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BOUNDARY INTEGRAL FORMULATIONS FOR TRANSIENT

LINEAR THERMOELASTICITY WITH COMBINED-TYPE

BOUNDARY CONDITIONS∗

GEORGE. C. HSIAO† AND TONATIUH SÁNCHEZ-VIZUET‡

Abstract. We study boundary integral formulations for an interior/exterior initial boundary
value problem arising from the thermo-elasto-dynamic equations in a homogeneous and isotropic
domain. The time dependence is handled, based on Lubich’s approach, through a passage to the
Laplace domain. We focus on the cases where one of the unknown fields satisfies a Dirichlet boundary
condition, while the other one is subject to conditions of Neumann type. In the Laplace domain,
combined single- and double-layer potential boundary integral operators are introduced and proven
to be coercive. Based on the Laplace domain estimates, it is possible to prove the existence and
uniqueness of solutions in the time domain. This analysis complements previous results that may
serve as the mathematical foundation for discretization schemes based on the combined use of the
boundary element method and convolution quadrature.

Key words. Time-domain boundary integral equations, Linear thermoelasticity, Boundary
integral operators, Fundamental solution .
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1. Introduction. Boundary integral formulations are a well established tool for
dealing with stationary and time-harmonic boundary value problems for linear elliptic
partial differential equations originating from models of mathematical physics and
mechanics. One of the practical advantages of these formulations is the reduction of
dimensionality achieved by exploiting Green’s second formula and the availability of
a Green’s function associated to the linear partial differential operator with constant
coefficients. Thus reducing the problem into one posed solely on the boundary of the
original domain of definition. Moreover, when the original problem is posed in an
unbounded domain exterior to a bounded boundary, a boundary integral formulation
presents itself as a very attractive alternative amenable for numerical computations.

However, for the non-stationary case boundary integral formulations had not
received much attention until recent years; with much progress been made on their
analysis and discretization within the current century. In this work, which concludes
the analysis started in [8], we follow the approach set forth by Lubich [14, 17], and
Sayas and co-workers [13, 21], based on the seminal articles by Bamberger and Ha-
Duong [1, 2]. The central idea of this analysis technique is to transform the problem
into the Laplace domain, where Green’s functions are readily available and easier to
analyze, establish the coercivity of the boundary integral operators involved, and then
transfer these results into the time domain.

This communication is concerned with the application of Time Domain Bound-
ary Integral Methods (TDBIMs) to a non-stationary initial boundary value problem
coming from linear thermoelasticity. It concludes the analysis started in [8], where we
focused on “pure” Dirichlet or Neumann boundary conditions. Here, on the contrary,
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we consider the case of combined boundary conditions , i.e. where one of the two
unknowns satisfies Dirichlet boundary conditions, while the other one is subject to
Neumann type conditions.

We start in section 2 by briefly introducing the equations governing the evolution
of the displacement and temperature fields in linear thermoelasticity; both in the time
domain and the corresponding transformed formulations in the Laplace domain. The
necessary background required to introduce the boundary integral formulation, the
layer potential ansatz and the thermoelastic boundary integral operators are presented
in section 3. Most of the analysis is contained in section 4, where the Laplace-
transformed problem is studied and proven to be uniquely solvable. The stability
bounds obtained in this section in terms of the Laplace parameter, are then translated
into time-domain results and estimates in the final section 5.

2. Governing equations.

2.1. The system in the time domain. Let Ω− be a bounded domain in Rd

(for d = 2, 3) with Lipschitz boundary Γ and let Ω+ := Rd\Ω−
be its exterior. We will

consider either of the interior or exterior domains to be occupied by a homogeneous,
isotropic, linear thermoelastic medium with constant density ρ. The elastic properties
of the medium are characterized by the Lamé parameters λ and µ, while the thermal
properties are determined by the thermal diffusivity coefficient κ = k/δ, given in
terms of the thermal diffusivity k and the specific heat δ.

We are interested in the evolution of the elastic displacement field U and tem-
perature variation field Θ in the aforementioned medium over the time interval [0, T ].
At the initial time, when the solid is at rest and unperturbed, the distribution of
temperatures is given by Θ0 however, in a thermoelastic medium, elastic stresses give
rise to temperature variations and temperature variations produce mechanical stress
on the body. In the linear regime, this effect is described by the Duhamel-Neumann
law [5, 18] connecting the stress and temperature through the thermoelastic stress

σ(U,Θ) and the thermoelastic heat flux F(U, θ)

σ(U,Θ) := σ̃(U)− γΘ I and F(U,Θ) := −η
∂

∂t
U+ κ∇Θ.

Here, the identity operator is denoted by I and the coupling constants γ and η are
defined by

γ := (λ+ 2/3µ)α, and η := γΘ0/k,

where α is the volumetric coefficient of thermal expansion, and the quantity λ+(2/3)µ
is known as the bulk modulus of the solid. The purely elastic linearized stress and
strain tensors σ̃(U) and ε̃(U) are given as usual by

σ̃(U) = (λ ∇ ·U)I+ 2µ ε̃(U) and ε̃(U) = 1
2 (∇U+ (∇U)⊤).

In the thermoelastic medium, the given physical constants ρ, λ, µ, γ, η, κ, are assumed
to satisfy the inequalities:

ρ > 0, µ > 0, λ+ 2/3µ > 0, γ/η > 0, κ > 0.

Under these physically meaningful assumptions, and defining the Lamé operator ∆∗

by

∆∗U := µ∆U+ (λ+ µ)∇∇ ·U = ∇ · σ̃(U),
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the conservation of energy and momentum give rise to the following governing thermo-
elasto-dynamic equations

ρ
∂2U

∂t2
−∆∗U+ γ∇ Θ = 0 in Ω∓ × (0, T ),(2.1a)

1

κ

∂Θ

∂t
−∆Θ+ η

∂

∂t
(∇ ·U) = 0 in Ω∓ × (0, T ).(2.1b)

which are complemented with the causal initial conditions

(2.1c) U(x, t) = 0,
∂

∂t
U(x, t) = 0, and Θ(x, t) = 0,

for −∞ < t ≤ 0, x ∈ Ω∓, together with boundary conditions. In the previous work
[8], we considered the problem where both temperature and displacement field are
subject to
(a) Dirichlet boundary conditions:

U(x, t) = F(x, t), and Θ(x, t) = F (x, t) on ΓT := Γ× (0, T ],

(b) Neumann boundary conditions:

σ(U,Θ)n = G(x, t) and ∇Θ · n = G(x, t) on ΓT .

for F(x, t), F (x, t), G(x, t) and G(x, t) are given smooth functions.
In the current work, we will focus on the cases where the boundary conditions are

combined, meaning that one of the fields is subject to a Dirichlet condition while the
other one is subject to a Neumann condition. More precisely, we will be analyzing
the cases
(c) Dirichlet-Neumann boundary conditions:

(2.1d) U(x, t) = F(x, t), and ∇Θ(x, t) · n = G(x, t) on ΓT ,

(d) Neumann-Dirichlet boundary conditions:

(2.1e) σ(U,Θ)n = G(x, t) and Θ = F (x, t) on ΓT .

Since the operators involved are linear, it is natural to construct solutions of these
problems by using boundary integral methods. However, such an approach requires
the availability of a fundamental solution for the time-dependent equations (2.1a)
and (2.1b). However, time dependent fundamental solutions may not be available in
general or may be considerably more difficult to construct and to handle analytically
and computationally than those of time-independent equations. This will lead us
to consider the techniques set forth by Lubich [14, 15, 16] and Sayas [13, 21] which
sidestep the need for a time dependent fundamental solution and instead proceed by
transforming the system into the Laplace domain, where the analysis is carried out
before translating the results obtained back into the time domain. This technique
requires carefully studying the dependence of the stability and coercivity bounds
for the operators appearing in the Laplace domain in terms of the complex Laplace
parameter.
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2.2. The system in the Laplace domain. Before transforming the problem
(2.1) into the Laplace domain, we must introduce some notation. Throughout the
paper, we will say that a vector-valued function (u, θ)⊤ defined over a domain O is
regular if (u, θ)⊤ ∈ C2(O)4 ∩ C1(O)4 (also denoted by C2(O) ∩C1(O)).

