 1 − α + σ or
1−α in the conditions of κ, γ, ρ (see (3.76)) appearing in ω(ξ, ξ0), so that we can estimate the eventual
regularity time t1 as (1.22) in the case α ∈]0, 1[, σ = 0, which has the property that t1 → 0 as α→ 1
for the fixed data θ0.

For the proof of Theorem 1.1, we first prove the global existence of a vanishing viscosity solution sat-
isfying the L2-energy estimate, then by using De Giorgi’s method we show the crucial L∞

x -improvement
for all t ≥ t0 with any t0 > 0, and then Proposition 1.3 ensures the eventual Hölder regularity of this
weak solution for every t ≥ t0+t1 with some t1 > 0, which in combination with the regularity criterion
Lemma 2.5 further leads to the desired eventual regularity result.

For Theorem 1.2, we observe that under the condition (1.23), the eventual regularity time t1 can be
arbitrarily small, and thus by applying Proposition 1.3 and by appropriately choosing the coefficients
in the MOC ω(ξ, ξ0) and ξ0 = ξ0(t), we can show the desired global regularity result. Notice that in
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the considered cases it suffices to justify the criterion (4.25) for small ξ and ξ0(t), so that we can treat
the more general diffusion operator L than that in Proposition 1.3.

Next we list some remarks as follows.

Remark 1.4. Since m(y) = |y|
(log(λ+|y|))µ with µ ∈ [0, 1], λ ≥ 0 satisfies (1.6) with α = 1, σ ∈

]0, 1[, c0 = e−
µ
σ , and also satisfies (1.23) with c2 = 2, thus Theorem 1.2 can be applied to the drift-

diffusion equation (1.1)-(1.2) under either Case (II) or Case (III) with these m and c0. Recalling
that the improvement from L∞ to Hölder regularity is a crucial step in proving the global regularity
of weak solution for the critical SQG equation (i.e. L = |D|) by Caffarelli-Vasseur [4] and also
Kiselev-Nazarov [27], we here as a nontrivial generalization achieve such an improvement for vanishing
viscosity solution of the drift-diffusion equation (1.1)-(1.2) at some logarithmically supercritical cases,
and we even remove the divergence-free assumption of the velocity field at Case (II).

Remark 1.5. As a counterpart of Theorem 1.2, we can also prove the following global well-posedness
result for (1.1)-(1.2) at the slightly supercritical case complemented with regular data: assume that
θ0 ∈ Hs(Rd), s > d

2 + 1, and either Case (II) or Case (III) is considered with α ∈]0, 1], σ ∈ [0, 1[,
c0 = c0(α, σ) > 0, and additionally

(1.26) lim
ν→0+

∫ c0

ν
m(ξ−1)dξ = ∞,

then the associated drift-diffusion equation (1.1)-(1.2) generates a uniquely global smooth solution
θ ∈ C([0,∞[;Hs(Rd))∩C∞(]0,∞[×R

d). We shall justify this statement at the appendix section. This
global well-posedness result is concerned with the slightly supercritical drift-diffusion equation (1.1)-
(1.2), and it generalizes the corresponding result of [19] on the slightly supercritical SQG and Burgers
equations. Note also that the MOC given by (4.29) has a simper form than that appeared in [19],
and we use a different way to estimate the contribution (2.30) so that we can avoid the difficulty
encountered in considering the general u defined by (1.2).

Remark 1.6. Motivated by Coti Zelati and Vicol [17] and in a different method, we can also prove
the following global result: assume that either Case (II) or Case (III) is considered for α = 1 and
σ ∈ [0, 1[ with some c0 > 0 (independent of σ), and let θ0 ∈ Hs(Rd), s > 1 + d

2 be satisfying
‖θ0‖Hs(Rd) ≤ R with some R > 0, then there exists a constant σ1 = σ1(R, d) > 0 such that for

every σ ≤ σ1, the associated drift-diffusion equation (1.1)-(1.2) has a unique global solution θ(x, t) ∈
C([0,∞[;Hs(Rd)) ∩C∞([0,∞[×R

d). Indeed, the classical local well-posedness result first ensures that
there is T1 = T1(d,R) > 0 such that the equation (1.1)-(1.2) admits a smooth solution θ on [0, T1]; then
similarly as obtaining (1.22) and (3.14) (we also adopt the different points in proving (4.25) compared
with proving (3.34)), one can show that the eventual time t1 → 0 as σ → 0, which implies t1 < T1 for
σ small enough, and thus we conclude the statement.

The outline of the paper is as follows. In Section 2, we introduce a class of multiplier operators
as examples of the diffusion operator L, and we present some useful auxiliary lemmas, and we also
collect the definition and useful lemmas related to the modulus of continuity. In Section 3, we give
the detailed proof of Proposition 1.3. The proof of Theorems 1.1 and 1.2 are respectively placed in
the subsections of Section 4. At last, the appendix section justifies the statement in Remark 1.5.

Throughout this paper, C stands for a constant which may be different from line to line. The
notation X . Y means that X ≤ CY . Denote by Br(x0) := {x ∈ R

d : |x − x0| < r} the ball of Rd

and we abbreviate Br(0) as Br. Denote S ′(Rd) the space of tempered distributions. We use f̂ and ǧ
to denote the Fourier transform and the inverse Fourier transform of a tempered distribution, that is,

f̂(ζ) =
∫
Rd e

−ix·ζf(x)dx and ǧ(x) = 1
(2π)d

∫
Rd e

ix·ζg(ζ)dζ.
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2. Preliminary and auxiliary lemmas

In this section, we introduce a class of multiplier operators as examples of the operator L, and also
compile some useful auxiliary lemmas.

2.1. Multiplier operators as examples of L. In addition to the conditions (A1)-(A2) stated in
the introduction, we assume that m(ζ) = m(|ζ|) also may satisfy the following assumptions:
(A4) m is of the Mikhlin-Hörmander type, i.e. there is some constant c3 ≥ 1 so that

(2.1) |∂kζm(ζ)| ≤ c3|ζ|
−km(ζ), ∀ζ 6= 0,

for all k ∈ N and k ≤ k0, with k0 a positive constant depending only on d.
(A5) m satisfies that

(2.2) (−∆)dm(ζ) ≥ c4|ζ|
−2dm(ζ), ∀|ζ| large enough,

with some c4 > 0.
(A6) m satisfies that

(2.3) (−1)k−1m(k)(|ζ|) ≥ 0, ∀|ζ| > 0, k ∈ {1, 2, · · · , d}.

Note that there do exist a large class of nontrivial examples satisfying all the needing conditions;

in fact, as shown by [24, Proposition 3.6], the functions m(ζ) = |ζ|α

(log(λ+|ζ|))β
with λ ≥ e

3+2β
α , α ∈]0, 1],

β ≥ 0 and d = 1, 2, 3 satisfy (2.3), and they also satisfy (A1)-(A2), (A4)-(A5) by a direct computation.
The following lemma relates the multiplier operator with the conditions of K in the introduction.

Lemma 2.1. Suppose that m(ζ) = m(|ζ|) is a radial function satisfies the conditions (A1)-(A2),
(A4)-(A5). Then the multiplier operator m(D) has the following representation formula

(2.4) m(D)θ(x) =
(
m(ζ)θ̂(ζ)

)∨
(x) = p.v.

∫

Rd

K(y) (θ(x)− θ(x+ y)) dy,

where the radial kernel K satisfies

(2.5) |K(y)| ≤ C|y|−dm(|y|−1), ∀|y| > 0,

and

(2.6) K(y) ≥ c5|y|
−dm(|y|−1), ∀ 0 < |y| ≤ c0,

with two generic constants c0, c5 > 0. Besides, if m(ζ) = m(|ζ|) additionally satisfies the condition
(A6), then the kernel function K in (2.4) also satisfies

(2.7) K(y) ≥ 0, ∀|y| > 0.

Notice that (2.5)-(2.6) just correspond to (1.4), (1.7), and (2.5)-(2.7) correspond to (1.4)-(1.5).

Proof of Lemma 2.1. The properties (2.5)-(2.6) were proved in [19, Lemmas 5.1, 5.2]. We only prove
(2.7). By arguing as [24, Proposition 3.6 and Lemma 3.8], we can show that, thanks to (A6), the
kernel function Gt(x) associated with the operator e−tL satisfies

Gt(x) ≥ 0, and

∫

Rd

Gt(x) dx = Ĝt(·)|ζ=0 = 1.

In light of the semigroup representation formula of the operator L,

Lf(x) = lim
t→0+

f(x)− e−tLf(x)

t
= lim

t→0+

∫

Rd

Gt(y)

t
(f(x)− f(x+ y)) dy,

we see that K(y) = limt→0
Gt(y)

t ≥ 0 for all |y| > 0. �
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2.2. Auxiliary lemmas. First we give a useful lemma on the function m satisfying (1.6).

Lemma 2.2. Let m(y) = m(|y|) be the radial function satisfying the condition (1.6) for some α ∈]0, 1[
and σ ∈ [0, α[, then

(2.8) the mapping |y| 7→ |y|β1m(|y|−1), β1 ≥ α is non-decreasing,

and

(2.9) the mapping |y| 7→ |y|β2m(|y|−1), β2 ≤ α− σ is non-increasing.

Proof of Lemma 2.2. Let fi(r) = rβim(r−1) for i = 1, 2 and r > 0, then by the direct computation,

f ′1(r) = rβ1−1
(
β1m(r−1)− r−1m′(r−1)

)
≥ (β1 − α)rβ1−1m(r−1) ≥ 0,

which yields (2.8), and similarly,

f ′2(r) = rβ2−1
(
β2m(r−1)− r−1m′(r−1)

)
≤ (β2 − (α− σ)) rβ2−1m(r−1) ≤ 0,

which yields (2.9). �

The next lemma concerns the pointwise lower bound estimate of the symbol of the operator L.

Lemma 2.3. Let L be defined by (1.3) with K(y) satisfying (1.4)-(1.5) and m(y) satisfying (A1)-(A2),
then the associated symbol A(ζ) given by (1.13) satisfies that

(2.10) A(ζ) ≥ C−1|ζ|α−σ − C, ∀ζ ∈ R
d,

where α ∈]0, 1], σ ∈ [0, α[ and C is a positive constant depending only on d, α and σ. Besides, if K(y)
satisfies (1.4), (1.7) with m(y) satisfying (A1)-(A2), we can also get (2.10) with a different constant
C. In particular, if K(y) satisfies (1.8) with m(y) = |y|α (α ∈]0, 1]), ∀y 6= 0, we get

(2.11) A(ζ) ≥ C−1|ζ|α, ∀ζ ∈ R
d,

with C a positive constant depending only on d and α.

Note that if m(y) ≡ |y|α, then we can get (2.10) with σ = 0 for the associated operator L, and this
special result in fact has appeared in the literatures, e.g. [6, Lemma 2.2].

Proof of Lemma 2.3. Recalling that for every α ∈]0, 2[ we have (e,g, see [25, Eq. (3.219)])

(2.12) |ζ|α = cd,α

∫

Rd\{0}
(1− cos(y · ζ))

1

|y|d+α
dy, ∀ζ ∈ R

d

and by virtue of the lower bound of K in (1.4)-(1.5) and the fact |y|α−σm(|y|−1) ≥ cα−σ
0 m(c−1

0 ) for all
0 < |y| ≤ c0, we obtain

A(ζ) ≥ c−1
1

∫

0<|y|≤c0

(1− cos(y · ζ))
m(|y|−1)

|y|d
dy

≥ c−1
1 cα−σ

0 m(c−1
0 )

∫

0<|y|≤c0

(1− cos(y · ζ))
1

|y|d+(α−σ)
dy

≥ c−1
1 cα−σ

0 m(c−1
0 )
(
c−1
d,α|ζ|

α−σ −

∫

|y|≥c0

1

|y|d+α−σ
dy
)

≥ C−1|ζ|α−σ − C.

If K satisfies (1.4) and (1.7), we similarly deduce

A(ζ) ≥ c−1
1

∫

0<|y|≤c0

(1− cos(y · ζ))
m(|y|−1)

|y|d
dy − c1

∫

|y|≥c0

(1− cos(y · ζ)) |K(y)|dy
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≥ c−1
1 cα−σ

0 m(c−1
0 )

∫

0<|y|≤c0

(1− cos(y · ζ))
1

|y|d+α−σ
dy − c1c

α−σ
0 m(c−1

0 )

∫

|y|≥c0

1

|y|d+α̃
dy

≥ C−1|ζ|α−σ − C.

If K satisfies (1.8) with m(y) = |y|α (α ∈]0, 1]), ∀y 6= 0, from (2.12) we see that A(ζ) ≥ c−1
1 c−1

d,α|ζ|
α,

which leads to (2.11). �

The following lemma is about the L∞-estimate of smooth solution for the equation (1.1)-(1.2).

Lemma 2.4. Let θ ∈ C([0, T ∗[;Hs(Rd)), s > 1+ d
2 be a smooth solution to the drift-diffusion equation

(1.1)-(1.2). If Case (II) (i.e. (1.20)) is supposed, then we have

(2.13) ‖θ(t)‖L∞ ≤ ‖θ0‖L∞ , for all t ∈ [0, T ∗[.

Besides, if Case (III) (i.e. (1.21)) is assumed, we get

(2.14) ‖θ(t)‖L∞ ≤ C(‖θ0‖L2∩L∞ , α, σ, d), for all t ∈ [0, T ∗[.

Proof of Lemma 2.4. Due to that the kernel K is nonnegative on R
d \ {0}, the proof of (2.13) is

classical (cf. [14, Theorem 4.1] for L = |D|α), and we here omit the details.
Next we prove (2.14). Thanks to the assumptions that div u = 0 and A(ζ) ≥ 0, by the L2-energy

estimate (cf. (4.4) below), we get ‖θ(t)‖L2
x
≤ ‖θ0‖L2 for all t ∈ [0, T ∗[. Now for every t ∈]0, T ∗[,

assume that xt ∈ R
d is some point satisfying θ(xt, t) = ‖θ(t)‖L∞

x
=:M(t). According to

∣∣∣
{
y ∈ R

d : |θ(xt + y)| ≥
M(t)

2

}∣∣∣ ≤
(2‖θ(t)‖L2

M(t)

)2
≤

4‖θ0‖
2
L2

M(t)2
,

and denoting by rt := 41/d

|B1(0)|1/d

‖θ0‖
2/d

L2

M(t)2/d
, we may set M(t) large enough so that rt ≤ c0

2 . Taking

advantage of (1.4), (1.7) and Lemma 2.2, we find that (by arguing as [27, Lemma 4.1]),

(Lθ)(xt, t) ≥ c−1
1

∫

0<|y|≤c0

(θ(xt, t)− θ(xt + y, t))
m(|y|−1)

|y|d
dy − 2c1M(t)

∫

|y|≥c0

1

|y|d+α̃
dy

≥ c−1
1

M(t)

2

∫

rt≤|y|≤c0

m(|y|−1)

|y|d
dy − 2c1M(t)

∫

|y|≥c0

1

|y|d+α̃
dy

≥ c−1
1 cα−σ

0 m(c−1
0 )

M(t)

2

∫

rt≤|y|≤c0

1

|y|d+α−σ
dy − 2c1M(t)

∫

|y|≥c0

1

|y|d+α̃
dy

≥ c−1
1 cα−σ

0 m(c−1
0 )

M(t)

2

|B1(0)|

α− σ

1

2rα−σ
t

− 2c1M(t)
|B1(0)|

α̃

=
Cα,σ,d

‖θ0‖
2(α−σ)/d
L2

M(t)1+
2(α−σ)

d − Cα̃,dM(t).

