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The article analyzes similarity of closed polygonal curves with respect to the Fréchet
metric, which is stronger than the well-known Hausdorff metric and therefore is more
appropriate in some applications. An algorithm is described that determines whether
the Fréchet distance between two closed polygonal curves with m and n vertices is less
than a given number e. The algorithm takes O(mn) time whereas the previously known
algorithms take O(mnlog(mn)) time.
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1. Introduction

The Fréchet metric is used for cyclic process analysis and image processing [5]. It
is stronger than the well-known Hausdorff metric [2], [3], [4] and therefore is more
appropriate in some applications [I]. The Fréchet metric for closed polygonal curves
has been studied in a paper [I] by Alt and Godau. They propose an algorithm that
determines whether the distance between two closed polygonal curves with m and
n vertices is greater than a given number . The complexity of the algorithm is
O(mnlog(mn)) on a random access machine that performs arithmetical operations
and computes square roots in constant time. Our paper shows that the compu-
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tational complexity of the problem is less than O(mnlog(mn)) and provides an
algorithm that takes O(mn) time to solve the problem. The exact formulation of
the problem is given in Section 2l Sections [3] describes the concepts of the original
paper [I], which with slight modifications serve as the basis for our paper. The
difference between the proposed and known approaches is specified at the end of
Section Bl Sections describe the proposed approach.

2. Problem definition.

Let R¥ be a linear space with the Euclidean distance d:RF x R¥ — R.

Definition 1. A closed m-gonal curve X is a pair (T, fx) where T is a sequence
(0,1, ,Tm = T0), x; € RE, and fx is a function [0,m] — R such that
Ix(i+a)=(1—-a)z; +axiy forie{0,1,....m—1} and 0 < a < 1.

Definition 2. A cyclic shift of an interval [0,m] by a value T € [0, m] is a function
s : [0,m] — [0,m] that depends on a parameter T such that s(t;7) = t + 7 for
t+7<mands(t;7) =t+7—m fort+71>m.

For any number m let W, be the set of all monotonically non-decreasing con-
tinuous functions [0, 1] — [0, m] such that w(0) = 0,w(1) = m.

Definition 3. A function ¢ : [0,1] — R* is called a monotone reparametrization of
a closed m-gonal curve X = (Z, fx) if a function w € Wy, and a number T € [0, m]
exist such that p(t) = fx(s(w(t); 7)) for all t € [0,1].

For given closed polygonal curves X and Y denote ®x and ®y sets of their
reparametrizations.

Definition 4. The Fréchet distance between closed polygonal curves X and'Y is
5(X,Y)= min min max d(¢x(t), oy (t)).

ex€EPx py ePy 0<t<1

The problem consists in developing an algorithm that determines whether
0(X,Y) < e for given closed polygonal curves X and Y and a number e.

3. The free space diagram and pointers.

The problem’s analysis is based on the concept of a free space diagram introduced
by Alt and Godau [I] in the following way. For two numbers m and n let us define
a rectangle D = [0,m] x [0,n] with points (u,v) € D. For two closed polygonal
curves X and Y with m and n vertices and a number ¢ a subset D = {(u,v) €
D ’ d(fx(u), fy (v)) < e} is defined. Let us also define a rectangle D = D U {(u +

m,v) } (u,v) € D} with its subset De = D, U{(u+m,v) | (u,v) € D.} called a free
space. Denote T', B, L and R the top, bottom, left and right sides of the rectangle
D. Denote D;; a subset [i — 1,4 x [j — 1, 7] and call it a cell.
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Definition 5. A monotone non-decreasing path (or simply, a monotone path) is
a connected subset v C D, such that (u — u')(v — v') > 0 for any two points

(u’ v) 6 FY’ (u/’ v/) 6 ’Y'

Note that this definition allows a monotone path to contain vertical segments.
That is why a condition (v — «)(v — ¢’) > 0 is used instead of standard form
(v — v')/(u — u') > 0 of the definition of a non-decreasing function v = f(u).

Definition 6. Two points (u,v) € D and (v',v") € D are mutually reachable if and
only if a monotone path + exists such that (u,v) € v, (u',v') € 7.

Definition 7. A point (u,v) € D. is reachable from the bottom if it is reachable
from at least one point from B; a point (u,v) € D, is reachable from the top if it is
reachable from at least one point of T'.

Denote g, C D. a set of points reachable from the bottom and ¢g" C D, a set of
points reachable from the top.