The complex plane will be denoted by C; for the remainder of this article, it
should be understood that the Laplace parameter s belongs to the positive half plane,
i.e.

s ∈ C+ := {z ∈ C : Re(z) > 0}.
Provided it exists, the Laplace transform for an ordinary, causal complex-valued func-
tion F : [0,∞) → C will be denoted by

f(s) = LF (s) :=

∫ ∞

0

e−stF (t)dt.

In what follows, we shall adhere to the convention of denoting time-domain functions
by a capital letter and their Laplace transforms by the corresponding lower case letter.
To make the notation less cumbersome, we will suppress the explicit dependence of
the variables with respect to both position and the Laplace parameter. Hence, we
will let u := u(x, s) = L{U(x, t)} and θ := θ(x, s) = L{Θ(x, t)}.

Upon Laplace-transformation, equations (2.1a) and (2.1b) become

∆∗u− ρs2u− γ∇ θ =0 in Ω∓,(2.2a)

∆θ − (s/κ) θ − sη ∇ · u =0 in Ω∓.(2.2b)

The system of equations (2.2) can be written in matrix-vector form as

(2.3) B(∂x, s)

(
u

θ

)
:=

(
∆∗ − ρs2 −γ∇
−s η∇⊤ ∆− s/κ

)(
u

θ

)
=

(
0

0

)
in Ω∓.

Following Kupradze [12], the non-self adjoint matrix-operatorB(∂x, s) will be referred
to as the thermoelastic pseudo-oscillation operator; its adjoint operator B∗(∂x, s) may
be obtained from B(∂x, s) by replacing γ with −sη and vice versa, namely

(2.4) B∗(∂x, s)

(
v

v

)
:=

(
∆∗ − ρs2 s η ∇
γ ∇⊤ ∆− s/κ

)(
v

v

)
.

The following result (a Laplace-Domain counterpart of Kupradze’s [12, p.139 ] and
Cakoni’s [3]) splits the regular solution to the thermoelastic oscillation equations (2.2)
into three wave-like functions. We refer the reader to [8] for the proof.

Lemma 2.1. The regular solution (u, θ) of (2.4) admits in the domain of regular-

ity a representation of the form:

(2.5) (u, θ) = (u1, θ1) + (u2, θ2) + (u3, θ3),

with (uk, θk), k = 1, 2, 3 satisfying

(∆− λ2
1)u1 =0, (∆− λ2

2)u2 =0, (∆− λ2
3)u3 = 0,

∇× u1 =0, ∇× u2 =0, ∇ · u3 =0,

(∆− λ2
1)θ1 =0, (∆− λ2

2)θ2 =0, θ3 =0.

The constants λ2
1, λ

2
2 are determined by the equations:

(2.6) λ2
1 + λ2

2 =
s

κ
(1 + ǫ) + λ2

p, λ2
1λ

2
2 =

( s

κ

)
λ2
p,

with λ2
3 = ρs2/µ, λ2

p = ρs2/(λ+ 2µ) and ǫ = γ η κ/(λ+ 2µ).
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Just like in elastodynamics, cs :=
√
µ/ρ and cp :=

√
(λ + 2µ)/ρ are the phase ve-

locities for the transversal and longitudinal wave, respectively. For most of bodies,
the parameter ǫ ∈ (0, 1) is much smaller than unity—see, e.g. [19]. When ǫ = 0, the
deformation and temperature fields decouple. In this case, the wave numbers may be
deduced explicitly from eq.(2.6)

λ2
1 =

s

κ
, λ2

2 =
ρ s2

λ+ 2µ
, and λ2

3 =
ρ s2

µ
.

3. Preliminaries.

3.1. Notation. Over either of the open domains Ω∓, the standard L2(Ω∓) inner
products for scalars, vectors and matrices will be denoted respectively by

(u, v)Ω∓ :=

∫

Ω∓

uv , (u,v)Ω∓ :=

∫

Ω∓

u · v , (U ,V )Ω∓ :=

∫

Ω∓

U : V ,

where U : V is the Frobenius inner product for matrices. These inner products induce
a natural norm that will be denoted by ‖ · ‖Ω∓ . We will use the brackets 〈·, ·〉Γ for the
L2(Γ) inner products on the boundary Γ := ∂Ω∓. Inner products for the restrictions
of scalars, vectors and matrices to the boundary are defined in a similar fashion.
Forms and products will always be assumed to be bilinear and complex conjugation
will be made explicitly when required.

If a function u, defined in either Ω∓, is continuously extendible at a point y ∈ Γ,
then u−(y) and u+(y) (alternatively {u(y)}− and {u(y)}+) will denote the one sided
limits

u−(y) ≡ {u(y)}− := lim
Ω−∋x→y∈Γ

u(x), and u+(y) ≡ {u(y)}+ := lim
Ω+∋x→y∈Γ

u(x).

The same notation will be used for one sided limits for vector-valued and matrix-
valued extendible functions, where the limits are taken component by component.
The trace operator, or restriction to the boundary will be denoted by the symbol∣∣∣
Γ
, in order to keep notation as light as possible, its use will be omitted whenever a

restriction to the boundary is clear from the context.
We will rely heavily on standard notation and terminology of Sobolev space the-

ory. Vector-valued spaces will be denoted in boldface, and should be understood as
copies of their scalar counterparts therefore, for d = 2, 3.

L2(Ω∓) :=
(
L2(Ω∓)

)d
, H1(Ω∓) :=

(
H1(Ω∓)

)d
, H1/2(Γ) :=

(
H1/2(Γ)

)d

.

We also adopt the following conventions: for any function u defined on both sides of
Γ its jump across the boundary Γ will be denoted by

[[u]] := (u− − u+),

while the average of its traces from inside and outside of Γ will be denoted by

{{u}} := (u− + u+)/2.

Just as before, for vector and matrix valued functions, the jump and average are
defined component wise in a similar fashion.
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3.2. Boundary conditions. Four basic types of boundary conditions may be
imposed on the Laplace-domain system (2.2). Dirichlet and Neumann boundary con-
ditions were treated by the authors in [8]. In the current communication, we will focus
on the remaining two combined Dirichlet and Neumann type of boundary conditions.

In what follows let T : H1(Ω∓) → H−1/2(Γ) be the elastic traction operator
defined by

Tu := σ̃(u) n = λ(∇ · u)n+ 2µ
∂u

∂n
+ µn×∇u.

Using the traction operator, we can define the following operators mapping H1(Ω∓)×
H1(Ω∓) to spaces defined over the boundary, each of them suited for different kinds
of boundary conditions.
I. Dirichlet boundary conditions.

RD : H1(Ω∓)×H1(Ω∓) −→ H1/2(Γ)×H1/2(Γ)

(u, θ) 7−→ (u, θ)
∣∣∣
Γ

II. Neumann boundary conditions.

RN : H1(Ω∓)×H1(Ω∓) −→ H−1/2(Γ)×H−1/2(Γ)

(u, θ) 7−→ (Tu− γ θ n , ∂nθ)

III. Dirichlet-Neumann combined boundary conditions.

RDN : H1(Ω∓)×H1(Ω∓) −→ H1/2(Γ)×H−1/2(Γ)

(u, θ) 7−→
(
u

∣∣∣
Γ
, ∂n θ

)

IV. Neumann-Dirichlet combined boundary conditions.

RND : H1(Ω∓)×H1(Ω∓) −→ H−1/2(Γ)×H1/2(Γ)

(u, θ) 7−→
(
Tu− γ θ n , −θ

∣∣∣
Γ

)
.(3.1)

The operators R∗
D,R∗

N ,R∗
DN , and R∗

ND—adjoint to the ones defined above—are de-
fined from the previous definitions by the substitution γ 7→ −η s.

