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Logical laws for short existential monadic second order sentences

about graphs

M.E. Zhukovskii 1

Abstract

In 2001, J.-M. Le Bars proved that there exists an existential monadic second order (EMSO)
sentence such that the probability that it is true on G(n, p = 1/2) does not converge and conjectured
that, for EMSO sentences with 2 first order variables, the 0-1 law holds. In this paper, we prove that

the conjecture fails for p ∈ {3−
√
5

2 ,
√
5−1
2 }, and give new examples of sentences with fewer variables

without convergence (even for p = 1/2).

Keywords: existential monadic second order language, random graphs, zero-one laws, conver-
gence laws.

In this paper, we study existential monadic second order (EMSO) properties of undirected
graphs. In 2001, J.-M. Le Bars proved that there exists an EMSO sentence about undirected
graphs such that P(Gn |= φ) does not converge (here, the probability distribution is uniform
over the set of all graphs on the set of vertices {1, . . . , n}). In the same paper, he conjectured
that, for EMSO sentences with 2 first order variables, the 0-1 law holds (every sentence
is either true asymptotically almost surely (a.a.s.), or false a.a.s.). We give an example
of EMSO sentence with 1 monadic variable without convergence and an example of EMSO
sentence with 3 first order variables without convergence. Moreover, we consider the binomial
random graph G(n, p) and move from the uniform case p = 1/2 described above to the case of
arbitrary constant p ∈ (0, 1). The above results are also true for this graph. In addition, we
consider the set of EMSO sentences of the form ∃X φ(X) where the first order part φ(X) has
quantifier depth 2, and X is the only monadic variable. We prove that, for these sentences,
zero-one law holds if and only if p /∈ {3−

√
5

2
,
√
5−1
2

}. If p ∈ {3−
√
5

2
,
√
5−1
2

}, there is even no
convergence.

The paper is organised in the following way. Section 1 is devoted to logical preliminaries.
In Section 2, we review known results about logical laws of binomial random graphs. In the
same section, we motivate and state new results. The remaining sections are devoted to the
proofs. Their structures are described in the end of Section 2.
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1 Logical preliminaries

Studying zero-one laws requires an amount of logical prerequisites. We review some of the
basics in this section, and refer the reader to [1, 2, 3, 4, 5, 6, 7]. Sentences in the first order
language of graphs (FO sentences) are constructed using relational symbols ∼ (interpreted
as adjacency) and =, logical connectives ¬,→,↔,∨,∧, variables x, y, x1, . . . that express
vertices of a graph, quantifiers ∀, ∃ and parentheses (, ). Monadic second order, or MSO,
sentences (see [2, 4, 8, 9]) are built of the above symbols of the first order language, as
well as the variables X, Y,X1, . . . that are interpreted as unary predicates, i.e. subsets of
the vertex set. In an MSO sentence, variables x, y, x1, . . . (that express vertices) are called
FO variables, and variables X, Y,X1, . . . (that express sets) are called MSO variables. If,
in an MSO sentence ϕ, all the MSO variables are existential and in the beginning (that
is ϕ = ∃X1 . . .∃Xm φ(X1, . . . , Xm) where φ(X1, . . . , Xm) is a first order sentence with unary
predicates X1, . . . , Xm), then the sentence is called existential monadic second order (EMSO).
Sentences must have finite length.

Following [4, 7], we call the number of nested quantifiers in a longest sequence of nested
quantifiers of a sentence ϕ the quantifier depth q(ϕ) (in [4], the notion quantifier rank is used
instead, but we prefer the previous one). For example, the MSO sentence

∀X
[

(∃x1∃x2 [X(x1) ∧ ¬X(x2)]) → (∃y∃z [X(y) ∧ ¬X(z) ∧ y ∼ z])

]

has quantifier depth 3 and expresses the property of being connected (and its first order part
has quantifier depth 2). It is known that the property of being connected cannot be expressed
by a FO sentence. This fact (and many other facts about an expressibility) may be easily
proved using Ehrenfeucht games (see e.g., [4, 7]). In Section 1.1, we consider a modification
of this game which we use in our proofs.

The quantifier depth of a sentence has the following clear algorithmic interpretation: an
FO sentence of quantifier depth k on an n-vertex graph can be verified in O(nk) time. It
is very well known (see, e.g., [4], Proposition 6.6) that the same is true for the number of
variables: an FO sentence with k variables on an n-vertex graph can be verified in O(nk)
time. The later statement is stronger because, clearly, every FO sentence of quantifier depth
k may be rewritten using at most k variables.

In what follows, for a sentence ϕ, we use the usual notation from model theory G |= ϕ if
ϕ is true for G.
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1.1 Ehrenfeucht games

An important tool that allows exploiting combinatorial techniques for proving results in logic
is a class of games called Ehrenfeucht games [2, 4, 5, 6, 7, 8, 10]. We consider the following
modification of this game (which is also called the 1,2-Fagin game, see [4]). Let A,B be two
graphs. There are three rounds in the game EHR(A,B) and two players, called Spoiler and
Duplicator. In the first round, Spoiler chooses a set of vertices X in A, Duplicator responds
with a set of vertices Y in B. In each of the remaining rounds i ∈ {2, 3}, Spoiler chooses
either a vertex xi−1 of A or a vertex yi−1 of B. Duplicator then chooses a vertex in the other
graph (either yi−1 or xi−1). At the end of the game the vertices x1, x2 of A, and y1, y2 of B
are chosen. Duplicator wins if and only if the following properties hold

· (x1 ∼ x2) ↔ (y1 ∼ y2),

· (x1 = x2) ↔ (y1 = y2),

· for i ∈ {1, 2}, (xi ∈ X) ↔ (yi ∈ Y ).

Consider a logic (class of sentences) E2
1 containing all EMSO sentences of the form ∃X φ(X)

where φ(X) is an FO sentence of quantifier depth 2, and X is the only monadic variable. The
following result establishes the well-known connection between logic and the Ehrenfeucht
games (we drop the proof, because it repeats usual proofs of all such results, see, e.g., [4, 6,
10, 11]).

Theorem 1.1 If Duplicator wins EHR(A,B), then every sentence ϕ ∈ E2
1 does not differ

between A and B (that is either A |= ϕ and B |= ϕ, or A |= ¬ϕ and B |= ¬ϕ).

1.2 Extension axioms

Another important tool that we exploit in our proofs is extension axioms.
Let k be a positive integer, and a ≤ k be a non-negative integer. Then the sentence

Φk =
k
∧

a=0

Φk,a, Φk,a = ∀v1 . . .∀va∀u1 . . . ∀uk−a









∧

i∈{1,...,a},j∈{1,...,k−a}
vi 6= uj



→
(

∃z
[(

a
∧

i=1

z ∼ vi

)

∧
(

k−a
∧

j=1

[z ≁ uj ∧ z 6= uj]

)])





saying that, for every set X of k distinct vertices and every subset Y of X (not necessarily
non-empty), there is a vertex outside X adjacent to every vertex in Y and non-adjacent to
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every vertex in X \ Y , is called the k-th extension axiom. It is very well known (see, e.g.,
[4, 5, 7]) that if A |= Φk, B |= Φk, then any FO sentence of quantifier depth k + 1 does not
differ between A and B.

In this paper, we also ask, is it true that, for some k ≥ 2 and for the class Ek
1 of EMSO

sentences with only 1 monadic variable and quantifier depth k, there exists an s such that
A |= Φs, B |= Φs implies that any sentence from Ek

1 does not differ between A and B? The
negative answer (even for k = 2) is given in Section 3.

2 Zero-one laws and non-convergence

In 1959, P. Erdős and A. Rényi, and independently E. Gilbert, introduced two closely related
models for generating random graphs. A seminal paper of Erdős and Rényi [12], that appeared
one year later, brought a lot of attention to the subject, giving birth to Erdős-Rényi random
graphs. In spite of the name, the more popular model G(n, p) is the one proposed by Gilbert.
In this model, we have G(n, p) = (Vn, E), where Vn = {1, . . . , n}, and each pair of vertices
is connected by an edge with probability p and independently of other pairs. For more
information, we refer readers to the books [13, 14, 15]. Y. Glebskii, D. Kogan, M. Liogon’kii
and V. Talanov in 1969 [16], and independently R. Fagin in 1976 [17], proved that any FO
sentence is either true with asymptotical probability 1 (asymptotically almost surely or a.a.s.)
or a.a.s. false for G(n, 1/2), as n → ∞. In such a situation we say that G(n, p) obeys the FO
zero-one law. More generally, consider a logic L. We say that G(n, p) obeys the L zero-one
law if, for every sentence ϕ ∈ L, limn→∞ P(G(n, p) |= ϕ) ∈ {0, 1}. A weaker version of this
law is called the convergence law: G(n, p) obeys the L convergence law if, for every sentence
ϕ ∈ L, the limit limn→∞ P(G(n, p) |= ϕ) exists (but not necessarily equals 0 or 1).

