
ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING
MAN–ENVIRONMENT–MAN EPIDEMICS∗

V. CAPASSO† AND R. E. WILSON‡

SIAM J. APPL. MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 57, No. 2, pp. 327–346, April 1997 002

Abstract. In this paper an old model for the temporal and spatial evolution of orofecal trans-
mitted disease is reexamined. It consists of a system of two coupled reaction-diffusion equations for
the concentration of bacteria and infective humans, under the assumptions that the total population
of humans is unaffected by the disease and only a small proportion of the population is affected
at any one time. The force of infection on healthy humans is assumed to be a sigmoidal function
of bacterial concentration tending to some finite limit, and with zero gradient at zero. (This last
feature models an immune response to low concentrations of the infectious agent.) In practice the
diffusion coefficient for infective humans is much smaller than that of bacteria and is therefore set
to zero; a detailed analysis of the steady-state bifurcation pattern is then performed for the case of
homogeneous Dirichlet boundary conditions applied at the endpoints of a one-dimensional interval.
Particular attention is paid to the limiting case of small bacterial diffusivity.

A partial analysis of the dynamical behavior of the system, based on monotone techniques, is
carried out. It is speculated that the system, subject to homogeneous Dirichlet boundary conditions,
has saddle point structure in the natural function space of the problem, similar to the ODE case in
which the diffusivity of bacteria is also set to zero. This conjecture is supported by some numerical
simulation on both one- and two-dimensional space domains.
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1. Introduction. The spread of infectious diseases due to environmental pollu-
tion by an infective human population is one of the main causes of relevant epidemics
(cholera, typhoid fever, infectious hepatitis A, malaria, schistosomiasis, etc.) (see,
e.g., [2] for extended literature on this subject).

Many results have been obtained for the general theory of man–environment–man
epidemics, but the case which has been mostly considered is the one in which there
is at most one nontrivial endemic equilibrium: above some parameter threshold a
nontrivial state exists, and all epidemic outbreaks tend to it; below the parameter
threshold there is no nontrivial state, and all epidemics tend to extinction.

Actually, real data show that a bistable case is more likely to occur, in which the
initial condition is relevant. Here (provided we are above some parameter threshold),
large outbreaks tend to a nontrivial endemic state which invades the whole habitat;
however, small outbreaks tend to extinction and may remain strictly localized in
space (see [6], [14]). This may explain why, even though we are exposed to so many
infections, only some diseases have evolved into an endemic state.

The mathematical model proposed in [6] and [4] to describe the evolution of
fecally-orally transmitted diseases in the coastal regions of the Mediterranean sea
(cholera, typhoid fever, infectious hepatitis A) includes, as a basic feature, the positive

∗Received by the editors April 17, 1995; accepted for publication (in revised form) January 31,
1996. This research was performed under the auspices of GNFM-CNR (Italy) in the framework of
ISS contract n.9203-04.

http://www.siam.org/journals/siap/57-2/28468.html
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feedback interaction between the infective human population and the concentration
of the infectious agent in the environment. The human population, once infected, acts
as a multiplier of the infectious agent, which is then returned to the environment in
fecal excretion; on the other hand, the infectious agent is transmitted to the human
population via contaminated food consumption.

If we assume that the total susceptible human population is large with respect to
its infective fraction, the basic mathematical model (see [4]) can be written

dz1

dt
(t) = −a11z1(t) + a12z2(t)

dz2

dt
(t) = −a22z2(t) + g(z1(t))

 for t > 0.(1.1)

Here z1(t) denotes the (average) concentration of infectious agent in the environment
at time t ≥ 0; z2(t) denotes the infective human population at time t; 1/a11 is the
mean lifetime of the agent in the environment; 1/a22 is the mean infectious period
of the human infectives; a12 is the multiplicative factor of the infectious agent due
to the human population; and finally g(z1) is the “force of infection” on the human
population due to a concentration z1 of the infectious agent.

The spread of other infectious diseases may be modeled as above, with slight
modifications. Schistosomiasis is an important example; see [11].

The choice of g has a strong influence on the dynamical behavior of system (1.1).
The case in which g is a monotone increasing function with constant concavity has
been analyzed in an extensive way (see [2], [3], [4]); concavity leads to the existence
(above a parameter threshold) of exactly one nontrivial endemic state and to its global
asymptotic stability.

In [5] and [11] the bistable case (in which system (1.1) has two nontrivial steady
states, one of which is a saddle point in the phase plane) was obtained by assuming
that the force of infection, as a function of the concentration of the pollutant, is sigma
shaped (defined concisely by properties (P1)–(P5) in section 2). In [11] this shape is
obtained as a consequence of the sexual reproductive behavior of the schistosomes.
In [5] (see also [4]) the case of fecally-orally transmitted diseases was considered; an
interpretation of the sigma shape of the force of infection was proposed to model
the response of the immune system to environmental pollution: the probability of
infection is negligible at low concentrations of the pollutant but increases with larger
concentrations; it then becomes concave and saturates to some finite level as the
concentration of pollutant increases without limit.

The geographical localization of a small outbreak had never been analyzed be-
fore, even though computer simulations in [5] had already shown such a possibility,
when the reaction diffusion system modeling the epidemic with spatial structure had
been subject to homogeneous Dirichlet boundary conditions. These conditions by
themselves are not realistic since they correspond to a completely hostile boundary.
On the other hand pure Neumann boundary conditions are also not realistic since
they correspond to the complete isolation of the habitat. However, these two extreme
cases may provide some insight about the behavior of the system under more general
boundary conditions.