Remark: Whenever any of the operators defined above acts on functions of
two variables, an additional subscript will be added to indicate the relevant variable.
Therefore, in an expression of the type RNyF (x, y), the normal vector n should be
understood as being a function of y, and differentiation should be performed with
respect to y. This will become specially relevant in subsection 3.4 and subsection 3.5,
when layer potentials and boundary integral operators involving the fundamental
solution of system (2.2) are defined.

3.3. Associated Bilinear Forms. For pairs (v, v) and (u, θ) of regular func-
tions belonging to C2(Ω∓) ∪C1(Ω̄∓), we will define the following bilinear operators
(complex conjugation will always be done explicitly) associated to the thermoelastic
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oscillation problem.

AΩ∓ ((u, θ) , (v, v)) :=

∫

Ω∓

(
σ̃(u) : ε̃(v) + ρs2u · v − γ θ∇ · v

+ sη∇ · u v +∇θ · ∇v + (s/κ)θ v
)
,(3.2)

BΩ∓ ((u, θ) , (v, v)) :=

∫

Ω∓

(
∆∗u− ρs2u− γ∇ θ

)
· v + (∆θ − (s/κ) θ − sη ∇ · u) v

=

∫

Ω∓

(v, v)B(∂x, s) (u, θ)
⊤,(3.3)

B∗
Ω∓ ((v, v) , (u, θ)) :=

∫

Ω∓

(
∆∗v − ρs2v + sη∇ v

)
· u+ (∆v − (s/κ) v + γ ∇ · v) θ

=

∫

Ω∓

(u, θ)B∗(∂x, s) (v, v)
⊤.(3.4)

Note that BΩ∓ (resp. B∗
Ω∓) arises from testing the strong form of the system (2.2)

(resp. the adjoint system) with (v, v) (resp. with (u, θ)), while AΩ∓ arises from the
weak formulation of (2.2).

3.4. Green Formulas. Using the notation defined above, the first Green’s for-
mula takes the form:

(3.5) AΩ∓ ((u, θ) , (v, v)) + BΩ∓ ((u, θ) , (v, v)) = ±
∫

Γ

RN (u, θ) · (v, v)

while the second Green formula is given by

BΩ∓ ((u, θ) , (v, v))− B∗
Ω∓ ((v, v) , (u, θ)) = ±

∫

Γ

(RN (u, θ) · (v, v)−R∗
N (v, v) · (u, θ)) .

(3.6)

If (v, v) is replaced by the fundamental solution E(x, y; s) for the adjoint operator
B∗(∂y, s), the second Green formula (3.6) provides the following integral representa-
tion for the solution of (2.4):

(u, θ) (x) = ±
∫

Γ

(
E⊤(x, y; s) · RN (u, θ)−R∗

Ny
E⊤(x, y; s) · (u, θ)

)
dyΓ, x ∈ Ω∓.

(3.7)

The explicit expression for the two and three dimensional fundamental solution deriva-
tion for the fundamental solution E(x, y; s) can be found in the Appendix A. For a
detailed derivation the reader is referred to [8, Appendix A].

3.5. Thermoelastic layer potentials and boundary integral operators.

The integral representation (3.7) suggests looking for solutions of the form

(u, θ) (x) = ±
∫

Γ

(
E⊤(x, y; s) · (λ, ς)−R∗

Ny
E⊤(x, y; s) · (φ, ϕ)

)
dyΓ, x ∈ Ω∓,

where ϕ,φ, ς, and λ are unknown density functions defined over Γ and satisfying cer-
tain regularity properties to be specified later. This process is known as direct method

and, when dealing with standard Dirichlet or Neumann boundary value problems, has
the property that the densities coincide respectively with the trace of the temperature
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field, the trace of the elastic displacement, the normal heat flux and the normal elastic
traction.

Each of the terms in (3.7), taken separately, also define functions that satisfy the
system (2.2). They are known as the simple layer potential (or single layer potential)
S(s) and double layer potential D(s)

S(s) (λ, ς)⊤ (x) :=

∫

Γ

E(x, y; s) (λ, ς)
⊤
(y) dyΓ x 6∈ Γ,

D(s) (φ, ϕ)⊤ (x) :=

∫

Γ

(
R∗

Ny
E⊤(x, y; s)

)⊤

(φ, ϕ)⊤ (y) dyΓ x 6∈ Γ.

These operators are well suited to be used as ansatz for thermoelastic problems where
both the temperature and displacement fields satisfy either Dirichlet or Neumann
boundary conditions. To handle cases where one of the unknowns satisfies a Dirichlet-
type condition and the other one a Numann-type condition we define the following
layer potentials:

QSD(s) (λ, ϕ)
⊤
(x) :=

∫

Γ

(
R∗

DNy
E⊤(x, y; s)

)⊤

(λ, ϕ)
⊤
(y) dyΓ x 6∈ Γ,

QDS(s) (φ, ς)
⊤ (x) :=

∫

Γ

(
R∗

NDy
E⊤(x, y; s)

)⊤

(φ, ς)⊤ (y) dyΓ x 6∈ Γ.

The definition of the layer potentials can be made more symmetric by noting that,
since R∗

Dy
= RD = Id+1, the simple-layer potential can also be expressed as

S(s) (λ, ς)⊤ (x) :=

∫

Γ

(
R∗

Dy
E⊤(x, y; s)

)⊤

(λ, ς) (y) dyΓ, x 6∈ Γ.

These four thermoelastic layer potentials give rise to the operators that will be used to
reformulate our problem as a system of boundary integral equations. In the sequel, for
simplicity ⊤ superscripts applied to pairs of density functions will be suppressed when
there is no confusion in the context. For density functions φ ∈ H1/2(Γ), ϕ ∈ H1/2(Γ),
λ ∈ H−1/2(Γ), and ς ∈ H−1/2(Γ), we define the following boundary integral operators:
I. Single-layer operator.

V(s) : H−1/2(Γ)×H−1/2(Γ) −→ H1/2(Γ)×H1/2(Γ)

(λ, ς) 7−→ {RDS(s)(λ, ς)}∓.

II. Transposed Double-layer operator.

K′(s) : H−1/2(Γ)×H−1/2(Γ) −→ H−1/2(Γ)×H−1/2(Γ)

(λ, ς) 7−→ {{RNS(s)(λ, ς)}} .

III. Double-layer operator.

K(s) : H1/2(Γ)×H1/2(Γ) −→ H1/2(Γ)×H1/2(Γ)

(φ, ϕ) 7−→ {{RDD(s)(φ, ϕ)}} .

IV. Hypersingular operator.

W(s) : H1/2(Γ)×H1/2(Γ) −→ H−1/2(Γ)×H−1/2(Γ)

(φ, ϕ) 7−→ −{RND(s)(φ, ϕ)}∓.
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V. Single-Double layer combined operator.

CSD(s) : H−1/2(Γ)×H1/2(Γ) −→ H1/2(Γ)×H−1/2(Γ)

(λ, ϕ) 7−→ {RDNQSD(s)(λ, ϕ)}∓.

VI. Double-Single layer combined operator.

CDS(s) : H
1/2(Γ)×H−1/2(Γ) −→ H−1/2(Γ)×H1/2(Γ)

(φ, ς) 7−→ {RNDQDS(s)(φ, ς)}∓.

The single-layer and hypersingular operators appear when using the representation
formula (3.7) as ansatz (i.e. the direct method). The double layer operator and
its transpose appear when using the indirect method to study “pure” Dirichlet or
Neumann boundary value problems; they have been studied in [8]. The last two
operators will appear when studying problems in which one of the unknowns satisfies
Dirichlet boundary conditions and the other one Neumann boundary conditions; they
are the subject of the present article and will be studied in detail in the next section.

4. Combined Boundary Value Problems.

4.1. Energy norm in the Laplace domain. For the remainder of the article,
it will be convenient to use the following notation for the real part of the Laplace
parameter

σ := Re(s) and σ := min{1,Re(s)}.

