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EVERY ZERO-DIMENSIONAL HOMOGENEOUS SPACE IS

STRONGLY HOMOGENEOUS UNDER DETERMINACY

RAPHAËL CARROY, ANDREA MEDINI, AND SANDRA MÜLLER

Abstract. All spaces are assumed to be separable and metrizable. We show
that, assuming the Axiom of Determinacy, every zero-dimensional homoge-
neous space is strongly homogeneous (that is, all its non-empty clopen sub-
spaces are homeomorphic), with the trivial exception of locally compact spaces.
In fact, we obtain a more general result on the uniqueness of zero-dimensional
homogeneous spaces which generate a given Wadge class. This extends work of
van Engelen (who obtained the corresponding results for Borel spaces), com-
plements a result of van Douwen, and gives partial answers to questions of
Terada and Medvedev.

1. Introduction

Throughout this article, unless we specify otherwise, we will be working in the
theory ZF`DC, that is, the usual axioms of Zermelo-Fraenkel (without the Axiom
of Choice) plus the principle of Dependent Choices (see Section 2 for more details).
By space we will always mean separable metrizable topological space, unless we
specify otherwise. A space X is homogeneous if for every x, y P X there exists a
homeomorphism h : X ÝÑ X such that hpxq “ y. For example, using translations,
it is easy to see that every topological group is homogeneous (as [vE3, Corollary
3.6.6] shows, the converse is not true, not even for zero-dimensional Borel spaces).
Homogeneity is a classical notion in topology, which has been studied in depth
(see for example [AvM]). In particular, in his remarkable doctoral thesis [vE3]
(see also [vE1] and [vE2]), Fons van Engelen gave a complete classification of the
homogeneous zero-dimensional Borel spaces. In fact, as we will make more precise,
this article is inspired by his work and relies heavily on some of his techniques.

A space X is strongly homogeneous (or h-homogeneous) if every non-empty
clopen subspace of X is homeomorphic to X . This notion has been studied by
several authors, both “instrumentally” and for its own sake (see the list of refer-
ences in [Me1]). It is well-known that every zero-dimensional strongly homogeneous
space is homogeneous (see for example [vE3, 1.9.1] or [Me2, Proposition 3.32]). Our
main result shows that, under the Axiom of Determinacy (briefly, AD) the converse
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also holds (with the trivial exception of locally compact spaces, see Proposition
2.5). For the proof, see Corollary 15.3.

Theorem 1.1. Assume AD. If X is a zero-dimensional homogeneous space that is

not locally compact then X is strongly homogeneous.

The above theorem follows from a uniqueness result about zero-dimensional ho-
mogeneous spaces, namely Theorem 15.2, which is of independent interest.1 This
theorem essentially states that, for every sufficiently high level of complexity Γ,
there are at most two homogeneous zero-dimensional spaces of complexity exactly
Γ (one meager and one Baire).

Our fundamental tool will be Wadge theory, which was founded by William
Wadge in his doctoral thesis [Wa1] (see also [Wa2]), and has become a classical
topic in descriptive set theory. We believe that [vEMS, Theorem 2.4] and our
results are the only applications to topology of an analysis of the full (as opposed
to just Borel) Wadge hierachy.2 In fact, most of this article (Sections 3 to 13)
is purely Wadge-theoretic in character. The ultimate goal of the Wadge-theoretic
portion of the paper is to show that goodWadge classes are closed under intersection
with Π0

2 sets (see Section 12), hence they are reasonably closed (see Section 13).
Homogeneity comes into play in Section 14, where we show that rXs is a goodWadge
class whenever X is a homogeneous space of sufficiently high complexity. This will
allow us to use a theorem of Steel from [St2], which will in turn yield the uniqueness
result mentioned above (see Section 15). The following diagram summarizes the
structure of the proof of our main result. In the preceding sections, the necessary
tools are developed. More specifically, Section 4 is devoted to the analysis of the
selfdual Wadge classes, Sections 5 to 8 develop the machinery of relativization
through Hausdorff operations, and Sections 9 to 11 develop the notions of level and
expansion. While none of the ideas contained in these preliminary sections are new
(except, to the best of our knowledge, Theorem 12.4), satisfactory references are
hard to come by, especially for the required level of generality. For this reason, we
will always restate the needed results (and sometimes give full proofs).