Let us define two pointer functions ' : g" — [0,2m] and 7| : g; — [0,2m].
For (u,v) € g' the pointer rT(u,v) is the maximum value u* such that (u,v) is
reachable from (u*,n) € T. For (u,v) € g, \ B the pointer r| (u,v) is the maximum
value u* such that (u,v) is reachable from (u*,0) € B. For (u,0) € g, NB the pointer
7y (u,0) equals u. Figure @l illustrates the introduced concepts and designations.

X
X ——— 1 v %
T3 \
7

900‘—75%" 5 2 Y3
ki

Fig. 1: Two closed polygonal curves with an interval of length &

5 Y

Yo Y1

We rely on the following lemma proved in the paper [I] by Alt and Godau (see
lemma 9 [1).

Lemma 1. The distance between closed polygonal curves X and Y 1is not greater
than ¢ if and only if there exists a number u € [0, m], such that the points (u+m,n)
and (u,0) are mutually reachable.

The following lemma is similar to Lemma 10 [I] as well as its proof.
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Fig. 2: The free space diagram. The light area is the set D..
7T (uz, v2) is the rightmost reachable point on T from (uz,vs).
ry(u1,v1) is the rightmost reachable point on B from (uq,vy).

Lemma 2. Two points (ug,n) € T and (up,0) € B are mutually reachable if and

only if
(ut7n) S gl (ub7 0) S gT; Ut S T‘T(’U/b, 0)7 Up S T'\L(Uhn)-

Proof. Obviously, if (u;,n) € T and (up,0) € B are mutually reachable then
(ug,n) € gy, (up,0) € g" and uy < 71 (up, 0), up < 7| (ug,n).

The reverse implication is also valid, which is illustrated by Figure[3l Let v; C D,
be a monotone path from (us,n) to (r)(us,n),0) and 7, C D, be a monotone path
from (up, 0) to (rT(up,0),n). Both paths are connected subsets that due to conditions
ug < 71 (up,0), up < 7| (ug,n) intersect in at least one point (ug,vg). Let us consider
a path 7 that consists of a segment of v, from (up,0) to (ug,vo) and a segment of
~t from (ug,vg) to (ug,n). The path v is monotone, it is contained inside D. and
connects (up, 0) and (ug, n). m|

According to Lemmas [ and Rltesting condition §(X,Y") < ¢ is reduced to finding
value u that fulfills
(u,0) € g7, (u+m,n) € g, u+m< M (u,0), u< ri(u+m,n). (1)

The pointer functions rT and r| are similar to the pointers defined by Alt and
Godau. However, the pointer function r' takes values from T and function 7| takes
values from B, while Alt and Godau consider pointers with values from T'U R and
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Fig. 3: There is a path between (up,0) and (ut,n)

with values from L U B. The Alt’s and Godau’s pointers allow to use a divide and
conquer type algorithm that merges either vertically or horizontally two diagrams
with known pointers and obtains a bigger diagram with pointers for the new dia-
gram. The pointers can be computed in O(1) time for diagrams containing only one
cell. By sequentially merging smaller diagrams into bigger ones, the pointers for the
whole diagram can be obtained in O(mnlog(mn)) time.

In this paper we rely on a recurrent relation between pointer values r' and |
on cell borders. It is trivial to compute T on T and r 1 on B. Our algorithm does
not, use the divide and conquer approach but proceeds cell by cell. It propagates
pointers on each cell’s borders using the recurrent relation and eventually obtains
the values " on B and r| on T in O(mn) time.

4. Formal properties of pointer functions.

For each 1 < i < 2m and 1 < j < n denote T3; and R;; the top and right borders
of a square cell D;; = [i —1,1] x [j — 1, j] and extend these denotations so that T
is a bottom border of D;; and Ry; is a left border of Dy;. Let us designate

Bij = Tig-1y,  Lij = Rii-1y;,
TRij = Tij U Rija LBij = Lij U Bij-

In order to test () the sets g7, g; and functions 7T, | have to be expressed with
a finite data structure. It is significant that intersection D, N D;; is convex for each
pair (¢,7) [I. Tt is not difficult to prove that for each pair (i,7) the intersections
g, NTij, g, N R;; are also convex, so that each of these intersections is a single
interval (line segment) on the border of D;;. Simple recurrent relations hold for
these intervals, so that intervals g N7T;; and g, N R;; can be computed based on
g, N Byj and g, N L;; as well as g' N B;; and g' N L;; can be computed based on
g"'NT;; and g"NR;;. The Algorithm 1 described in [I] for slightly different purposes
is an example of this computation. Each step of the recursion takes constant time,
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(ulﬁ Ul)

71(“2;“2) m(ih,m)

Fig. 4: Monotonicity of r

consequently, computing intersections g, N7y, gy N Rij, g' N Byj and g' N L;; for
all (z,7) takes O(mn) time. Therefore, from now on it is assumed that these line
segments are available.