In order to consider spatial variations, we study the system{
u1t = d∆u1 − a11u1 + a12u2,
u2t = g(u1)− a22u2

(1.2)
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for x ∈ Ω (a bounded domain) and t > 0, subject to suitable boundary and initial
conditions. This system models random dispersal of the pollutant while ignoring the
small mobility of the infective human population (see [3]). Here u1(x, t) denotes the
spatial density of the pollutant at a point x of the habitat Ω at time t ≥ 0, and
u2(x, t) denotes the spatial density of the infective human population.

In [3], [4], existence, uniqueness, and regularity of solutions of the evolution prob-
lem related to (1.2), subject to standard linear boundary conditions, were proven. In
fact, it was shown that the solution of the initial-boundary value problem associated
with system (1.2) is classical for t ∈ (0,∞) under suitable regularity assumptions on
the data. As a consequence, we shall limit the analysis of the steady states of system
(1.2) to classical solutions of the stationary problem{

d∆u1 − a11u1 + a12u2 = 0,
g(u1)− a22u2 = 0(1.3)

for x ∈ Ω, subject to suitable boundary conditions.
A rather complete treatment of the qualitative behavior of systems (1.2), (1.3)

has been developed in [2], [3], and [4] for the case in which g is a concave function.
Concavity of g induces concavity of the evolution operator, which, together with the
monotonicity induced by the quasi monotonicity of the reaction terms in (1.2), again
imposes uniqueness of the possible nontrivial endemic state.

On the other hand, in the case where g is sigma shaped, monotonicity of the
solution operator is preserved, but as we have already observed in the ODE case,
uniqueness of nontrivial steady states is no longer guaranteed. Furthermore, the sad-
dle point structure of the phase space cannot be easily transferred from the ODE to
the PDE case, as discussed in [5]. (In [5], homogeneous Neumann boundary condi-
tions are analyzed in some detail.) Further, when we have homogeneous Dirichlet
boundary conditions or general third-type boundary conditions, nontrivial spatially
homogeneous steady states are no longer allowed. For a more extended discussion,
the reader is referred to [2] (see also [16]).

In sections 2, 3, and 4 (for the sake of simplicity), we shall refer only to a one-
dimensional domain Ω = [0, l] ⊂ R, and we shall associate with (1.3) homogeneous
Dirichlet boundary conditions.

In section 2 we shall formulate the mathematical problem, introduce ordering of
solutions by positive cones, and discuss some general properties of sigmoidal functions.

In section 3 we carry out the steady-state analysis and determine the bifurca-
tion pattern of nontrivial solutions to system (1.3) subject to homogeneous Dirichlet
boundary conditions. When the diffusivity of pollutant is small, we show the exis-
tence of a narrow bell-shaped steady state, which we conjecture is a saddle point for
the dynamics of (1.2). “Small” outbreaks are localized under this bell-shaped steady
state.

In section 4, we use monotone methods to carry out a partial analytical study
of the evolution problem. The conjectured saddle point structure and stability of
nontrivial steady states have been supported by computer simulation. We leave the
complete rigorous stability analysis to a subsequent paper.

In section 5, we consider multidimensional space domains Ω, again with homo-
geneous Dirichlet boundary conditions in force. (We will mainly concentrate on two-
dimensional examples.) We present numerical simulations which seem to confirm
that, here also, provided that Ω is convex, (1.2) inherits the bistable structure of the
underlying ODE system (1.1).
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2. The mathematical problem. Notation and preliminary analysis. The
aim of this paper is to study the system of a linear parabolic equation coupled with
an ODE defined by

∂

∂t
u1(x, t) = d

∂2

∂x2u1(x, t)− a11u1(x, t) + a12u2(x, t),

∂

∂t
u2(x, t) = −a22u2(x, t) + a21g(u1(x, t))

(2.1)

for x ∈ (0, l), t > 0, subject to the boundary conditions

u1(0, t) = u1(l, t) = 0 for t > 0.(2.2)

System (2.1), (2.2) is supplemented by the initial conditions

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x) for x ∈ (0, l),(2.3)

not both identically zero. We let u(t) denote (u1(·, t), u2(·, t)), a member of a suitable
function space.

We shall assume that d, a11, a12, a21, and a22 are positive real constants and that
the function g : R+ → R+ satisfies the following properties:

(P1) g ∈ C2(R+);
(P2) g(0) = g′(0) = 0;
(P3) g′(z) > 0 for any z > 0;
(P4) limz→∞ g(z) = 1;
(P5) ∃ ξ > 0 such that g′′(z) > 0 for z ∈ (0, ξ) and g′′(z) < 0 for z ∈ (ξ,∞).

We may rescale problem (2.1)–(2.3) by putting x = lx̃, t = t̃/a11, d = a11l
2d̃, and

v = a21ṽ/a11 so that on removal of tildes we have
∂u1

∂t
(x, t) = d

∂2u1

∂x2 (x, t)− u1(x, t) + αu2(x, t),

∂u2

∂t
(x, t) = −βu2(x, t) + g(u1(x, t))

(2.4)

for x ∈ (0, 1) and t > 0. Here α = a12a21/a
2
11 and β = a22/a11. In the following

discussion we shall use

γ :=
α

β
=
a12a21

a11a22

as one of the bifurcation parameters; with reference to system (1.2) it may be inter-
preted as “global” information about the positive feedback strength of the coupling
between the human population and the environmental pollution (scaled by the natural
rate of decay of the pollutant and the infectious period of an infected individual).