Hence we see that
d

dt
M(t) ≤ −Cα,σ,d‖θ0‖

− 2(α−σ)
d

L2 M(t)1+
2(α−σ)

d + Cα̃,dM(t),

and forM(t) larger than the quantity ‖θ0‖L2

(
Cα̃,d

Cα,σ,d

) d
2(α−σ)

, we have d
dtM(t) ≤ 0, which readily implies

that M(t) ≤ max
{
‖θ0‖L∞ ,

(
Cα̃,d

Cα,σ,d

) d
2(α−σ)

‖θ0‖L2

}
and concludes the lemma. �

Finally, we state the following key regularity criterion for the drift-diffusion equation (1.1).
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Lemma 2.5. (1) Assume that Case (III) is considered, θ0 ∈ Lp(Rd) for some p ∈ [2,∞[. If the drift
u satisfies that for any T > 0,

(2.15) u ∈ L∞([0, T ];Cδ(Rd)), for every δ ∈]1− α+ σ, 1[,

then the drift-diffusion equation (1.1) admits a unique weak solution (in the distributional sense)
θ ∈ L∞([0, T ];Lp(Rd)) which satisfies θ ∈ L∞(]0, T ], C1,γ(Rd)) with any γ ∈]0, δ + α − σ − 1[.
Moreover, if the drift field u is given by (1.2), we have θ ∈ C∞(]0, T ] × R

d).
(2) Suppose that Case (II) is considered, θ0 ∈ C0(R

d), and the drift u satisfy (2.15) for any T > 0.
Then for the following approximate equation of the drift-diffusion equation (1.1):

∂tθ
ǫ + uǫ · ∇θǫ + Lθǫ = 0, uǫ = φǫ ∗ u, θǫ|t=0 = θ01B1/ǫ

(x),

with φǫ(x) = ǫ−dφ(x/ǫ), φ the standard mollifier and 1B1/ǫ
the indicator function on the ball B1/ǫ,

the corresponding regularized solution θǫ uniformly-in-ǫ satisfies that θǫ ∈ L∞([0, T ];C0(R
d)) ∩

L∞(]0, T ], C1,γ(Rd)) for any γ ∈]0, δ + α− σ − 1[. Moreover, if the drift field u is given by (1.2),
we have θǫ ∈ C∞(]0, T ] ×R

d) uniformly in ǫ.

For the proof of Lemma 2.5, one can refer to [38, Theorems 1.1, 1.2 and Remark 1.3] for the detailed
proof of the same result for the drift-diffusion equation (1.1) with more general Lévy-type operator L.

2.3. Modulus of Continuity. In this subsection we gather some results related to the modulus of
continuity, which play an important role on the method of nonlocal maximum principle.

First is the definition of the modulus of continuity.

Definition 2.6. A function ω : [0,∞[→ [0,∞[ is called a modulus of continuity (abbr. MOC) if ω
is continuous on ]0,∞[, nondecreasing, concave, and piecewise C2 with one-sided derivatives defined
at every point in ]0,∞[. We say a function f : R

d → R
l obeys the modulus of continuity ω if

|f(x) − f(y)| ≤ ω(|x − y|) for all x, y ∈ R
d, and say f : R

d → R
l strictly obeys the modulus of

continuity ω if the above inequality is strict for every x 6= y ∈ R
d.

Then we recall the general criterion of the nonlocal maximum principle for the whole-space drift-
diffusion equation (for the proof see [33, Proposition 3.2] or [26, Theorem 2.2]).

Proposition 2.7. Let θ ∈ C([0,∞[;Hs(Rd)), s > d
2 + 1 be a smooth solution of the following whole

space drift-diffusion equation

(2.16) ∂tθ + u · ∇θ + Lθ − ǫ∆θ = 0, θ(0, x) = θ0(x), x ∈ R
d,

with ǫ ≥ 0. Assume that
(1) for every t ≥ 0, ω(ξ, t) is a MOC and satisfies that its inverse function ω−1(3‖θ(·, t)‖L∞

x
, t) <∞;

(2) for every fixed point ξ, ω(ξ, t) is piecewise C1 in the time variable with one-sided derivatives defined
at each point, and that for all ξ near infinity, ω(ξ, t) is continuous in t uniformly in ξ;
(3) ω(0+, t) and ∂ξω(0+, t) are continuous in t with values in R ∪ {±∞}, and satisfy that for every
t ≥ 0, either ω(0+, t) > 0 or ∂ξω(0+, t) = ∞ or ∂ξξω(0+, t) = −∞.

Let the initial data θ0(x) strictly obey ω(ξ, 0), then for every T > 0, θ(x, T ) strictly obeys the
modulus of continuity ω(ξ, T ) provided that for all t ∈]0, T ] and ξ ∈

{
ξ > 0 : ω(ξ, t) ≤ 2‖θ(·, t)‖L∞

x

}
,

ω(ξ, t) satisfies

(2.17) ∂tω(ξ, t) > Ω(ξ, t) ∂ξω(ξ, t) +D(ξ, t) + 2ǫ∂ξξω(ξ, t),

where Ω(ξ, t) and D(ξ, t) are respectively defined from that for every x ∈ R
d and every unit vector

e ∈ S
d−1 in (2.20) (noting that we suppress the dependence of x, e in Ω(ξ, t) and D(ξ, t)),

(2.18) Ω(ξ, t) := |(u(x+ ξe, t)− u(x, t)) · e|, and

(2.19) D(ξ, t) := −
(
Lθ(x, t)− Lθ(x+ ξe, t)

)
,
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under the scenario that

θ(x, t)− θ(x+ ξe, t) = ω(ξ, t), and

|θ(y, t)− θ(z, t)| ≤ ω(|y − z|, t), ∀y, z ∈ R
d.

(2.20)

In (2.17), at the points where ∂tω(ξ, t) (or ∂ξω(ξ, t)) does not exist, the smaller (or larger) value of
the one-sided derivative should be taken.

The following lemma is concerned with the estimate of (2.19) under the scenario (2.20).

Lemma 2.8. Assume that the diffusion operator L is defined by (1.3) with the radial kernel K, then
we have the following estimates on D(ξ, t) defined by (2.19) under the scenario (2.20).

(1) If K satisfies (1.8) with m satisfying (A1) and (A3), then for any ξ > 0,

D(ξ, t) ≤C1

∫ ξ
2

0
(ω(ξ + 2η, t) + ω(ξ − 2η, t) − 2ω(ξ, t))

m(η−1)

η
dη

+ C1

∫ ∞

ξ
2

(ω(2η + ξ, t)− ω(2η − ξ, t)− 2ω(ξ, t))
m(η−1)

η
dη,

(2.21)

with C1 > 0 a constant depending only on d.
(2) If K satisfies (1.4)-(1.5) with m satisfying (A1)-(A2), then for every ξ ∈]0, c02 ],

D(ξ, t) ≤C1

∫ ξ
2

0
(ω(ξ + 2η, t) + ω(ξ − 2η, t) − 2ω(ξ, t))

m(η−1)

η
dη

+ C1

∫ c0
2

ξ
2

(ω(2η + ξ, t)− ω(2η − ξ, t)− 2ω(ξ, t))
m(η−1)

η
dη.

(2.22)

(3) If K satisfies (1.4), (1.7) with m satisfying (A1)-(A2), then for every ξ ∈]0, c02 ],

(2.23) D(ξ, t) ≤ C ′
1ω(ξ, t) + R.H.S. of (2.22),

where C ′
1 > 0 is a constant depending on d, α̃, c0 and c1.

Proof of Lemma 2.8. According to (1.3) and (2.20), we see that

(2.24) D(ξ, t) =

∫

Rd

K(y) (θ(x+ y, t)− θ(x+ ξe+ y, t)− ω(ξ, t)) dy,

where the integral will be understood in the sense of principle value if needed. By arguing as the proof
of [19, Lemma 2.3], we get

D(ξ, t) ≤

∫ ξ
2

0
(ω(ξ + 2η, t) + ω(ξ − 2η, t)− 2ω(ξ, t)) K̃(η)dη

+

∫ ∞

ξ
2

(ω(2η + ξ, t)− ω(2η − ξ, t)− 2ω(ξ, t)) K̃(η)dη,

(2.25)

with K̃(η) =
∫
Rd−1 K(η, ν)dν. Note that due to the concavity of ω(·, t), both terms ω(ξ + 2η, t) +

ω(ξ − 2η, t)− 2ω(ξ, t) and ω(2η + ξ, t)− ω(2η − ξ, t)− 2ω(ξ, t) are non-positive.
(1) If K satisfies (1.8) with m satisfying (A1) and (A3), by using (2.8), we infer that for every η > 0,

K̃(η) ≥ c−1
1

∫

Rd−1

m
(
(η2 + |ν|2)−1/2

)

(η2 + |ν|2)d/2
dν

≥ c−1
1 ηαm(η−1)

∫

Rd−1

1

(η2 + |ν|2)(d+α)/2
dν
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≥ c−1
1

m(η−1)

η

∫

Rd−1

1

(1 + |ν ′|2)(d+α)/2
dν ′ ≥ C1

m(η−1)

η
,(2.26)

where in the last inequality we used

c−1
1

∫

Rd−1

1

(1 + |ν ′|2)(d+α)/2
dν ′ ≥ c−1

1

∫

|ν′|≤1

1

2(d+α)/2
dν ′ ≥ c−1

1

1

2(d+1)/2
|B1(0)| = C1.

Inserting the above estimate into (2.25) leads to (2.21).
(2) IfK satisfies (1.4)-(1.5) withm satisfying (A1)-(A2) and ξ ≤ c0/2 is concerned, we mainly consider

the scope η ∈]0, c02 ] and |ν| ∈]0, c02 ] so that (η2 + |ν|2)1/2 ∈]0, c0], thus similarly as (2.26), we get that
for all η ∈]0, c02 ],

K̃(η) ≥ c−1
1

∫

ν∈Rd−1,|ν|≤
c0
2

m
(
(η2 + |ν|2)−1/2

)

(η2 + |ν|2)d/2
dν

≥ c−1
1

m(η−1)

η

∫

ν′∈Rd−1,|ν′|≤1

1

(1 + |ν ′|2)
d+α
2

dν ′ ≥ C1
m(η−1)

η
,

which ensures (2.22).
(3) If K satisfies (1.4), (1.7) with m satisfying (A1)-(A2), and ξ ≤ c0

2 is concerned, we divide the

(η, ν) integral region of the R.H.S. of (2.25) into several parts
{
η ∈ [ c02 ,∞[

}
,
{
η ∈]0, c02 ], |ν| ∈]0,

c0
2 ]
}

and
{
η ∈]0, c02 ], |ν| ∈ [ c02 ,∞[

}
. The part η ∈]0, c02 ] and |ν| ∈]0, c02 ] can be treated as above and the

bound is the R.H.S. of (2.22). For η ≥ c0
2 , the kernel K(η, ν) may be non-positive, and from (1.7) we

deduce

−K̃(η) ≤ −

∫

(η2+|ν|2)1/2≤c0

K(η, ν) dν −

∫

(η2+|ν|2)1/2≥c0

K(η, ν) dν

≤ c1

∫

Rd−1

1

(η2 + |ν|2)
d+α̃
2

dν ≤ c1
1

η1+α̃

∫

Rd−1

1

(1 + |ν ′|2)
d+α̃
2

dν ′ ≤ c1Cd
1

η1+α̃
,

and thus the contribution from this part is
∫ ∞

c0
2

(2ω(ξ, t) + ω(2η − ξ, t)− ω(2η + ξ, t))
(
−K̃(η)

)
dη ≤ c1Cd2ω(ξ, t)

∫ ∞

c0
2

1

η1+α̃
dη ≤

C ′

2
ω(ξ, t).

For the part η ∈]0, c02 ] and |ν| ≥ c0
2 , from (1.7) we get

−

∫

ν∈Rd−1,|ν|≥
c0
2

K(η, ν)dν ≤ −

∫

ν∈Rd−1,|ν|≥
c0
2
,(η2+|ν|2)1/2≥c0

K(η, ν)dν

≤ c1

∫

ν∈Rd−1,|ν|≥
c0
2

1

(η2 + |ν|2)
d+α̃
2

dν ≤ Cd,α̃c1c
α̃
0 ,

and thus the contribution from this part is bounded by

c1c
α̃
0Cd,α̃

(∫ ξ
2

0

(
2ω(ξ, t) − ω(ξ + 2η, t)− ω(ξ − 2η, t)

)
+

∫ c0
2

ξ
2

(
2ω(ξ, t) + ω(2η − ξ, t)− ω(2η + ξ, t)

))

≤ c1c
α̃
0Cd,α̃

(
ω(ξ, t)

ξ

2
+ 2ω(ξ, t)

c0 − ξ

2

)
≤
C ′
1

2
ω(ξ, t).

Hence, gathering the above estimates yields (2.23). �

Next we consider the estimation of (2.18) under the scenario (2.20).

Lemma 2.9. Assume that u = P(θ) is defined by (1.2), and the diffusion operator L is given by (1.3)
with the radial kernel K, then we have the following estimates on Ω(ξ, t) under the scenario (2.20).
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(1) If K satisfies (1.8) with m satisfying (A1) and (A3), then for all ξ > 0,

(2.27) Ω(ξ, t) ≤ −
C2

m(ξ−1)
D(ξ, t) + C2ω(ξ, t) + C2ξ

∫ ∞

ξ

ω(η, t)

η2
dη,

with C2 > 0 defending only on d (and |a|, |Ψ|).
(2) If K satisfies (1.4)-(1.5) with m satisfying (A1)-(A2), then we also get (2.27) for all 0 < ξ ≤ c0

2 .
(3) If K satisfies (1.4) and (1.7) with m satisfying (A1)-(A2), then for all 0 < ξ ≤ c0

2 ,

(2.28) Ω(ξ, t) ≤ −
C2

m(ξ−1)
D(ξ, t) +

(
C ′
2 + C2

)
ω(ξ, t) + C2ξ

∫ ∞

ξ

ω(η, t)

η2
dη,

with some C ′
2 > 0 depending on d, α, α̃, and c0, c1.

(4) There exists a constant C3 > 0 depending only on d, |a|, |Ψ| such that

(2.29) Ω(ξ, t) ≤ C3ω(ξ, t) + C3

∫ ξ

0

ω(η, t)

η
dη + C3ξ

∫ ∞

ξ

ω(η, t)

η2
dη.

Notice that for L = |D|α and u = H(θ) with H the 1D Hilbert transform, an estimate similar to
(2.27) was obtained in [20, Lemma 2.7].