The following s-dependent energy norms are well suited for the Laplace domain anal-
ysis (see, e.g. [8, 9, 10]) will be used in what follows.

|||u|||2|s|,Ω∓ :=
(
σ̃(u), ε̃(u)

)
Ω∓

+ ρ‖s u‖2Ω∓ u ∈ H1(Ω∓),

|||θ|||2|s|,Ω∓ := ‖∇θ‖2Ω∓ + κ−1‖
√
|s| θ‖2Ω∓ θ ∈ H1(Ω∓),

|||(u, θ)|||2|s|,Ω∓ := |||u|||2|s|,Ω∓ + |||θ|||2|s|,Ω∓ (u, θ) ∈ H1(Ω∓)×H1(Ω∓).

We note that these norms are equivalent for any value of s, as established by the
following relations

σ|||u|||1,Ω∓ ≤ |||u||||s|,Ω∓ ≤ |s|
σ
|||u|||1,Ω∓ ,(4.1a)

√
σ|||θ|||1,Ω∓ ≤ |||θ||||s|,Ω∓ ≤

√
|s|
σ
|||θ|||1,Ω∓ ,(4.1b)

σ|||(u, θ)|||1,Ω∓ ≤ |||(u, θ)||||s|,Ω∓ ≤ |s|
σ3/2

|||(u, θ)|||1,Ω∓ ,(4.1c)

which can be obtained from the inequalities:

σ ≤ min{1, |s|}, and σ max{1, |s|} ≤ |s|, ∀s ∈ C+.

We remark that for s = 1, the norm |||θ|||1,Ω− is equivalent to ‖θ‖H1(Ω−) and so is
the energy norm |||u|||1,Ω− equivalent to the H1(Ω−)-norm of u by the second Korn
inequality [6].
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4.2. Boundary integral formulation and transmission problems. We are
interested in the thermoelastic oscillation problem (2.2) with combined boundary
conditions. In order to rigorously state the distributional version of the problem, we
will first define the spaces

H1
∆∗(Ω∓) := {u ∈ H1(Ω∓) : ∆∗u ∈ L2(Ω∓)},
H1

∆(Ω
∓) := {u ∈ H1(Ω∓) : ∆u ∈ L2(Ω∓)}.

Given either (f , g) ∈ H1/2(Γ)×H−1/2(Γ) for the combined Dirichlet-Neumann prob-
lem, or (g, f) ∈ H−1/2(Γ) × H1/2(Γ) for the combined Neumann-Dirichlet problem,
we seek a pair (u, θ) ∈ H1

∆∗(Ω∓)×H1
∆(Ω

∓) satisfying

(4.2a) B(∂x, s)(u, θ) = 0 in L2(Ω∓)× L2(Ω∓),

and either set of boundary conditions:

RDN (u, θ) = (f , g) in H1/2(Γ)×H−1/2(Γ) (Dirichlet-Neumann problem),(4.2b)

RND(u, θ) = (g, f) in H−1/2(Γ)×H1/2(Γ) (Neumann-Dirichlet problem).(4.2c)

All the equalities above must be understood in the sense of distributions.
When looking for solutions the problems (4.2) either of the combined layer po-

tentials QSD and QDS defined in subsection 3.5 can be used as an ansatz since, as
it turns out, any function defined in terms of them in fact satisfies the distributional
PDE. In fact, direct—if tedious—computations show that the follwing results hold
for slightly different transmission problems for the operator B(∂z, s).

Proposition 4.1 (Combined transmission problems).
Combined Dirichlet-Neumann problem. Let (λ, ϕ) ∈ H−1/2(Γ) × H1/2(Γ) and

consider the function

(uλ, θϕ) := QSD(s)(λ, ϕ) ∈ H1(Rd \ Γ)×H1(Rd \ Γ).

Then

B(∂x, s)(uλ, θϕ) = 0 in R
d \ Γ,(4.3a)

[[RDN (uλ, θϕ)]] = 0,(4.3b)

[[RND(uλ, θϕ)]] = (λ, ϕ).(4.3c)

Combined Neumann-Dirichlet problem. Similarly, let (φ, ς) ∈ H1/2(Γ)×H−1/2(Γ)
and consider the function

(uφ, θς) := QDS(s)(φ, ς) ∈ H1(Rd \ Γ)×H1(Rd \ Γ).

Then

B(∂x, s)(uφ, θς) = 0 in R
d \ Γ,(4.4a)

[[RDN (uφ, θς)]] = (φ, ς),(4.4b)

[[RND(uφ, θς)]] = 0.(4.4c)

Since functions defined in terms of the layer potentials applied to arbitrary pairs
(λ, ϕ) ∈ H−1/2(Γ) × H1/2(Γ) or (φ, ς) ∈ H1/2(Γ) × H−1/2(Γ) satisfy the equations
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(4.3a) and (4.4a) , it only remains to find the appropriate density functions that would
satisfy the corresponding boundary conditions of the problem. This process results
in a system of boundary integral equations for the unknown densities.

For the combined Dirichlet-Neumann boundary value problem (4.2a) and (4.2b),
if we seek a solution in the form of

(4.5) (uλ, θϕ) = QSD(s) (λ, ϕ) (x),

then the boundary condition leads to an integral equation of the first kind for the
unknown density functions (λ, ϕ) such that

(4.6) RDN QSD(s) (λ, ϕ) (x) = CSD(s) (λ, ϕ) = (f , g) ,

where (f , g) ∈ H1/2(Γ)×H−1/2(Γ) is the given boundary data. In the same manner, for
the the combined Neumann-Dirichlet boundary value problem, we propose a solution
of the form

(4.7) (uφ, θς) = QDS(s) (φ, ς) (x),

then, imposing the boundary condition leads to the following integral equation of the
first kind for the unknown density functions (φ, ς)

(4.8) RND QDS(s) (φ, ς) (x) = CDS(s) (φ, ς) = (g, f) ,

where (g, f) ∈ H−1/2(Γ) × H1/2(Γ) is the given boundary data. Reciprocally, the
solutions to the boundary integral equations above can be recovered from those of the
boundary value problems. In view of the equivalence of these two sets of problems
(boundary integral formulation vs. boundary value problem), it is enough to prove
the existence and uniqueness of one of the two formulations.

4.3. Existence and Uniqueness. Note that—unlike the solution to the PDE
formulation of the thermoelastic problem that is posed only either in the interior
domain Ω− or in the exterior domain Ω+—the layer potential ansatz (4.5) and (4.7)
defined using the solutions of the boundary integral equations (4.6) and (4.8) as
densities are defined over the entire space Rd \ Γ. Therefore, in order to make use of
Proposition 4.1, we must work with the slightly more general transmission problems.
Note that an interior (resp. exterior) boundary value problem can be converted into a
transmission problem by extending the solution by zero in the exterior (resp. interior)
domain. Once the unique solvability of this problem has been established, we can then
use the results to prove that the same holds for the boundary integral formulation.

Let us first define the space

H := {(v, v) ∈ H1
∆∗(Rd \ Γ)×H1

∆(R
d \ Γ) : [[RD(v, v)]] = 0}.

The weak formulation of the problem will follow from adding the interior and exterior
expressions for the first Green formula (3.5), which yields

(4.9) ARd\Γ ((u, θ) , (v, v)) + BRd\Γ ((u, θ) , (v, v)) =

∫

Γ

[[RN (u, θ)]] · (v, v) ,

where we have defined the define the bilinear forms

ARd\Γ(·, ·) := AΩ+(·, ·) +AΩ−(·, ·), and BRd\Γ(·, ·) := BΩ+(·, ·) + BΩ−(·, ·).
Hence, the weak formulation arises by replacing the term [[RN (u, θ)]] by the pre-
scribed transmission conditions, and considering that that if a pair (u, θ) satisfies the
distributional form of the problem associated then BRd\Γ ((u, θ) , (v, v)) = 0.
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Transmission problems. Now, for given (λ, ϕ) ∈ H−1/2(Γ)×H1/2(Γ), let ϕ̃ ∈
H1(Rd \ Γ) be an extension of ϕ such that QSD(s)(0, ϕ) = (0, ϕ̃). Note that, by
construction, (0, ϕ̃) satisfies (4.3a) and [[∂nϕ̃]] = 0.