During our treatment we shall also refer to the associated ODE system
dz1

dt
(t) = −z1(t) + α z2(t),

dz2

dt
(t) = −β z2(t) + g(z1(t))

(2.5)

for t > 0. We define z(t) := (z1(t), z2(t)) ∈ R2.
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Because of the assumptions made on g, system (2.5) is a quasi-monotone (increas-
ing) system (see [2, pp. 230ff]. This term means that dzi/dt is nondecreasing in zj
for i 6= j.); this implies that (2.4) is a quasi-monotone reaction-diffusion system.

Under the above assumptions, it can be shown (see [3]) that a unique solution ex-
ists for problem (2.4),(2.2) for any sufficiently regular initial condition (2.3). Moreover,
due to the assumptions made on g, any solution may be extended to all t ∈ [0,∞).
Furthermore, under sufficient regularity assumptions on the data, it may be shown
that solutions are classical solutions; that is,

u1 ∈ C2,1(Ω× (0,+∞); R) ∩ C1,0(Ω× (0,+∞); R),
u2 ∈ C0,1(Ω× (0,+∞); R).

We may then carry out our analysis in the Banach space X := C(Ω; R2) 3 u(t) with
norm ‖u‖ = ‖(u1, u2)‖ = supx∈Ω |u1(x)| + supx∈Ω |u2(x)|. X is an ordered Banach
space with partial order induced by the cone

X+ :=
{
u = (u1, u2) ∈ X : u1(x) ≥ 0, u2(x) ≥ 0, x ∈ Ω

}
.

We shall say u∗ ≤ u∗∗ if u∗∗−u∗ ∈ X+; u∗ < u∗∗ shall mean that u∗ ≤ u∗∗ and that
u∗ 6= u∗∗; u∗ � u∗∗ shall mean that u∗∗1 (x) − u∗1(x) > 0 and u∗∗2 (x) − u∗2(x) > 0 for
all x ∈ Ω. If u∗ ≤ u∗∗, we may introduce the order interval

[u∗,u∗∗] =
{

u = (u1, u2) ∈ X :
u∗1(x) ≤ u1(x) ≤ u∗∗1 (x),
u∗2(x) ≤ u2(x) ≤ u∗∗2 (x), x ∈ Ω

}
.

(Similar notation may be adopted for comparison in R2 of solutions z to ODE system
(2.5).)

For any sufficiently smooth initial condition u0 ∈ X+, we may obtain a unique
global solution {u(t), t ∈ R+}. This identifies an evolution operator {U(t), t ∈ R+}
on X+ which satisfies the following properties:

(1) U(0) = I.
(2) U(t)U(s) = U(t+ s) for s, t ∈ R+.
(3) U(t)0 = 0, t ∈ R+.
(4) For any t ≥ 0, the map u0 ∈ X+ 7→ U(t)u0 ∈ X is continuous, uniformly for

t ∈ [t1, t2] ⊂ R+.
(5) For any u0 ∈ X+, the map t ∈ R+ 7→ U(t)u0 is continuous.

Due to the quasi monotonicity of system (1.2), we may use comparison theorems (see
[2]) to state that

(6) u0, u0 ∈ X+, u0 ≤ u0 ⇒ U(t)u0 ≤ U(t)u0, t > 0.
These properties imply the strong properties of U(t):

(7) u0 ∈ X+ ⇒ U(t)u0 ∈ X+, t ∈ R+.
(8) u0 ∈ X+, u0 6= 0 ⇒ U(t)u0 � 0, t > 0.
(9) u0, u0 ∈ X+, u0 ≤ u0, u0 6= u0,⇒ U(t)u0 � U(t)u0, t > 0.

Thanks to the quasi-monotone structure of the ODE system (2.5), its qualitative
behavior has been described in detail. In particular the following results are known
(see [2] and [5]).

PROPOSITION 2.1. There exists a γcrit > 0 such that
(i) For γ < γcrit, the trivial solution (0, 0) ∈ R2 is the only equilibrium for

ODE system (2.5). It is globally asymptotically stable (GAS) in the positive cone K
of R2.

(ii) For γ = γcrit, system (2.5) admits a unique nontrivial equilibrium in addi-
tion to (0, 0).
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(iii) For γ > γcrit, system (2.5) admits three equilibria in the positive cone K;
the trivial one 0 = (0, 0) and two other nontrivial equilibria z− and z+ such that

0� z− � z+.

In this case z− is a saddle point; the stable manifold M+ of z− is the separatrix of
the domain of attraction dom(0) of the trivial solution and the domain of attraction
dom(z+) of z+ :

K = M+ ∪ dom(0) ∪ dom(z+),

and these sets are disjoint subsets of K. 0 and z+ are GAS in their own domains of
attraction.

Proposition 2.1 may be proven from the following argument. Let g be a sigmoidal
function satisfying properties (P1)–(P5) above. Let γ > 0, and define fγ : [0,∞)→ R
by

fγ(z) = z − γg(z).

The equilibria of system (2.5) then correspond to the zeroes of fγ in [0,+∞). (Clearly
fγ(0) = 0.) It is then geometrically clear (recalling the properties of sigmoidal func-
tions) that there exists a critical value γcrit > 0 such that

(i) for γ < γcrit, fγ(z) > 0 for any z > 0.
(ii) for γ = γcrit, fγ(z) ≥ 0 and there exists a unique zc > 0 such that fγ(zc) = 0

and f ′γ(zc) = 0.
(iii) for γ > γcrit, fγ admits exactly two distinct zeroes z− and z+ such that

0 < z− < z+, f ′γ(z−) < 0, and f ′γ(z+) > 0 so that fγ(z) > 0 for 0 < z < z−, z > z+,
and fγ(z) < 0 for z− < z < z+. As functions of γ, z−, and z+ are continuous and
moreover are (strictly) monotone decreasing and monotone increasing, respectively.
Simple analytical proofs of these statements appear in [17].