To the best of our knowledge, J.F. Lynch [18] was the first who noticed that Ehrenfeucht
games may be applied for proofs of zero-one laws and J. Spencer ([19], Theorem 3.1) was the
first who applied it for G(n, p) for various parameters p = p(n). For a logic L, consider a
version of Ehrenfeucht game (if it exists) for which an analogue of Theorem 1.1 holds (that
is, if Duplicator has a winning strategy in the game on two graphs, then no sentence from L
differs between these two graphs). Then it is not difficult to show (see, e.g., [7, 15, 19]) the
following implication. If, for any number of rounds, a.a.s. there exists a winning strategy of
Duplicator on two independent random graphs G(n, p) and G(m, p) (as n,m → ∞), then the
zero-one law for sentences from L holds. For FO, it is clear that (see, e.g., [19], Theorem 4.1)
if, for an integer k ≥ 1, limn→∞ P(G(n, p) |= Φk) = 1, then a.a.s. Duplicator wins in k + 1
rounds. It is a simple combinatorial exercise, to prove the latter convergence (see, e.g., [19],
Theorem 4.1). So, G(n, p) obeys the FO zero-one law for every constant p.

However, G(n, 1/2) does not obey even the convergence law for EMSO. The respective
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construction ϕ was obtained by J.-M. Le Bars in 2001 [20]. The first MSO sentence with one
binary relation that has no asymptotic probability was constructed by M. Kaufmann and S.
Shelah in 1985 [21]. In 1987 [22], Kaufmann proved that there exists an EMSO sentence with
4 binary relations that has no asymptotic probability. Note that this construction contains
4 monadic variables and 9 first order variables, and the sentence ϕ proposed by Le Bars has
even more variables (of both types). In the above mentioned paper, Le Bars conjectured that,
for EMSO sentences with 2 first order variables, G(n, 1/2) obeys the zero-one law.

We disprove the conjecture for G(n, p), p ∈ {3−
√
5

2
,
√
5−1
2

}. More precisely, we prove the
following theorem.

Theorem 2.1 Let p ∈ (0, 1) be a constant. Then G(n, p) obeys the E2
1 zero-one law if and

only if p /∈ {3−
√
5

2
,
√
5−1
2

}.
If p ∈ {3−

√
5

2
,
√
5−1
2

}, then G(n, p) does not obey the E2
1 convergence law.

Moreover, we prove that 3 first order variables is enough to get non-convergence, and 1
monadic variable is also enough for this.

Theorem 2.2 Let p ∈ (0, 1) be a constant. There exist an EMSO sentence with 3 first order
variables ϕ1 and an EMSO sentence with 1 monadic variable ϕ2, such that, for both j = 1, 2,
the probability P(G(n, p) |= ϕj) does not converge as n → ∞.

The proofs are organized in the following way. In Section 3 we state a result which
answers the question from Section 1.2 and together with Lemma 4.1 from Section 4 implies
Theorem 2.1. Constructions of φ1 and φ2 from Theorem 2.2 are given in Section 5.

3 When do extension axioms imply the EMSO equiva-

lence?

In Section 1.2, we ask, is it true that, for some k ≥ 2, there exists an s such that A |= Φs,
B |= Φs implies that any sentence from Ek

1 does not differ between A and B? The answer is
‘no’ even for k = 2 (see Theorem 3.1 below in this section). But can we restrict somehow (in
an optimal way) the set of all pairs of graphs such that the answer becomes ‘yes’?

We prove that there are six special monadic sentences ϕ1
C , ϕ

2
C , ϕ

3
C , ϕ

1
I , ϕ

2
I , ϕ

3
I (and this set

is minimal, see Theorem 3.1) such that if two graphs have the s-extension property (for s large
enough) and ϕ1

C , ϕ
2
C , ϕ

3
C, ϕ

1
I , ϕ

2
I , ϕ

3
I do not differ between these two graphs, then no ϕ ∈ E2

1
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differs between them. These sentences are defined in the following way. Let max cl(X) say
that X is a maximal clique:

max cl(X) = [cl(X)] ∧ [¬∃x (¬X(x) ∧ [∀y (X(y) → x ∼ y)])],

where cl(X) = ∀x∀y [(X(x) ∧X(y) ∧ x 6= y) → x ∼ y]. Let ϕC(X) say that there exists an
external vertex which is not adjacent to any vertex of X :

ϕC(X) = ∃x (¬X(x)) ∧ (∀y [X(y) → x ≁ y]).

Then
ϕ1
C = ∀X [cl(X) → ϕC(X)], ϕ2

C = ∀X [max cl(X) → ¬ϕC(X)], (1)

ϕ3
C = ∀X [(cl(X) ∧ ¬φC(X)) → max cl(X)].

Note that ϕ1
C implies ϕ3

C , and ϕ2
C implies ¬ϕ1

C . In other words, sets

G1 := {G : G |= ϕ1
C},

G2 := {G : G |= ¬ϕ1
C ∧ ¬ϕ2

C ∧ ϕ3
C},

G3 := {G : G |= ¬ϕ1
C ∧ ¬ϕ2

C ∧ ¬ϕ3
C},

G4 := {G : G |= ϕ2
C ∧ ϕ3

C},
G5 := {G : G |= ϕ2

C ∧ ¬ϕ3
C}

form a partition of the set of all graphs.
In the same way, ind(X) say that X is an independent set, max ind(X) say that X is a

maximal independent set, and φI(X) say that there exists an external vertex which is adjacent
to any vertex of X . Then

ϕ1
I = ∀X [ind(X) → ϕI(X)], ϕ2

I = ∀X [max ind(X) → ¬ϕI(X)],

ϕ3
I = ∀X [(ind(X) ∧ ¬φI(X)) → max ind(X)].

The same implications (as for ϕC-sentences) hold for these sentences.

Theorem 3.1 There exists s such that if G,H have the s-extension property, and ϕ1
C , ϕ

2
C , ϕ

3
C,

ϕ1
I , ϕ

2
I , ϕ

3
I do not differ between G and H, then no ϕ ∈ E2

1 differs between G and H.
Moreover, the set of sentences ϕ1

C , ϕ
2
C , ϕ

3
C, ϕ

1
I , ϕ

2
I , ϕ

3
I is a minimum set such that the first

part of this theorem holds in the following sense. For every positive integer s and every

ϕ ∈ {ϕ1
C ,¬ϕ1

C ∧ ¬ϕ2
C ∧ ϕ3

C ,¬ϕ1
C ∧ ¬ϕ2

C ∧ ¬ϕ3
C , ϕ

2
C ∧ ϕ3

C , ϕ
2
C ∧ ¬ϕ3

C},

there exists a graph G such that G has the s-extension property and G |= ϕ (similar statement
holds for the sentences ϕ1

I , ϕ
2
I , ϕ

3
I).
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Proof. Fix s as large as desired. Let G,H have the s-extension property, and the 6
sentences from the statement of Theorem 3.1 do not differ between G and H . Let us prove
that no sentence from E2

1 differs between G and H . By Theorem 1.1, it is sufficient to prove
that Duplicator has a winning strategy in EHR(G,H). In the first round, Spoiler makes a
move in G, he chooses X ⊂ V (G).

In what follows, we need the following definitions. Let A be a graph, and S ⊂ V (A). We
say that vertices v1, . . . , vs of A have the extension property w.r.t. S if for every 0 ≤ a ≤ s
and every pairwise distinct i1, . . . , ia ∈ {1, . . . , s} there exists z ∈ S which is adjacent to
vi1 , . . . , via and non-adjacent to all the other vertices from {v1, . . . , vs}. We say that A has
the s-extension property w.r.t. S, if any vertices v1, . . . , vs of A have the extension property
w.r.t. S.