As for the functions r! and r| they require more detailed analysis. Let us de-
fine partial ordering < on the set D such that (uq,v1) < (ug,v2) if and only if
u; < ug and v1 > v2. On each subset T'R;; and LB;; relation < is a complete
ordering. Therefore, for each closed subset b C T'R;; and for each closed subset
b C LB;j a symbol extrb will be used as a designation of such point (u*,v*) € b

that (u',v") < (u*,v*) for each (u/,v") € b. Both r| and 7' are monotone functions
of their argument in a sense of the following lemma.

Lemma 3.
Let (uy,v1), (u2,v2) € gy. If (u1,v1)
Let (u1,v1), (uz,v2) € g". If (ur,v1)

(u2,v2) then r(u1,v1) < r(ug,v2).

VNN

(ug,v2) then r'(uy,v1) < 7' (ug,vs).

Proof. Let 77 and 72 be two monotone paths that connect (u1,v1) with
(ry(ui,v1),0) and (ug,ve) with (r|(uz,v2),0) respectively. Let us assume that
ry(ug,v1) > 7 (uz,vs). As Figure [l shows the paths v; and -2 intersect at some
point (ug, vo). Therefore, a monotone path that connects (ug, v2) with (r) (u1,v1),0)
exists. This path consists of a segment of v, from (7} (u1, v1),0) to (ug, vo) and a seg-
ment of v from (ug, vg) to (uz,v2). This means that the point (us,v9) is reachable
from a point that is located to the right of the point (r| (uz, v2),0). This contradicts
with the definition of function r|. Therefore, the assumption r(ui,v1) > r(ug, v2)
is proved to be wrong and the first statement of the theorem is proved. The proof
of the second statement is similar. |

Due to convexity of D. N D;; and monotonicity of functions r| and r' they
satisfy the following recursive relations that will allow to use some sort of dynamic
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programming for their computation. For (u,v) € gy N T'R;; it holds that

u <u, v < v}) (2)

ry(u,v) =1, <extr{(u’v’) € g, N LB;j
and for (u,v) € g' N LB

M (u,v) =" <extr {(u’v’) € g"'NTRy; ’ u > u,v > v}) . (3)
Relations (@) and @) immediately result in the following lemma.

Lemma 4. For each pairi € {1,...,2m}, j € {1,...,n} the pointer r| is constant
on g, N R;; and the pointer r1 s constant on gt N B;;.

Proof. For each pair of points (u,v) € R;; and (v/,v") € LB;; the condition v’ < u
in @) is fulfilled and may be omitted. For each point (i,v) € g, N R;; a point
(u',v") € g, N LB;; exists such that v' < v. Consequently, this condition in (2]) also
may be omitted. Relation () becomes

i (u,v) = ri(extr {(u’,v’) Eg N LBZ-J-}),

and 7| (u,v) does not depend on u and v, which proves the first statement of the
lemma.

For each pair of points (u,v) € B;; and (u',v") € TR;; the condition v/ > v
in @) is fulfilled and may be omitted. For each point (i,v) € g' N B;; a point
(u',v") € g" NTR;; exists such that v’ > u. Consequently, this condition in (@] also
may be omitted. Relation ([B) becomes

M (u,v) = rT(extr {(W,v)egn TRZ-J-}),
which proves the second statement of the lemma. O

Now relation (2) can be written in more detail. Let r* be the constant value of
the pointer function | on g, N L;; for some (7, 7) and

[a,b]:{u‘ (u,j—1)€g¢ﬂBij}

as it is shown on Fig Bal
If gy N B;; = 0 then for (u,v) € g, NTR;;

ry(u,v) =r". (4)
If g, N B;; # 0 then for (u,j) € gy NT;; and for (i,v) € gy N R;j
r ifu<a, (5)
ri(u,j) =< r(u,j—1) ifa<u<b, (6)
ry(b,j—1) ifu>b, (7)

ry(i,v) =r (b,j —1). (8)
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o g —1) ri(b,j—1) r*
i —F— — j e —
C | | d _ 4
L l I b
| |
l l
| |
r | | ) (i, v)
| |
l l |
| 4 [
B [ [ (i, a) a
| | 1,
j-1 k f j-1 g
e ———— = i
r(u,j—1)
(a) Pointer function r| on the upper bor- (b) Pointer function 7! on the left border
der depends on r| on the lower and left depends on T on the upper and right bor-
border of the cell. der of the cell.