Later, we shall also need to know properties of the function Fγ : [0,+∞) → R
defined by

Fγ(z) :=
∫ z

0
fγ(s)ds,

for z ≥ 0. If we let F : γ ∈ [γcrit,+∞) 7→ F(γ) := Fγ(z+(γ)) ∈ R, then the following
proposition holds.

LEMMA 2.2. (i) F is a continuous, strictly monotone decreasing function, (ii)
F(γcrit) > 0, and (iii) limγ→+∞ F(γ) = −∞.

Sketch of proof. (i) Continuity is clear. Now F(γ) =
∫ z+(γ)

0 fγ(s)ds. Partition the

range of integration, putting I1 =
∫ z−(γ)

0 fγ(s)ds and I2 = −
∫ z+(γ)
z−(γ) fγ(s)ds so that

I1, I2 are positive and F(γ) = I1 − I2. Now z− and z+ are, respectively, monotone
decreasing (to 0) and monotone increasing; thus the range of integration of I1 decreases
monotonically (in length to 0), whereas that of I2 is monotone increasing; moreover,
for s fixed in the range of I1, fγ(s) is monotone decreasing with γ. Similarly for s
fixed in the range of I2, −fγ(s) is monotone increasing with γ. Hence I1 is monotone
decreasing, and I2 is monotone increasing with respect to γ. Hence F(γ) is monotone
decreasing. (ii) For γ = γcrit, fγ(s) > 0 for s > 0, 6= zc. So

∫ zc
0 fγ(s)ds > 0. (iii)

It is easy to show that I1 ↓ 0 as γ → ∞. By constructing triangles under −fγ(s),
s ∈ (z−, z+), it is possible to show that I2 ↑ ∞. For full details, see [17].

As a consequence of Lemma 2.2, F must have a unique zero at γD > γcrit. Thus
(i) F(γ) > 0 for γcrit ≤ γ < γD, (ii) F(γD) = 0, (iii) F(γ) < 0 for γ > γD.
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3. Steady-state analysis. As announced earlier, we wish to analyze the steady
states of system (2.1) subject to homogeneous Dirichlet boundary conditions. Hence
we are looking for the classical solutions of the semilinear elliptic problem{

d u′′1(x)− u1(x) + αu2(x) = 0,
g(u1(x))− βu2(x) = 0(3.1)

for x ∈ (0, 1), subject to homogeneous Dirichlet boundary conditions.
Using the notation introduced in section 2, we may reduce (3.1) to the equivalent

equation

d u′′1(x)− fγ(u1(x)) = 0, x ∈ (0, 1).(3.2)

By ignoring boundary conditions (for the present), (3.2) is equivalent to the ODE
system {

u′(x) = v(x),
v′(x) = fγ(u(x))/d(3.3)

for x ∈ R.
We look for the general integral of (3.3), and later we shall select those solutions

which satisfy the required boundary conditions; system (3.3) is a classical Hamiltonian
system with total energy (see [1, pp. 79ff])

H(u, v) :=
v2

2
− 1
d
Fγ(u), (u, v) ∈ R2.(3.4)

So the orbits in the (u, v) phase plane must lie on the level curves of the total energy
H(u, v) = const. That is, the general integral of (3.3) is given by

v2

2
− 1
d
Fγ(u) = c/d, c ∈ R,(3.5)

or in explicit form

v = ±
√

2
d

√
Fγ(u) + c, c ∈ R.(3.6)

The topology of the phase plane is now determined in the standard way [1, section
12] by a comparison of Fγ(u) at u = 0 and at z+(γ), where it takes local minimum
values 0 and F(γ), respectively, so that both (0, 0) and (0, z+(γ)) are saddle points.
On the other hand, Fγ(u) has a local minimum at z−(γ) so that there is a center at
(z−(γ), 0) (see [7] and [1, section 12]).

We mentioned that for γ ≤ γcrit system (3.1) may not have nontrivial equilibria
when subject to homogeneous Dirichlet boundary conditions (see [5]). In fact, it was
proven in [5] (also [10]) that for

γ < γcrit(1 + dλ1),

the equilibrium 0 is GAS in the positive cone X+, where λ1 > 0 is the first eigenvalue
of the elliptic problem {

∆φ+ λφ = 0,
φ(0) = φ(1) = 0.(3.7)
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(a) (b)

0 uu

vv

0

FIG. 3.1. (u, v) phase plane topologies for (a) γcrit < γ < γD and for (b) γ = γD.

v

z+ uz− aRγ

Possible Dirichlet
Solution

0

FIG. 3.2. Phase plane topology for γ > γD.

Now (i) for γ ∈ (γcrit, γD), we have F(γ) > 0, so u = 0 is the unique global
minimum of Fγ(u). (ii) We have F(γD) = 0 so that for γ = γD, Fγ(u) has two equal
local minima at 0 and u+(γ). (iii) For γ > γD, we have F(γ) < 0 so that Fγ(u) has
a unique global minimum at u+(γ). Figures 3.1(a), 3.1(b), and 3.2 show the phase
plane topologies for these three cases.

It is now clear that the only case which allows solutions of (3.2) satisfying homo-
geneous Dirichlet boundary conditions is γ > γD (see Figure 3.2).

In fact, these solutions correspond to phase plane trajectory segments which start
and end on the v axis such that the change in x as the segment is traversed is equal to
the length of the space interval, in our case unity; see [8, p. 7] and [16]. If the upper
trajectory segment under consideration is C, we therefore require, using symmetry
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(and noting v → 0 at the endpoint) that

1
2

=
∫
C
dx,

=
∫
C

(
du

dx

)−1(
du

dx

)
dx,

=
∫
C

du

v
.