Γ “ rXs for some homogeneous X Ď 2ω

��

Γ is a good Wadge class

��

Γ is closed under XΠ0
2 and YΣ0

2

��

Γ is reasonably closed

��

Steel’s theorem can be applied to Γ

1 In fact, the only consequences of AD that Theorem 15.2 (hence Theorem 1.1) requires are BP

(see Section 2) and Lemma 3.2.
2While all of these results ultimately rely on [St2, Theorem 2], the techniques used in the

proof of [vEMS, Theorem 2.4] are very different from those used here.
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The application of Wadge theory to the study of homogeneous spaces was pi-
oneered by van Engelen in [vE3], where he obtained the classification mentioned
above. As a corollary (namely, [vE3, Corollary 4.4.6]), he obtained the Borel ver-
sion of Theorem 1.1. The reason why his results are limited to Borel spaces is that
they are all based on the fine analysis of the Borel Wadge classes given by Louveau
in [Lo1]. Fully extending this analysis beyond the Borel realm appears to be a very
hard problem (although partial results have been obtained in [Fo]). Here, we will
follow a different strategy, and we will “substitute” facts from [Lo1] about Borel
Wadge classes with more general results about arbitrary Wadge classes (under AD).
Furthermore, since most of the literature on Wadge theory only deals with ωω as
the ambient space, while Steel’s theorem is stated for 2ω, we decided to work in the
context of arbitrary zero-dimensional uncountable Polish spaces. With regard to
these issues, Louveau’s book [Lo2] and Van Wesep’s results on Hausdorff operations
from [VW1] were crucial. For other applications of Wadge theory to topology, see
the characterizations of Borel filters and semifilters given respectively in [vE4] and
[Me3].

At this point, it is natural to ask whether assuming AD is really necessary in
the above results. As the following theorem shows, the answer is “yes”. This result
was essentially proved in [vD], but our exposition is based on [vM, Theorem 5.1].
Following [vM], we will say that X Ď R is a bi-Bernstein set3 if K X X ‰ ∅ and
K X pRzXq ‰ ∅ for every K Ď R that is homeomorphic to 2ω.

Theorem 1.2 (van Douwen). There exists a ZFC example X of a homogeneous

zero-dimensional space that is not locally compact and not strongly homogeneous.

Proof. Let X be the space given by [vM, proof of Theorem 5.1]. Notice that X

is homogeneous because X is a subgroup of R. Furthermore, X is a bi-Bernstein
set by [vM, Proposition 4.5]. It follows that both X and RzX are dense in R. In
particular, X is zero-dimensional and not locally compact.

Given any Borel subset B of X , pick a Borel subset A of R such that AXX “ B,
then define µpBq “ µpAq, where µ denotes the Lebesgue measure on R. Using the
fact that X is bi-Bernstein, it is easy to check that µ is a well-defined measure on
the Borel subsets of X . The crucial property of µ, as given by the statement of
[vM, Theorem 5.1], is that if B and C are homeomorphic Borel subspaces of X ,
then µpBq “ µpCq.

Now pick a, b, c P RzX such that a ă b ă c. Observe that U “ pa, bq X X and
V “ pa, cq X X are non-empty clopen subsets of X . Furthermore, it is clear from
the definition of µ that µpUq “ b ´ a ‰ c ´ a “ µpV q. Therefore U and V are not
homeomorphic, which concludes the proof. �

However, we do not know the answer to the following question. Recall that,
when Γ “ Σ1

n or Γ “ Π1
n for some n ě 1, a space is Γ if it is homeomorphic to a Γ

subspace of some Polish space (see [MZ, Section 4] for a more detailed treatment).

Question 1.3. Assuming V “ L, is it possible to construct a zero-dimensionalΠ1
1 or

Σ1
1 space that is homogeneous, not locally compact, and not strongly homogeneous?

3These sets are commonly referred to simply as Bernstein sets.
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The above question is natural because there are many examples of properties
(such as the perfect set property4) that are known to hold for all spaces under AD,
for which definable counterexamples can be constructed under V “ L. Notice that
Π1

1 and Σ1
1 are optimal by [vE3, Corollary 4.4.6]. For other relevant examples, see

[vEMS, Theorem 2.6], [Mi], and [Vi].
Finally, we mention three applications of Theorem 1.1. The first is that Theorem

1.2 cannot be proved without using the Axiom of Choice (more precisely, it cannot
be proved in ZF`DC alone). The second concerns the following question from [Te,
Section 3] (see [Me1, Section 3] and [MvMZ, Section 5] for more on this topic).