Fig. 5: Recursive dependency of pointer functions.

Similarly, relation @]) can be specified. Let 7* be the constant value of the pointer
function r" on g" N T;; for some (i, j) and

[a,b] = {v

(i,v) € g N Ry }

as it is shown on Fig [5hl
If g"' N R;; = 0 then for (u,v) € g" N LB;;

1 (u,v) = r*. 9)

If g" N R;j # 0 then for (i — 1,v) € g' N L;; and for (u,j — 1) € g' N By;

r* if v > b, (10)
(i —1,0) = { rT(i,v) ifa<wv<b, (11)
r'(i,a) ifv <a, (12)
M, j—1)=7r"(i,a). (13)

The following Lemma [] states that restriction of 7T to g" N R;; is a piecewise
constant function. Lemma [0] states that the restriction of r; to g, N Tj; is also
piecewise constant with the exception of at most one interval, where it is linear.

For any set S we say that I is a partition of S'if S = |J int and intNint’ = ()
intel
for each pair int,int’ € I, int # int’.

Lemma 5. For each (i,7) a partition I'(i,j) of the set g' N R;; to intervals ex-
ists such that the function r7 is constant on each interval in IT(i, j); moreover,
[IT(i,5)| < 4m+1.
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Proof. Indeed, either g' N R(2p,); is empty or pointer r is constant on g N Rom);
and equals 2m. Therefore, I'(2m, j) consists of no more than one interval. It follows
from recursive relations (@)-(I3) that there are no more than two intervals that
belong to IT(i — 1,5) and do not belong to IT(i,5). The first interval comes from
([@@). The second interval comes from (). The pointer 7 (i — 1,v) is constant on
each of these two intervals. Therefore, [IT(2m, j)| < 1, [IT(i —1,7)| < |1(i,5)] + 2,
and finally [I7(i,5)] <4m —2i +1 <4m+ 1. m|

Lemma 6. For each (i,7) a partition I (i,7) of gy NT;; into intervals exists with
the following properties:

— there is no more than one interval int € 1(i,7) such that ri(u,j) = u on int;

— function r| is constant on all other intervals;

— moreover, |I(i,7)] < 2n+ 1.

Proof. By definition, 7| (u,0) = w for each (u,0) € g, N T;o. Therefore, partition
I,(4,0) consists of no more than one interval. It follows from recursive relations
@)-@) that there are no more than two intervals that belong to I;(i,j) and do
not belong to I;(i,j — 1). The first of them is included according to relation (&).
The second interval appears in partition I (i,j) when u > b in relation (7). The
function 7| (u, j) is constant on each of these two intervals. Therefore, |I;(i,0)| < 1,
[, (i, 9)] < |I,(i,7 — 1)| + 2, and finally |1 (i,7)| <25+ 1 <2n+ 1. O

According to Lemma M the set g' N B and the restriction of a function ' to
this set can be expressed with subsets g™ N By1, i € {1,2,...,2m}, and values ’I”ZT
of a function r" on these subsets. According to Lemma [G the set g; N7 and the
restriction of r| to this set can be expressed with the sets I (i,n) of intervals int and
with numbers ri"t, where int € I)(i,n), i € {1,2,...,2m}. Numbers rj"t determine
the function 7| on int so that if r¢"* is less than the right endpoint of int then

7y (u,n) = ri™ for all (u,n) € int. Otherwise, r| (u,n) = u for all (u,n) € int.

Lemma 7. Let X andY be closed polygonal curves and for each i € {1,2,...,m}
the following data be known:

- the set g' N Tyo with pointer riT;

- partition I (i +m,n) of g, N Tlitmyn;

- value ri"t for each interval int € I\ (i +m,n);

then testing §(X,Y) < e takes O(mn) time.