Motivated by (4.9), we will say that a pair (u, θ) ∈ H is a weak solution of (4.3a),
if it satisfies the variational equation

(4.10) ARd\Γ

(
(u, θ), (v, v)

)
= −ARd\Γ

(
(0, ϕ̃), (v, v)

)
+

∫

Γ

(λ, 0) · (v, v),

for all test functions (v, v) ∈ H. The term in the right hand side involving the

extension φ̃ accounts for the non-homogeneous jump in the trace. It is clear that if
this variational equaton holds, the distributional equation associated to BRd\Γ (·, ·)
holds as well and vice versa. We will now show that ARd\Γ(·, ·) is strongly elliptic.

If we denote the d-dimensional identity operator by I and define

Z(s) :=

(
s I 0
0 γ/η

)
,

then a simple computation shows that

Re ARd\Γ

(
(u, θ) , Z(s)

(
u, θ

)⊤)
:= Re

∫

Rd\Γ

s
(
σ(u) : ε(u) + ρs2u · u− γ θ∇ · u

)
dx

+Re

∫

Rd\Γ

(
sγ∇ · u θ +

γ

η
(∇θ · ∇θ +

s

κ
θ θ)

)
dx

≥ min{1, γ/η} σσ

|s| |||(u, θ)|||
2
|s|,Rd\Γ(4.11)

Therefore, there exists a solution of the variational equation (4.10) that we shall

denote by (uλ, θ̂). Moreover, for this pair it follows from (4.10) we see that

min{1, γ/η} σσ

|s| |||(u, θ)|||
2
|s|,Rd\Γ ≤ Re ARd\Γ

(
(uλ, θ̂), Z(s)(uλ, θ̂)

⊤
)

= −Re ARd\Γ

(
(0, ϕ̃), Z(s)(uλ, θ̂)

⊤
)
+Re

∫

Γ

(λ, 0)Z(s)(uλ, θ̂)
⊤dΓ.

We begin the estimates of the first term on the right-hand side:

−Re ARd\Γ

(
(0, ϕ̃), Z(s)(uλ, θ̂)

⊤
)
=Re

∫

Rd\Γ

sγ ϕ̃∇ · uλdx − Re

∫

Rd\Γ

γ

η

(
∇ϕ̃ · ∇θ̂ +

s

κ|s| |s|ϕ̃ θ̂

)
dx

≤ |Re
∫

Rd\Γ

(
sγ∇ϕ̃ · uλ +

γ

η
(∇ϕ̃ · ∇θ̂ +

s

κ|s| |s|ϕ̃ θ̂)
)
dx |

≤ γ max{1, 1
η
}
√

|s|
σ
|||ϕ̃|||1,Rd\Γ |||(uλ, θ̂)||||s|,Rd\Γ(4.12)

where in the estimates, an integration by parts has been tacitly employed to obtain
∫

Rd\Γ

sγ ϕ̃∇ · uλdx = −
∫

Rd\Γ

sγ∇ϕ̃ · uλdx,

since
[[
θ̂
]]

= 0. Now for the second term, we we see that

∣∣∣∣Re
∫

Γ

(λ, 0)Z(s)(uλ, θ̂)
⊤dΓ

∣∣∣∣ ≤ |s| ‖λ‖H−1/2(Γ)

1

σ
|||(uλ, θ̂)||||s|,Rd\Γ
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All the constants hidden by the symbol . depend on the physical parameters κ, ρ,
η, and γ but not on the Laplace parameter s. Consequently, combining the above
estimate together with (4.11), (4.12) we obtain the inequality

(4.13) |||(uλ, θ̂)|||1,Rd\Γ .
|s|2
σσ3

(
|||ϕ̃|||1,Rd\Γ + ‖λ‖H−1/2(Γ)

)
,

from which the uniqueness of the solution to (4.3a) follows. If we then define θϕ :=

θ̂ + ϕ̃, it follows that

B(∂x, s)(uλ, θϕ) = 0 in R
d \ Γ,

[[RDN (uλ, θϕ)]] = 0,

[[RND(uλ, θϕ)]] = (λ, ϕ).

Thus, the pair (uλ, θϕ) is the unique solution of the transmission problem (4.3).
The proof for the combined Neumann-Dirichlet transmission problem (4.4), fol-

lows a very similar argument. For a given pair (φ, ς) ∈ H1/2(Γ) × H−1/2(Γ), we

extend φ to φ̃ ∈ H1(Rd \ Γ) with (φ̃, 0) = QDS(s)(φ, 0). Having been defined in

terms of layer potentials, the pair (φ̃, 0) will satisfy (4.4a) and
[[
T φ̃

]]
= 0. We will

say that (u, θ) ∈ H is a weak solution of the transmission problem (4.4) if it satisfies
the variational equation

(4.14) ARd\Γ

(
(u, θ), (v, v)

)
= −ARd\Γ

(
(φ̃, 0), (v, v)

)
+

∫

Γ

(0, ς) · (v, v)

for all test functions (v, v) ∈ H. The solvability of the variational formulation follows
from (4.11), therefore there exists at least one pair satisfying (4.4a), which we shall
denote (û, θς), for which it follows that

min{1, γ/η} σσ

|s| |||(û, θς)|||
2
|s|,Rd\Γ ≤ Re ARd\Γ

(
Z(s)(û, θς)

⊤, (û, θς)
)
.

= −Re ARd\Γ

(
Z(s)(φ̃, 0)⊤, (û, θς)

)
+Re

∫

Γ

Z(s)(0, ς)⊤ · (û, θς)dΓ.

In the same manner, we obtain the estimates of the right hand side of the above two
terms such that

−Re ARd\Γ

(
Z(s)(φ̃, 0)⊤, (û, θς)

)
= − Re

∫

Rd\Γ

(
s̄σ(φ̃) : ε(û) + ρ s |s|2φ̃ · û+ s̄γ∇ · φ̃ θς

)
dx

= − Re

∫

Rd\Γ

(
s̄σ(φ̃) : ε(û) + ρ s |s|2φ̃ · û− s̄γ∇θς · φ̃

)
dx

≤max{1, γ} |s|2
σ2

|||φ̃|||1,Rd\Γ |||(û, θς)||||s|,Rd\Γ(4.15a)

Re

∫

Γ

Z(s)(0, ς)⊤, (û, θς)dΓ

≤ γ

η

√
1

σ
‖ς‖H−1/2(Γ)|||θς ||||s|,Rd\Γ ≤ γ

η

√
1

σ
‖ς‖H−1/2(Γ)|||θς ||||s|,Rd\Γ(4.15b)

Again in order to bound the term ∇·φ̃ we have applied the integration by parts to the
corresponding domain integral in (4.15a) and made use of the jump condition [[θς ]] = 0.
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Just like before, the constants disregarded by the symbol . have no dependence on
the Laplace parameter s. Combining (4.15a) and (4.15b) together with the estimate
of ellipticity condition

min{1, γ/η} σσ

|s| |||(û, θς)|||
2
|s|,Rd\Γ ≤ Re ARd\Γ

(
Z(s)(û, θς)

⊤, (û, θς)
)

yield the inequality

(4.16) |||(û, θς)|||1,Rd\Γ .
|s|3
σ σ4

(
|||φ̃|||1,Rd\Γ + ‖ς‖H−1/2(Γ)

)

from which the uniqueness of the solution follows. By defining uφ := φ̃+ û it is clear
that [[RDN (uφ, θς)]] = (φ, ς) and [[RND(uφ, θς)]] = 0. Thus, (uφ, θς) is the unique
solution of problem (4.4).

Boundary integral equations. Recall the boundary integral equations (4.6)
and (4.8) for the thermoelastic problem

CSD(s) (λ, ϕ) :=RDN QSD(s) (λ, ϕ) (x) = (f , g) (Dirichlet-Neumann),

CDS(s) (φ, ς) :=RND QDS(s) (φ, ς) (x) = (g, f) (Neumann-Dirichlet).

Using the results from the previous section we can now show that the combined
boundary integral operators CSD(s) and CDS(s) are in fact invertible.