(See [16].) If we let a be the intersection of C with the u-axis (see Figure 3.2), we
therefore require

1
2

=
∫ a

0

√
d/2√

Fγ(u)− Fγ(a)
du,

using formula (3.6) for phase plane trajectories. We must take a ∈ (Rγ , z+(γ)), where
Rγ is the least positive zero of Fγ , so that (Rγ , 0) is the point of intersection of the
homoclinic separatrix attached to (0, 0) with the u-axis (again see Figure 3.2).
For analytical convenience we define

I(a) =
∫ a

0

du√
Fγ(u)− Fγ(a)

so that homogeneous Dirichlet solutions correspond to intersections of I(a) with the
level 1/

√
2d. The bifurcation problem for Dirichlet solutions may now be reduced to

studying I(a) for a ∈ (Rγ , z+(γ)). It can be shown easily that I has singularities at
Rγ and z+(γ), with I(a) ↑ ∞ as a ↓ Rγ or as a ↑ z+(γ). Moreover, I is C1 smooth
and positive for a ∈ (Rγ , z+(γ)). By simple continuity arguments, I must therefore
attain a global minimum of value Mγ , say, at some a∗ ∈ (Rγ , z+(γ)).

We may now use d as a second bifurcation parameter and recognize that (i) for
d > 1/2M2

γ , we may not have nontrivial solutions; (ii) for d < 1/2M2
γ , there are

at least two nontrivial solutions; and (iii) for d = 1/2M2
γ , the number of nontrivial

solutions is equal to the number of times I attains its global minimum Mγ .
Similar conclusions were reached in [10] by using a more sophisticated variational

technique. However, the qualitative methods used there do not give information on
the exact number, or structure, of solutions.

The following lemma guarantees that we have at most two nontrivial solutions to
the homogeneous Dirichlet problem.

LEMMA 3.1. I(a) is continuously differentiable and has at most one local minimum
in (Rγ , z+(γ)).

Sketch of proof. This is a small extension of Theorem 2.1 in [16]. There, the corre-
sponding result is proved for cubic f . In our case we may use the mean value theorem
to deduce the existence of ã such that I ′(a) < 0 for a ∈ (Rγ , ã), and I ′′(a)+3I ′(a)/a >
0 for a ∈ (ã, z+(γ)). (This last result is derived in [16] with explicit computation on
the polynomial coefficients.) It follows that I has at most one local minimum (since
otherwise there is at least one local maximum which contradicts the inequality above)
at a∗ ∈ (ã, z+(γ)). A complete proof of this lemma appears in [17].

In addition, we have the following result.
LEMMA 3.2. Mγ is a decreasing function of γ.
Proof. Recall that z+(γ) is increasing with γ. Moreover, Rγ is decreasing with

γ. (Proof: Rγ is the least positive zero of Fγ(u) =
∫ u

0 (s − γg(s))ds. So for γ2 > γ1,
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Fγ2 < Fγ1 . Hence Fγ2(Rγ1) < 0, so by the intermediate value theorem, Rγ2 < Rγ1 .)
We have

Iγ(a) = a

∫ 1

0
(∆Fγ)−1/2

dũ,

where

∆Fγ =
∫ a

aũ

(γg(s)− s) ds

for ũ ∈ (0, 1). For fixed ũ, ∆Fγ2 > ∆Fγ1 , so (∆Fγ2)−1/2 < (∆Fγ1)−1/2, and hence
Iγ2(a) < Iγ1(a) for a ∈ D(Iγ1). But D(Iγ2) ⊃ D(Iγ1), and so Mγ2 = min Iγ2 <
min Iγ1 = Mγ1 as claimed.

We may now identify

dcrit :=
1

2M2
γ

> 0

such that the following bifurcation theorem holds.
THEOREM 3.3. Consider the system (3.1) subject to homogeneous Dirichlet bound-

ary conditions.
(1) If 0 ≤ γ ≤ γD, then the system admits only the trivial solution u1(x) =

u2(x) = 0, for x ∈ [0, 1].
(2) If γ > γD, then a critical value dcrit(γ) exists such that

(a) for d > dcrit(γ), u = 0 is the only solution;
(b) for d = dcrit(γ), there is exactly one nontrivial solution uc such that

(uc1(x), uc2(x))� 0;
(c) for d < dcrit(γ), there are exactly two nontrivial solutions u− = (u−1 (x),

u−2 (x)) and u+ = (u+
1 (x), u+

2 (x)) such that 0� u− � u+.
Because of Lemma 3.2, dcrit = 1/2M2

γ is increasing with γ so that as γ is increased,
we do not require diffusion to be as small for the existence of nontrivial solutions to
(3.1).

Theorem 3.3 is a two-parameter threshold result, requiring both γ > γD and
d > dcrit for existence of solutions. Because dcrit depends on γ in a complicated way,
it is difficult to identify a single threshold parameter.

Now suppose that γ > γD, and d < dcrit(γ) (Theorem 3.3, case 2(c)) so that the
problem (3.1) with homogeneous Dirichlet boundary conditions admits exactly two
nontrivial solutions, u− and u+. If a− and a+ denote the amplitudes (max |u±1 |) of
u−1 (x) and u+

1 (x), respectively, then we have

Rγ < a− < a+ < z+(γ).

Also, by simple comparison arguments, u−1 (x) < u+
1 (x) for all x ∈ (0, 1); consequently

u−2 (x) < u+
2 (x) for all x ∈ (0, 1), since the second equation of system (3.1) is monotone.