Question 1.4 (Terada). Is Xω strongly homogeneous for every zero-dimensional
first-countable space X?

Since Lawrence showed thatXω is homogeneous for every zero-dimensional space
X (see [La], or [DP] for a more general result), it follows from Theorem 1.1 that
the answer to Question 1.4 in the separable metrizable realm is “yes” under AD.5

As the third application, we obtain that the answer to the following question (see
[Mv, Question 1]) is also “yes” under AD.6

Question 1.5 (Medvedev). Is every zero-dimensional meager homogeneous space
strongly homogeneous?

2. Preliminaries and notation

Let Z be a set, and let Γ Ď PpZq. Define Γ̌ “ tZzA : A P Γu. We will
say that Γ is selfdual if Γ “ Γ̌. Also define ∆pΓq “ Γ X Γ̌. Given a function
f : Z ÝÑ W , A Ď Z, and B Ď W , we will use the notation f rAs “ tfpxq : x P Au
and f´1rBs “ tx P Z : fpxq P Bu.

Definition 2.1 (Wadge). Let Z be a space, and let A,B Ď Z. We will write
A ď B if there exists a continuous function f : Z ÝÑ Z such that A “ f´1rBs.7

In this case, we will say that A is Wadge-reducible to B, and that f witnesses the
reduction. We will write A ă B if A ď B and B ę A. We will write A ” B if
A ď B and B ď A.

Definition 2.2 (Wadge). Let Z be a space. Given A Ď Z, define

rAs “ tB Ď Z : B ď Au.8

We will say that Γ Ď PpZq is a Wadge class if there exists A Ď Z such that
Γ “ rAs. We will say that Γ Ď PpZq is continuously closed if rAs Ď Γ for every
A P Γ.

4To see that every space has the perfect set property under AD, proceed as in [Ke, Section
21.A]. For the counterexample under V “ L, see [Ka, Theorem 13.12].

5Notice that if a zero-dimensional infinite power is locally compact then it is compact, hence
either it has size 1, or it is homeomorphic to 2ω by [Ke, Theorem 7.4].

6Recall that locally compact spaces are Baire.
7Wadge-reduction is usually denoted by ďW, which allows to distinguish it from other types

of reduction (such as Lipschitz-reduction). Since we will not consider any other type of reduction
in this article, we decided to simplify the notation.

8Usually, this denotes the Wadge degree of A, that is tB Ď Z : B ” Au. Our notation follows
[vE1], [vE3], [vE4], and [Lo1], since these were among our main inspirations and sources. Even
the book [Lo2] uses the similar (but slightly more cumbersome) notation ΓrAs.
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Both of the above definitions depend of course on the space Z. Often, for the
sake of clarity, we will specify what the ambient space is by saying, for example,
that “A ď B in Z” or “Γ is a Wadge class in Z”. We will say that A Ď Z is selfdual
if A ” ZzA in Z. It is easy to check that A is selfdual iff rAs is selfdual. Given a
space Z, we will also use the following shorthand notation:

‚ SDpZq “ tΓ : Γ is a selfdual Wadge class in Zu,
‚ NSDpZq “ tΓ : Γ is a non-selfdual Wadge class in Zu.

Our reference for descriptive set theory is [Ke]. In particular, we assume fa-
miliarity with the basic theory of Borel sets and Polish spaces, and use the same
notation as in [Ke, Section 11.B]. For example, given a space Z, we use Σ0

1pZq,
Π0

1pZq, and ∆0
1pZq to denote the collection of all open, closed, and clopen subsets

of Z respectively. Our reference for other set-theoretic notions is [Je].
The classes defined below constitute the so-called difference hierarchy (or small

Borel sets). For a detailed treatment, see [Ke, Section 22.E] or [vE3, Chapter 3].
Here, we will only mention that the DηpΣ0

ξpZqq are among the simplest concrete

examples of Wadge classes (see Proposition 9.3 and Corollary 9.5).

Definition 2.3 (Kuratowski). Let Z be a space, let 1 ď η ă ω1 and 1 ď ξ ă ω1.
Given a sequence of sets pAµ : µ ă ηq, define

DηpAµ : µ ă ηq “

" Ť
tAµz

Ť
ζăµ Aζ : µ ă η and µ is oddu if η is even,Ť

tAµz
Ť

ζăµ Aζ : µ ă η and µ is evenu if η is odd.