Lemma 4.2. The combined boundary integral operators CSD and CDS are invert-

ible. Moreover, the following bounds for their inverses hold

‖C−1
SD(s)‖H1/2(Γ)×H−1/2(Γ)→H−1/2(Γ)×H1/2(Γ) .

|s|4
σσ5

(4.17)

‖C−1
DS(s)‖H−1/2(Γ)×H1/2(Γ)→H1/2(Γ)×H−1/2(Γ) .

|s|4
σσ6

(4.18)

Proof. We begin with the weak formulation of partial differential equations (4.3a)
or (4.4a):

ARd\Γ ((u, θ), (v, v)) =

∫

Γ

RN (u, θ), (v, v) dΓ,(4.19)

where (u, θ) = (uλ, θϕ) or (u, θ) = (uφ, θς). For the Dirichlet-Neumann problem,
consider an arbitrary pair (λ, ϕ) ∈ H−1/2(Γ)×H1/2(Γ) and the layer potential ansatz
(uλ, θϕ) = QSD(λ, ϕ). By the continuity properties of the double and simple layer
potentials we have that

(uλ, ∂nθϕ)
−
= (uλ, ∂nθϕ)

+
and [[RND(uλ, θϕ)]] = (λ, ϕ).

Hence, if we use (uλ, θϕ) as test and (uλ, θϕ) as trial in the boundary term from
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(4.19), we observe that
∫

Γ

RN (uλ, θϕ) ·
(
uλ, θϕ

)
dΓ

=

∫

Γ

((
Tuλ − γθϕn, ∂nθϕ

)− ·
(
uλ, θϕ

)− −
(
Tuλ − γθϕn, ∂nθϕ

)+ ·
(
uλ, θϕ

)+)
dΓ

=

∫

Γ

((
Tuλ − γθϕn, θϕ

)− · (uλ, ∂nθϕ)
− −

(
Tuλ − γθϕn, , θϕ

)+ · (uλ, ∂nθϕ)
+
)
dΓ

=

∫

Γ

[[(
Tuλ − γθϕn, θϕ

)]]
· (uλ, ∂nθϕ) dΓ =

∫

Γ

[[
RND(uλ,−θϕ)

]]
· RDN (uλ, θϕ)dΓ

=

∫

Γ

(λ, ϕ) · RDNQSD(λ, ϕ)dΓ =

∫

Γ

(λ, ϕ) · CSD(λ, ϕ).dΓ

Above, it is important to recall that the second entry of the combined boundary
operator RND is defined in (3.1) with the negative sign, so that

[[(
Tuλ − γθϕn, −θϕ

)]]
=

[[
RND(uλ, θϕ)

]]
= (λ, ϕ).

Therefore, going back to (4.19) and recalling the estimate (4.11) it follows that

σσ

|s| |||(uλ, θϕ)|||2|s|,Rd\Γ .Re ARd\Γ

(
(uλ, θϕ), Z(s)(uλ, θϕ)

⊤
)

=Re〈
[[
RND

(
uλ, θϕ

)]]
, Z(s) (uλ, θϕ)

⊤〉Γ
=Re

〈
(λ, ϕ), Z(s)CSD(λ, ϕ)

〉
Γ
,(4.20)

which is a fundamental inequality.
For the final step, it remains to bound |||(uλ, θϕ)|||2|s|,Rd\Γ below by ‖λ‖2

H−1/2(Γ)

and ‖ϕ)‖2
H1/2(Γ)

. We will make use of [8, estimate 4.12] relating the H−1/2(Γ)-norms

of the densities (λ, ϕ) to the energy norm of the functions (uλ, θς) = S(s)(λ, ϕ),
namely

‖(λ, ς)‖2
H−1/2(Γ) .

|s|2
σ3

|||(uλ, θς)|||2|s|,Rd\Γ.

This inequality implies

‖λ‖2
H−1/2(Γ) = ‖(λ, 0)‖2

H−1/2(Γ) .
|s|2
σ3

|||(uλ, 0)|||2|s|,Rd\Γ ≤ |s|2
σ3

|||(uλ, θϕ)|||2|s|,Rd\Γ,

(4.21)

and

‖ς‖2H−1/2(Γ) = ‖(0, ς)‖2H−1/2(Γ) .
|s|2
σ3

|||(0, θς)|||2|s|,Rd\Γ ≤ |s|2
σ3

|||(uφ, θς)|||2|s|,Rd\Γ.

(4.22)

From (4.21) combined with (4.1) and the trace theorem it follows that

2
|s|2
σ3

|||(uλ, θϕ)|||2|s|,Rd\Γ ≥‖λ‖2
H−1/2(Γ) +

|s|2
σ2

|||(uλ, θϕ)|||21,Rd\Γ

≥‖λ‖2
H−1/2(Γ) +

|s|2
σ2

‖ϕ‖2H1/2(Γ)

≥‖λ‖2
H−1/2(Γ) +max{1, |s|2}‖ϕ‖2H1/2(Γ)

≥‖λ‖2
H−1/2(Γ) + ‖ϕ‖2H1/2(Γ).
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Combining this with (4.20) yields

σσ4

|s|3 ‖(λ, ϕ)‖2
H−1/2(Γ)×H1/2(Γ) . Re

〈
(λ, ϕ), Z(s)CSD(λ, ϕ)

〉
Γ

which proves the ellipticity of CSD and the bound (4.17) by a Lax-Milgram argument.
A very similar argument can be used for the Neumann-Dirichlet problem, we will

give here only the main steps and will skip the details. By taking a layer potential
ansatz of the form (uφ, θς) = QDS(φ, ς) for arbitrary densities (φ, ς) ∈ H1/2(Γ) ×
H−1/2(Γ) and using the continuity properties of the simple and double layer potentials
one arrives at

∫

Γ

RN

(
uφ, θς

)
· (uφ, θς) dΓ =

∫

Γ

RNDQDS(φ, ς) ·
[[
RDN (uφ, θς)

]]
dΓ

=
〈
CDS(φ, ς), (φ, ς)

〉
Γ

From here, recalling (4.19) and based on the ellipticity of Re ARd\Γ(Z(s)(uφ, θς)
⊤, (uφ, θς))

we arrive at a similar fundamental equality for the boundary integral operator CDS :

(4.23)
σσ

|s| |||(uφ, θς)|||2|s|,Rd\Γ . Re〈Z(s̄)CDS(φ, ς), (φ, ς)〉Γ.

In the same manner, from (4.22) combined with (4.1) and the trace theorem, we
obtain

2
|s|2
σ3

|||(uφ, θς)|||2|s|,Rd\Γ ≥ σ max{1, |s|2} ‖φ‖2
H1/2(Γ) + ‖ς‖2H−1/2(Γ)

≥ σ
(
‖φ‖2

H1/2(Γ) + ‖ς‖2H−1/2(Γ)

)
.

This in turn can be bounded from below in terms of the densities by a combined
application of (4.23) and the above estimate, leading to

σσ5

|s|3 ‖(φ, ς)‖2
H1/2(Γ)×H−1/2(Γ) . Re〈Z(s)CDS(φ, ς), (φ, ς)〉Γ.

This establishes the coercivity of CDS . Finally, an application of the Lax-Milgram
lemma leads to (4.18).

5. Results in the time domain.

5.1. Time-domain convolutional boundary integral equations. For con-
venience, we recall the time-domain combined initial boundary value problems for the
elastic displacement field U(x, t) and temperature filed Θ(x, t) governed by the linear
thermo-elasto-dynamic system (2.1)

ρ
∂2U

∂t2
−∆∗U+ γ∇ Θ =0 in Ω∓ × (0, T ),

1

κ

∂Θ

∂t
−∆Θ+ η

∂

∂t
(∇ ·U) = 0 in Ω∓ × (0, T ),

U(x, t) = 0,
∂

∂t
U(x, t) = 0, Θ(x, t) = 0, in Ω∓ × (−∞, 0),
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together with either Dirichlet-Neumann boundary conditions:

U(x, t) = F(x, t), and ∇Θ(x, t) · n = G(x, t) on ΓT ,

or Neumann-Dirichlet boundary conditions:

σ(U,Θ)n = G(x, t) and Θ = F (x, t) on ΓT .