Hence u− � u+, as claimed in Theorem 3.3.
We may say more concerning the structure of u− and u+. First note that u− and

u+ are symmetric about x = 1/2 by the v 7→ −v symmetry in the phase plane. Now,
in the singular limit d ↓ 0, we require I(a−), I(a+) ↑ ∞. It can then be shown that
a− ↓ Rγ and a+ ↑ z+(γ). In this way, the phase plane trajectory segment (u−1 , u

−′
1 )

approaches the homoclinic orbit attached to (0, 0); that for (u+
1 , u

+′
1 ) approaches the

heteroclinic separatrices attached to (z+(γ), 0).
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1 (x)
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R

FIG. 3.3. Shooting method computations of the steady states u−1 (x) and u+
1 (x), with g(u) =

u2/(1 + u2), γ = 2.3 > γD ' 2.17, d = 0.0025 < dcrit. To four decimal places, a+ = 1.7105,
z+ = 1.7179, a− = 1.0420, R = 1.0420 (but note a− > R).

In the first case, the largest contribution to the time map comes from the neighbor-
hood of the equilibrium point (0, 0) so that u−1 (x), u−′1 (x) ' 0 through most of (0, 1).
There is a “fast” trip around the homoclinic loop; this corresponds to a “hump” of
width O(

√
d) centered at x = 1/2, whose height is bounded below by Rγ , no matter

how small d.
In the second case, the most significant contribution to the time map comes from

the neighborhood of (z+(γ), 0) so that u+
1 (x) ' z+(γ), u+′

1 (x) ' 0 throughout most
of the domain. There are boundary layers of width O(

√
d) connecting the solution to

the homogeneous Dirichlet data at x = 0, 1.
In Figure 3.3, some sample plots of u−1 (x) and u+

1 (x) are given. The infective
human concentrations, u−2 and u+

2 , have structure similar to that of their bacterial
counterparts.

4. The evolution problem. We again suppose that γ > γD and that d <
dcrit(γ) so that the conclusions of Theorem 3.3, case 2(c), hold.

Due to the monotonicity properties of the evolution operator {U(t), t ∈ R+} of
system (2.1), we may claim that if u(t) is a solution to system (2.1) with initial data
u0, then (i) 0 ≤ u0 ≤ u− implies that 0 ≤ u(t) ≤ u− for all t ≥ 0; on the other hand,
(ii) u− ≤ u0 ≤ u+ implies that u− ≤ u(t) ≤ u+ for all t ≥ 0. In this way solutions
whose initial data are “sandwiched” by a pair of steady states remain “sandwiched”
for all time. We also know from [5] that (0, 0) is locally asymptotically stable.

As an extension of Proposition 2.1 we conjecture that u− = (u−1 (x), u−2 (x)),
x ∈ (0, 1), is a saddle point for system (3.1), while 0 and u+ = (u+

1 (x), u+
2 (x)),

x ∈ (0, 1), are stable attractors. To this end, let us observe the following.
LEMMA 4.1. Under the assumptions of Theorem 3.3, case 2(c), the system{

dw′′1 (x)− w1(x) + (α− ε)w2(x) = 0,
g(w1(x))− βw2(x) = 0(4.1)
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for x ∈ Ω and subject to homogeneous Dirichlet boundary conditions admits two non-
trivial classical solutions for a suitable choice of ε > 0. Each of them is a lower
solution of problem (3.1).

Proof. We may just observe that for sufficiently small ε > 0 the continuity of
γD and dcrit with respect to γ confirms the results of Theorem 3.3. Now take any
nontrivial solution (w1, w2) of (4.1). We have

dw′′1 (x)− w1(x) + αw2(x) = εw2(x) ≥ 0,
g(w1(x))− βw2(x) = 0,

which shows that (w1(x), w2(x)) is a lower solution of problem (3.1).
LEMMA 4.2. Under the assumptions of Theorem 3.3, case 2(c), the system{

−z1 + αz2 = 0,
−βz2 + g(z1) = 0(4.2)

admits two nontrivial solutions. Each of them is a spatially homogeneous upper solu-
tion for system (3.1) subject to homogeneous Dirichlet boundary conditions.

Proof. We need only observe that z1 ≥ 0 and z2 ≥ 0 at the boundary.
Let us denote by u = {(u1(x), u2(x)), x ∈ Ω} the smallest of the nontrivial

solutions of problem (4.1) and by u = {(u1(x), u2(x)), x ∈ Ω} the largest of the
nontrivial solutions of problem (4.2).

By use of comparison theorems we may claim that the largest nontrivial solution
u+ of system (3.1) satisfies

u ≤ u+ ≤ u.

Further, we may claim that U(t)u is monotone nondecreasing in t ∈ R+, while U(t)u
is monotone nonincreasing in t ∈ R+, and by further use of comparison theorems

U(t)u ≤ u+ ≤ U(t)u,

for t ≥ 0. We have thus built a contracting rectangle containing the equilibrium point
u+ in the function space X.

Unfortunately we cannot apply the convergence theorem of contracting rectangles
in Banach spaces [2] because the evolution operator U(t) is not compact. This is
because the second equation in system (3.1) is an ODE. We leave further discussion
about this point to a subsequent paper.

We now give some computer simulations which seem to indicate that the contract-
ing rectangle does indeed converge to the nontrivial equilibrium u+, thus showing
global asymptotic stability of this point in the rectangle [u,u] of X+.