1. Assume that G has the 1-extension property w.r.t. X and the 1-extension property
w.r.t. X .

Claim 3.2 There exist Y ⊂ V (H) such that H has the 1-extension properties w.r.t. Y and
Y .

Proof. Let y1, y2 be vertices of H . Denote by NH(y) the set of all neighbors of a vertex y
in H . Let

Y = [NH(y1) ∩NH(y2)] ∪ [NH(y1) ∩NH(y2)].

Let us prove that H has the 1-extension properties w.r.t. Y and Y . First, choose y ∈
Y \ {y1, y2}. Without loss of generality, y ∈ NH(y1) ∩ NH(y2). By the 3-extension property
of H , there is a neighbor of y in Y (because the set NH(y) ∩ NH(y1) ∩ NH(y2) is non-
empty) and a non-neighbor of y in Y (because the set NH(y) ∩ NH(y1) ∩ NH(y2) \ {y}
is non-empty). Second, choose y ∈ Y \ {y1, y2}. Without loss of generality, assume that
y ∈ NH(y1) ∩ NH(y2). By the 3-extension property of H , there is a neighbor of y in Y (be-
cause the set NH(y) ∩ NH(y1) ∩ NH(y2) is non-empty) and there is a non-neighbor of y in
Y (because the set NH(y) ∩ NH(y1) ∩ NH(y2) \ {y} is non-empty). Finally, let y ∈ {y1, y2}.
Without loss of generality, y = y1. As NH(y1) ∩NH(y2) 6= ∅, there is a neighbor of y1 in Y .
As NH(y1)∩NH(y2) 6= ∅, there is a non-neighbor of y1 in Y . As NH(y1)∩NH(y2) 6= ∅, there
is a neighbor of y1 in Y . As NH(y1)∩NH(y2)\{y1} 6= ∅, there is a non-neighbor of y1 in Y . �

Let us continue describing the winning strategy of Duplicator. She chooses a set Y ⊂ V (H)
such that H has the 1-extension property w.r.t. Y and the 1-extension property w.r.t. Y .
Trivially, Duplicator wins in the remaining 2 rounds.

2. Let x be a vertex of G that does not have the extension property w.r.t. X . Without
loss of generality, assume that all neighbors of x are in X .
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2.1 Assume that x does not have the extension property w.r.t. X as well. Then X is the set
of all neighbors of x (or x is an extra vertex of X). Obviously, in this case, every other
vertex of G has the extension property w.r.t. X and w.r.t. X . This follows from the 2-
extension property of G: for every x̃ 6= x, the sets NG(x)∩NG(x̃), NG(x)∩NG(x̃)\{x̃},
NG(x) ∩ NG(x̃) \ {x}, NG(x) ∩ NG(x̃) \ {x, x̃} are not empty. Let y be a vertex of
H . Duplicator chooses Y = NH(y) (or Y = NH(y) \ {y}, whenever x ∈ X). By the
2-extension property, every ỹ 6= y has the extension property w.r.t. Y and w.r.t. Y .
Trivially, Duplicator wins in the remaining 2 rounds.

2.2 Let x have the extension property w.r.t. X . As above, all the other vertices of G have
the extension property w.r.t. X .

Assume that all the vertices ofX have the extension property w.r.t. X . In this case, x ∈
X . If there are no vertices which are adjacent to all vertices in X , take arbitrary vertex
y in H and set Y = NH(y) \ {y, ỹ}, where ỹ is an arbitrary non-neighbor of y. If there
is a vertex ŷ which is adjacent to all vertices in Y , then NH(y) ∩NH(ỹ) ∩NH(ŷ) = ∅.
This contradicts the 3-extension property of H . If, in Y , there is a vertex which is non-
adjacent to all the other vertices in Y , then NH(y) ∩NH(ỹ) ∩NH(ŷ) = ∅. Again, this
contradicts the 3-extension property. Duplicator chooses Y . If an x̃ (in X) is a common
neighbor of all the vertices in X , then Duplicator chooses Y such that H|Y = P2 ⊔ P2.
By the 4-extension property, such an Y exists, and there is a common neighbor and a
common non-neighbor of all the vertices of Y in H .

Let G|X be a clique. In this case, x ∈ X as well. If there are no vertices which are
adjacent to all the vertices in X , then G |= ¬φ2

C . As φ
2
C does not differ between G and

H , φ2
C is also false on H . Therefore, there exists Y ⊂ V (H) such that H|Y is a maximal

clique, and there exists a vertex y ∈ Y which is not adjacent to any vertex of Y . It is
easy to see that every vertex of H has the extension property w.r.t. Y (otherwise, we
easily get a contradiction with the 2-extension property). Duplicator chooses Y . If x̃
is a common neighbor of all vertices in X , then Duplicator chooses Y = {y1, y2} such
that y1 ∼ y2. By the 3-extension property, such an Y exists, and there exist vertices
y, ỹ ∈ Y such that y is not adjacent to any of y1, y2, and ỹ is a common neighbor of
y1, y2. It is easy to see that every vertex of H has the extension property w.r.t. Y .

If X is an independent set, then one can consider four cases: in X, 1) there is a common
neighbor of all vertices of X and a vertex which is not adjacent to any vertex of X ,
2) there is a common neighbor of all vertices of X and there are no vertices which are
not adjacent to any vertex of X , 3) there are no common neighbors of all vertices of X
and there is a vertex which is not adjacent to any vertex of X , 4) there are no common
neighbors of all vertices of X and no vertices which are not adjacent to any vertex of X .

8



In the first case, the target set Y exists due to the 3-extension property of H . In the
second case, the target set Y exists because H |= (¬φ2

C). In the third case, the target
set Y exists because H |= (¬φ1

C) ∧ (¬φ3
C). In the fourth case, the target set Y exists

because H |= (¬φ1
C).

If G|X is not a clique but in X there is a vertex x̃ such that [NG(x̃) ∪ {x̃}] ⊃ X , then
x ∈ X . If there is also a vertex x̂ ∈ X which is a common neighbor of all vertices in X ,
then, by the 4-extension property, there is a set Y = {ỹ, y1, y2} and vertices y, ŷ in H
such that y is a common neighbor of y1, y2, ŷ is a common neighbor of ỹ, y1, y2, y is non-
adjacent to any vertex of Y , and y1 ≁ y2. Duplicator chooses the set Y . If, in X, there
are no common neighbors of all vertices in X , then find two vertices ỹ and y that are not
adjacent in H . Let Y = [NH(ỹ) ∩NH(y)] ∪ {ỹ}. Suppose that there is a vertex ŷ ∈ Y
which is a common neighbor of all vertices in Y . Then NH(ỹ) ∩ NH(y) ∩ NH(ŷ) = ∅.
This contradicts the 3-extension property of H .

Finally, letX be not an independent set and there be an isolated vertex inG|X . Consider
four cases: in X, 1) there is a common neighbor of all vertices of X and a vertex which
is not adjacent to any vertex of X , 2) there is a common neighbor of all vertices of X
and there are no vertices which are not adjacent to any vertex of X , 3) there are no
common neighbors of all vertices of X and there is a vertex which is not adjacent to
any vertex of X , 4) there are no common neighbors of all vertices of X and no vertices
which are not adjacent to any vertex of X . In the first case, the target set Y exists due
to the 4-extension property of H . In the second case, find two vertices ỹ and y that are
adjacent in H . Let Y = NH(y) ∩ NH(ỹ). Suppose that there is a vertex ŷ ∈ Y which
is not adjacent to any vertex in Y . Then (NH(y) ∩ NH(ỹ) ∩ NH(ŷ)) \ {y} = ∅. This
contradicts with the 3-extension property of Y . The existence of the target set Y in the
third case follows from the 3-extension property in same way. In the fourth case, find
two vertices ỹ and y that are non-adjacent in H . Set Y = NH(y) \ {ỹ}. It easily follows
from the 3-extension property that there are no common neighbors of all vertices of Y
and no vertices which are not adjacent to any vertex of Y .

In all the above cases, Duplicator has a winning strategy in the remaining two rounds.