Let us begin the time-domain analysis with the Dirichlet-Neumann boundary value
problem. In the previous section it was shown that for given (F(x, ·), G(x, ·)) ∈
H1/2(Γ) × H−1/2(Γ), the Laplace-transformed problem has a unique weak solution
H1(Ω∓)×H1(Ω∓) ∋ (uλ, θϕ) := L{(U,Θ)} in the form

(uλ, θϕ) = QSD(s)(λ, ϕ) ∈ H1(Ω∓)×H1(Ω∓),

where (λ, ϕ) ∈ H1/2(Γ) × H−1/2(Γ) is the unique solution of the boundary integral
equation of the first kind

CSD(s)(λ, ϕ) = (f(x, s), g(x, s)) on Γ.

The solutions to the PDE sytem (2.1a) and (2.1b) are obtained in terms of the bound-
ary data and the layer densities by the two-step process

(λ, ϕ) = C−1
SD(s)(f(x, s), g(x, s)),

(uλ, θϕ) =QSD(s)(λ, ϕ) = QSD(s)C−1
SD(s)(f(x, s), g(x, s)).

The time-domain counterparts to these identities are given in terms of the convolutions

L−1{(λ, ϕ)} = L−1{C−1
SD(s)} ∗ (F(x, t), G(x, t)),

(U(x, t),Θ(x, t)) = L−1{QSD(s) ◦ C−1
SD(s)} ∗ (F(x, t), G(x, t)).

Similarly, for the Neumann-Dirichlet problem, the weak solution in the Laplace do-
main is given in terms of the combined layer potential in the form:

(uφ, θς) = QDS(s)(φ, ς) ∈ H1(Ω∓)×H1(Ω∓).

As we have shown previously, the densities (φ, ς) ∈ H1/2(Γ)×H−1/2(Γ) are the unique
solution of the boundary integral equation of the first kind

CDS(s)(φ, ς) = (g(x, s), f(x, s)) on Γ.

In the same manner as for the Dirichlet-Neumann problem, we can express the solu-
tions (φ, ς) and (uφ, θς) in terms of the given boundary data as

(φ, ς) = C−1
DS(s)(g(x, s), f(x, s)),

(uφ, θς) =QDS(s)(φ, ς) = QDS(s)C−1
DS(s)(g(x, s), f(x, s)),

which in the time domain become

L−1{(φ, ς)} = L−1{C−1
DS(s)} ∗ (F(x, t), G(x, t)),

(U(x, t),Θ(x, t)) = L−1{QDS(s) ◦ C−1
DS(s)} ∗ (F(x, t), G(x, t)).
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5.2. A class of admissible symbols. Having established the coercivity of the
combined operators CSD and CDS in the Laplace domain in subsection 4.3, we are now
in a position to establish the solvability of the time-domain counterpart. In order to
state the result that will allow us to transfer our previous analysis in the Laplace
domain back in to the time domain via Lubich’s method [16], we will first have to
define an admissible class of symbols.

For Banach spaces X and Y , we will denote the set of bounded linear operators
from X to Y as B(X,Y ) and will say that an analytic function A : C+ → B(X,Y )
belongs to the class A(µ,B(X,Y )), if there exists µ ∈ R such that

‖A(s)‖X,Y ≤ CA (Re(s)) |s|µ for s ∈ C+,

where CA : (0,∞) → (0,∞) is a non-increasing function such that

CA(σ) ≤
c

σm
, ∀ σ ∈ (0, 1]

for some m ≥ 0 and constant c > 0. The reader will notice the resemblance between
the admissibility criterion above and the bounds established in Lemma 4.2 for the
inverses of the operators CSD and CDS . The significance of these bounds will be made
clear by the following theorem, that will establish the connection between the Laplace
domain operators studied in the previous section, and the solution of the time domain
problem under consideration.

Theorem 5.1 (See [21], Proposition 3.2.2 and [20]). Let A = L{a} ∈ A(k +
α,B(X,Y )) with α ∈ [0, 1) and k a non-negative integer. If g ∈ Ck+1(R, X) is causal

and its derivative g(k+2) is integrable, then a ∗ g ∈ C(R, Y ) is causal and

‖(a ∗ g)(t)‖Y ≤ 2αCǫ(t)CA(t
−1)

∫ 1

0

‖(P2g
(k))(τ)‖X dτ,

where

Cǫ(t) :=
1

2
√
π

Γ(ǫ/2)

Γ ((ǫ+ 1)/2)

tǫ

(1 + t)ǫ
, (ǫ := 1− α and µ = k + α)

and

(P2g)(t) = g + 2ġ + g̈.

5.3. Well posedness in the Time-Domain. In order to establish the final
time-domain results, we will now make use of the coercivity bounds from subsection 4.3
combined from with an application of Theorem 5.1 to the solutions of the combined
problems. The time-domain results will be summarized in the following two theorems:

Theorem 5.2 (The Dirichlet-Neumann problem). Consider the vector of bound-

ary data FDN := (F(x, t), G(x, t)). The following two statements hold:

(a) For the densities (λ, ϕ) ∈ H−1/2(Γ)×H1/2(Γ).

If FDN ∈ C5(R,H1/2(Γ) × H−1/2(Γ)) is causal and F
(6)
DN is integrable, then

L−1{(λ, ϕ)} ∈ C(R,H−1/2(Γ)×H1/2(Γ)) is causal and

‖L−1{(λ, ϕ)}‖H−1/2(Γ)×H1/2(Γ)

.
t

(1 + t)
t max{1, t5}

∫ t

0

‖P2F
(4)
DN (τ)‖H1/2(Γ)×H−1/2(Γ) dτ.(5.1)
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(b) For the solution (U(x, t),Θ(x, t)) = L−1{QSD(s) ◦ C−1
SD(s)} ∗FDN .

If FDN ∈ C4(R,H1/2(Γ) × H−1/2(Γ)) is causal and F
(5)
DN is integrable, then

(U(x, t),Θ(x, t)) ∈ C(R,H1(Ω∓)×H1(Ω∓)) is causal and

‖(U(·, t),Θ(·, t))‖H1(Ω∓)×H1(Ω∓)

.
t

(1 + t)
t max{1, t4 1

2 }
∫ t

0

‖P2F
(3)
DN (τ)‖H1/2(Γ)×H−1/2(Γ) dτ.(5.2)

Proof. The proof of (a) is a direct application of Theorem 5.1 and the coercivity
estimate (4.17), where the relevant spaces are X = H1/2(Γ) × H−1/2(Γ), and Y =
H−1/2(Γ)×H1/2(Γ). From the estimate C−1

SD(s) given in Lemma 4.2 and following the
notation introduced in Theorem 5.1 it follows that α = 0, k = 3, ǫ = 1, and therefore

Cǫ = c
t

(1 + t)
, CA(t

−1) = c tmax{1, t5},

which proves (5.1).
For the case (b) we consider the spaces X = H−1/2(Γ) × H1/2(Γ), and Y =

H1(Ω∓)×H1(Ω∓). A direct estimation of the bounds for the composition of operators
QSD(s)C−1

SD(s) of the form ‖QSD(s)C−1
SD(s)‖ ≤ ‖QSD(s)‖ ‖C−1

SD(s)‖ would result in an
over estimation and tighter regularity requirements on the problem data. In order to
obtain a sharper bound for the operator QSD(s)C−1

SD(s), we will start from (4.20)

|||(uλ, θϕ)|||2|s|,Rd\Γ .
|s|
σσ

Re ARd\Γ

(
(uλ, θϕ), Z(s)(uλ, θϕ)

⊤
)

=
|s|
σσ

Re〈(λ, ϕ), Z(s)CSD(λ, ϕ)〉Γ

.
|s|2
σσ2

‖(λ, ϕ)‖H−1/2(Γ)×H1/2(Γ) ‖(f , g)‖H1/2(Γ)×H−1/2(Γ)

.
|s|3
σσ3 1

2

|||(uλ, θϕ)||||s|,Rd\Γ ‖(f , g)‖H1/2(Γ)×H−1/2(Γ)

where we have used the fact that ‖Z(s)‖ . |s|/σ, the inequality (4.21) and the
boundedness of the trace. One further application of (4.1) yields

|||(uλ, θϕ)|||1,Rd\Γ .
|s|3
σσ4 1

2

‖(f , g)‖
H1/2(Γ)×H−1/2(Γ).