EXPERIMENT 1. As with all our numerical simulations, we took g(u) = u2/(1 +
u2). (One advantage of this choice is that we may easily integrate to find Fγ(u) =
u2/2 − γu + γ tan−1 u.) We took α = 2.3 and β = 1 so that γ = 2.3 > γD '
2.1750629627. We took d = 0.0025 < dcrit. Under these conditions, the steady states
u−1 (x) and u+

1 (x) were found by a shooting method (u−2 (x) and u+
2 (x) are then easily

determined); these steady states are plotted in Figure 3.3. For our first experiment we
took initial data

u0
1(x) = u−1 (x) + x(1− x)/10,
u0

2(x) = g(u0
1(x)).
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FIG. 4.1. Results of Experiment 1, u1 against x, with steady states u−1 and u+
1 . Steady states,

–; t = 0, - -; t = 20, -.; t = 40, ..; t = 60, ×; t = 80, +.
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FIG. 4.2. Results of Experiment 2, u1 against x, with steady states u−1 and u+
1 . Steady states,

–; t = 0, - -; t = 15, -.; t = 30, ..; t = 45, ×; t = 60, +.

Note that u0, = (u0
1, u

0
2) ∈ [u−,u+]. The evolution of u1 is depicted in Figure 4.1.

The evolution of u2 took a similar course and is not shown. Certainly, it seems that
this choice of initial data is attracted to u+.

EXPERIMENT 2. We took the same parameter choices as in Experiment 1. How-
ever, we chose the more complicated initial data

u0
1(x) = u−1 (x) + x(1− x)

{
sin2 30x+ sin 10x+ 3

}
/5,

u0
2(x) = u−2 (x) + x(1− x)

{
sin2 20x+ sin 40x+ 3

}
/10.

As in Experiment 1, u0 ∈ [u−,u+]. The evolution of u1 is depicted in Figure 4.2;
again u2 took a similar course. Again, these initial data seem to be attracted to u+.
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FIG. 4.3. Results of Experiment 3, u1 against x, with steady states u−1 , –; t = 0, - -; t = 7.5,
-.; t = 15, ..; t = 22.5, ×; t = 30, +.

As far as the behavior of the system (3.1) below u− = (u−1 (x), u−2 (x)), x ∈ (0, 1),
is concerned, we may proceed along the same lines by proving the following lemma.

LEMMA 4.3. Under the assumptions of Theorem 3.3, case 2(c), the system{
d w̃′′1 (x)− w̃1(x) + (α+ ε)w̃2(x) = 0,

g(w̃1(x))− βw̃2(x) = 0,(4.3)

subject to homogeneous Dirichlet boundary conditions, admits two nontrivial classical
solutions for a suitable choice of ε > 0. Both of them are upper solutions for problem
(3.1).

Suppose that ũ = (ũ1(x), ũ2(x)), x ∈ (0, 1), is the smaller of these two solutions.
Then by use of comparison theorems we have

0 ≤ ũ ≤ u−,

and [0,U(t)ũ], t > 0, is a contracting rectangle about 0 in X.
We present a computer simulation for this case which supports our conjecture

that 0 is GAS in the rectangle [0, ũ] of the cone X+.
EXPERIMENT 3. We made the same parameter choices as in Experiment 1. We

took initial data

u0
1(x) = 19u−1 (x)/20,
u0

2(x) = g(u0
1(x))

so that u0 ∈ [0,u−]. The evolution of u1 is depicted in Figure 4.3; u2 followed a
similar course and is not shown. It seems that this choice of initial data is attracted
to 0. For this small value of d, we see a spatial localization effect; an epidemic
starting with a peak below the “saddle point” solution u− = (u−1 (x), u−2 (x)) is not
only extinguished but also “localized” in space.

The case where initial data intersect the separatrix solution u− is much more
complex; we require global information on the separating manifold to determine the
destiny of solutions.
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Unfortunately we have been able to provide only partial answers by analytic
methods; rigorous results concerning the domains of attraction of 0 and u+ will be
dealt with in a subsequent paper.

5. Higher-dimension space domains. We now consider whether the results
obtained in sections 3 and 4 apply when systems (1.2) and (1.3) are posed on multidi-
mensional space domains Ω. In fact, we will mainly be concerned with just two simple
examples, (i) where Ω is a two-dimensional disc and (ii) where Ω is a two-dimensional
interval, e.g., [0, 1] × [0, 1]. Most of our arguments will be based on numerical simu-
lation.

For Ω ⊂ Rn (n ≥ 2), [10] used a variational technique to prove, provided γ
sufficiently large and d sufficiently small, that system (1.3) has at least one positive
solution u+, which is a local minimum of the energy functional

E :=
∫

Ω

{
1
2
d|∇u1|2 + Fγ(u1)

}
dx.(5.1)

The mountain pass lemma was then applied (since 0 is always a local minimum of
(5.1)) to deduce the existence of at least one more nontrivial solution of (1.3) (u−, say),
which is a saddle point for the energy functional E. However, [10] does not provide
upper bounds on the numbers of solutions to (1.3), unlike our Theorem 3.3 for the
one-dimensional case. (Very few facts are known about the counting of solutions to
nonlinear elliptic equations in general; see [9].) Further, note that system (1.2) is not
a gradient system with energy E; therefore a saddle point for E is not necessarily a
saddle point for the dynamics of (1.2), although this appears to be so in our case.

We conjecture that, provided that our space domain is convex, we may find a local
minimum u+ and a saddle point u− of E, of form similar to the u−, u+ found in
section 3, such that 0, u−, and u+ together control the dynamics of (1.2), in the same
way as for the one-dimensional case shown in section 4.