Now, let us prove the second part of the theorem. Obviously, it is enough two prove it
only for sentences ϕ1

C , ϕ
2
C, ϕ

3
C . For ϕ ∈ {ϕ1

C ,¬ϕ1
C ∧¬ϕ2

C ∧¬ϕ3
C}, the existence of the required

graph follows from Lemma 4.1 of Section 4.
Let ϕ = ϕ2

C ∧ ϕ3
C . Consider ℓ complete bipartite graphs Hi

∼= Kn,n and draw an edge
with probability p between every two vertices from different graphs (all edges appear inde-
pendently). Denote this random graph on 2nℓ vertices by G1

n. Set V (Hi) = Vi, i ∈ {1, . . . , ℓ}.
It can be easily proved that a.a.s. (as n → ∞) this graph has the (ℓ− 1)-extension property.
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Moreover, a.a.s. every maximal clique has size 2ℓ and has two common vertices with every
Hi. For every clique S with |V (S)| ≤ 2ℓ−1, there is Vi such that |Vi∩V (S)| ≤ 1. In Vi, there
are at least n− 1 vertices that are not adjacent to the only vertex (if it exists) in Vi ∩ V (S).
Therefore, a.a.s. for every such a clique S, there is a vertex which has no neighbors in S. But
for every clique S of size 2ℓ and every i, each vertex in Vi \ V (S) has a neighbor in Vi ∩V (S).
So, a.a.s. G1

n |= ϕ.
Let ϕ = ¬ϕ1

C ∧ ¬ϕ2
C ∧ ϕ3

C . Consider ℓ− 1 complete bipartite graphs Hi
∼= Kn,n and one

star graph Hℓ = K1,n. Let x be the central vertex of Hℓ. Draw an edge with probability p
between every two vertices from different graphs (all edges appear independently). Denote
this random graph on 2n(ℓ − 1) + n + 1 vertices by G2

n. Set V (Hi) = Vi, i ∈ {1, . . . , ℓ}. As
above, a.a.s. this graph has the (ℓ − 1)-extension property. Moreover, a.a.s. every maximal
clique has either size 2ℓ− 1 and does not contain x, or has size 2ℓ and contains x (both types
of cliques appear in the random graph a.a.s.). In G2

n, for every clique S of size 2ℓ and every
vertex u /∈ V (S), u has a neighbor in V (S). Moreover, a.a.s. every clique S of size 2ℓ− 1 has
an outside vertex which has no neighbors in V (S). Therefore, a.a.s. G2

n |= ϕ.
Finally, let ϕ = ϕ2

C ∧ ¬ϕ3
C . Consider ℓ− 1 complete bipartite graphs Hi

∼= Kn,n and one
union Hℓ of a complete bipartite graph Kn,n with a vertex which is adjacent to all 2n vertices
of Kn,n. Let x be the universal vertex of Hℓ. Draw an edge with probability p between every
two vertices from different graphs (all edges appear independently), and denote this random
graph by G3

n. Set V (Hi) = Vi, i ∈ {1, . . . , ℓ}. As above, a.a.s. G3
n has the (ℓ − 1)-extension

property. Moreover, a.a.s. every maximal clique has either size 2ℓ and does not contain x,
or has size 2ℓ + 1 and contains x (both types of cliques appear in the random graph a.a.s.).
Note that, for every 2ℓ-subgraph S of a maximal 2ℓ+ 1-clique of G3

n which has two common
vertices with each Vi, each u /∈ S has a neighbor in S. Therefore, a.a.s. G3

n |= ϕ. �.

4 Maximal independent sets and maximal cliques in the

random graph

In this section, we ask, which of the sets Gj , j ∈ {1, 2, 3, 4, 5}, the random graph G(n, p)

belongs a.a.s. for different values of p. Surprisingly, for p = 3−
√
5

2
, there is no such a set.

Moreover, for this value of p, the probability P(G(n, p) |= ϕ3
C) does not converge. A similar

result holds true for ϕI sentences.

Lemma 4.1 Let p = const ∈ (0, 1).

1. If p > 3−
√
5

2
, then P(G(n, p) |= (¬ϕ1

C) ∧ (¬ϕ2
C) ∧ (¬ϕ3

C)) → 1 as n → ∞.
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2. If p < 3−
√
5

2
, then P(G(n, p) |= ϕ1

C) → 1 as n → ∞.

3. If p = 3−
√
5

2
, then P(G(n, p) |= ϕ3

C) does not converge.

4. If p <
√
5−1
2

, then P(G(n, p) |= (¬ϕ1
I) ∧ (¬ϕ2

I) ∧ (¬ϕ3
I)) → 1 as n → ∞.

5. If p >
√
5−1
2

, then P(G(n, p) |= ϕ1
I) → 1 as n → ∞.

6. If p =
√
5−1
2

, then P(G(n, p) |= ϕ3
I) does not converge.

Proof. It is enough to prove 1, 2 and 3. Let k be a positive integer, and X1(k) be the
number of pairs (C1, c1) where C1 is a maximal clique of size k in G(n, p) and c1 is a vertex
which is not adjacent to any vertex of C1. Let X2(k) be the number of pairs (C2, c2) where
C2 is a clique of size k in G(n, p), c2 is a (external) common neighbor of all vertices of C2, and
there does not exist a vertex which is not adjacent to any vertex of C2. We use Chebyshev’s
inequality to prove the lemma. First,

EX1(k) =

(

n

k

)

(n− k)p(
k
2)(1− p)k(1− pk)n−k−1,

EX2(k) =

(

n

k

)

(n− k)p(
k
2)pk(1− (1− p)k)n−k−1. (2)

Second,
DX1(k) ≤ EX1

k − (EX1
k)

2+
(

n

k

)

(n− k)(n− k − 1)p(
k
2)(1− p)2k +

(

n

k

)(

n− k

k

)

p2(
k
2)(n− 2k)2(1− p)2k(1− pk)2(n−2k−2)

k−1
∑

ℓ=1

(

n

k

)(

k

ℓ

)(

n− k

k − ℓ

)

p2(
k
2)−(

ℓ
2)(n− 2k + ℓ)(1− p)2k[(1− p)−ℓ + (n− 2k + ℓ− 1)].

DX2(k) ≤ EX2
k − (EX2

k)
2+

(

n

k

)

(n− k)(n− k− 1)p(
k
2)p2k +

(

n

k

)(

n− k

k

)

p2(
k
2)p2k(n2 − 3kn+3k2)(1− (1− p)k)2(n−k−2)+

k−1
∑

ℓ=1

(

n

k

)(

k

ℓ

)(

n− k

k − ℓ

)

p2(
k
2)−(

ℓ
2)×

(

[n− 2k + ℓ]p2k[(k − ℓ+ 1)p−ℓ + (n− 2k + ℓ− 1)] + [k − ℓ]2p2k−2ℓ
)

.
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1) Let p ≥ 1/2. Set k = ⌊log1/p n⌋. Then EXi(k) = e[ln
2 n/(2 ln(1/p))](1+o(1)) → ∞ as n → ∞

for both i = 1, 2.
For i = 1, as (1− pk)n = e−1 + o(1), we get

DX1(k) ≤ EX1(k) +

[(

n

k

)

(n− k)(n− k − 1)p(
k
2)(1− p)2k

]

+

[

(

n

k

)

p2(
k
2)(1− p)2k

k−1
∑

ℓ=1

Fℓ

]

+

(

n

k

)(

n− k

k

)

p2(
k
2)(n− 2k)2(1− p)2k(1− pk)2(n−2k−2) − (EX1

k)
2 =

(

n

k

)

p2(
k
2)(1− p)2k

k−1
∑

ℓ=1

Fℓ + o
(

(EX1
k)

2
)

.

where Fℓ = Aℓ(n− 2k + ℓ)[(1− p)−ℓ + (n− 2k + ℓ− 1)],

Aℓ =

(

k

ℓ

)(

n− k

k − ℓ

)

p−(
ℓ
2). (3)

By Chebyshev’s inequality,

P(X1(k) = 0) ≤ DX1(k)

(EX1(k))2
.

So, it is enough to prove that
∑k−1

ℓ=1 Fℓ = o
((

n
k

)

(n− k)2
)

. The last equality follows from the
fact that Fℓ first decreases and after that increases on {1, . . . , k− 1} (for n large enough) and

kF1 = k2

(

n− k

k − 1

)

(n−2k+1)[(1−p)−1+(n−2k)] = nk3

(

n− k

k

)

(1+o(1)) = o

((

n

k

)

(n− k)2
)

,

kFk−1 = k2(n−k)p−(
k−1
2 )(n−k−1)((1−p)1−k+n−k−2) = e[ln

2 n/(2 ln(1/p))(1+o(1))] = o

((

n

k

))

.