Define A P DηpΣ0
ξpZqq if there exist Aµ P Σ0

ξpZq for µ ă η such that A “ DηpAµ :

µ ă ηq.9

For an introduction to the topic of games, we refer the reader to [Ke, Section
20]. Here, we only want to give the precise definition of determinacy. A play of the
game Gpω,Xq is decribed by the diagram

I a0 a2 ¨ ¨ ¨
II a1 a3 ¨ ¨ ¨ ,

in which an P ω for every n P ω and X Ď ωω is called the payoff set. We will say
that Player I wins this play of the game Gpω,Xq if pa0, a1, . . .q P X . Player II wins
if Player I does not win.

A strategy for a player is a function σ : ωăω ÝÑ ω. We will say that σ is a
winning strategy for Player I if setting a2n “ σpa1, a3, . . . , a2n´1q for each n makes
Player I win for every pa1, a3, . . .q P ωω. A winning strategy for Player II is defined
similarly. We will say that the game Gpω,Xq (or simply the set X) is determined

if (exactly) one of the players has a winning strategy. The Axiom of Determinacy

(briefly, AD) states that every X Ď ωω is determined.10 We will denote by BP

the axiom stating that for every Polish space Z, every subset of Z has the Baire
property. Using the arguments in [Ke, Section 21.C], it can be shown that AD

implies BP.
It is well-known that AD is incompatible with the Axiom of Choice (see [Je,

Lemma 33.1]). This is the reason why, throughout this article, we will be working

9Notice that the definition of DηpΣ0

ξ
pZqq does not change if one adds the requirement that

pAµ : µ ă ηq is Ď-increasing.
10Quite amusingly, Van Wesep referred to AD as a “frankly heretical postulate” (see [VW1,

page 64]), and Steel deemed it “probably false” (see [St1, page 63]).
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in ZF ` DC.11 Recall that the principle of Dependent Choices (briefly, DC) states
that if R is a binary relation on a non-empty set A such that for every a P A there
exists b P A such that pb, aq P R, then there exists a sequence pa0, a1, . . .q P Aω such
that pan`1, anq P R for every n P ω. An equivalent formulation of DC is that a
relation R on a set A is well-founded iff there exists no sequence pa0, a1, . . .q P Aω

such that pan`1, anq P R for every n P ω (see [Je, Lemma 5.5.ii]). Furthermore, DC
implies the Countable Axiom of Choice (see [Je, Exercise 5.7]). To the reader who
is unsettled by the lack of the full Axiom of Choice, we recommend [HR].

We conclude this section with some miscellaneous topological definitions and
results. We will write X « Y to mean that the spaces X and Y are homeomorphic.
A subset of a space is clopen if it is closed and open. A space is zero-dimensional

if it is non-empty and it has a base consisting of clopen sets.12 Given a function
s : F ÝÑ 2, where F Ď ω is finite, we will use the notation rss “ tz P 2ω : s Ď zu.
A space is crowded if it is non-empty and it has no isolated points. A space X

is Baire if every non-empty open subset of X is non-meager in X . A space X is
meager if X is a meager subset of X . Proposition 2.4 is a particular case of [FZ,
Lemma 3.1] (see also [vE3, 1.12.1]). Proposition 2.5 is the reason why we refer to
locally compact spaces as the “trivial exceptions”. Theorem 2.8 is a special case of
[Te, Theorem 2.4] (see also [Me1, Theorem 2 and Appendix A] or [Me2, Theorem
3.2 and Appendix B]).

Proposition 2.4 (Fitzpatrick, Zhou). Let X be a homogeneous space. Then X is

either a meager space or a Baire space.

Proposition 2.5. Let X be a zero-dimensional locally compact space. Then X is

homogeneous iff X is discrete, X « 2ω, or X « ω ˆ 2ω.

Proof. The right-to-left implication is trivial. For the left-to-right implication, use
the well-known characterization of 2ω as the unique zero-dimensional crowded com-
pact space (see [Ke, Theorem 7.4]). �

Proposition 2.6. Let X be a zero-dimensional homogeneous space. If there exists

a non-empty Polish U P Σ0
1pXq then X is Polish.