Concerning the shape of steady-state solutions, we explored the case where Ω is
a two-dimensional disc. We set the radius equal to 1/2 (without loss of generality,
since it may be absorbed in d by rescalings). If we restrict attention to axisymmetric
solutions u1 = u1(r), u2 = u2(r) of (1.3), we then simply have to find regular u1
satisfying the ODE

d

r

d

dr

(
r
du1

dr

)
− u1 + γg(u1),(5.2)

supplemented by the conditions

u1(1/2) = 0 and u′1(0) = 0.(5.3)

We have not performed an analytical study of this problem in the spirit of section 3;
however, we have solved it numerically for a wide range of d and γ, using a shooting
method. (N.B.: Care must be exercised in avoiding singularities at r = 0.) In fact, we
have been unable to produce more than two positive solutions for any values of γ, d;
it seems that an analogue of counting Theorem 3.3 may hold for axisymmetric steady
states in this case, but we do not have a proof of this. (To construct a proof, we need
to consider generic behavior of the new “time map” t 7→ u1(1/2), where u1(1/2) is
given by solving (5.2) as an initial value problem with data u1(0) = t, u′1(0) = 0.) Of
course, we have not ruled out extra nonaxisymmetric steady-state solutions.
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FIG. 5.1. Axisymmetric steady-state solutions on a two-dimensional disc, radius 1/2, with
γ = 2.35 > γcrit, d = 0.001 < dcrit(γ); (a) u−1 , (b) u+

1 .

For γ = 2.35 and d = 0.001, there are exactly two nontrivial solutions u−1 < u+
1

to problem (5.2), (5.3) (in effect like Theorem 3.3, case 2(c)). We have plotted these
against (x, y) in Figure 5.1. The shapes are like those from the one-dimensional case
depicted in Figure 3.3; in particular, u− is bell shaped. (The bell may be made
narrower by reducing d.)
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FIG. 5.2. Results of Experiment 4, with bacterial concentration u1 plotted against x, y for (a)
t = 0, (b) t = 4.0, (c) t = 8.0, and (d) t = 12.0. The localization of the epidemic as it is extinguished
is clear.

We now move on to consider the dynamical part of our conjecture; we consider
some numerical simulation of (1.2) posed on the unit square space domain [0, 1]×[0, 1].
We did not consider a steady-state analysis of this problem above, because it is not
possible to convert it to an ODE to which our shooting method code may be applied.
However, as we show below, it is possible to detect stable steady states by starting
with suitable initial data and letting the code run for a sufficiently long time. However,
as an added bonus, the simulation in Experiment 5 seems able to detect the presence
of a saddle point.

EXPERIMENT 4. We took g(u) = u2/(1 + u2), α = 2.5, β = 1.0 (so that γ = 2.5),
and d = 0.001 and solved (1.2) under homogeneous Dirichlet conditions at the bound-
ary of the space domain [0, 1]× [0, 1]. We simulated (1.2) by means of an alternating
direction implicit scheme (see [13]), coupled with a backward Euler code to solve the
ODE for u2. (This technique is numerically very stable.) We took initial data

u0
1(x, y) = 0.3 sinπx sinπy + n(x, y),
u0

2(x, y) = g(u0
1(y, x)),

where n(x, y) > 0 is the “noisy” function defined by

n(x, y) :=
1
4

sin2 5πx sin2 4πy +
1
4

sin2 3πx sin2 7πy +
1
10

sin2 9πx sin2 11πy.(5.4)

The evolution of bacterial concentration u1 is shown in Figure 5.2. (The evolution
of the concentration of infective humans followed a similar course and is not shown.)
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FIG. 5.3. Results of Experiment 5, with bacterial concentration u1 plotted against x, y for (a)
t = 0, (b) t = 5, (c) t = 10, (d) t = 15, (e) t = 20, (f) t = 25, (g) t = 50, and (h) t = 250. u
increases rapidly to what appears to be the neighborhood of a saddle point solution. Only on a much
longer time scale does u evolve to the stable endemic state.



MAN–ENVIRONMENT–MAN EPIDEMICS 345

This choice of initial data is attracted to 0, and the localization of the epidemic as it
is extinguished is clear, just as in Figure 4.3 for the one-dimensional case.

EXPERIMENT 5. Our conditions and method were exactly those of Experiment 4,
except that we took the larger initial data

u0
1(x, y) = 0.5 sinπx sinπy + n(x, y),
u0

2(x, y) = g(u0
1(y, x)),

where the choice of the “noisy” function n(x, y) was as before. The evolution of
bacterial concentration u1 is shown in Figure 5.3; the solution is quickly attracted up
to a symmetric bell-like shape which enlarges very slowly. Only on a much longer time
scale does the solution approach what appears to be a final stable steady state u+. It
would seem that the bell-shaped profile appearing in Figure 5.3(e) is close to some
saddle state u−. The solution is quickly attracted to the stable manifold of this steady
state and to the neighborhood of the steady state itself. Presumably it lingers there for
so long, because the unstable eigenvalue has small magnitude. This explanation is (of
course) a conjecture.

We have not been able to find initial data which give behavior qualitatively differ-
ent from that of Experiments 5 and 6. This is good evidence that even when the space
domain Ω is multidimensional, provided that it is convex, the infinite-dimensional sys-
tem (1.2) inherits basically the same structure as the underlying finite-dimensional
ODE system (1.1) (i.e., bistable behavior with a saddle point).

The case where Ω is nonconvex is more complicated. For example, [12] showed
that when Neumann boundary conditions are applied to a domain with a narrow
“neck,” extra stable steady-state solutions of scalar reaction diffusion equations must
exist (if parameters are chosen appropriately). In a forthcoming paper, we will con-
sider the dynamics of (1.2) on such domains, with homogeneous Dirichlet boundary
conditions in force.
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