For i = 2, similarly, we get

DX2(k) ≤ EX2(k) +

(

n

k

)

(n− k)(n− k − 1)p(
k
2)p2k +

[

(

n

k

)

p2(
k
2)p2k

k−1
∑

ℓ=1

Gℓ

]

+

(

n

k

)(

n− k

k

)

p2k(n2 − 3kn + 3k2)(1− (1− p)k)2(n−2k−2) − (EX2(k))
2 =

(

n

k

)

p2(
k
2)p2k

k−1
∑

ℓ=1

Gℓ + o
(

(EX2(k))
2
)

,
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where Gℓ = Aℓ

(

[n− 2k + ℓ][(k − ℓ+ 1)p−ℓ + (n− 2k + ℓ− 1)] + [k − ℓ]2p−2ℓ
)

. Obviously,

Gℓ ≤ Aℓn
2k2 =: G̃ℓ for all ℓ ∈ {1, . . . , k − 1}. The equality P(X2(k) = 0) = o(1) holds

because Aℓ (and, therefore, G̃ℓ) first decreases and then increases on {1, . . . , k − 1} (for n
large enough) and

kG̃1 ·
(

n

k

)

p2(
k
2)p2k =

k4

(

n− k

k − 1

)(

n

k

)

p2(
k
2)p2kn2 =

k5n2

n− 2k + 1

(

n− k

k

)(

n

k

)

p2(
k
2)p2k = o

(

(EX2(k))
2
)

,

kG̃k−1

(

n
k

)

p2(
k
2)p2k

(EX2(k))2
= k4n

p−(
k−1
2 )

(

n
k

) [1 + o(1)] = e−
ln2 n

ln(1/p)
(1+o(1)) = o(1).

Below, we consider p < 1/2. The crucial thing is a sign of the expression 2 ln 1
1−p

− ln 1
p
.

We will show that the expectations of the considered random variables (in each of the below

three cases) equal exp
[

c(p) ln2 n
(

2 ln 1
1−p

− ln 1
p

)

(1 + o(1))
]

for some constants c(p). Then,

our intuition is the following: if the expectation tends to infinity, then a.a.s. the respective
structure exists. If it tends to 0, then a.a.s. it does not exist. And the only situation when
the non-covergence is possible is when 2 ln 1

1−p
− ln 1

p
= 0, i.e. p = 3−

√
5

2
.

2) Let 3−
√
5

2
< p < 1/2. In this case, 2 ln 1

1−p
− ln 1

p
> 0. Set k = ⌊log1/(1−p) n⌋. Then

EXi(k) = e
ln2 n

2 ln(1/(1−p))−ln(1/p)

2 ln2(1/(1−p))
(1+o(1)) → ∞ as n → ∞

for both i = 1, 2.
As above, Aℓ (defined in (3)) first decreases and then increases on {1, . . . , k − 1} (for n

large enough). Moreover, for n large enough, A1 > Ak−1. Indeed,

A1 = k

(

n− k

k − 1

)

= eln
2 n 1

ln(1/(1−p))
(1+o(1)) > e

ln2 n
ln(1/p)

2 ln2(1/(1−p))
(1+o(1))

,

Ak−1 = k(n− k)p−(
k−1
2 ) = e

ln2 n
ln(1/p)

2 ln2(1/(1−p))
(1+o(1))

.

For i = 1, as (1− pk)n = 1 + o(1), we get

DX1(k) ≤
(

n

k

)

p2(
k
2)(1− p)2k

k−1
∑

ℓ=1

Fℓ + o
(

(EX1(k))
2
)

.
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Note that, for all ℓ ∈ {1, . . . , k − 1}, Fℓ ≤ 2n2Aℓ =: F̃ℓ. As, for n large enough, F̃1 > F̃k−1,
by Chebyshev’s inequality, we get

P(X1(k) = 0) ≤ DX1(k)

(EX1(k))2
≤

2n2k2
(

n−k
k−1

)(

n
k

)

p2(
k
2)(1− p)2k

(EX1(k))2
+ o(1) = o(1).

For i = 2, as (1− (1− p)k)n−k = e−1 + o(1), similarly, we get

DX2(k) ≤
(

n

k

)

p2(
k
2)p2k

k−1
∑

ℓ=1

G̃ℓ + o
(

(EX2(k))
2
)

.

As, for n large enough, G̃1 > G̃k−1, by Chebyshev’s inequality, we get that

P(X2(k) = 0) ≤ kG̃1
(

n
k

)

(n− k)2(e−2 + o(1))
+ o(1) = O

(

k4n2
(

n−k
k−1

)

(

n
k

)

(n− k)2

)

+ o(1) = o(1).

3) Let p < 3−
√
5

2
. In this case, 2 ln 1

1−p
− ln 1

p
< 0. Let X̃2(k) be the number of maximal

cliques C such that there are no vertices which are not adjacent to any vertex of C. Here, we
prove that

∑

k EX̃2(k) → 0. From Markov inequality, this implies that P(∀k X̃2(k) = 0) → 1.
We get

EX̃2(k) ≤ ek lnn−k lnk+k− k2

2
ln(1/p)+ k

2
ln(1/p)−npk−n(1−p)k+o(1).

Let us find the maximum of the function f(k) = k lnn− k ln k+ k− k2

2
ln(1/p) + k

2
ln(1/p)−

npk −n(1− p)k . The function f ′(k) = lnn+ 1
2
ln(1/p)− ln k− k ln(1/p)+npk ln(1/p)+n(1−

p)k ln(1/(1−p)) decreases and equals 0 for k = log1/(1−p) n− log1/(1−p) lnn(1+o(1)). For such

k, lnEX̃2(k) ≤
2 ln 1

1−p
−ln 1

p

2 ln2 1
1−p

ln2 n(1 + o(1)). Finally, we get

∑

k

EX̃2(k) ≤ ne

2 ln 1
1−p−ln 1

p

2 ln2 1
1−p

ln2 n(1+o(1))
= o(1).

4) Let p = 3−
√
5

2
. First, let us estimate EX2(k) from above. From (2), we get

EX2(k) ≤ ek lnn−k ln k+k+lnn−k2 ln(1/(1−p))−k ln(1/(1−p))−n(1−p)k .

Let us find a maximum of the function f(k) = k lnn−k ln k+k−k2 ln(1/(1−p))−k ln(1/(1−
p))− n(1− p)k on [0, n]. The function f ′(k) = lnn− ln k− 2k ln(1/(1− p))− ln(1/(1− p)) +
n(1− p)k ln(1/(1− p)) decreases and equals 0 for

k∗ =
1

ln(1/(1− p))

(

lnn− ln lnn + ln ln
1

1− p
+

ln lnn

lnn
+O

(

1

lnn

))

. (4)
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As f(k∗) = ln lnn+O(1), we get

EX2(k
∗) =

1√
2πk

ef(k
∗)+o(1) = e

1
2
ln lnn+O(1)

if k∗ is an integer.
Now, let k̃ be equal to an integer in {1, . . . , n} for which the value of the function f is

maximal. We will construct two sequences of integers n such that, for one of them, there exist
integers k satisfying (4), and, for the second one, elements of the sequence defined in (4) are
close to k + 1/2 for some integers k.

Note that, for n = ⌊k(1/(1 − p))k⌋, we easily get that k satisfies the equality (4). Then,

for such n, k̃ satisfies the equality (4) as well, and so, EX2(k̃) = e
1
2
ln lnn+O(1) → ∞ as n → ∞.

But, for n = ⌊k(1/(1− p))k+1/2⌋ and every function k∗ defined in (4), |k− k∗| = 1
2
+ o(1).

So, for n large enough, |k̃ − k∗| > 1
3
. Moreover, for any ε > 0,

f(k∗+ε) = f(k∗)−lnn

(

ε− 1− (1− p)ε

ln(1/(1− p))

)

, f(k∗−ε) = f(k∗)−lnn

(

1/(1− p)ε − 1

ln(1/(1− p))
− ε

)

.