Proof. Let U P Σ0
1pXq be non-empty and Polish. Since X is zero-dimensional,

we can assume without loss of generality that U P ∆0
1pXq. Let U “ thrU s :

h is a homeomorphism of Xu. Notice that U is a cover of X because X is homoge-
neous and U is non-empty. Let tUn : n P ωu be a countable subcover of U . Define
Vn “ Unz

Ť
kăn Uk for n P ω, and observe that each Vn is Polish. Since VnXVm “ ∅

whenever m ‰ n, it follows from [Ke, Proposition 3.3.iii] that X “
Ť

nPω Vn is Pol-
ish. �

Proposition 2.7. Assume BP. Let Z be a Polish space, and let X be a dense Baire

subspace of Z. Then X is comeager in Z.

Proof. SinceX has the Baire property, we can writeX “ GYM by [Ke, Proposition
8.23.ii], where G P Π0

2pZq andM is meager in Z. It will be enough to show that G is
dense in Z. Assume, in order to get a contradiction, that there exists a non-empty
open subset U of Z such that U X G “ ∅. Observe that U X X is a non-empty

11The consistency of ZF`DC`AD can be obtained under suitable large cardinal assumptions
(see [Ka, Proposition 11.13] and [Ne]).

12The empty space has dimension ´1.
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open subset of X because X is dense in Z. Furthermore, using the density of X
again, it is easy to see that M “ M X X is meager in X . Since U X X Ď M , this
contradicts the fact that X is a Baire space. �

Theorem 2.8 (Terada). Let X be a non-compact space. Assume that X has a base

B Ď ∆0
1pXq such that U « X for every U P B. Then X is strongly homogeneous.

3. The basics of Wadge theory

The following simple lemma will allow us to generalize many Wadge-theoretic
results from ωω to an arbitrary zero-dimensional Polish space. This approach has
already appeared in [An, Section 5], where it is credited to Marcone. Recall that,
given a space Z and W Ď Z, a retraction is a continuous function ρ : Z ÝÑ W

such that ρ æ W “ idW . By [Ke, Theorem 7.8], every zero-dimensional Polish space
is homeomorphic to a closed subspace Z of ωω, and by [Ke, Proposition 2.8] there
exists a retraction ρ : ωω ÝÑ Z.

Lemma 3.1. Let Z Ď ωω, and let ρ : ωω ÝÑ Z be a retraction. Fix A,B Ď Z.

Then A ď B in Z iff ρ´1rAs ď ρ´1rBs in ωω.

Proof. If f : Z ÝÑ Z witnesses that A ď B in Z, then f ˝ρ : ωω ÝÑ ωω will witness
that ρ´1rAs ď ρ´1rBs in ωω. On the other hand, if f : ωω ÝÑ ωω witnesses that
ρ´1rAs ď ρ´1rBs in ωω, then ρ ˝ pf æ Zq : Z ÝÑ Z will witness that A ď B in
Z. �

The following result (commonly known as “Wadge’s Lemma”) shows that an-
tichains with respect to ď have size at most 2.

Lemma 3.2 (Wadge). Assume AD. Let Z be a zero-dimensional Polish space, and

let A,B Ď Z. Then either A ď B or ZzB ď A.

Proof. For the case Z “ ωω, see [Ke, proof of Theorem 21.14]. To obtain the full
result from this particular case, use Lemma 3.1 and the remarks preceding it. �

Theorem 3.3 (Martin, Monk). Assume AD. Let Z be a zero-dimensional Polish

space. Then the relation ď on PpZq is well-founded.

Proof. For the case Z “ ωω, see [Ke, proof of Theorem 21.15]. To obtain the full
result from this particular case, use Lemma 3.1 and the remarks preceding it. �

Given a zero-dimensional Polish space Z, define

WpZq “ ttΓ, Γ̌u : Γ is a Wadge class in Zu.

Given p, q P WpZq, define p ă q if Γ Ď Λ for every Γ P p and Λ P q. Using
the two previous results, one sees that the ordering ă on WpZq is a well-order.
Therefore, there exists an order-isomorphism φ : WpZq ÝÑ Θ for some ordinal Θ.13

The reason for the “1+” in the definition below is simply a matter of technical
convenience (see [AHN, page 45]).

Definition 3.4. Let Z be a zero-dimensional Polish space, and let Γ be a Wadge
class in Z. Define

||Γ|| “ 1 ` φptΓ, Γ̌uq.

We will say that ||Γ|| is the Wadge-rank of Γ.