Proof. According to Lemmas [[l and [ inequality §(X,Y") < e is equivalent to the
existence of a number u € [0, m] that fulfills (). Such u exists if and only if a triple
i1€{1,2,...,m}, int € I, (i + m,n), u € [0,m] exists that fulfills conditions

(u,0) € g' N Ty, (u+m,n) € int, u—l—mST;r, u<ri(u+m,n). (14)

The condition v < 7 (u + m,n) in ([[d) can be replaced with condition u < ri"t

independently of whether the pointer r|(u,n) takes constant value ri"t on int or
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7y (u,n) = u. In both cases, condition (I4) is equivalent to
(u,0) € g' NTyo, (u+m,n)€int, u+m< TZ-T, u < ri"t,
or in more detail
¢ <u<d;, a™—m<u<bm™ —m, ugrj—m, ugri”t, (15)

where a' and b are the left and right endpoints of the interval int and ¢; and d;
are the horizontal coordinates of the leftmost and the rightmost points of g™ N Tjo.
In turn, a triple ¢ € {1,2,...,m}, int € I (i + m,n), u € [0,m] that satisfies (IT)
exists iff a pair i € {1,2,...,m}, int € I (i + m,n) exists that satisfies
max{c;, a™ —m} < min{d;, b —m, r;r —m, ri"t )

Testing the last inequality takes constant time for any pair (4,int). According to
Lemma [6] the number of intervals tested for each i does not exceed (2n + 1). There-
fore, the number of tested pairs (i,int) is O(mn). O

5. Computing pointer functions
5.1. The general scheme

The partition of T and B into intervals that represent 7" and r| is obtained by two
similar independent algorithms called the forward and backwards pass. Both passes
consist of 2mn steps and in each step compute a pointer function on a border of
some cell. From now on we will refer to the pair (7,) as the number of the step.

The forward pass proceeds cell by cell from left to right and from bottom to
top and computes pointers r| on T'R;; based on pointers r; on LB;; according to
@)-([@) starting from cell (1,1). The result of the forward pass are the partitions of
Tlitmyn, 1 < i < m, that represent r| on T

Similarly, the backward pass starts from cell (2m,n) and proceeds from right
to left and from top to bottom and computes ' on LB;; based on rT on TR;;
according to (@)-({T2). The result of the backward pass are the constant values r;r of
the pointer function ' on g/r N Ty for 1 <i < m.

During the forward pass the function r; on g, N T;; as the partition I (i, )
of Tj; is stored in the following data structure. The function r| on each interval
int € I)(i, j) is represented by a triple (beg™*, end™, r|""), where beg”*" and end"™*
are the endpoints of interval int and rj”t has the meaning defined right before
Lemmal[7l The triples (beg, end, val) sorted by their endpoints are stored in a double-
ended queue (deque) with the following operations performing in constant time:

— reading and removing either the leftmost or the rightmost triple;

— pushing a triple either to the left or to the right end of the deque.

For a given number x the operations of cutting the deque to the left of z and
cutting to the right of x are defined. Cutting to the left of z means removing
all triples (beg,end,val) where end < z from the deque and replacing a triple
(beg, end, val) where beg < x < end with a triple (x, end, val). Cutting to the right
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of x means removing all triples (beg, end, val) where beg > = and replacing a triple
(beg, end, val) where beg < x < end either with a triple (beg, ;, val) if val < end, or
with a triple (beg, x,x) if val = end. Since the triples in the deque are sorted, the
time spent on cutting the deque is proportional to the number of triples removed
from the deque. Note that each cut of the deque performs only one push to the
deque.

The partitions I7(i, j) of the sets g" N R;; and functions 7" on g'N R;; are stored
in the same data structures. Of course, instead of the leftmost and the rightmost
triple there are the lowest and the highest triple.

The forward and the backward passes rely on the sets gy N\ R;;, g, NTij, g1 N Ryj
and g+ NT;; to be precomputed. It has been mentioned at the beginning of Section
M that these sets can be computed in a straightforward way.

5.2. The forward pass

The forward pass works with 2m deques Q, (i), i € {1,2,...,2m}, whose content
depends on the number (i, j) of the step. The (i, j)-th step starts with the known
value r*(i — 1, j) of r| on L;; and with @ (i) representing r; on B;;. The (i, j)-th
step updates the deque Q(7) to represent r| on T;; and computes the constant
value r*(7,7) of r| on R;j.