It means that, for n large enough, there is a constant c > 0 such that f(k̃) ≤ e−c lnn. Finally,
for some constant C > 0,

max
|k−k∗|≥C

|f(k)| ≤ −2 lnn,

and so, for the considered large enough n,

P(∃k X2(k) > 0) ≤
n
∑

k=1

EX2(k) ≤ ne−2 lnn +O
(

e−f(k̃)
)

= o(1).

To disprove the convergence, it remains to prove that, for the first sequence n = ⌊k(1/(1−
p))k⌋, DX2(k)

(EX2(k))2
= o(1). Let us compute the variance. For two k-sets S1, S2 ⊂ {1, . . . , n} such

that |S1 ∩ S2| = ℓ, denote βℓ the probability that a fixed vertex in {1, . . . , n} \ (S1 ∪ S2) has
a neighbor in S1 ∪ S2. Then

DX2(k) = EX2(k) +

[(

n

k

)

(n− k)(n− k − 1)p(
k
2)p2kβn−k−2

k

]

+ (5)

[(

n

k

)(

n− k

k

)

(n− 2k)2p2(
k
2)p2kβn−2k−2

0 − (EX2(k))
2

]

+ (6)

+

[

(

n

k

)

p2(
k
2)

ℓ−1
∑

k=1

(B1
ℓ +B2

ℓ +B3
ℓ +B4

ℓ )

]

, (7)
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where the factor B1
ℓ := Aℓ(k − ℓ)2p2(k−ℓ)βn−2k+ℓ

ℓ corresponds to the case when each one
of two k-sets has the common neighbor inside the second one; the factor B2

ℓ := Aℓ2(k −
ℓ)(n − 2k + ℓ)p2k−ℓβn−2k+ℓ−1

ℓ corresponds to the case when exactly one of two k-sets has
the common neighbor inside the second one; the factor B3

ℓ := Aℓ(n − 2k + ℓ)p2k−ℓβn−2k+ℓ−1
ℓ

corresponds to the case when both k-sets have the same common; and the factor B4
ℓ :=

Aℓ(n− 2k+ ℓ)(n− 2k+ ℓ− 1)p2kβn−2k+ℓ−2
ℓ corresponds to the case when k-sets have distinct

common neighbors outside their union.
Obviously, for every ℓ ∈ {0, 1, . . . , k − 1}, βℓ = 1− 2(1− p)k + (1− p)2k−ℓ. Therefore,

for every ℓ = const and φ(k) = O(k),

β
n−φ(k)
ℓ ∼ β2n

k , β
n−φ(k)
k−ℓ ∼ [1− (1− p)k(2− (1− p)ℓ)]n.

So, the first summand in (5)–(7) equals EX2(k) = o([EX2(k)]
2), the second summand

equals npkEX2(k)(1 + o(1)) ∼ e− lnn+ 3
2
ln lnn+o(1) = o(1), and the third summand equals

o([EX2(k)]
2) as well. So, it remains to prove that

ℓ−1
∑

k=1

max{B1
ℓ , B

2
ℓ , B

3
ℓ , B

4
ℓ } = o

((

n

k

)

n2p2kβ2n
k

)

.

Let G(n) =
(

n
k

)

n2p2kβ2n
k . As B2

ℓ ≥ B3
ℓ for all ℓ ∈ {1, . . . , k − 1}, it remains to estimate from

above B1
ℓ , B

2
ℓ , B

4
ℓ only.

If ℓ = const, then

B1
ℓ ∼ k2ℓ+2

nℓ

(

n

k

)

p2kβ2n
k , B2

ℓ ∼ 2k2ℓ+1

nℓ−1

(

n

k

)

p2kβ2n
k , B4

ℓ ∼ k2ℓ

nℓ−2

(

n

k

)

p2kβ2n
k ;

B1
k−ℓ =

k2ℓ

nℓ+o(1)
p−k2/2pℓk−k/2e−n(1−p)k(2−(1−p)ℓ) =

(

n

k

)

pℓkk2ℓn−ℓ+1−(1−(1−p)ℓ)/ ln[1/(1−p)]+o(1) ≤

G(n) · n−p/ ln[1/(1−p)]+o(1),

B2
k−ℓ = B1

k−ℓn
1+o(1)pk ≤ G(n) · n−1−p/ ln[1/(1−p)]+o(1),

B4
k−ℓ = B1

k−ℓn
2+o(1)p2k ≤ G(n) · n−2−p/ ln[1/(1−p)]+o(1).

So, for n large enough,

max{B1
1 , B

2
1 , B

4
1} ∼ G(n) · k

2ℓ

n
.

Moreover,

max{B1
k−1, B

2
k−1, B

4
k−1} ≤ G(n)·n−p/ ln[1/(1−p)]+o(1); max{B1

k−2, B
2
k−2, B

4
k−2} ≤ G(n)·n−3+o(1).
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It is easy to see that Aℓ(k−ℓ)2p−2ℓ, Aℓ(k−ℓ)p−ℓ and Aℓ first decrease and then increase on
{1, . . . , k−1}. Moreover, for all ℓ ∈ {1, . . . , k−1}, βℓ ≤ βk. Therefore, for all ℓ ∈ {1, . . . , k−2},

max{B1
ℓ , B

2
ℓ , B

4
ℓ } = O

(

max

{

max{B1
1 , B

2
1 , B

4
1}

βn
k

βn
1

,max{B1
k−2, B

2
k−2, B

4
k−2}

βn
k

βn
k−2

})

=

= O
(

G(n) ·max
{

n−(1−1/ ln[1/(1−p)])+o(1), n−(3−(2p−p2)/ ln[1/(1−p)])+o(1)
})

= n−(1−1/ ln[1/(1−p)])+o(1).

Finally, we get

ℓ−1
∑

k=1

max{B1
ℓ , B

2
ℓ , B

3
ℓ , B

4
ℓ } = G(n)

[

n−p/ ln[1/(1−p)]+o(1) + kn−(1−1/ ln[1/(1−p)])+o(1)
]

= o (G(n)) . �

Let p = const ∈ (0, 1) \ {3−
√
5

2
,
√
5−1
2

}. From Theorem 3.1 and Lemma 4.1, it easily follows
that, for every E2

1 sentence ϕ, the limit limn→∞ P(G(n, p) |= ϕ) exists and equals either 0 or

1. If p ∈ {3−
√
5

2
,
√
5−1
2

}, then there exists a E2
1 -sentence ϕ such that P(G(n, p) |= ϕ) does not

converge. This finishes the proof of Theorem 2.1.

Remark. For every c ∈ (0, 1), there exists p = 3−
√
5

2
+ o(1) and a E2

1 -sentence ϕ such that
the limit limn→∞ P(G(n, p) |= ϕ) equals c. Indeed, let ϕ = ϕ3

C . From Lemma 4.1 and the
fact that ϕ expresses the decreasing property, it follows that for every ε and n large enough
there exists pε(n) ∈ [3−

√
5

2
− ε, 3−

√
5

2
+ ε] such that P(G(n, pε) |= ϕ) = c. Therefore, there

exists p = 3−
√
5

2
+ o(1) such that limn→∞ P(G(n, p) |= ϕ) = c. The same results hold for some

p =
√
5−1
2

+ o(1).

5 A sentence with 1 monadic variable and a sentence

with 3 first order variables

Consider two rooted trees F1 and F2 with roots R1 and R2 respectively. Let us define the
product of the rooted trees F1 · F2 in the following way. Let E be the set of all possible edges
{u, v} where u ∈ V (F1), v ∈ V (F2) and u, v are at the same distance from R1, R2 in F1, F2

respectively. Then F1 · F2 is the graph with the set of vertices V (F1) ⊔ V (F2) and the set of
edges E(F1)⊔E(F2)⊔E. Fix an arbitrary positive integer a and consider two trees F1, F2 with
a and 4a−1

3
vertices respectively: F1 is a simple path rooted at one of its end-points, and F2 is

a perfect 4-ary tree (every non-leaf vertex of F2 has 4 children and, for every i ∈ {1, . . . , a−1},
the number of vertices at the distance i from R equals 4i). Denote Wa = F1 · F2.

Obviously, v(Wa) = a+ 4a−1
3

, and e(Wa) = a+ 24a−1
3

− 2.
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Lemma 5.1 Consider an increasing sequence of positive integers ni. Denote

ki =
2

ln[1/(1− p)]
lnni −

2

ln[1/(1− p)]
ln

[

4
√
24
√

(1− p)5

p2

]

.