Proof of Lemma 2.9. For simplicity, we suppress the time variable t in ω(ξ, t), Ω(ξ, t) and D(ξ, t). By
virtue of (1.2), we see that

|u(x)− u(x+ ξe)| =

∣∣∣∣aω(ξ) + p.v.

∫

Rd

Ψ(ŷ)

|y|d
θ(x+ y)dy − p.v.

∫

Rd

Ψ(ŷ)

|y|d
θ(x+ ξe+ y)dy

∣∣∣∣
≤ |a|ω(ξ) + |I(ξ)|+ |II(ξ)|,

with ŷ = y
|y| ∈ S

d−1, and

(2.30) I(ξ) := p.v.

∫

|y|≤2ξ

Ψ(ŷ)

|y|d
θ(x+ y)dy − p.v.

∫

|y|≤2ξ

Ψ(ŷ)

|y|d
θ(x+ ξe+ y)dy,

and II(ξ) :=

∫

|y|≥2ξ

Ψ(ŷ)

|y|d
θ(x+ y)dy −

∫

|y|≥2ξ

Ψ(ŷ)

|y|d
θ(x+ ξe+ y)dy.

First we note that the estimation of II(ξ) and the proof of (2.29) are classical, and one can refer to
[29, Lemma] or [32, Lemma 3.2] to see that

|II(ξ)| ≤ Cξ

∫ ∞

ξ

ω(η)

η2
dη, and |I(ξ)| ≤ C

∫ ξ

0

ω(η)

η
dη.

Thus for the statements (1)-(3), it suffices to estimate I(ξ) by virtue of D(ξ). Thanks to the zero-
average property of Ψ(ŷ) and the scenario (2.20), we have

I(ξ) =

∫

|y|≤2ξ

Ψ(ŷ)

|y|d
(θ(x+ y)− θ(x))dy −

∫

|y|≤2ξ

Ψ(ŷ)

|y|d
(θ(x+ ξe+ y)− θ(x+ ξe))dy

=

∫

|y|≤2ξ

Ψ(ŷ)

|y|d
(
θ(x+ y)− θ(x+ ξe+ y)− ω(ξ)

)
dy,

where the integral will be understood in the sense of principle value if needed.
(1) If K satisfies (1.8) with m satisfying (A1) and (A3), recalling that D(ξ) defined by (2.19) has the
formula (2.24), and using (2.8)-(2.9), we obtain that for some constant B > 0 chosen later,

I(ξ) +
B

m(ξ−1)
D(ξ) ≤

∫

|y|≤2ξ

(Ψ(ŷ)

|y|d
− c−1

1

B

m(ξ−1)

m(|y|−1)

|y|d

)(
ω(ξ) + θ(x+ ξe+ y)− θ(x+ y)

)
dy
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−

∫

|y|≥2ξ
K(y)

(
ω(ξ) + θ(x+ ξe+ y)− θ(x+ y)

)
dy

≤

∫

|y|≤2ξ

(Ψ(ŷ)

|y|d
− 2−σc−1

1 B
ξα−σ

|y|d+α−σ

)(
ω(ξ) + θ(x+ ξe+ y)− θ(x+ y)

)
dy

≤

∫

|y|≤2ξ

(
2α−σΨ(ŷ)− 2−σc−1

1 B
) ξα−σ

|y|d+α−σ

(
ω(ξ) + θ(x+ ξe+ y)− θ(x+ y)

)
dy,

where in the third line we used |y|α−σm(|y|−1) ≥ (2ξ)α−σm((2ξ)−1) ≥ 2−σξα−σm(ξ−1) for all 0 <
|y| ≤ 2ξ. Thus by choosing B = 2c1

(
maxŷ∈Sd−1 |Ψ(ŷ)|

)
, we get

(2.31) |I(ξ)| ≤ −
B

m(ξ−1)
D(ξ).

(2) If K satisfies (1.4)-(1.5) with m satisfying (A1)-(A2), and we only consider ξ in the range 0 < ξ ≤
c0/2, then due to that K ≥ 0 on all Rd \ {0}, we similarly obtain (2.31).
(3) If K satisfies (1.4) and (1.7) with m satisfying (A1)-(A2), then for the same B as above and for
all 0 < ξ ≤ c0/2,

I(ξ) +
B

m(ξ−1)
D(ξ) ≤

B

m(ξ−1)

∫

|y|≥2ξ
(ω(ξ) + θ(x+ ξe+ y)− θ(x+ y)) (−K(y)) dy

≤
c1B

m(2/c0)

∫

|y|≥c0

(ω(ξ) + θ(x+ ξe+ y)− θ(x+ y))
1

|y|d+α̃
dy.

By arguing as obtaining (2.23), we find that

I(ξ) +
B

m(ξ−1)
D(ξ) ≤ C ′

2ω(ξ).

Therefore, collecting the above estimates leads to the desired results (2.27)-(2.29). �

3. Proof of Proposition 1.3: uniform-in-ǫ eventual Hölder estimate of the
ǫ-regularized solution

3.1. Sketch of the main proof. In this section, we denote θǫ ∈ C([0,∞[;Hs(Rd)), s > 1 + d
2 to be

a smooth solution for the regularized drift-diffusion equation

(3.1) ∂tθ
ǫ + uǫ · ∇θǫ + Lθǫ − ǫ∆θǫ = 0, uǫ = P(θǫ), θǫ|t=0 = θǫ0 = φǫ ∗

(
θ011/ǫ

)
,

where ǫ > 0, θ0 ∈ L∞, 1B1/ǫ
is the indicator function on the ball B1/ǫ, φ ∈ C∞

c (Rd) is a test function

satisfying
∫
Rd φ = 1, and φǫ(x) = ǫ−dφ(ǫ−1x). From the maximus principle (2.13), we immediately get

the uniform L∞-estimate ‖θǫ(t)‖L∞(Rd) ≤ ‖θǫ0‖L∞(Rd) ≤ ‖θ0‖L∞(Rd) for all t ≥ 0.
Our main method is the nonlocal maximum principle. We first introduce a nonnegative function

that for α ∈]0, 1], σ ∈ [0, α[ and β ∈]1− α+ σ, 1[,

(3.2) ω(ξ) =

{
κm(δ−1)δ1−βξβ, for 0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1)dη, for ξ > δ,

with δ > 0, 0 < γ < κ < 1 chosen later.
We show that ω(ξ) is indeed a modulus of continuity (MOC) satisfying the needing properties.

Clearly, ω(0+) = 0, ω′(0+) = κβm(δ−1)δ1−β limξ→0+ ξ
β−1 = ∞, which satisfies the condition (3) in

Proposition 2.7. Observe that for every 0 < ξ < δ,

(3.3) ω′(ξ) = κβm(δ−1)δ1−βξβ−1 > 0, and ω′′(ξ) = −κβ(1− β)m(δ−1)δ1−βξβ−2 < 0,
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and for every ξ > δ (from (1.6)),

(3.4) ω′(ξ) = γm(ξ−1) > 0, and ω′′(ξ) = −γ
m′(ξ−1)

ξ2
≤ −γ(α− σ)

m(ξ−1)

ξ
< 0,

and for ξ = δ,
ω′(δ−) = κβm(δ−1), and ω′(δ+) = γm(δ−1),

thus if γ < κβ, we infer that ω is nondecreasing and concave for all ξ > 0. We also find that

(3.5) the mapping ξ 7→
ω(ξ)

ξβ
for every ξ > 0 is non-increasing.

Indeed, if ξ ∈]0, δ], (3.5) is a direct consequence of (3.2); while if ξ ∈]δ,∞[, we have
(
ω(ξ)
ξβ

)′
=

ξω′(ξ)−βω(ξ)
ξβ+1 , and noticing that by (3.4), β > 1− α+ σ and γ < βκ,

(
ξω′(ξ)− βω(ξ)

)′
= ω′(ξ) + ξω′′(ξ)− βω′(ξ) < (1− β − (α− σ)) γm(ξ−1)m(ξ−1) < 0,

and
δω′(δ+) − βω(δ) = γm(δ−1)δ − βκm(δ−1)δ < 0,

we deduce that d
dξ (

ω(ξ)
ξβ

) < 0, which implies (3.5) in the range ξ ∈]δ,∞[.

Now we give the following key lemma concerned with the uniform-in-ǫ preservation of the Hölder
regularity by using the modulus of continuity (3.2).

Lemma 3.1. There exist two constants γ and κ (cf. (3.33)) independent of δ, ǫ such that

(3.6) if for some time T0 ≥ 0, θǫ(T0) uniformly-in-ǫ strictly obeys MOC ω(ξ),

then for any t > T0, θ
ǫ(t) also strictly obeys this MOC ω(ξ), which further implies the β-Hölder

regularity of θǫ(t) for t > T0.

The proof of Lemma 3.1 is placed in Subsection 3.2. We only note that under the uniform-in-ǫ
preservation of MOC ω(ξ) by θǫ(t) for all t ∈ [T0,∞[, we deduce from (3.5) that

(3.7) sup
t∈[T0,∞[

‖θǫ(t)‖Ċβ = sup
t∈[T0,∞[

sup
x 6=y∈Rd

|θǫ(x, t)− θǫ(y, t)|

|x− y|β
≤ sup

x 6=y∈Rd

ω(|x− y|)

|x− y|β
≤ κm(δ−1)δ1−β .

Next our goal is to justify the condition (3.6) at some time T0 > 0. We consider the following family
of moduli of continuity that for ξ0 > δ,
(3.8)

ω(ξ, ξ0) =





(1− β)κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )(ξ0 − δ) + βκm(δ−1)ξ, for 0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )ξ0 + γm(ξ−1
0 )ξ, for δ < ξ ≤ ξ0,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1)dη, for ξ > ξ0,

and for ξ0 ≤ δ,

(3.9) ω(ξ, ξ0) =





(1− β)κm(δ−1)δ1−βξβ0 + βκm(δ−1)δ1−βξβ−1
0 ξ, for 0 ≤ ξ < ξ0,

κm(δ−1)δ1−βξβ, for ξ0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1) dη, for ξ > δ,

where β ∈]1−α+σ, 1[, and κ, γ, δ are positive constants chosen later. Note that for ξ0 = 0+, ω(ξ, 0+)
just reduces to the MOC ω(ξ) given by (3.2). Motivated by [26], the basic idea of constructing ω(ξ, ξ0)
is through taking a tangent line at ξ = ξ0 to ω(ξ) given by (3.2) and replacing ω(ξ) with this tangent
line at the range 0 ≤ ξ ≤ ξ0. But since the one-sided derivatives of ω(ξ) at the point ξ = δ do
not coincide, thus in order to control ∂ξ0ω(ξ, ξ0) at the point ξ0 = δ, we make a modification in the
case ξ0 > δ, that is, the tangent line mentioned above at the range δ ≤ ξ ≤ ξ0 is still adopted,
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but at the range 0 ≤ ξ ≤ δ it is replaced by a straight line crossing ω(δ+, ξ0) with the larger slope
ω′(δ−) = βκm(δ−1).

Clearly, for all ξ0 > 0, ω(0+, ξ0) > 0, which guarantees the condition (3) in Proposition 2.7.
Similarly as ω(ξ) defined by (3.2), ω(ξ, ξ0) is also a increasing and concave function for all ξ > 0 and
ξ0 > 0. For ξ0 = A0 > δ, by virtue of (2.9), we get

ω(0+, A0) = (1− β)κm(δ−1)δ + γ

∫ A0

δ
m(η−1)dη − γm(A−1

0 )(A0 − δ)

≥ (1− β)κm(δ−1)δ + γ m(A−1
0 )Aα−σ

0

∫ A0

δ
η−(α−σ)dη − γm(A−1

0 )A0

≥ (1− β)κm(δ−1)δ +
γ

1− α+ σ
m(A−1

0 )Aα−σ
0

(
A1−α+σ

0 − δ1−α−σ
)
− γm(A−1

0 )A0

≥
(
(1− β)κ− γ

)
m(δ−1)δ +

(α− σ)γ

1− α+ σ
m(A−1

0 )Aα−σ
0

(
A1−α+σ

0 − δ1−α+σ
)
.(3.10)

In view of γ < (1−β)κ, we have that the initial data θǫ0 uniformly-in-ǫ strictly obeys the MOC ω(ξ,A0)
provided that

(3.11)
(α− σ) γ

1− α+ σ
m(A−1

0 )Aα−σ
0

(
A1−α+σ

0 − δ1−α+σ
)
≥ 2‖θ0‖L∞ .

We next state the following crucial lemma.

Lemma 3.2. Suppose that Case (I) is considered, and the initial data θǫ0 uniformly-in-ǫ strictly obeys
the MOC ω(ξ,A0) given by (3.8). For ρ > 0, let ξ0 = ξ0(t) be a function satisfying

(3.12)
d

dt
ξ0 = −ρm(ξ−1

0 )ξ0, ξ0(0) = A0.

Then for some positive constants δ, κ, γ, ρ small enough, the solution θǫ(x, t) of the regularized
drift-diffusion equation (3.1) strictly obeys the MOC ω(ξ, ξ0(t)) for all t such that ξ0(t) > 0.

Now with Lemma 3.2 at our disposal, whose proof is postponed in Subsection 3.2, we can conclude
Proposition 1.3 as follows. Thanks to (3.12), and by integrating on the time variable over [0, t], we get

ρt =

∫ A0

ξ0(t)

1

m(ξ−1
0 )ξ0

dξ0 ≤
1

Aα−σ
0 m(A−1

0 )

∫ A0

ξ0(t)

1

ξ1−α+σ
0

dξ0

=
1

Aα−σ
0 m(A−1

0 )

1

α− σ

(
Aα−σ

0 − ξ0(t)
α−σ

)
,

which yields that

(3.13) ξ0(t) ≤ A0

(
1−m(A−1

0 )(α− σ)ρ t
) 1

α−σ .

Thus there exists a time t1 satisfying

(3.14) t1 ≤
1

(α− σ)ρm(A−1
0 )

,

so that ξ0(t1) ≡ 0 and also θǫ(x, t1) obeys the MOC ω(ξ, 0+) = ω(ξ) with ω(ξ) given by (3.2).
Moreover, we claim that

(3.15) θǫ(x, t1) uniformly-in-ǫ strictly obeys the MOC ω(ξ) with ω(ξ) given by (3.2).