Hence,

‖QSD(s)C−1
SD(s)‖H−1/2(Γ)×H1/2(Γ)→H1(Ω∓)×H1(Ω∓) ≤

|s|3
σσ4 1

2

.

We can now use Theorem 5.1 with α = 0, k = 3, ǫ = 1 and

Cǫ = C
t

1 + t
, CA(t

−1) = ctmax{1, t4 1
2 },

arriving at (5.2).

The corresponding result for the Neumann-Dirichlet problem is stated in the following
theorem.
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Theorem 5.3 (The Neumann - Dirichlet problem). Let FND := (G(x, t), F (x, t)).

(a) For the densities (φ, ς) ∈ H1/2(Γ)×H−1/2(Γ).

If FND ∈ C5(R,H−1/2(Γ) × H1/2(Γ)) is causal and F
(6)
ND is integrable, then

L−1{(φ, ς)} ∈ C(R,H1/2(Γ)×H−1/2(Γ)) is causal and

‖L−1{(φ, ς)}‖
H1/2(Γ)×H−1/2(Γ)

.
t

(1 + t)
t max{1, t6}

∫ t

0

‖P2F
(4)
ND(τ)‖

H−1/2(Γ)×H1/2(Γ) dτ.(5.3)

(b) For the solution (U(x, t),Θ(x, t)) = L−1{QDS ◦ C−1
DS(s)} ∗FDS.

If FND ∈ C4(R,H−1/2(Γ) × H1/2(Γ)) is causal and F
(5)
ND is integrable, then

(U(x, t),Θ(x, t)) ∈ C(R,H1(Ω∓)×H1(Ω∓)) is causal and we have the estimate:

‖(U(·, t)},Θ(·, t))‖H1(Ω∓)×H1(Ω∓))

.
t

(1 + t)
t max{1, t5}

∫ t

0

‖P2F
(3)
ND(τ)‖H−1/2(Γ)×H1/2(Γ) dτ.(5.4)

Proof. As in the Dirichlet-Neumann case, the bound (5.3) on (a) follows imme-
diately from the one for C−1

DS(s) given by (4.18) in Lemma 4.2. Then, by identifying
the spaces X = H−1/2(Γ) × H1/2(Γ) and Y = H1/2(Γ) × H−1/2(Γ), together with
α = 0, k = 3, and ǫ = 1, Theorem 5.1 can be applied leading to (5.3).

To prove (b), we first need to derive a tighter bound for the composition of
operators QDS(s)C−1

DS(s), as the product of the separate bounds for each of the two
operators, would yield an unnecessarily loose estimate. Instead, we recall (4.23)

σσ

|s| |||(uφ, θς)|||2|s|,Rd\Γ . Re〈Z(s)CDS(φ, ς), (φ, ς)〉Γ,

which implies that

σσ

|s| |||(uφ, θς)|||2|s|,Rd\Γ .
|s|
σ
‖CDS(uφ, θς)‖H−1/2(Γ)×H1/2(Γ)‖(φ, ς)‖H1/2(Γ)×H−1/2(Γ)

=
|s|
σ
‖(g, f)‖H−1/2(Γ)×H1/2(Γ) ‖(φ, ς)‖H1/2(Γ)×H−1/2(Γ)

.
|s|2
σ3

‖(g, f)‖
H1/2(Γ)×H−1/2(Γ) |||(uφ, θς)||||s|,Rd\Γ,

where ‖Z(s)‖ . |s|/σ was used in the first inequality and for the last inequality we
used (4.1a), (4.22) and the trace theorem. Hence, using (4.1c) we have

|||(uφ, θς)|||1,Rd\Γ .
|s|3
σσ5

‖(g, f)‖H1/2(Γ)×H−1/2(Γ),

from which we can conclude that

(5.5) ‖QDS(s)C−1
DS(s)‖H−1/2(Γ)×H1/2(Γ)→H1(Ω∓)×H1(Ω∓) ≤ c

|s|3
σσ5

.

Finally, (5.4) follows from an application of Theorem 5.1 extracting the information
X = H−1/2(Γ)×H1/2(Γ), Y = H1(Ω∓)×H1(Ω∓), α = 0, k = 3, and ǫ = 1 from (5.5)
above.
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Appendix A. Fundamental solutions. For completeness, we present the
fundamental solution of eq. (2.4) in two and three dimensions. We refer the reader
to [8] where a detailed derivation is presented following Hörmander’s method [7].

Fundamental solution in 3 dimensions. Where the constants λ2
1, λ

2
2, λ

2
3 sat-

isfy the dispersion relations

λ2
1 + λ2

2 =
s

κ
+

γ η s

λ+ 2µ
+ λ2

p, λ2
p =

ρ s2

λ+ 2µ
,(A.1)

λ2
1 λ

2
2 =

s

κ
λ2
p, λ2

3 =
ρ s2

µ
.

The three-dimensional fundamental solution for the thermoelastic oscillation operator
is defined as

(A.2) E(x, y; s) =

3∑

k=1

Dk(x, s)
e−λk|x−y|

4π|x− y| ,

where Dk(x, s)
′s are matrices of differential operators given by

D1(x, s) :=
1

ρs2(λ2
1 − λ2

2)




(λ2
p − λ2

2)∇∇⊤ γ λ2
p ∇

s η λ2
p ∇⊤ ρ s2 (λ2

1 − λ2
p)


 ,(A.3)

D2(x, s) :=
1

ρs2(λ2
2 − λ2

1)




(λ2
p − λ2

1)∇∇⊤ γ λ2
p ∇

s η λ2
p ∇⊤ ρ s2 (λ2

2 − λ2
p)


 ,(A.4)

D3(x, s) :=
1

ρs2




λ2
3 I−∇∇⊤ 0

0 0


 .(A.5)

Fundamental solution in two dimensions. The decomposition of the funda-
mental solution in the two dimensional case is similar to its three-dimensional coun-
terpart. However, in the 2-D case it is given in terms of modified Bessel functions of
the second kind K0(λk|x− y|), also known as Macdonald functions. The fundamental
solution is given by

E(x, y) =

3∑

k=1

Dk(x, s)
1

2π
K0(λk|x− y|),
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where the matrices of operators Dk(x, s) are defined as

D1(x, s) :=
1

ρs2(λ2
1 − λ2

2)




(λ2
p − λ2

2)∇∇⊤ γ λ2
p ∇

s η λ2
p ∇⊤ ρ s2 (λ2

1 − λ2
p)


 ,(A.6)

D2(x, s) :=
1

ρs2(λ2
2 − λ2

1)




(λ2
p − λ2

1)∇∇⊤ γ λ2
p ∇

s η λ2
p ∇⊤ ρ s2 (λ2

2 − λ2
p)


 ,(A.7)

D3(x, s) := − 1

ρs2




∇∇⊤ − λ2
3 I 0

0 0


 ,(A.8)

and the constants λ2
1, λ

2
2, λ

2
3 satisfy

λ2
1 + λ2

2 =
s

κ
+

γ η s

λ+ 2µ
+ λ2

p, λ2
p =

ρ s2

λ+ 2µ
,

λ2
1 λ

2
2 =

s

κ
λ2
p, λ2

3 =
ρ s2

µ
.

Remark.. We note that for the adjoint equation, if we let E∗(x, y; s) be the
fundamental solution such that

B∗(∂y, s)E
∗(x, y; s) = −δ(y − x)I,

then we have
E∗(x, y; s) = E⊤(x, y; s),

where E⊤(x, y; s) is obtained from E(x, y; s) by transposing the rows and columns (see
[12], p.96, and [11], p.131). The fundamental solutions given in [12, p.95] (see also [4]
and [3]) for the sytstem of time-harmonic oscillation equations can be recovered from
the one above by replacing s and λ2

j by −i ω and −λ2
j , respectively.
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