As it has been shown during the proof of Lemma [G] a partition of non-empty set
g, N Bj1 consists of a single interval. Therefore, at the start of the (i, 1)-th step the
deque @ () is either empty (if gy N B;1 = () or includes a single triple (beg, end, end)
where beg and end are the horizontal coordinates of the leftmost and the rightmost
points in g; N B;1. The pointers 7*(0, j) are obviously equal to 0 for each non-empty
gy n Llj-

When all four sets g, N R;;, gy N T34, g, N Lij, g, N By; are non-empty the update
of @ (i) and the computation of r*(i, j) is done as follows. Let

a8 = {u| wi-DegnBy}, led={u|@seqnnt,},

.if ¢ < a then push (¢, a,r7*(i — 1, 7)) to the left end of @ (4);
else cut Q (i) to the left of ¢;
. read a triple (beg, end, r*) from the right and save the value r*;
.if b < d then push (b, d,r*) to the right end of @ (4);
else cut Q (i) to right of d;
(i, 5) = rt.
The Operations 1, 4 and 6 represent relations (B, () and (8]) directly. The relation
(@) is represented with Operations 2 and 4 indirectly in a sense that the uncut part
of @ (i) remains unchanged.

It is not necessary to consider all special cases when some of the sets g; N R;j,
9.NTi5, gy N L;j, gy N B, are empty. In each of these cases the (7, j)-th step consists
of some part of Operations 1-6 or their slight modifications. Since we are mainly

S T W
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interested in the computational complexity of the algorithm, considering the above
described complete case is sufficient.

One can see that one step of the forward pass does not perform in constant
time due to the cutting of the deque that can take O(j) time for the (i, j)-th step.
Nevertheless, the complexity of the forward pass is O(mn) as the following lemma
states.

Lemma 8. [t takes O(mn) time to complete the forward pass.

Proof. The forward pass starts with initializing the deques Qy(i), i €
{1,2,...,2m}, and the pointers r*(0,j) = 0, j € {1,2,...,n}. Evidently, it takes
O(m + n) time.

No more than three triples are pushed in deque on each step. One triple is
pushed either with Operation 1 or with Operation 2, the second is pushed either
with Operation 4 or with Operation 5. The third push is made with Operation 3
because the triple that was read and removed from the deque has to be returned to
the deque. Therefore, no more than 6mn triples are pushed during all steps.

Reading and removing triples are fulfilled with Operations 2, 3 and 4. Number
of these operations in (i,j)-th step may differ from number of insertions in this
step. However, the number of readings and removing during the whole forward pass
cannot exceed the total number of insertions, consequently, cannot be greater than
6mn. O

5.3. The backward pass

The backward pass works with n deques Q'(j), j € {1,2,...,n}, whose content
depends on the number (4, j) of the step. The (4, j)-th step starts with the known
value r*(i,7) of the pointer " on g N T;; and with the deque Q"(j) representing
rTon ¢g"'N R;;. The (i,7)-th step updates Q"(5) to represent rT on g' N L;; and
computes the value r*(i, j — 1) of the pointer 7" on g N B;;.

When all four sets ¢" NRij, g'NTy;, g" NLij, g' N Bij are non-empty the update
of Q1(4) is done as follows. Let

[a,b] = {v (i,v) € gTﬁRij}, [e,d] = {v

. if b < d then push (b,d,7*(i, j)) to the upper end of QT(j);
else Q7(j) is cut to the up of d;
. read a triple (beg, end, r*) from the lower end and save the value r*;
. if ¢ < a then push (¢, a, ) to the lower end of QT(5);;
else cut Q'(j) down of ¢;
r*(i,j — 1) =r*.
The Operations 1, 4 and 6 represent relations (I0), (I2) and (3] directly. The
relation () is represented with Operations 2 and 5 indirectly in a sense that the
uncut part of QT(j) remains unchanged.

(i—1,v) engLij}a

o C W e

Lemma 9. It takes O(mn) time to complete the backward pass.
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Proof. The proof is based on the same considerations as the proof of Lemma 8l O

6. The result

Theorem 1. Let X and Y be closed polygonal curves with m and n vertices and
3(X,Y) be the Fréchet distance between them. Testing the inequality 0(X,Y) < ¢
takes O(mn) time.

Proof. Testing the inequality §(X,Y") < ¢ is reduced to the following computations.
Computing the sets D, NT;; and D. N R;;, 0 <4 < 2m, 0 < j < n, is reduced to
solving 2mn quadratic equations and takes O(mn) time.

Computing subsets g; N Ty, and g' N By, 1 < < 2m, takes O(mn) time.

Due to Lemma [§] computing the restrictions of r| to g, N T}, takes O(mn) time.
Due to Lemma [ computing the restrictions of rT to g" N B;; takes O(mn) time.
Due to Lemma [1 testing the inequality 6(X,Y) < e based on these data takes
O(mn) time. |
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