Indeed, the proof is in the spirit of that of Proposition 2.7; denoting by F ǫ(x, y, t1) =
|θǫ(x,t1)−θǫ(y,t1)|

ω(|x−y|)

for every x 6= y ∈ R
d, and according to [33, Proposition 3.1], we find that there exist positive constants

C, c depending on t1 so that F
ǫ(x, y, t1) < 1 for every (x, y) /∈ K, with K := {(x, y) ∈ R

d×R
d : |x|, |y| ≤

C, |x − y| ≥ c}, while for the continuous function F ǫ(x, y, t1) on the compact set K, the maximum
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can be achieved by some pair (x, y) on K: if the maximum is just strictly less than 1, the claim
(3.15) is followed; otherwise, there do exist some points (x, y) ∈ K so that F ǫ(x, y, t1) = 1, and by
writing y = x + ξe with ξ > 0 and e ∈ S

d−1, it yields that the scenario (2.20) holds with t = t1 and
ω(ξ, t1) = ω(ξ); but then from ξ0(t1) = 0, (3.68) below and (2.18)-(2.19),

(3.16)
d

dt

(
θǫ(x, t)− θǫ(x+ ξe, t)

ω(ξ, ξ0(t))

) ∣∣∣∣
t=t1

=
Ω(ξ, t1)ω

′(ξ) +D(ξ, t1) + 2ǫω′′(ξ)

ω(ξ)
,

and by arguing as (3.21) below we can show that the right-hand side of (3.16) is strictly less than 0
(for κ, γ in ω(ξ) satisfying (3.33)), which clearly leads to a contradiction; hence we justify the assertion
(3.15).

Then the condition (3.6) with T0 = t1 is satisfied, and Lemma 3.1 ensures that such a MOC ω(ξ)
given by (3.2) is strictly preserved by the solution θǫ(x, t) for all t ≥ t1, which leads to

(3.17) sup
t∈[t1,∞[

‖θǫ(t)‖Ċβ(Rd) ≤ κm(δ−1)δ1−β ,

with some fixed δ > 0 satisfying (3.11), and thus we finish the proof of (1.25).
In particular, if α ∈]0, 1[ and σ = 0 in the condition (1.9), then (3.11), (3.14) and (3.17) reduce to





αγ
1−α

(
A1−α

0 − δ1−α
)
≥ 2‖θ0‖L∞ ,

t1 ≤ Aα
0 /(αρ),

supt∈[t1,∞[ ‖θ
ǫ(t)‖Ċβ(Rd) ≤ κδ1−α−β ,

where κ, γ, ρ are fixed positive constants satisfying (3.76) below, that is, we can choose

(3.18) ρ =
1− β

Cα
, κ =

1

C
(1− β)2, γ =

1

C
min

{
(1− β)3α, β(1 − β)2

}
,

with some C = C(d) > 0. By choosing

A0 =

(
4(1− α)

αγ
‖θ0‖L∞

) 1
1−α

, δ =

(
(1− α)

αγ
‖θ0‖L∞

) 1
1−α

,

we see that

(3.19) t1 ≤
C

1− β

(
4(1 − α)

αγ

) α
1−α

‖θ0‖
α

1−α

L∞ ,

and for every β ∈]1− α, 1[, we have

(3.20) sup
t∈[t1,∞[

‖θǫ(t)‖Ċβ(Rd) ≤
(1− β)2

C

(
1− α

αγ

)−β−1+α
1−α

‖θ0‖
−β−1+α

1−α

L∞ ,

where C > 0 is some constant depending only on d, and thus we conclude Proposition 1.3.

3.2. Proof of Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. According to Proposition 2.7, it suffices to show that for all t > T0 and ξ > 0,

(3.21) Ω(ξ, t)ω′(ξ) +D(ξ, t) + ǫω′′(ξ) < 0,

where Ω(ξ, t), D(ξ, t) are respectively defined by (2.18) and (2.19) under the scenario (2.20) with ω(·)
in place of ω(·, t). By using Lemma 2.8 and Lemma 2.9, we get

D(ξ, t) ≤C1

∫ ξ
2

0
(ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ))

m(η−1)

η
dη

+ C1

∫ ∞

ξ
2

(
ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

)m(η−1)

η
dη,

(3.22)
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and

(3.23) Ω(ξ, t) ≤ −
C2

m(ξ−1)
D(ξ, t) + C2ω(ξ) + C2ξ

∫ ∞

ξ

ω(η)

η2
dη,

where C1 = C1(d), C2 = C2(d) > 0.
In order to prove (3.21), we divide into two cases.
Case 1: 0 < ξ ≤ δ.
In this case, we have ω(ξ) = κm(δ−1)δ1−βξβ, and ω′(ξ) = κβm(δ−1)δ1−βξβ−1, and from (3.5) we

see that

∫ ∞

ξ

ω(η)

η2
dη =

∫ δ

ξ

ω(η)

η2
dη +

∫ ∞

δ

ω(η)

η2
dη = κm(δ−1)δ1−β

∫ δ

ξ
ηβ−2dη +

∫ ∞

δ

ω(η)

ηβ
1

η2−β
dη

≤ κm(δ−1)δ1−β 1

1− β
(ξβ−1 − δβ−1) + κm(δ−1)δ1−β 1

1− β
δβ−1

≤
κ

1− β
m(δ−1)δ1−βξβ−1.

Thus

Ω(ξ, t)ω′(ξ) ≤ −
C2

m(ξ−1)
ω′(ξ)D(ξ, t) +

2C2

1− β

(
κm(δ−1)δ1−β

)2
βξ2β−1.

Observing that for every β > 1− α+ σ and ξ ∈]0, δ],

C2

m(ξ−1)
ω′(ξ) = C2βκ

m(δ−1)δ1−βξβ−1+α−σ

ξα−σm(ξ−1)
≤ C2βκ

m(δ−1)δ1−βδβ−1+α−σ

δα−σm(δ−1)
= C2βκ,

we further get that by letting κ < 1/(2C2β),

(3.24) Ω(ξ, t)ω′(ξ) ≤ −
1

2
D(ξ, t) +

2C2

1− β

(
κm(δ−1)δ1−β

)2
βξ2β−1.

For the contribution from the diffusion term, by virtue of the following estimate

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ) = 4η2
∫ 1

0

∫ 1

−1
λω′′(ξ + 2λτ η) dτdλ

≤ 4η2
∫ 1

0

∫ 0

−1
λω′′(ξ) dτdλ ≤ ω′′(ξ)η2,

(3.25)

and (3.3), (2.9), we directly get

D(ξ, t) ≤ C1

∫ ξ
2

0
(ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ))

m(η−1)

η
dη

≤ C1ω
′′(ξ)

∫ ξ
2

0
ηm(η−1)dη

≤ −C1β(1− β)κm(δ−1)δ1−βξβ−2

∫ ξ
2

0

(
ηα−σm(η−1)

)
η1−α+σdη

≤ −
C1

8
β(1− β)κ

(
m(δ−1)

)2
δ1−β+α−σξβ−α+σ.

(3.26)
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Hence we infer that

Ω(ξ, t)ω′(ξ) +D(ξ, t) ≤

≤
2C2

1− β
β
(
κm(δ−1)δ1−β

)2
ξ2β−1 +

1

2
D(ξ, t)

≤βκ
(
m(δ−1)

)2
δ1−β+α−σξβ−α+σ

(
2C2

1− β
κ

(
ξ

δ

)β−1+α−σ

−
C1(1− β)

16

)

≤βκ
(
m(δ−1)

)2
δ1−β+α−σξβ−α+σ

(
2C2

1− β
κ−

C1(1− β)

16

)
< 0,

(3.27)

where the last inequality is from choosing κ so that κ < C1
32C2

(1− β)2.
Case 2: ξ ≥ δ.
Taking advantage of (3.5), we have

∫ ∞

ξ

ω(η)

η2
dη =

∫ ∞

ξ

ω(η)

ηβ
1

η2−β
dη ≤

ω(ξ)

ξβ

∫ ∞

ξ

1

η2−β
dη ≤

1

1− β

ω(ξ)

ξ
.

Thus from (3.23) and ω′(ξ) = γm(ξ−1) in this case, we obtain that by choosing γ < 1/(2C2),

(3.28) Ω(ξ, t)ω′(ξ) = −γC2D(ξ, t) +
2C2

1− β
γ m(ξ−1)ω(ξ) ≤ −

1

2
D(ξ, t) +

2C2

1− β
γ m(ξ−1)ω(ξ).

For D(ξ, t), noticing that ω(2η + ξ)− ω(2η − ξ) ≤ ω(2ξ) < 2ω(ξ), we get

D(ξ, t) ≤ C1

(
ω(2ξ)− 2ω(ξ)

) ∫ ∞

ξ
2

m(η−1)

η
dη

≤ C1 (ω(2ξ)− 2ω(ξ))

(
ξ

2

)α

m

(
2

ξ

)∫ ∞

ξ
2

1

η1+α
dη

≤ C1

(
ω(2ξ)− 2ω(ξ)

)
2−σξαm(ξ−1)

1

α

(
2

ξ

)α

≤
C1

α
(ω(2ξ)− 2ω(ξ))m(ξ−1).(3.29)

Next we claim that for γ small enough, we have

(3.30) ω(2ξ) ≤ max
{
21−α+σ , 3/2

}
ω(ξ), ∀ξ ≥ δ.

Indeed, for ξ = δ, we see that ω(δ) = κm(δ−1)δ and

ω(2δ) = ω(δ) + γ

∫ 2δ

δ
m(η−1)dη ≤ ω(δ) + γδα−σm(δ−1)

∫ 2δ

δ

1

ηα−σ
dη

≤ κm(δ−1)δ + γδα−σm(δ−1)
1

1− α+ σ

(
(2δ)1−α+σ − δ1−α+σ

)

≤ κm(δ−1)δ +
γ

1− α+ σ

(
21−α+σ − 1

)
m(δ−1)δ,

which further yields that for all γ < κ
2 ,

ω(2δ) ≤

{
κm(δ−1)δ + 2γ(21−α+σ − 1)m(δ−1)δ, if α− σ ≤ 1/2,

κm(δ−1)δ + γ
(
supx∈]0,1/2]

2x−1
x

)
m(δ−1)δ, if α− σ > 1/2,

≤ max
{
21−α+σ, 3/2

}
ω(δ),



20 CHANGXING MIAO AND LIUTANG XUE

where we have used supx∈]0,1/2]
2x−1
x ≤ max

{
limx→0+

2x−1
x , 2

1/2−1
1/2

}
≤ 1. Whereas for ξ ∈]δ,∞[,

considering an auxiliary function

h(ξ) := ω(2ξ)−max{21−α+σ , 3/2}ω(ξ),

and noting that

h′(ξ) ≤ 2ω′(2ξ)− 21−α+σω′(ξ) = 2m((2ξ)−1)− 21−α+σm(ξ−1) ≤ 0,

we deduce h(ξ) ≤ h(δ) ≤ 0 for all ξ ≥ δ, which implies (3.30). Hence plugging (3.30) into (3.29) yields

D(ξ, t) ≤ −
C1

α

(
2−max

{
21−α+σ , 3/2

})
m(ξ−1)ω(ξ)

≤ −
C1

2α
(1− 2−α+σ)m(ξ−1)ω(ξ) ≤ −

C1c̃

4α
(α− σ)m(ξ−1)ω(ξ),

(3.31)

with c̃ := infx∈]0,1]
{
2x−1
x

}
> 0.

Collecting the above estimates yields that for all ξ ≥ δ,

(3.32) Ω(ξ, t)ω′(ξ) +D(ξ, t) ≤

(
2C2

1− β
γ −

C1c̃(α− σ)

4α

)
m(ξ−1)ω(ξ) < 0,

where the last inequality is ensured as long as γ is satisfying γ < C1c̃(1−β)(α−σ)
8C2α

.

Therefore, thanks to (3.27) and (3.32), we prove (3.7) for every β ∈]1−α+σ, 1[ with each α ∈]0, 1]
and σ ∈ [0, α[, where δ > 0, and κ, γ are some fixed positive constants satisfying

(3.33) κ < min

{
1

2C2β
,
C1(1− β)2

32C2

}
, γ < min

{
βκ,

κ

2
,

1

2C2
,
C1c̃(1− β)(α− σ)

8C2α

}
.

Thus we finish the proof of Lemma 3.1. �

Next we show Lemma 3.2.

Proof of Lemma 3.2. According to Proposition 2.7, it suffices to prove that for all t > 0 and ξ > 0,

(3.34) − ∂ξ0ω(ξ, ξ0)ξ̇0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) + ǫ∂ξξω(ξ, ξ0) < 0,

where ω(ξ, ξ0) is given by (3.8)-(3.9) and

D(ξ, t) ≤C1

∫ ξ
2

0
(ω(ξ + 2η, ξ0) + ω(ξ − 2η, ξ0)− 2ω(ξ, ξ0))

m(η−1)

η
dη

+ C1

∫ ∞

ξ
2

(
ω(2η + ξ, ξ0)− ω(2η − ξ, ξ0)− 2ω(ξ, ξ0)

)m(η−1)

η
dη,

(3.35)

and

(3.36) Ω(ξ, t) ≤ −
C2

m(ξ−1)
D(ξ, t) + C2ω(ξ, ξ0) + C2ξ

∫ ∞

ξ

ω(η, ξ0)

η2
dη.

In (3.34), if ∂ξ0ω(ξ, ξ0) or ∂ξω(ξ, ξ0) does not exist, the larger value of the one-sided derivative should
be taken.

We divide into several cases to get (3.34), owing to the values of ξ0 and ξ.
Case 1: ξ0 > δ, 0 < ξ ≤ δ.

From ω(ξ, ξ0) = (1− β)κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )(ξ0 − δ) + βκm(δ−1)ξ, we have

∂ξ0ω(ξ, ξ0) = γξ−2
0 m′(ξ−1

0 ) (ξ0 − δ) ≤ γαm(ξ−1
0 ), and ∂ξω(ξ, ξ0) = βκm(δ−1),(3.37)

and

ω(ξ, ξ0) ≥ ω(0+, ξ0) = (1− β)κm(δ−1)δ + γ

∫ ξ0

δ
m(η−1)dη − γm(ξ−1

0 )(ξ0 − δ)
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≥ (1− β)κm(δ−1)δ + γξα−σ
0 m(ξ−1

0 )

∫ ξ0

δ

1

ηα−σ
dη − γm(ξ−1

0 )(ξ0 − δ)

= (1− β)κm(δ−1)δ +
γ

1− α+ σ
m(ξ−1

0 )ξα−σ
0

(
ξ1−α+σ
0 − δ1−α+σ

)
− γm(ξ−1

0 ) (ξ0 − δ)

=:Mξ0,δ,(3.38)

and

(3.39) ω(ξ, ξ0)− ω(0+, ξ0) ≤ ω(δ, ξ0)− ω(0+, ξ0) = βκm(δ−1)δ.

Thus by using (3.12) and (3.37), we get

(3.40) − ∂ξ0ω(ξ, ξ0)ξ̇0(t) ≤ ραγ
(
m(ξ−1

0 )
)2
ξ0.