13For a characterization of Θ, see [So, Definition 0.1 and Lemma 0.2].
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It is easy to check that tt∅u, tZuu is the minimal element ofWpZq. Furthermore,
elements of the form tΓ, Γ̌u for Γ P NSDpZq are always followed by t∆u for some
∆ P SDpZq, while elements of the form t∆u for ∆ P SDpZq are always followed by
tΓ, Γ̌u for some Γ P NSDpZq. This was proved by Van Wesep for Z “ ωω (see [VW1,
Corollary to Theorem 2.1]), and it can be generalized to arbitrary uncountable zero-
dimensional Polish spaces using Corollary 4.2 and the machinery of relativization
that we will develop in Sections 6 to 8. Since these facts will not be needed in the
remainder of the paper, we omit the proof.

In fact, as Proposition 6.5 (together with Theorem 8.3) will show, the ordering
of the non-selfdual classes is independent of the space Z. However, the situation
is more delicate for selfdual classes. For example, it follows easily from Corollary
4.2 that if Γ is a Wadge class in 2ω such that ||Γ|| is a limit ordinal of countable
cofinality, then Γ is non-selfdual. On the other hand, if Γ is a Wadge class in ωω

such that ||Γ|| is a limit ordinal of countable cofinality, then Γ is selfdual (see [VW1,
Corollary to Theorem 2.1] again).

The collection of all Wadge classes on a given space Z, ordered by Ď, is known
as the Wadge hierarchy. The following diagram shows how this hierarchy looks like
when Z is a zero-dimensional Polish space.14

...

❍❍
❍❍

❍❍
❍❍

❍❍

✈✈
✈✈
✈✈
✈✈
✈✈

Σ0
1pZq

■■
■■

■■
■■

■
Π0

1pZq

✉✉
✉✉
✉✉
✉✉
✉

∆0
1pZq

■■
■■

■■
■■

■

✉✉
✉✉
✉✉
✉✉
✉

t∅u tZu

We conclude this section with an elementary result, which shows that clopen sets
are “neutral sets” for Wadge-reduction (the simple proof is left to the reader). By
this we mean that, apart from trivial exceptions, intersections or unions with these
sets do not change the Wadge class. In Section 12, we will prove more sophisticated
closure properties.

Proposition 3.5. Let Z be a space, let Γ be a Wadge class in Z, and let A P Γ.

‚ Assume that Γ ‰ tZu. Then A X V P Γ for every V P ∆0
1pZq.

‚ Assume that Γ ‰ t∅u. Then A Y V P Γ for every V P ∆0
1pZq.

4. The analysis of selfdual sets

In this section we will simply collect well-known results which show that every
selfdual set can be built using non-selfdual sets of lower complexity (apply Corollary
4.2 with V “ Z). We will refer to the proof of [MR, Theorem 5.3], which in turn
generalizes [AM, Theorem 16] (see also [Lo2, Lemma 7.3.4]).

14Notice that this hierachy can collapse rather soon when Z is countable. For example, when
Z is the discrete space ω, the Wadge hierarchy consists only of the three bottom classes.
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Theorem 4.1. Assume BP. Let Z be a zero-dimensional Polish space, let V P
∆0

1pZq, and let A be a selfdual subset of Z. Assume that A R ∆0
1pZq. Then there

exist pairwise disjoint Vn P ∆0
1pV q for n P ω such that

Ť
nPω Vn “ V and AXVn ă A

in Z for each n.

Proof. This is proved like [MR, Theorem 5.3], with Z instead of ωω (which is
denoted by R there) and D0 “ V , where F is the collection of all continuous
f : Z ÝÑ Z and ∆F “ ∆0

1pZq. �

Corollary 4.2. Assume AD. Let Z be a zero-dimensional Polish space, let V P
∆0

1pZq, and let A be a selfdual subset of Z. Then there exist pairwise disjoint

Vn P ∆0
1pV q and non-selfdual An ă A in Z for n P ω such that

Ť
nPω Vn “ V andŤ

nPωpAn X Vnq “ A X V .

Proof. As one can easily check, it will be enough to show that there exist pairwise
disjoint Vn P ∆0

1pV q for n P ω such that
Ť

nPω Vn “ V and for every n P ω either
A X Vn P ∆0

1pZq or A X Vn is non-selfdual in Z. If this were not the case, then,
using Theorem 4.1, one could recursively construct a strictly ď-decreasing sequence
of subsets of Z, which would contradict Theorem 3.3. �

5. Basic facts on Hausdorff operations

For a history of the following important notion, see [Ha, page 583]. For a modern
survey, we recommend [Za]. Most of the proofs in this section are straightforward,
hence we leave them to the reader.