1. Let 0 < c < 1/2, ε > 0. If, for i large enough, there is no integer ai such that
ai +

4ai−1
3

∈ (cki, ki + ε), then a.a.s., for every a, there is no induced copy F of Wa in
G(ni, p) such that every vertex outside F has a neighbor inside F .

2. Let 1/2 < C1 < C2 < 1. If, for i large enough, there exists an integer ai such that
C1ki ≤ ai+

4ai−1
3

≤ C2ki, then a.a.s. there is an induced copy F of Wai in G(ni, p) such
that every vertex outside F has a neighbor inside F .

Proof of Lemma 5.1. 1. Let W (a) be the number of induced copies of Wa in G(n, p). Let
s = a+ 4a−1

3
. For s = O(lnn),

EW (a) =

(

n

s

)

s!

24(s−a−1)/4
p2s−a−2(1− p)(

s
2)−2s+a+2 =

e
s lnn−s ln

[

4√24
√

(1−p)5

p2

]

− s2

2
ln(1/(1−p))+O(ln lnn)

.

Fix ε > 0. For every i, let ai be the minimum number such that si = ai +
4ai−1

3
≥ ⌈ki + ε⌉.

Then EW (ai) ≤ e−ε lnni+O(ln lnni). Therefore, P(W (ai) > 0) ≤ EW (ai) → 0 as i → ∞.
So, it is enough to prove that a.a.s., for every set X on at most cki vertices, there is a

vertex outside X which has no neighbors inside X . The probability of this event is at least

1−
(

ni

⌊cki⌋

)

(1− (1− p)⌊cki⌋)ni−⌊cki⌋ ≥ 1− e−An1−2c
i → 1 as n → ∞

for some positive constant A.

2. Now, let C1ki ≤ si = ai +
4ai−1

3
≤ C2ki. In what follows, we write s, a, n instead of

si, ai, ni respectively. Let W̃ (a) be the number of induced copies of Wa in G(n, p) such that
every vertex outside a copy has a neighbor inside. Then

EW̃ (a) =

(

n

s

)

s!

24(s−a−1)/4
p2s−a−2(1− p)(

s
2)−2s+a+2(1− (1− p)s)n−s ≥

e2(C1−C2
1 ) log1/(1−p) n lnn+O(lnn) → ∞.
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It remains to prove that DW̃ (a)

(EW̃ (a))2
→ 0. We get

DW̃ (a) ≤ EW̃ (a) +
s−1
∑

ℓ=1

Fℓ + o([EW̃ (a)]2),

where

Fℓ =

(

n

s

)(

s

ℓ

)(

n− s

s− ℓ

)[

s!

24(s−a−1)/4

]2
(

p2s−a−2(1− p)(
s
2)−2s+a+2

)2

(1− p)−(
ℓ
2)Gℓ,

Gℓ = max

{

1,

[

1− p

p

]2ℓ
}

.

For every ℓ ∈ {1, . . . , s− 1},

Fℓ

(EW̃ (a))2
=

(

s
ℓ

)(

n−s
s−ℓ

)

(1− p)−(
ℓ
2)Gℓ

(

n
s

) ≤
(s/ℓ)ℓeℓ

(

n
s−ℓ

)

(1− p)−(
ℓ
2)Gℓ

(

n
s

) ≤

(

s2ℓ

n
(1− p)−(ℓ−1)/2Gℓ

)ℓ(1+o(1))

≤ n(C2−1)ℓ(1+o(1)).

Therefore,
DW̃ (a)

(EW̃ (a))2
≤ 1

EW̃ (a)
+ sn(C2−1)ℓ(1+o(1)) + o(1) → 0. �

Let us finish the proof of the first part of Theorem 2.2. We want to construct a sentence
ϕ1 which a.a.s. says that there is an induced copy of Wa such that every vertex outside this
copy has a neighbor in it. Note that such a copy has a+ 4a−1

3
vertices. This is why we do not

need infinite number of disjunctions for doing that!
Let ϕ1 = ∃X φ(X), where φ = φ(X) is a first order sentence with two binary predicates

∼,= and one unary predicate X saying that, for some a, the induced subgraph on [X ] := {v :
X(v)} is isomorphic to Wa and every vertex outside [X ] has a neighbor inside [X ]. It can be
written, for example, in the following way:

φ = ∃x∃y1∃y21 . . . ∃y24∃z1∃z2∃w∃h DEG(x, . . . , h) ∧ PATH(z2, w) ∧ PROD(y1, y
2
1, . . . , y

2
4)∧

PERFECT(z1, z2, y
2
1, . . . , y

2
4) ∧ TREE(x, z1) ∧ START(z1, z2) ∧MAX,

where x is the end-point (root) of the simple path F1 which is adjacent to the root y1 of F2;
y21, . . . , y

2
4 are children of y1 in F2; z1 is the child of x in F1; z2 is the child of z1 in F1; w is
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the second end-point of F1, and h is its parent. Everywhere below, we skip predicates X(ℓ)
for all first order variables ℓ.

DEG(x, . . . , h) defines degrees of all the vertices in the induced subgraph on the set [X ]
and the relations between the distinguished vertices:

DEG(x, . . . , h) = (d(x) = 2)∧(d(y1) = 5)∧





∧

ℓ∈{z2,w,h}
(d(ℓ) ≥ 7)



∧





∧

ℓ∈{z1,y21,...,y24}

(d(ℓ) = 6)



∧

(∀u [u ∼ w ∧ u 6= h] → [d(u) = 2]) ∧ (∀u [u ≁ w ∧ u 6= x ∧ u 6= y1] → [d(u) ≥ 6])∧

(x ∼ y1) ∧ (x ∼ z1) ∧ (z1 ∼ z2) ∧ (h ∼ w) ∧
[

4
∧

i=1

(z1 ∼ y2i ) ∧ (y1 ∼ y2i )

]

∧
[

∧

1≤i<j≤4

(y2i 6= y2j )

]

.

Here, the first order sentence d(ℓ) = m (d(ℓ) ≥ m) says that the degree of ℓ in the induced
subgraph on the set [X ] equals m (at least m).

START(z1, z2) says that each of the four children of the root in F2 has four children in F2,
and each of them is adjacent to z2:

START(z1, z2) = ∀u
[

u ∼ z1 ∧ d(u) = 6

]

→



∃v1 . . .∃v4





∧

i 6=j∈{1,...,4}
[vi ∼ z2 ∧ vi 6= z1 ∧ vi 6= vj]







 .

PATH(z2, w) says that F1 is either a simple path or a union of a simple path and simple
cycles:

PATH(z2, w) =

(

∧

ℓ∈{z2,w}
[∃u (u ∼ ℓ) ∧ (d(u) ≥ 7) ∧ (∀v [d(v) ≥ 7 ∧ v ∼ ℓ] → [v = u])]

)

∧

(

∀u [(d(u) ≥ 7) ∧ (u 6= w) ∧ (u 6= z2)] →

[

∃u1∃u2 (u1 6= u2) ∧
(

∧

i=1,2

[ui ∼ u ∧ d(ui) ≥ 7]

)

∧

(

∀v [d(v) ≥ 7 ∧ v ∼ u] →
[

∨

i=1,2

v = ui

])

])

.
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PROD(y1, y
2
1, . . . , y

2
4) says that every vertex of F2 has an only neighbor in V (F1):

PROD(y1, y
2
1, . . . , y

2
4) =

(

4
∧

i=1

[∀u (u ∼ y2i ∧ u 6= y1) → (d(u) = 6)]

)

∧

(

∀u
[

(d(u) = 6) ∧
(

4
∧

i=1

u 6= y2i

)]

→

[∃v (v ∼ u) ∧ (d(v) ≥ 7) ∧ (∀ṽ [d(ṽ) ≥ 7 ∧ v ∼ u] → [v = ṽ])]

)

.

PERFECT(z1, z2, y
2
1, . . . , y

2
4) is the main formula that defines the structure of the graph F1 ·F2.