In view of (3.8), we obtain
∫ ∞

ξ

ω(η, ξ0)

η2
dη =

ω(ξ, ξ0)

ξ
+

∫ ∞

ξ

∂ηω(η, ξ0)

η
dη

=
ω(ξ, ξ0)

ξ
+

∫ δ

ξ

κβm(δ−1)

η
dη +

∫ ξ0

δ

γm(ξ−1
0 )

η
dη +

∫ ∞

ξ0

γm(η−1)

η
dη

≤
ω(ξ, ξ0)

ξ
+ κβm(δ−1)

(
log

δ

ξ

)
+ γm(ξ−1

0 )

(
log

ξ0
δ

)
+ γξα−σ

0 m(ξ−1
0 )

∫ ∞

ξ0

1

η1−α+σ
dη

≤
ω(ξ, ξ0)

ξ
+ κβm(δ−1)

(
log

δ

ξ

)
+ γm(ξ−1

0 )

(
log

ξ0
δ

)
+

γ

α− σ
m(ξ−1

0 ).(3.41)

Thus by using (3.36), (3.39) and (3.41), we find that for κ ≤ 1
4C2β

,

Ω(ξ, t)∂ξω(ξ, ξ0)

≤− C2βκD(ξ, t) + C2βκm(δ−1)

(
2ω(ξ, ξ0) + κβm(δ−1)ξ

(
log

δ

ξ

)
+ γm(ξ−1

0 )ξ

(
log

ξ0
δ

+
1

α− σ

))

≤− C2βκD(ξ, t) + C2βκm(δ−1)

(
2ω(0+, ξ0) + (C0 + 2)κβm(δ−1)δ + γm(ξ−1

0 )ξ0

(
C0 +

1

α− σ

))

≤−
1

4
D(ξ, t) + C2 (C0 + 2) β2κ2

(
m(δ−1)

)2
δ +

C2β(C0 + 1)κγ

α− σ
m(δ−1)m(ξ−1

0 )ξ0+

+ 2C2βκm(δ−1)ω(0+, ξ0),

(3.42)

where in the third line we also used ξ
δ

(
log δ

ξ

)
≤ C0 and ξ

ξ0
log ξ0

δ ≤ C0. For the contribution from the

diffusion term, since the function ω(η, ξ0)− ω(0+, ξ0) is still concave, we infer that

D(ξ, t) ≤− 2C1ω(0+, ξ0)

∫ ∞

ξ
2

m(η−1)

η
dη

≤− 2C1ω(0+, ξ0)

(
ξ

2

)α

m

(
2

ξ

)∫ ∞

ξ
2

1

η1+α
dη

≤−
2C1

α
ω(0+, ξ0)m(ξ−1),(3.43)

and also by (3.38),

D(ξ, t) ≤ −
2C1

α
Mξ0,δm(ξ−1).(3.44)
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If ξ0 ≥ Nδ with N ∈ N a suitable constant, we see that

1

1− α+ σ

(
ξ1−α+σ
0 − δ1−α+σ

)
≥

1− (1/N)1−α+σ

1− α+ σ
ξ1−α+σ
0 ≥

1

1− α−σ
2

ξ1−α+σ
0 ,

provided that 1− (1/N)1−α+σ ≥ 2(1−α+σ)
2−α+σ , that is, N ≥

(
2−(α−σ)

α−σ

) 1
1−(α−σ)

, thus we may choose

(3.45) N :=
[(2− α+ σ)

α− σ

) 1
1−α+σ

]
+ 1.

Thus for the case ξ0 ≥ Nδ, we get

Mξ0,δ ≥ (1− β)κm(δ−1)δ +

(
1

1− (α− σ)/2
− 1

)
γ m(ξ−1

0 )ξ0

≥ (1− β)κm(δ−1)δ + γ (α− σ)m(ξ0)ξ0.

(3.46)

Inserting the above estimate into (3.44) leads to

D(ξ, t) ≤ −
2C1(1− β)κ

α
m(δ−1)δ m(ξ−1)−

2C1(α− σ) γ

α
m(ξ−1

0 )ξ0m(ξ−1).(3.47)

Hence for ξ0 ≥ Nδ with N satisfying (3.45), by (3.43) and setting κ ≤ C1
4C2βα

so that

(3.48) 2C2βκm(δ−1)ω(0+, ξ0) ≤
C1

2α
m(ξ−1)ω(0+, ξ0) ≤ −

1

4
D(ξ, t),

and by collecting (3.40), (3.42) and (3.47), we deduce that

L.H.S. of (3.34) ≤κm(δ−1)δ m(ξ−1)
(
C2 (C0 + 2) β2κ−

C1(1− β)

α

)
+

+ γm(ξ−1
0 )ξ0m(ξ−1)

(
ρα+

C2β(C0 + 1)

α− σ
κ−

C1(α− σ)

α

)
< 0,

where L.H.S. denotes left-hand side and the last inequality is guaranteed as long as ρ, κ satisfy

(3.49) ρ <
C1(α− σ)

2α2
, κ < min

{
1

4C2β
,

C1

4C2βα
,

C1(α− σ)2

2C2 (C0 + 1) βα
,

C1(1− β)

C2(C0 + 2)β2α

}
.

If ξ0 ≤ Nδ with N satisfying (3.45), thanks to the fact

(3.50) m(ξ−1
0 )ξ0 ≤ m

(
(Nδ)−1

)
Nδ ≤ N1−α+σm(δ−1)δ ≤

4

α− σ
m(δ−1)δ,

and using (3.48) again, the positive contribution which is treated by (3.40) and (3.42) can further be
bounded by

− ∂ξ0ω(ξ, ξ0)ξ̇0 +Ω(ξ, t)∂ξω(ξ, ξ0)

≤ −
1

2
D(ξ, t) + κ

(
m(δ−1)

)2
δ

(
4ρα

α− σ

γ

κ
+ C2 (C0 + 2) β2κ+

4C2(C0 + 1)β

(α− σ)2
γ

)
.

For the negative contribution from the diffusion term, from (3.38), (3.44) and (3.50), we directly get

that by letting γ ≤ (1−β)(α−σ)
8 κ,

D(ξ, t) ≤ −
2C1

α
m(ξ−1)

(
(1− β)κm(δ−1)δ − γm(ξ−1

0 )ξ0

)

≤ −
2C1

α

(
(1− β)κ−

4γ

α− σ

) (
m(δ−1)2δ

)
≤ −

C1 (1− β) κ

α

(
m(δ−1)2δ

)
.

(3.51)
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Hence for ξ0 ≤ Nδ, we have

L.H.S. of (3.34) ≤κ
(
m(δ−1)

)2
δ

(
4α

α− σ
ρ+ C2 (C0 + 2) β2κ+

4C2(C0 + 1)β

(α− σ)2
γ −

C1(1− β)

2α

)
< 0,

where the last inequality is ensured if we set

ρ <
C1(1− β)(α− σ)

24α2
, κ < min

{
C1(1− β)

6C2 (C0 + 2) β2α
,

1

4C2β

}
,

γ ≤ min

{
(1− β)(α − σ)

8
κ,
C1(1− β)(α − σ)2

24C2(C0 + 1)βα

}
.

(3.52)

Case 2: ξ0 > δ, δ < ξ ≤ ξ0.

From ω(ξ, ξ0) = κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )ξ0 + γm(ξ−1
0 )ξ in this case, we have

∂ξ0ω(ξ, ξ0) = γm′(ξ−1
0 )ξ−2

0 (ξ0 − ξ) ≤ αγm(ξ−1
0 ), and ∂ξω(ξ, ξ0) = γm(ξ−1

0 ),

and (recalling Mξ0,δ is defined in (3.38))

ω(ξ, ξ0) ≥ ω(δ, ξ0) ≥ κm(δ−1)δ + γξα−σ
0 m(ξ−1

0 )
1

1− α+ σ

(
ξ1−α+σ
0 − δ1−α+σ

)
− γm(ξ−1

0 )(ξ0 − δ)

≥ κm(δ−1)δ +
γ

1− α+ σ
m(ξ−1

0 )ξα−σ
0 (ξ1−α+σ

0 − δ1−α+σ)− γm(ξ−1
0 )(ξ0 − δ)

=Mξ0,δ + βκm(δ−1)δ,

and

(3.53) ω(ξ, ξ0)− ω(0+, ξ0) ≤ ω(ξ0, ξ0)− ω(0+, ξ0) = γm(ξ−1
0 )(ξ0 − δ) + βκm(δ−1)δ.

Thus by using (3.12), we get

(3.54) − ∂ξ0ω(ξ, ξ0)ξ̇0(t) ≤ αργ
(
m(ξ−1

0 )
)2
ξ0.

From the following estimate
∫ ∞

ξ

ω(η, ξ0)

η2
dη =

ω(ξ, ξ0)

ξ
+

∫ ξ0

ξ

γm(ξ−1
0 )

η
dη +

∫ ∞

ξ0

γm(η−1)

η
dη

≤
ω(ξ, ξ0)

ξ
+ γm(ξ−1

0 )

(
log

ξ0
ξ

)
+ γξα−σ

0 m(ξ−1
0 )

∫ ∞

ξ0

1

η1−α+σ
dη

=
ω(ξ, ξ0)

ξ
+ γm(ξ−1

0 )

(
log

ξ0
ξ

)
+

γ

α− σ
m(ξ−1

0 ),

and similarly as obtaining (3.42), we find that for γ ≤ 1
4C2

,

Ω(ξ, t)∂ξω(ξ, ξ0)

≤− C2γD(ξ, t) + 2C2γω(ξ, ξ0)m(ξ−1
0 ) + C2

(
γm(ξ−1

0 )
)2
(
ξ log

ξ0
ξ

+
ξ

α− σ

)(3.55)

≤−
1

4
D(ξ, t) +

C2(C0 + 3)

α− σ

(
γm(ξ−1

0 )
)2
ξ0 + 2C2βγκm(δ−1)δ m(ξ−1

0 ) + 2C2γm(ξ−1
0 )ω(0+, ξ0),

where C0 > 0 is the constant such that ξ
ξ0

log ξ0
δ ≤ C0.

For the contribution from the diffusion term, we also have (3.43) and (3.44).
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If ξ0 ≥ Nδ with N ∈ N defined by (3.45), by using (3.46) and setting γ < C1
4C2α

, we deduce that

L.H.S. of (3.34) ≤ κm(δ−1)δ m(ξ−1)

(
2C2βγ −

C1(1− β)

α

)
+

+ γm(ξ−1
0 )ξ0m(ξ−1)

(
ρα+

C2(C0 + 3)

α− σ
γ −

C1(α− σ)

α

)
< 0,

where the last inequality is guaranteed as long as

(3.56) ρ <
C1(α− σ)

2α2
, γ < min

{
1

4C2
,
C1

4C2α
,
C1(1− β)

2C2βα
,
C1(α− σ)2

2C2(C0 + 3)α

}
.

If ξ0 ≤ Nδ with N satisfying (3.45), by applying (3.50) and setting γ < C1
4C2α

, the positive contribution

treated by (3.54) and (3.55) can further be bounded as

− ∂ξ0ω(ξ, ξ0)ξ̇0(t) + Ω(ξ, t)∂ξω(ξ, ξ0)

≤ −
1

2
D(ξ, t) +

4γ

α− σ
m(δ−1)δ m(ξ−1

0 )
(
ρα+

C2(C0 + 3)

α− σ
γ
)
.

For the negative contribution from the diffusion term, by arguing as (3.51) we obtain that for γ ≤
(1−β)(α−σ)

8 κ,

D(ξ, t) ≤ −
2C1

α
m(ξ−1)

(
(1− β)κm(δ−1)δ −

4γ

α− σ
m(δ−1)δ

)

≤ −
2C1

α

4 γ

α− σ
m(ξ−1)m(δ−1)δ.

Hence for ξ0 ≤ Nδ with N given by (3.45), we have

L.H.S. of (3.34) ≤
4γ

α− σ
m(δ−1)δ m(ξ−1)

(
ρα+

C2(C0 + 3)

α− σ
γ −

C1

α

)
< 0,

where the last inequality is guaranteed if we set

ρ <
C1(α− σ)

2α2
, γ ≤ min

{
(1− β)(α− σ)

8
κ,

1

4C2
,

C1(α− σ)

2C2(C0 + 3)α

}
.(3.57)

Case 3: ξ0 > δ, ξ > ξ0.

In this case, from ω(ξ, ξ0) = κm(δ−1)δ + γ
∫ ξ
δ m(η−1)dη, we see that ∂ξ0ω(ξ, ξ0) = 0, ∂ξω(ξ, ξ0) =

γm(ξ−1), and
∫ ∞

ξ

ω(η, ξ0)

η2
dη =

ω(ξ, ξ0)

ξ
+

∫ ∞

ξ

γm(η−1)

η
dη

≤
ω(ξ, ξ0)

ξ
+ γξα−σm(ξ−1)

∫ ∞

ξ

1

η1+α−σ
dη ≤

ω(ξ, ξ0)

ξ
+

γ

α− σ
m(ξ−1).

Thus in light of (3.36), we get

(3.58) Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −C2γD(ξ, t) + C2

(
2ω(ξ, ξ0) +

γ

α− σ
ξm(ξ−1)

)
γm(ξ−1).

For the contribution from the diffusion term, since ω(2η+ξ, ξ0)−ω(2η−ξ, ξ0) ≤ ω(2ξ, ξ0) < 2ω(ξ, ξ0),
by estimating as (3.43) we obtain

(3.59) D(x, t) ≤ C1 (ω(2ξ, ξ0)− 2ω(ξ, ξ0))

∫ ∞

ξ
2

m(η−1)

η
dη ≤

C1

α
(ω(2ξ, ξ0)− 2ω(ξ, ξ0))m(ξ−1).
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Observing that

ω(2ξ, ξ0)− ω(ξ, ξ0) = γ

∫ 2ξ

ξ
m(η−1)dη ≤ γξα−σm(ξ−1)

∫ 2ξ

ξ

1

ηα−σ
dη ≤

21−α+σ − 1

1− α+ σ
γ m(ξ−1)ξ,

and

ω(ξ, ξ0) ≥ γ

∫ ξ

δ
m(η−1)dη ≥ γξα−σm(ξ−1)

∫ ξ

δ

1

ηα−σ
dη ≥ γξα−σm(ξ−1)

ξ1−α+σ − δ1−α+σ

1− α+ σ
,

thus if ξ satisfies that ξ ≥ δ
(

1
2α−σ−1

) 1
1−α+σ

, equivalently, ξ1−α+σ − δ1−α+σ ≥ (2− 2α−σ) ξ1−α+σ, we

find

(3.60) ω(ξ, ξ0) ≥
2− 2α−σ

1− α+ σ
γm(ξ−1)ξ = 2α−σ 2

1−α+σ − 1

1− α+ σ
γm(ξ−1)ξ ≥ c̃γ m(ξ−1)ξ,

and

ω(2ξ, ξ0)− ω(ξ, ξ0) ≤
21−α+σ − 1

2− 2α−σ
ω(ξ, ξ0) = 2−α+σω(ξ, ξ0),

and

(3.61) ω(2ξ, ξ0)− 2ω(ξ, ξ0) ≤ −
(
1− 2−α+σ

)
ω(ξ, ξ0) ≤ −

c̃(α− σ)

2
ω(ξ, ξ0),

with c̃ := infx∈]0,1]
{
2x−1
x

}
> 0. Hence if ξ ≥ δ

(
1

2α−σ−1

) 1
1−α+σ

, and by gathering the above estimates

and setting γ ≤ 1
2C2

, we deduce that

Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −
1

2
D(ξ, t) +

3C2

c̃(α − σ)
γ ω(ξ, ξ0)m(ξ−1),

and

D(ξ, t) ≤ −
C1c̃(α− σ)

2α
ω(ξ, ξ0)m(ξ−1),

and

Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) ≤
( 3C2

c̃(α− σ)
γ −

C1c̃(α− σ)

2α

)
ω(ξ, ξ0)m(ξ−1) < 0,

where the last inequality is ensured if we set

(3.62) γ < min

{
1

2C2
,
C1c̃

2(α− σ)2

6C2α

}
.