Definition 5.1. Given a set Z and D Ď Ppωq, define

HDpA0, A1, . . .q “ tx P Z : tn P ω : x P Anu P Du

whenever A0, A1, . . . Ď Z. Functions of this form are called Hausdorff operations

(or ω-ary Boolean operations).

Of course, the function HD depends on the set Z, but what Z is will usually be
clear from the context. In case there might be uncertainty about the ambient space,
we will use the notation HZ

D. Notice that, once D is specified, the corresponding
Hausdorff operation simultaneously defines functions PpZqω ÝÑ PpZq for every Z.

The following proposition lists the most basic properties of Hausdorff operations.
Given n P ω, define Sn “ tA Ď ω : n P Au.

Proposition 5.2. Let I be a non-empty set, and let Di Ď Ppωq for every i P I.

Fix an ambient set Z and A0, A1, . . . Ď Z.

‚ HSn
pA0, A1, . . .q “ An for all n P ω.

‚
Ş

iPI HDi
pA0, A1, . . .q “ HDpA0, A1, . . .q, where D “

Ş
iPI Di.

‚
Ť

iPI HDi
pA0, A1, . . .q “ HDpA0, A1, . . .q, where D “

Ť
iPI Di.

‚ ZzHDpA0, A1, . . .q “ HPpωqzDpA0, A1, . . .q for all D Ď Ppωq.

The point of the above proposition is that any operation obtained by combining
unions, intersections and complements can be expressed as a Hausdorff operation.
For example, if D “

Ť
nPωpS2n`1zS2nq, then HDpA0, A1, . . .q “

Ť
nPωpA2n`1zA2nq.

The following proposition shows that the composition of Hausdorff operations is
again a Hausdorff operation. We will assume that a bijection π : ω ˆ ω ÝÑ ω has
been fixed, and use the notation xm,ny “ πpm,nq.
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Proposition 5.3. Let Z be a set, let D Ď Ppωq and Em Ď Ppωq for m P ω. Then

there exists F Ď Ppωq such that

HDpB0, B1, . . .q “ HF pA0, A1, . . .q

for all A0, A1, . . . Ď Z, where Bm “ HEm
pAxm,0y, Axm,1y, . . .q.

Proof. Define z P F if tm P ω : tn P ω : xm,ny P zu P Emu P D. The rest of the
proof is a straightforward verification. �

We conclude this section with a result that will easily imply the fundamental
Lemma 6.4.

Proposition 5.4. Let Z and W be sets, let D Ď Ppωq, let A0, A1, . . . Ď Z and

B0, B1, . . . Ď W .

(1) W X HZ
DpA0, A1, . . .q “ HW

D pA0 X W,A1 X W, . . .q whenever W Ď Z.

(2) f´1rHDpB0, B1, . . .qs “ HDpf´1rB0s, f´1rB1s, . . .q for all f : Z ÝÑ W .

(3) f rHDpA0, A1, . . .qs “ HDpf rA0s, f rA1s, . . .q for all bijections f : Z ÝÑ W .

6. Wadge classes and Hausdorff operations

When one tries to give a systematic exposition of Wadge theory, it soon becomes
apparent that it would be very useful to be able to talk about “abstract” Wadge
classes, as opposed to Wadge classes in a particular space. More precisely, given
a Wadge class Γ in some space Z, one would like to find a way to define what a
“Γ subset of W” is, for every other space W , while of course preserving suitable
coherence properties. It turns out that Hausdorff operations allow us to do exactly
that in a rather elegant way, provided that Γ is a non-selfdual Wadge class, Z

and W are uncountable zero-dimensional Polish spaces, and AD holds (see also the
discussion in Section 3). For an early instance of this idea, see [LSR2, Theorem
4.2].15 The following is the crucial definition. In fact, the aim of this section and
the next two is to show that the classes ΓDpZq have nice properties (see Lemma 6.4
and Proposition 6.5), and that, under AD, they are exactly the non-selfdual Wadge
classes on Z (see Theorem 8.3).

Definition 6.1. Given a space Z and D Ď Ppωq, define

ΓDpZq “ tHDpA0, A1, . . .q : An P Σ0
1pZq for every n P ωu.

As examples (that will be useful later), consider the following two simple propo-
sitions.

Proposition 6.2. Let 1 ď η ă ω1. Then there exists D Ď Ppωq such that ΓDpZq “
DηpΣ0

1pZqq for every space Z.