It says that every vertex u of F2 (except for the root and the leaves) has a neighbor in F1

that have two v1 and v2 neighbors in F1 such that v1 has an only common neighbor with u in
F2, and v2 has four common neighbors with u in F2:

PERFECT(z1, z2, y
2
1, . . . , y

2
4) = ∀u

[

(d(u) = 6) ∧ (u 6= z1) ∧
(

4
∧

i=1

u 6= y2i

)]

→

[

∃v (d(v) ≥ 7) ∧ (v ∼ u)∧
(

∃v1 [(v1 = z1 ∧ v = z2) ∨ (d(v1) ≥ 7 ∧ v 6= z2)] ∧ [N6(v1, u) = 1] ∧ [N(v1, u) = 2]

)

∧
(

∃v2 [d(v2) ≥ 7] ∧ [N(v2, u) = 5] ∧ [(v2 = w ∧N2(v2, u) = 4) ∨ (v2 6= w ∧N6(v2, u) = 4)]

)]

.

Here, the first order sentences N(ℓ1, ℓ2) = n and Nm(ℓ1, ℓ2) = n say that ℓ1, ℓ2 have exactly n
common neighbors and exactly n common neighbors with the degree m respectively.

TREE(x, z1) says that F2 is a tree (two vertices at the same distance from the root
are not adjacent, and have only one common neighbor in F2) whenever DEG(x, . . . , h) and
START(z1, z2) are true:

TREE(x, z1) = ∀u1∀u2

[(

∧

i=1,2

([d(ui) = 6 ∧ ui 6= z1] ∨ [d(ui) = 2 ∧ ui 6= x])

)

∧

(

∃v [v = z1 ∨ d(v) ≥ 7] ∧
[

∧

i=1,2

ui ∼ v

])]

→
[

(u1 ≁ u2) ∧ (N(u1, u2) = 2)

]

.
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Note that TREE(x, z1), PERFECT(z1, z2, y
2
1, . . . , y

2
4) and PROD(y1, y

2
1, . . . , y

2
4) imply that F1

is a simple path whenever PATH(z2, w) is true.
MAX says that every vertex outside [X ] has a neighbor inside [X ].
It remains to consider two sequences ni, mi such that limi→∞ P(G(ni, p) |= ϕ1) = 1, and

limi→∞ P(G(mi, p) |= ϕ1) = 0. By Lemma 5.1,

ni =









4
√
24
√

(1− p)5

p2

(

1

1− p

)
3i+4i−1

4









, mi =









4
√
24
√

(1− p)5

p2

(

1

1− p

)
3i+4i−1

2









are the required sequences.

It remains to prove that the same can be done using an EMSO sentence ϕ2 with arbitrary
number of existential monadic variables and only three first order variables. But this is

much easier. Let ϕ2 = ∃X∃A∃B∃W
[

∧3
i=1 ∃Pi

(

∧4
j=1 ∃C

j
i φ

)]

, where φ is a first order

sentence with two binary predicates ∼,= and unary predicates X,A,B,W, Pi, C
j
i saying that

(everywhere below, for i ∈ {1, 2, 3}, the values i− 1 and i+ 1 are still in Z3 + 1: 1 − 1 = 3,
3 + 1 = 1)

1. every vertex outside [X ] has a neighbor inside [X ];

2. the sets [A], [B], [W ], [Pi], [C
j
i ] form a partition of [X ];

3. each of the sets [A], [B], [W ] contains only one vertex;

4. the only vertex of [A] is adjacent to the only vertex of [B];

5. the only vertex of [A] is not adjacent to any vertex of [W ], [P2], [P3], [C
j
i ];

6. the only vertex of [B] is not adjacent to any vertex of [W ], [Pi], [C
j
2], [C

j
3 ];

7. every vertex in [Cj
i ] has exactly one neighbor in [W ]⊔ [P1]⊔ [P2]⊔ [P3], and this neighbor

belongs either to [W ] or to [Pi];

8. for every j ∈ {1, 2, 3, 4}, if a vertex c from [Cj
1] is adjacent to the only vertex in [B],

then

• c has a neighbor in [P1] which is adjacent to the only vertex from [A], and,

• for every j̃ ∈ {1, 2, 3, 4}, c has a neighbor in C j̃
2 which is adjacent to a vertex from

[P2], which, in turn, is adjacent to a neighbor of c in [P1];
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9. for every j ∈ {1, 2, 3, 4} and every i ∈ {1, 2, 3}, if a vertex c from [Cj
i ] is adjacent to the

only vertex in [W ], then,

• for some j̃ ∈ {1, 2, 3, 4}, c has a neighbor in [C j̃
i−1] which, in turn, has a neighbor

in [Pi−1], which is adjacent to the only vertex in [W ];

10. for every j ∈ {1, 2, 3, 4} and every i ∈ {1, 2, 3}, if a vertex c from [Cj
i ] is adjacent to a

vertex p in [Pi], c is not adjacent to the only vertex in [B], and c is not adjacent to a
neighbor of the only vertex in [W ], then

• p is adjacent to a vertex from [Pi−1] which, in turn, for some j̃ ∈ {1, 2, 3, 4}, is
adjacent to a vertex from [C j̃

i−1], which is a neighbor of c, and,

• for every j̃ ∈ {1, 2, 3, 4}, c has a neighbor in C j̃
i+1 which is adjacent to a vertex

from [Pi+1], which, in turn, is adjacent to p;

11. the graph induced on [A] ⊔ [W ] ⊔ [P1] ⊔ [P2] ⊔ [P3] is a simple path with the end-points
in [A] and [W ]:

(a) the only vertex of [A] is adjacent to a vertex from [P1], and there is only one such
vertex in [P1],

(b) there exists i ∈ {1, 2, 3} such that the only vertex w of [W ] is adjacent to a vertex
from [Pi], and there is no other neighbors of w in [P1] ⊔ [P2] ⊔ [P3],

(c) if a vertex p from [P1] is adjacent to the only vertex in [A], then it is also adjacent
to a vertex from [P2], there is only one such vertex in [P2], and every vertex from
[P3] is not adjacent to p,

(d) for each i ∈ {1, 2, 3}, if a vertex p from [Pi] is adjacent to the only vertex in [W ],
then it is also adjacent to a vertex from [Pi−1], there is only one such vertex in
[Pi−1], and every vertex from [Pi+1] is not adjacent to p,

(e) for each i ∈ {1, 2, 3}, if a vertex p from [Pi] is not adjacent to the only vertex in
[A] and is not adjacent to the only vertex in [W ], then, for each ĩ ∈ {1, 2, 3} \ {i},
p is adjacent to a vertex from [Pĩ], there is only one such vertex in [Pĩ],

(f) for each i ∈ {1, 2, 3}, [Pi] is an independent set;

12. the graph induced on [B] ⊔
⋃

i,j[C
j
i ] is a perfect 4-ary tree with the root in [B]:

(a) for every j ∈ {1, 2, 3, 4}, the only vertex of [B] is adjacent to a vertex from [Cj
1],

and there is only one such vertex in [Cj
1 ],
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(b) for every j ∈ {1, 2, 3, 4}, if a vertex c from [Cj
1 ] is adjacent to the only vertex in

[B], then, for every j̃ ∈ {1, 2, 3, 4}, it is also adjacent to a vertex from [C j̃
2 ], there

is only one such vertex in [C j̃
2 ], and every vertex from [C j̃

3 ] is not adjacent to c,

(c) for every j ∈ {1, 2, 3, 4} and every i ∈ {1, 2, 3}, if a vertex c from [Cj
i ] is adjacent

to the only vertex in [W ], then, for some j̃ ∈ {1, 2, 3, 4}, c has a neighbor in [C j̃
i−1],

and c has no more neighbors in all the C-sets,

(d) for every j ∈ {1, 2, 3, 4} and every i ∈ {1, 2, 3}, if a vertex c from [Cj
i ] is not

adjacent to the only vertex in [B] and is not adjacent to the only vertex in [W ],
then

• there exist j̃ ∈ {1, 2, 3, 4} such that c has a neighbor in [C j̃
i−1], and c has no

more neighbors in all the Ci−1-sets,

• for every j̃ ∈ {1, 2, 3, 4}, c has exactly one neighbor in [C j̃
i+1],

(e) for every j ∈ {1, 2, 3, 4} and every i ∈ {1, 2, 3}, [Cj
i ] is an independent set.

All the properties above can be easily expressed using 3 variables, and φ is the conjunction
of them.
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