On the other hand, if ξ satisfies that ξ ≤ δ
(

1
2α−σ−1

) 1
1−α+σ

, since ω(ξ, ξ0)−ω(0+, ξ0) is concave and

ω(0+, ξ0) ≥ (1− β)κm(δ−1)δ, we get

(3.63) D(ξ, t) ≤ −2ω(0+, ξ0)

∫ ∞

ξ
2

m(η−1)

η
dη ≤ −

2(1 − β)κ

α
δm(δ−1)m(ξ−1),

and by using ξ1−α+σ − δ1−α+σ ≤ δ1−α+σ 2−2α−σ

2α−σ−1 , we also infer that

m(ξ−1)ξ ≤ δα−σm(δ−1)ξ1−α+σ ≤ m(δ−1)δ
1

2α−σ − 1
≤

1

c̃(α− σ)
m(δ−1)δ,
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and

ω(ξ, ξ0) ≤ κm(δ−1)δ + γδα−σm(δ−1)

∫ ξ

δ

1

ηα−σ
dη

≤ κm(δ−1)δ +
γ

1− α+ σ
δα−σm(δ−1)

(
ξ1−α+σ − δ1−α+σ

)

≤

(
κ+

2α−σ(21−α+σ − 1)

1− α+ σ

1

2α−σ − 1
γ

)
m(δ−1)δ ≤

(
κ+

2γ

c̃(α− σ)

)
m(δ−1)δ,

(3.64)

where c̃ := infx∈]0,1]
{
2x−1
x

}
> 0 and we also used supx∈]0,1]

2x−1
x ≤ 1. Hence if ξ ≤ δ

(
1

2α−σ−1

) 1
1−α+σ

,

by collecting the above results and letting γ ≤ min
{

1
2C2

, κ
}
, we obtain

Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −
1

2
D(ξ, t) +

(
2γ +

4γ

c̃(α− σ)
+

2γ

c̃(α− σ)2

)
κδm(δ−1)m(ξ−1),

and thus

Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) ≤

(
8γ

c̃(α − σ)2
−

1− β

α

)
κδm(δ−1)m(ξ−1),

where the last inequality is ensured by setting

(3.65) γ < min

{
c̃(1− β)(α − σ)2

8α
,

1

2C2
, κ

}
.

Case 4: 0 < ξ0 ≤ δ, 0 < ξ < ξ0.

In this case ω(ξ, ξ0) = (1− β)κm(δ−1)δ1−βξβ0 + βκm(δ−1)δ1−βξβ−1
0 ξ, and thus

∂ξ0ω(ξ, ξ0) = β(1 − β)κm(δ−1)

(
δ

ξ0

)1−β (
1−

ξ

ξ0

)
, and ∂ξω(ξ, ξ0) = βκm(δ−1)

(
δ

ξ0

)1−β

,

and

ω(ξ, ξ0) ≥ ω(0+, ξ0) ≥ (1− β)κm(δ−1)δ1−βξβ0 ,

ω(ξ, ξ0) ≤ ω(δ, ξ0) ≤ κm(δ−1)δ1−βξβ0 .
(3.66)

Taking advantage of the following estimates

(3.67) m(δ−1) ≤

(
ξ

δ

)α−σ

m(ξ−1), and m(ξ−1
0 ) ≤

(
ξ

ξ0

)α−σ

m(ξ−1),

we deduce

−∂ξ0ω(ξ, ξ0)ξ̇0(t) ≤ ρβ(1− β)κm(δ−1)

(
δ

ξ0

)1−β

(ξ0 − ξ)m(ξ−1
0 )

≤ ρβ(1− β)κm(δ−1)

(
δ

ξ0

)1−β

ξ0

(
ξ

ξ0

)α−σ

m(ξ−1)

≤ ρβ(1− β)κm(δ−1)ξ0

(
δ

ξ0

)1+α−σ−β (ξ
δ

)α−σ

m(ξ−1)

≤ ρβ(1− β)κm(δ−1)ξ0m(ξ−1),(3.68)

and

−
C2

m(ξ−1)
D(ξ, t)∂ξω(ξ, ξ0) ≤ −C2βκ

(
δ

ξ0

)1−β−α+σ

D(ξ, t) ≤ −C2βκD(ξ, t).



REGULARITY ISSUES OF THE DRIFT-DIFFUSION EQUATION WITH NONLOCAL DIFFUSION 27

In view of the integration by parts and (3.9), we see that
∫ ∞

ξ

ω(η, ξ0)

η2
dη =

ω(ξ, ξ0)

ξ
+

∫ ∞

ξ

∂ηω(η, ξ0)

η
dη

≤
ω(ξ, ξ0)

ξ
+

∫ ξ0

ξ

βκm(δ−1)δ1−βξβ−1
0

η
dη +

∫ ∞

ξ0

βκm(δ−1)δ1−βηβ−1

η
dη

≤
ω(ξ, ξ0)

ξ
+ βκm(δ−1)

(
δ

ξ0

)1−β (
log

ξ0
ξ

)
+

β

1− β
κm(δ−1)

(
δ

ξ0

)1−β

,

then gathering the above estimates and (3.36) leads to that for κ ≤ 1
2C2β

,

Ω(ξ, t)∂ξω(ξ, ξ0) ≤− C2βκD(ξ, t) + 2C2βκm(δ−1)

(
δ

ξ0

)1−β

ω(ξ, ξ0)

+ C2

(
βκm(δ−1)

)2
(
δ

ξ0

)2(1−β)

ξ0

(
ξ

ξ0
log

ξ0
ξ

+
ξ

ξ0

1

1− β

)

≤−
1

2
D(ξ, t) + C2β

(
κm(δ−1)

)2
(
δ

ξ0

)2(1−β)

ξ0

(
2 + C0β +

β

1− β

)
,

(3.69)

where in the third line we used ξ
ξ0

≤ 1 and ξ
ξ0

(
log ξ0

ξ

)
≤ C0. For the contribution from the diffusion

term, by arguing as (3.44), we obtain

D(ξ, t) ≤ −2C1ω(0+, ξ0)

∫ ∞

ξ
2

m(η−1)

η
dη ≤ −

2(1− β)C1

α
κm(δ−1)

(
δ

ξ0

)1−β

ξ0m(ξ−1).(3.70)

Collecting the estimates (3.68), (3.69) and (3.70), and using (3.67) again, we find that

L.H.S. of (3.34)

≤κm(δ−1)

(
δ

ξ0

)1−β

ξ0m(ξ−1)

(
ρβ(1− β) +

C2β(2 +C0β)κ

1− β

(
ξ

ξ0

)α−σ ( δ

ξ0

)1−β−α+σ

−
C1(1− β)

α

)

≤κm(δ−1)

(
δ

ξ0

)1−β

ξ0m(ξ−1)

(
ρβ(1 − β) +

C2β(2 + C0β)κ

1− β
−
C1(1− β)

α

)
,

which leads to the desired inequality (3.34) as long as ρ, κ are such that

(3.71) ρ <
C1

2αβ
, κ < min

{
1

2C2β
,

C1(1− β)2

2C2(2 + C0β)βα

}
.

Case 5: 0 < ξ0 ≤ δ, ξ0 ≤ ξ ≤ δ.
Similarly as obtaining (3.24), we have that by setting κ ≤ 1

2C2
and γ ≤ κ,

(3.72) Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −
1

2
D(ξ, t) +

3C2

1− β
β
(
κm(δ−1)δ1−β

)2
ξ2β−1.

For the contribution from the diffusion term, if ξ0 ≤
ξ
4 , then from ξ − 2η > ξ0 for all η ∈ [0, ξ4 ] and by

arguing as (3.26), we find

D(ξ, t) ≤ C1

∫ ξ
4

0

(
ω(ξ + 2η, ξ0) + ω(ξ − 2η, ξ0)− 2ω(ξ, ξ0)

)m(η−1)

η
dη

≤ C1∂ξξω(ξ, ξ0)

∫ ξ
4

0
ηm(η−1)dη
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≤ −C1β(1− β)κm(δ−1)δ1−βξβ−2

∫ ξ
4

0
ηm(η−1)dη

≤ −C1β(1− β)κ
(
m(δ−1)

)2
δ1+α−σ−βξβ−2

∫ ξ
4

0
η1−α+σdη

≤ −
C1β(1− β)κ

32

(
m(δ−1)

)2
δ1+α−σ−βξβ−α+σ.(3.73)

Thus for ξ0 ≤
ξ
4 , we get that by letting κ < C1(1−β)2

192C2
,

Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) ≤ βκ
(
m(δ−1)

)2
δ1+α−σ−βξβ−α+σ

(
3C2

1− β

(
δ

ξ

)1−α+σ−β

κ−
C1(1− β)

64

)

≤ βκ
(
m(δ−1)

)2
δ1+α−σ−βξβ−α+σ

(
3C2

1− β
κ−

C1(1− β)

64

)
< 0.

Whereas if ξ0 ≥
ξ
4 , by using (3.35), the concavity of ω(η, ξ0)− ω(0+, ξ0) for η ≥ 0 and (3.67), we get

D(ξ, t) ≤ −C12ω(0+, ξ0)

∫ ∞

ξ
2

m(η−1)

η
dη

≤ −
2C1(1− β)κm(δ−1)δ1−βξβ0

α
m(ξ−1)

≤ −
C1(1− β)κm(δ−1)δ1−β

2α
ξβm(ξ−1)

≤ −
C1(1− β)κ

2α

(
m(δ−1)

)2
δ1+α−σ−βξβ−α+σ.

(3.74)

Thus combining this estimate with (3.72) yields that

Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) ≤ κ
(
m(δ−1)

)2
δ1+α−σ−βξβ−α+σ

(
3C2β

1− β
κ−

C1(1− β)

2α

)
< 0,

where the last inequality is ensured by setting κ < C1(1−β)2

6C2β
. Notice that in this case the conditions

on κ and γ are

(3.75) κ < min
{ 1

2C2
,
C1(1− β)2

192C2

}
, γ ≤ κ.

Case 6: 0 < ξ0 ≤ δ, ξ > δ.
This case is almost the same as Case 2 in the proof of Lemma 3.1, and we omit the details. Note

that the conditions on κ, γ are given by (3.33).
Therefore, for the MOC ω(ξ, ξ0) defined by (3.8)-(3.9) and ξ0 = ξ0(t) defined by (3.12) with ρ, κ, γ

are appropriate constants satisfying (3.33), (3.49), (3.52), (3.56), (3.57), (3.62), (3.71), (3.75), we
justify (3.34) for all ξ > 0 and t > 0 based on the above analysis, and thus conclude Lemma 3.2.
Observing that by suppressing the dependence on the constants C1 = C1(d), C2 = C2(d), c̃ and C0,
the conditions on positive constants ρ, κ, γ are as follows

ρ ≤
1

C

(1− β)(α − σ)

α2
, κ ≤

1

C
(1− β)2, γ ≤

1

C
min

{
β(1− β)2, (1 − β)3(α− σ)

}
,(3.76)

with C > 0 some constant independent of α, σ, β.
�
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4. Proof of Theorems 1.1 and 1.2

Consider the following approximate system

(4.1) ∂tθ
ǫ + uǫ · ∇θǫ + Lθǫ − ǫ∆θǫ = 0, uǫ = P(θǫ), θǫ|t=0 = θǫ0 = φǫ ∗ (θ01B1/ǫ

),

where P is composed of zero-order pseudo-differential operators defined by (1.2), 1B1/ǫ
is the indicator

function on the ball B1/ǫ, φǫ(x) = ǫ−dφ(ǫ−1x), and φ ∈ C∞
c (Rd) is a radial test function satisfying∫

Rd φ = 1.

4.1. Proof of Theorem 1.1: eventual regularity of vanishing viscosity solution. From θ0 ∈
L2(Rd), we have ‖θǫ0‖L2 ≤ ‖θ0‖L2 , and ‖θǫ0‖Hs .ǫ,s ‖θ0‖L2 for every s > 0. For ǫ > 0 and s > d/2 + 1,
we have the following lemma concerning the global well-posedness for the approximate system (4.1).

Lemma 4.1. For every ǫ > 0, the Cauchy problem of the approximate drift-diffusion equation (4.1)
admits a uniquely global smooth solution θǫ(x, t) such that

θǫ ∈ C([0,∞[;Hs(Rd)) ∩ C∞(]0,∞[×R
d), with s > d/2 + 1.

The proof of this lemma is more or less standard, and one can refer to [30, Theorem 1.4] (at α = 2
case) for the use of the nonlocal maximum principle method, and we omit the details here.

Since uǫ is divergence-free, we can also show the uniform-in-ǫ energy estimate. By taking the
L2-inner product of the equation (4.1) with θǫ, and using the integration by parts, we have

(4.2)
1

2

d

dt
‖θǫ(t)‖2L2 +

∫

Rd

L(θǫ)(x, t) θǫ(x, t)dx+ ǫ‖∇θǫ(t)‖2L2 = 0.

Since the symbol of L satisfies A(ζ) ≥ 0 from (1.13) and (1.8)-(1.9), we see that

(4.3)

∫

Rd

(Lθǫ)(x, t) θǫ(x, t)dx =

∫

Rd

A(ζ)|θ̂ǫ(ζ, t)|2dζ ≥ 0.

Inserting (4.3) into (4.2) leads to d
dt‖θ

ǫ(t)‖2L2 ≤ 0, which by integrating in time implies

(4.4) ‖θǫ(t)‖L2 ≤ ‖θǫ0‖L2 ≤ ‖θ0‖L2 , ∀t ≥ 0.

By applying Lemma 2.3, we also obtain∫

Rd

(Lθǫ)(x, t) θǫ(x, t)dx ≥ C−1

∫

Rd

|ζ|α−σ|θ̂ǫ(ζ, t)|2dζ −C

∫

Rd

|θ̂ǫ(ζ, t)|2dζ

≥ C−1‖θǫ‖2
Ḣ

α−σ
2

− C‖θǫ‖2L2 .
(4.5)

Plugging this estimate into (4.2), and using (4.4), we find

d

dt
‖θǫ(t)‖2L2 +

2

C
‖θǫ(t)‖2

Ḣ
α−σ
2

≤ 2C‖θ0‖
2
L2 ,

which ensures that for every T > 0,

(4.6) sup
t∈[0,T ]

‖θǫ(t)‖2L2 +
2

C

∫ T

0
‖θǫ(t)‖2

Ḣ
α−σ
2

dt ≤ (1 + 2CT )‖θ0‖
2
L2 .

Next based on the uniform L2 estimate, we can use the De Giorgi’s method to show the L∞-
improvement, that is, for any fixed t0 > 0 and every T ≥ t0, there is a constant C∗ > 0 independent
of ǫ and T so that

(4.7) sup
t∈[t0,T ]

‖θǫ(t)‖L∞
x

≤ C∗

(
1

t0
+C

) d
2(α−σ)

(1 + 2CT )
1
2‖θ0‖L2 ,

with C > 0 the constant appearing in (4.6). The proof is similar to that of [4, Corollary 4] or [13,
Theorem 2.1], and here we sketch the main process in obtaining (4.7). Since the operator L defined
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by (1.3) has nonnegative kernel K, by arguing as obtaining a corresponding inequality for fractional
Laplacian operator in [14], we have that for every convex function ψ, ψ′(θǫ)L(θǫ) ≥ L(ψ(θǫ)). We
also find for every convex ψ, −ψ′(θǫ)∆θǫ ≥ −∆(ψ(θǫ)). For M > 0 chosen later (cf. (4.12)), applying
the above two inequalities with

(4.8) ψ(θǫ) = (θǫ −Mk)+ =: θǫk, Mk :=M(1− 2−k), k ∈ N,

we obtain the following pointwise inequality from (4.1),

(4.9) ∂tθ
ǫ
k + uǫ · ∇θǫk + Lθǫk − ǫ∆θǫk ≤ 0.

As deriving the energy estimate, we use (4.5) to get

(4.10)
1

2

d

dt
‖θǫk(t)‖

2
L2 + C−1‖θǫk(t)‖

2

Ḣ
α−σ
2

+ ǫ‖∇θǫk(t)‖
2
L2 ≤ C‖θǫk(t)‖

2
L2 .

Then for a fixed constant t0 > 0 and every T ≥ t0, we denote Tk := t0(1− 2−k), k ∈ N, and the level
set of energy as

U ǫ
k := sup

t∈[Tk ,T ]
‖θǫk(t)‖

2
L2 +

2

C

∫ T

T k

‖θǫk(t)‖
2

Ḣ
α−σ
2

dt.

For some s ∈ [Tk−1, Tk], we integrating (4.10) in time between s and t ∈ [Tk, T ], and also between s
and T to find

‖θǫk(t)‖
2
L2 ≤ ‖θǫk(s)‖

2
L2 + 2C

∫ t

s
‖θǫk(t)‖

2
L2dt, and

2

C

∫ T

s
‖θǫk(t)‖

2

Ḣ
α−σ
2

dt ≤ ‖θǫk(s)‖
2
L2 + 2C

∫ T

s
‖θǫk(t)‖

2
L2dt,

which implies U ǫ
k ≤ 2‖θǫk(s)‖

2
L2 + 4C

∫ T
s ‖θǫk(t)‖

2

Ḣ
α−σ
2

dt. Taking the mean in s on [Tk−1, Tk], we infer

(4.11) U ǫ
k ≤

(
2k+1

t0
+ 4C

)∫ T

Tk−1

‖θǫk(t)‖
2
L2dt.

The inequality (4.11) is almost identical with [13, (A.3)], and we can proceed further to obtain

U ǫ
k ≤

(
2

t0
+ 4C

)
2k(q−1)

M q−2
(U ǫ

k−1)
q/2, with q := 2 +

2(α − σ)

d
.

Since U ǫ
0 ≤ (1 + 2CT )‖θ0‖

2
L2 , by choosing M (owing to [37, Lemma 2.6]) to be

(4.12) M = (1 + 2CT )1/2‖θ0‖L2

(
22+

d
α−σ

(
2

t0
+ 4C

)) d
2(α−σ)

,

we have limk→∞U ǫ
k = 0, which ensures θǫ ≤ M for all t ∈ [t0, T ]. The same result likewise holds for

−θǫ, and thus we conclude (4.7).
Hence, the uniform estimate (4.6) and (4.7) guarantee that, for some t0 > 0 and every T ≥ t0, up

to a subsequence θǫ converges weakly (weakly-∗ in L∞
t L

2
x and L∞([t0, T ] × R

d)) to some function θ
belonging to

(4.13) L∞([0, T ];L2(Rd)) ∩ L2([0, T ]; Ḣ
α−σ
2 (Rd)) ∩ L∞([t0, T ]× R

d).

Moreover, by using the compactness argument (e.g. [33, Proposition 6.3]), we can show that θǫ → θ
and uǫ → u = P(θ) both strongly in L2([0, T ];L2

loc(R
d)). Thus we can pass the weak limit ǫ → 0 in

the approximate system (4.1) to show that θ(x, t) is a global weak solution for the original equation
(1.1)-(1.2), which satisfies the energy estimate (4.6) and L∞-estimate (4.7) with θ in place of θǫ.
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Now applying Proposition 1.3 to the approximate equation (4.1) (with θ̃ǫ(t) := θǫ(t+ t0) replacing
θǫ(t)) and Fatou’s lemma, we get that for every β ∈]1− α+ σ, 1[ and every T > t0 + t1,

(4.14) sup
t∈[t0+t1,T ]

‖θ(t)‖Ċβ(Rd) ≤ C(‖θ0‖L2 , t0, α, β, σ, d, T ),

with t1 the time introduced above. Furthermore, (4.14) yields that for every β ∈]1− α+ σ, 1[,

sup
t∈[t0+t1,T ]

‖u(t)‖Cβ ≤ C0 sup
t∈[t0+t1,T ]

‖θ(t)‖L2 + C0 sup
t∈[t0+t1,T ]

‖θ(t)‖Ċβ

≤ C0C(‖θ0‖L2 , t0, α, β, σ, d, T ),

which together with Lemma 2.5 implies the C∞
x,t-regularity of θ(x, t) for all t ∈]t0 + t1, T ].

Besides, if α ∈]0, 1[ and σ = 0 in the condition (A3), i.e. m(y) ≡ C0|y|
α, ∀|y| > 0, from (2.11), we

have that there is no term −‖θǫ‖2L2 in (4.5) and the constant C in the right-hand side of (4.6), (4.7)
and (4.12) can be replaced with 0, which guarantees that T in (4.13)-(4.14) can be chosen to be ∞.

Next by choosing β = 1− α
2 , we see that γ = α4

C , and (3.19) just reduces to

(4.15) t1 ≤
C

α

(
C(1− α)

α5

) α
1−α

‖θ(t0)‖
α

1−α

L∞ ;

moreover (4.7) becomes

(4.16) ‖θ(t0)‖L∞ ≤

(
C2d/α

t0

)d/(2α)

‖θ0‖L2 ,

which combined with (4.15) leads to (1.22). Thus we finish the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2: global regularity result in the logarithmically supercritical

case. Considering the ǫ-regularized equation (4.1) under the assumptions of Theorem 1.2, by virtue
of the standard Bony’s para-differential calculus and Lemma 2.3, there is a uniquely global smooth
solution θǫ(x, t) to the system (4.1) so that θǫ ∈ C([0,∞[;Hs(Rd))∩C∞(]0,∞[×R

d) with s > d/2+1.
Owing to Lemma 2.4, we have the uniform-in-ǫ L∞-estimate supt≥0 ‖θ

ǫ(t)‖L∞ ≤ B0 with

(4.17) B0 :=

{
‖θ0‖L∞ , if Case (II) is considered,

C(‖θ0‖L2∩L∞ , σ, d), if Case (III) is considered,

and the uniform energy estimate ‖θǫ(t)‖L2 ≤ ‖θ0‖L2 , ∀t ≥ 0 if Case (III) is considered.
We will apply the method of nonlocal maximum principle as in Section 3 to show the uniform-in-ǫ

global regularity result. Let A0 ≤
c0
2 be a positive constant chosen later (c0 is the constant appearing

in (1.4)), then analogous with (3.8)-(3.9), we introduce the following family of moduli of continuity
that for ξ0 ∈]δ,A0],
(4.18)

ω(ξ, ξ0) =





(1− β)κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )(ξ0 − δ) + βκm(δ−1)ξ, for 0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ0
δ m(η−1)dη − γm(ξ−1

0 )ξ0 + γm(ξ−1
0 )ξ, for δ < ξ ≤ ξ0,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1)dη, for ξ0 < ξ ≤ c0,

ω(c0, ξ0), for ξ > c0,

and for ξ0 ≤ δ,

(4.19) ω(ξ, ξ0) =





(1− β)κm(δ−1)δ1−βξβ0 + βκm(δ−1)δ1−βξβ−1
0 ξ, for 0 ≤ ξ < ξ0,

κm(δ−1)δ1−βξβ, for ξ0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1) dη, for δ < ξ ≤ c0

ω(c0, ξ0), for ξ > c0,
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where β ∈]σ, 1[, κ, γ, δ are appropriate positive constants, and ξ0 = ξ0(t) is given by

(4.20)
d

dt
ξ0 = −ρm(ξ−1

0 )ξ0, ξ0(0) = A0,

with ρ > 0 some constant chosen later.
First we prove that under the condition (1.23), and by suitably choosing δ, the initial data θ0 strictly

obeys the initial MOC ω(ξ, ξ0(0)) = ω(ξ,A0). Indeed, it suffices to show

(4.21) ω(0+, A0) > 2B0.

Without loss of generality we also assume A0 ≤ c−1
2 (with c2 ≥ 1 appearing in (1.23)), and we see that

ω(0+, A0) = (1− β)κm(δ−1)δ + γ

∫ A0

δ
m(η−1)dη − γm(A−1

0 )(A0 − δ)

≥
γ

c2

∫ A0

δ

1

η(log η−1)µ
dη − γm(1)

≥
γ

c2

∫ 1
δ

1
A0

1

η(log η)µ
dη − γm(1)(4.22)

≥





γ
c2(1−µ)

((
log 1

δ

)1−µ
−
(
log 1

A0

)1−µ
)
− γm(1), if µ ∈ [0, 1[,

γ
c2

(
log log 1

δ − log log 1
A0

)
− γm(1), if µ = 1.

In order to achieve (4.21), if µ ∈ [0, 1[, we need

log
1

δ
>

[(
log

1

A0

)1−µ

+
c2(1− µ)

γ

(
2B0 + γm(1)

)
] 1

1−µ

,

and from the inequality (a+ b)
1

1−µ ≤ Cµ(a
1

1−µ + b
1

1−µ ) for a, b > 0, it suffices to choose δ as

(4.23) δ = A
Cµ

0 exp
(
− Cµ

(c2(1− µ)

γ

(
3B0 + γm(1)

))1/(1−µ))
;

whereas if µ = 1, it suffices to set δ as

log log
1

δ
= log log

1

A0
+
c2
γ

(
3B0 + γm(1)

)
,

that is,

(4.24) δ = A
exp

(

c2
γ

(
3B0+γm(1)

))
0 .

Next by using (4.22), we see that the MOC defined by (4.18)-(4.19) satisfies for all 0 < ξ0 ≤ A0,

ω(A0, ξ0) ≥ ω(A0, 0+) > γ

∫ A0

δ
m(η−1)dη > 2B0,

thus according to Proposition 2.7, we only need to justify the following criterion

(4.25) − ∂ξ0ω(ξ, ξ0)ξ̇0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) +D(ξ, t) + ǫ∂ξξω(ξ, ξ0) < 0,

for all t > 0, 0 < ξ0 ≤ A0, 0 < ξ ≤ A0 with A0 ≤
c0
2 , and

D(ξ, t) ≤C ′
1ω(ξ, ξ0) + C1

∫ ξ
2

0
(ω(ξ + 2η, ξ0) + ω(ξ − 2η, ξ0)− 2ω(ξ, ξ0))

m(η−1)

η
dη

+ C1

∫ A0

ξ
2

(
ω(2η + ξ, ξ0)− ω(2η − ξ, ξ0)− 2ω(ξ, ξ0)

)m(η−1)

η
dη,

(4.26)
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and

(4.27) Ω(ξ, t) ≤ −
C2

m(ξ−1)
D(ξ, t) + (C2 + C ′

2)ω(ξ, ξ0) + C2ξ

∫ ∞

ξ

ω(η, ξ0)

η2
dη,

and C1 = C1(d), C2 = C2(d) > 0, and C ′
1, C

′
2 are just 0 if Case (II) is assumed, and are the constants

(depending only on d, α̃, c0, c1) respectively appearing in (2.23) and (2.29) if Case (III) is assumed.
By arguing as Lemma 3.2, we indeed can prove the desired inequality (4.25) as long as that ρ, κ, γ

are suitable constants satisfying (3.76) (maybe with slightly different C) and A0 satisfying

(4.28) 0 < A0 ≤ min
{(C1c̃m(1)(1 − β)(1 − σ)

64C ′
1

)1/(1−σ)
,
c0
2
, c−1

2

}
,

We will present the different points compared to the proof of Lemma 3.2 in the end of this subsection.
Then at the time t1 satisfying ξ0(t1) = 0, we have that θǫ(x, t1) uniformly-in-ǫ obeys the MOC

ω(ξ) = ω(ξ, 0+) given by

(4.29) ω(ξ) =





κm(δ−1)δ1−βξβ, for 0 ≤ ξ ≤ δ,

κm(δ−1)δ + γ
∫ ξ
δ m(η−1)dη, for δ < ξ ≤ c0,

ω(c0), for ξ > c0,

with κ, γ > 0 the suitable constants satisfying (3.76). In a similar way as obtaining (3.15), we moreover
get that the MOC ω(ξ) given by (4.29) is uniformly-in-ǫ strictly preserved by the solution θǫ(x, t1).
Then we can argue as the proof of Lemma 3.1 and Steps 5-6 in the proof of (4.25) to show that for
every t > t1 and 0 < ξ ≤ A0,

(4.30) Ω(ξ, t)ω′(ξ) +D(ξ, t) + ǫω′′(ξ) < 0,

where D(ξ, t) and Ω(ξ, t) are given by (4.26) and (4.27) with ω(·) in place of ω(·, ξ0), which guarantees
that θǫ(x, t) uniformly-in-ǫ strictly preserve such a MOC ω(ξ) for all time t ≥ t1.

From (3.76), we can choose the positive constants ρ, κ, γ as

ρ = (1− β)(1− σ)/C, κ = (1− β)2/C, γ = min
{
β(1− β)2, (1− β)3(1− σ)

}
/C,

with C > 0 the suitable constant depending only on d, C ′
2 (and a, |Ψ|). Thanks to (3.14), (1.23) and

(3.7), we find that the eventual regularity time t1 satisfies

(4.31) t1 ≤
1

(1− σ)ρm(A−1
0 )

≤
Cc2

(1− σ)2(1− β)
A0(logA

−1
0 )µ ≤

CC0c2
(1− σ)2(1− β)

A
1
2
0 ,

and for every β ∈]σ, 1[,

sup
t∈[t1,∞[

‖θǫ(t)‖Ċβ(Rd) ≤ κm(δ−1)δ1−β ≤ κm(1)δ−β

≤





Cm(1)
(1−β)2

A
−Cµβ
0 exp

(
βCµ

(
3c2(1−µ)B0

γ + c2(1− µ)m(1)
)1/(1−µ) )

, if µ ∈ [0, 1[,

Cm(1)
(1−β)2

(
A−1

0

)β exp
(

3c2B0
γ

+c2m(1)
)
, if µ = 1.

(4.32)

Now for any t∗ > 0, by virtue of (4.31), we also need A0 satisfies that CC0c2
(1−σ)2(1−β)

A
1
2
0 ≤ t∗

2 , i.e.

A0 ≤
(
(1−σ)2(1−β)t∗

2CC0c2

)2
, thus for each σ ∈ [0, 1[ and β ∈]σ, 1[, we can choose A0 to be

(4.33) A0 = min
{(C1c̃m(1)(1 − β)(1 − σ)

64C ′
1

)1/(1−σ)
,
c0
2
, c−1

2 ,
( (1− σ)2(1− β)t∗

2CC0c2

)2}
,

so that the uniform-in-ǫ Hölder estimate (4.32) holds true. According to Lemma 2.5 and the Calderón-
Zygmund theorem, we can further get θǫ ∈ C∞([t∗,∞[×R

d) uniformly in ǫ.
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If Case (III) is considered and div u = 0, θ0 ∈ L2 ∩ L∞(Rd), in a similar way as deriving (4.6), we

apply Lemma 2.3 to get that θǫ ∈ L∞([0, T ];L2(Rd)) ∩ L2([0, T ]; Ḣ
1−σ
2

(Rd)) uniformly-in-ǫ for every
T > 0. Since u is divergence-free, for any T > 0, similarly as the corresponding part at Subsection
4.1, we can pass ǫ → 0 in (4.1) to obtain the existence of weak solution θ ∈ L∞([0, T ];L2(Rd)) ∩

L2([0, T ]; Ḣ
1−σ
2 (Rd)) to the equation (1.1)-(1.2) which also satisfies θ ∈ C∞([t∗, T ]×R

d), as desired.
If Case (II) is considered, θ0 ∈ C0(R

d), and there is no divergence-free condition of u, we can pass
ǫ→ 0 to get a limit function θ ∈ L∞([0,∞[×R

d)∩C∞([t∗,∞[×R
d). For any t∗ > 0, the limit function

θ on the time period [t∗,∞[ satisfies the equation (1.1)-(1.2) (but it is not so clear whether θ is a weak
solution to (1.1)-(1.2) on [0, t∗]).

Finally, we state the different points of proving (4.25) compared to the proof of (3.34).
Case 1: δ < ξ0 ≤ A0, 0 < ξ ≤ δ.
Since ∂ηω(η, ξ0) = 0 for all η > c0, we can prove the estimates analogous to (3.41) and (3.42) with

C2 + C ′
2 in place of C2. For the contribution from the diffusion term, we have (noting that α = 1)

D(ξ, t) ≤ C ′
1ω(ξ, ξ0)− 2C1ω(0+, ξ0)

∫ A0

ξ
2

m(η−1)

η
dη

≤ C ′
1ω(ξ, ξ0)− 2C1ω(0+, ξ0)

(
ξ

2

)
m

(
2

ξ

)∫ ξ

ξ
2

1

η2
dη

≤ C ′
1

(
ω(0+, ξ0) + βκm(δ−1)δ

)
− C1ω(0+, ξ0)m(ξ−1)

≤ C ′
1βκm(δ−1)δ −

C1

2
ω(0+, ξ0)m(ξ−1),(4.34)

where in the last line we used the estimate m(ξ−1) ≥ m(A−1
0 ) ≥

2C′

1
C1

, which is implied by a stronger

condition A0 ≤
(
C1m(1)
2C′

1

)1/(1−σ)
. Since ω(0+, ξ0) ≥ Mξ0,δ by (3.38), thus if ξ0 ≤ Nδ with N ∈ N

defined in (3.45), thanks to (3.46), we get

D(ξ, t) ≤ C ′
1βκm(δ−1)δ −

C1(1− β)κ

4
m(δ−1)δ m(ξ−1)−

C1(1− σ) γ

4
m(ξ−1

0 )ξ0m(ξ−1)

≤ −
C1(1− β)κ

8
m(δ−1)δ m(ξ−1)−

C1(1− σ) γ

4
m(ξ−1

0 )ξ0m(ξ−1),

where in the second line we used A0 ≤
(
C1m(1)(1−β)

8C′

1β

) 1
1−σ

; whereas if ξ0 ≤ Nδ, by virtue of (3.51), we

see that through setting γ ≤ (1−β)(1−σ)κ
16 ,

D(ξ, t) ≤ C ′
1βκm(δ−1)δ −

C1

4

(
(1− β)κm(δ−1)δ − γm(ξ−1

0 )ξ0
)
m(ξ−1)

≤ −
C1

4

(
(1− β)κ

2
−

4γ

1− σ

)(
m(δ−1)

)2
δ ≤ −

C1(1− β)κ

16

(
m(δ−1)

)2
δ,

where we also used A0 ≤
(
C1m(1)(1−β)

8C′

1β

) 1
1−σ

. Hence under the conditions (3.49), (3.52) (up to some

pure numbers and C2 replaced by C2 + C ′
2), we show that (4.25) holds in this case.

Case 2: δ < ξ0 ≤ A0, δ < ξ ≤ ξ0.
The different points are quite similar to those stated in Case 1 above, and under the (slightly

modified) conditions (3.56) and (3.57), we can show (4.25) in this case.
Case 3: δ < ξ0 ≤ A0, ξ0 < ξ ≤ A0.
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We obtain (3.58) with C2 replaced by C2 + C ′
2. For D(ξ, t), similarly as (3.59) and (4.34), we have

D(ξ, t) ≤ C ′
1ω(ξ, ξ0) + C1

(
ω(2ξ, ξ0)− 2ω(ξ, ξ0)

) ∫ A0

ξ
2

m(η−1)

η
dη

≤ C ′
1ω(ξ, ξ0) +

C1

2

(
ω(2ξ, ξ0)− 2ω(ξ, ξ0)

)
m(ξ−1),

thus if ξ ≥ δ
(

1
21−σ−1

)1/σ
, by using (3.61), we get

D(ξ, t) ≤ C ′
1ω(ξ, ξ0)−

C1c̃(1− σ)

4
ω(ξ, ξ0)m(ξ−1) ≤ −

C1c̃(1− σ)

8
ω(ξ, ξ0)m(ξ−1),

where c̃ = infx∈]0,1]
{
2x−1
x

}
> 0 and in the last inequality we used A0 ≤

(
C1m(1)c̃ (1−σ)

8C′

1

) 1
1−σ

. If

ξ ≤ δ
(

1
21−σ−1

)1/σ
, by arguing as (3.63) and (4.34), and using (3.64), we find

D(ξ, t) ≤ C ′
1ω(ξ, ξ0)−

ω(0+, ξ0)

2
m(ξ−1)

≤ C ′
1

(
κ+

c̃γ

2(1 − σ)

)
m(δ−1)δ −

(1− β)κ

2
m(δ−1)δm(ξ−1)

≤ −
(1− β)κ

4
m(δ−1)δm(ξ−1),

where in the last line we used γ ≤ κ and A0 ≤
(
C1m(1) (1−β)(1−σ)

4C′

1

) 1
1−σ

. The remaining proof is similar

to Case 3 in the proof of Lemma 3.2, and (4.25) holds in this case under (slightly modified) (3.62) and
(3.65).

Case 4: 0 < ξ0 ≤ δ, 0 < ξ < ξ0.
We have (3.69) with C2 replaced by C2 + C ′

2. In a similar treatment as (3.70) and (4.34), we infer

D(x, t) ≤ C ′
1ω(ξ, ξ0)−

C1

2
ω(0+, ξ0)m(ξ−1) ≤ −

C1

4
ω(0+, ξ0)m(ξ−1),

where in the last inequality we used the fact ω(ξ, ξ0) ≤
1

1−βω(0+, ξ0) (from (3.66)) and the condition

A0 ≤
(
C1m(1)(1−β)

4C′

1

) 1
1−σ

. Thus we can obtain (4.25) in this case under (slightly modified) (3.71).

Case 5: 0 < ξ0 ≤ δ, ξ0 ≤ ξ ≤ δ.

We have (3.72) with C2 replaced by C2 + C ′
2. If ξ0 ≤ ξ

4 , (3.73), (3.67) and the formula ω(ξ, ξ0) =

κm(δ−1)δ1−βξβ lead to

D(ξ, t) ≤ C ′
1ω(ξ, ξ0)−

C1β(1− β)κ

32
m(δ−1)δ1−βξβm(ξ−1)

≤ −
C1β(1− β)κ

64
(m(δ−1))2δ2−σ−βξβ−1+σ,

where in the last line we used A0 ≤
(
C1m(1)β(1−β)

64C′

1

) 1
1−σ

; whereas if ξ0 ≥ ξ
4 , by arguing as (3.74) and

(4.34), we obtain

D(ξ, t) ≤ C ′
1ω(ξ, ξ0)−

C1

2
ω(0+, ξ0)m(ξ−1)

≤ C ′
1ω(ξ, ξ0)−

C1(1− β)

8
ω(ξ, ξ0)m(ξ−1) ≤ −

C1(1− β)κ

16

(
m(δ−1)

)2
δ2−σ−βξβ−1+σ,
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where the last inequality is deduced from using A0 ≤
(
C1m(1)(1−β)

16C′

1

) 1
1−σ

. Thus we can similarly obtain

(4.25) in this case under (slightly modified) (3.75).
Case 6: 0 < ξ0 ≤ δ, δ < ξ ≤ A0.
We have (3.28) with C2 replaced by C2 + C ′

2. Similarly as (3.29), (3.31) and (4.34), we get

D(ξ, t) ≤ C ′
1ω(ξ, ξ0) + C1(ω(2ξ, ξ0)− 2ω(ξ, ξ0))

∫ ξ

ξ
2

m(η−1)

η
dη

≤ C ′
1ω(ξ, ξ0)−

C1c̃

8
(1− σ)m(ξ−1)ω(ξ, ξ0) ≤ −

C1c̃

16
(1− σ)m(ξ−1)ω(ξ, ξ0),

where the last inequality is ensured by A0 ≤
(
C1c̃m(1)(1−σ)

16C′

1

) 1
1−σ

. Thus in this case we deduce (4.25)

under (slightly modified) (3.33).
Therefore, gathering the above results concludes (4.25) at all cases and thus Theorem 1.2 is followed.

5. Appendix

Justification of the statement in Remark 1.5. By using the standard Bony’s para-differential calculus
and Lemma 2.3, we first can prove the local well-posedness result that there exists a time T > 0
depending only on ‖θ0‖Hs and d such that the equation (1.1)-(1.2) admits a uniquely local smooth
solution θ ∈ C([0, T [;Hs(Rd)) ∩ C∞(]0, T [×R

d). Moreover, let T ∗ be the maximal existence time of
this solution, then by Lemma 2.5 and the Calderón-Zygmund theorem, we necessarily get that

(5.1) if T ∗ <∞ ⇒ ‖θ‖L∞([0,T ∗[;Ċβ(Rd)) = ∞, ∀β ∈]1− α+ σ, 1[.

Next we prove that the maximal lifespan solution θ(t, x) on the time period [0, T ∗[ strictly preserves
the MOC ω(ξ) given by (4.29) with α ∈]0, 1], σ ∈ [0, α[, δ > 0, 0 < γ < κ < 1, which implies the
desired uniform β-Hölder estimate of θ, and further concludes the statement concerned.

Similarly as the deduction around (3.2), ω(ξ) is a MOC satisfying the needing properties, and the

mapping ξ 7→ ω(ξ)
ξβ

for every ξ > 0 is non-increasing.

Then we prove that under the assumption (1.26), the MOC (4.29) with fixed κ, γ > 0 can be
obeyed by the data θ0 for δ small enough. For this purpose, noting that |θ0(x) − θ0(y)| ≤ 2‖θ0‖L∞ ,
and |θ0(x)− θ0(y)| ≤ ‖θ0‖Ċβ |x− y|β, it suffices to prove

(5.2) min
{
2‖θ0‖L∞ , ‖θ0‖Ċβξ

β
}
< ω(ξ).

Denote by a0 :=
(
2‖θ0‖L∞

‖θ0‖Ċβ

)1/β
, and if ξ ≥ a0, then as long as

(5.3) ω(a0) > 2‖θ0‖L∞ ,

we have that (5.2) holds for all ξ ≥ a0; while if ξ ≤ a0, by virtue of (5.3) and the fact ω(ξ)
ξβ

≥ ω(a0)

aβ0
which is deduced from (3.5), we also obtain (5.2), as the following deduction shows

‖θ0‖Ċβξ
β ≤ ‖θ0‖Ċβ

aβ0
ω(a0)

ω(ξ) ≤
2‖θ0‖L∞

ω(a0)
ω(ξ) < ω(ξ).

Now we prove that for every θ0, the condition (5.3) can be guaranteed by the assumption (1.26).
Indeed, without loss of generality we assume that a0 ≥ δ, then we get

(5.4) ω(a0) ≥ γ

∫ a0

δ
m(η−1)dη → ∞, as δ → 0+,

hence (5.3) is ensured for δ sufficiently small depending on γ and ‖θ0‖Ċβ∩L∞ .
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Recalling that B0 is the bound of ‖θ(·, t)‖L∞
x

given by (2.13)-(2.14), and by letting b0 ∈]δ, c02 ] be a
constant chosen later, we use (1.26) to deduce

(5.5) ω (b0) ≥ γ

∫ b0

δ
m(η−1)dη > 2B0,

provided that δ is sufficiently small. Thus according to Proposition 2.7, it suffices to show that for all
0 < t < T ∗ and all 0 < ξ ≤ b0,

(5.6) Ω(ξ, t)ω′(ξ) +D(ξ, t) < 0,

where D(ξ, t) and Ω(ξ, t) (by Lemmas 2.8, 2.9) are respectively given by (4.26) and (4.27) with
{ω(·), b0} in place of {ω(·, ξ0), A0}.

In a similar way as the proof of (4.25) at Steps 5-6 and the proof of (3.21) (noting that b0 plays the

same role as A0 in showing (4.25)), we find that by setting b0 = min
{

c0
2 ,
(
C1m(1)c̃2β(α−σ)

16C′

1

)1/(α−σ)}
,

and for κ, γ fixed constants satisfying (3.33) (up to pure numbers and C2 replaced by C2+C
′
2), and for

δ > 0 sufficiently small constant satisfying (5.4)-(5.5), we conclude (5.6) at all the considered cases.
Hence, the statement concerned on the global well-posedness result for (1.1)-(1.2) is justified.
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[5] A. Castro, D. Córdoba, F. Gancedo, R. Orive. Incompressible flow in porous media with fractional diffusion, Non-

linearity, 22 (2009), pp. 1791–1815.
[6] D. Chamorro and S. Menozzi, Fractional operators with singular drift: smoothing properties and Morrey-Campanato

spaces, Rev. Mat. Iberoam. 32 (2016), no. 4, pp. 1445–1499.
[7] Q. Chen, C. Miao and Z. Zhang, A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation,

Comm. Math. Phys., 271 (2007), pp. 821–838.
[8] Z. Chen, R. Song and X. Zhang, Stochastic flows for Lévy processes with Hölder drifts, Rev. Mat. Iberoam. 34
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