Proof. This follows from Propositions 5.2 and 5.3 (in case η ą ω, use a bijection
π : η ÝÑ ω). �

Proposition 6.3. Let 1 ď ξ ă ω1. Then there exists D Ď Ppωq such that ΓDpZq “
Σ0

ξpZq for every space Z.

Proof. This can be proved by induction on ξ, using Propositions 5.2 and 5.3. �

15This result is limited to the Borel context. On the other hand, the ambient space is allowed
to be analytic, as opposed to Polish.



EVERY ZERO-DIMENSIONAL HOMOGENEOUS SPACE IS STRONGLY HOMOGENEOUS 11

Next, we obtain a very useful lemma, which shows that this notion behaves well
with respect to subspaces and continuous functions. This lemma is essentially what
we refer to when we speak about the “machinery of relativization”. It extends (and
is inspired by) [vE4, Lemma 2.3].

Lemma 6.4. Let Z and W be spaces, and let D Ď Ppωq.

(1) Assume that W Ď Z. Then B P ΓDpW q iff there exists A P ΓDpZq such

that B “ A X W .

(2) If f : Z ÝÑ W is continuous and B P ΓDpW q then f´1rBs P ΓDpZq.
(3) If h : Z ÝÑ W is a homeomorphism then A P ΓDpZq iff hrAs P ΓDpW q.

Proof. This is a straightforward consequence of Proposition 5.4. �

The following simple result, together with Theorem 8.3, shows that the ordering
of the non-selfdual Wadge classes is independent of the ambient space Z (provided
that AD holds).

Proposition 6.5. Let Z and W be zero-dimensional spaces that contain a copy of

2ω, and let D,E Ď Ppωq. Then ΓDpZq Ď ΓEpZq iff ΓDpW q Ď ΓEpW q.

Proof. Assume that ΓDpZq Ď ΓEpZq. Since Z contains a copy of 2ω and W is
zero-dimensional, we see that Z contains a copy of W . Using Lemma 6.4.3, we can
assume without loss of generality that W Ď Z. Then

ΓDpW q “ tA X W : A P ΓDpZqu Ď tA X W : A P ΓEpZqu “ ΓEpW q,

where the first and last equalities hold by Lemma 6.4.1. The proof of the other
implication is similar. �

7. Universal sets

The aim of this section is to prove the easier half of Theorem 8.3 (namely,
Theorem 7.5). The ideas presented here are well-known, but since we could not
find a satisfactory reference, we will give all the details. Our approach is inspired
by [Ke, Section 22.A].

Definition 7.1. Let Z and W be spaces, and let D Ď Ppωq. Given U Ď W ˆ Z

and x P W , let Ux “ ty P Z : px, yq P Uu denote the vertical section of U above x.
We will say that U Ď W ˆ Z is a W -universal set for ΓDpZq if the following two
conditions hold:

‚ U P ΓDpW ˆ Zq,
‚ tUx : x P W u “ ΓDpZq.

Notice that, by Proposition 6.3, the above yields the definition of a W -universal
set for Σ0

ξpZq whenever 1 ď ξ ă ω1. Furthermore, this definition agrees with [Ke,

Definition 22.2].

Proposition 7.2. Let Z be a space, and let D Ď Ppωq. Then there exists a 2ω-
universal set for ΓDpZq.

Proof. By [Ke, Theorem 22.3], we can fix a 2ω-universal set U for Σ0
1pZq. Let

h : 2ω ÝÑ p2ωqω be a homeomorphism, and let πn : p2ωqω ÝÑ 2ω be the projection
on the n-th coordinate for n P ω. Notice that, given any n P ω, the function
fn : 2ω ˆZ ÝÑ 2ω ˆZ defined by fnpx, yq “ pπnphpxqq, yq is continuous. Let Vn “
f´1
n rU s for each n, and observe that each Vn P Σ0

1p2ωˆZq. Set V “ HDpV0, V1, . . .q.
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We claim that V is a 2ω-universal set for ΓDpZq. It is clear that V P ΓDp2ω ˆZq.
Furthermore, using Lemma 6.4, one can easily check that Vx P ΓDpZq for every
x P 2ω. To complete the proof, fix A P ΓDpZq. Let A0, A1, . . . P Σ0

1pZq be such
that A “ HDpA0, A1, . . .q. Since U is 2ω-universal, we can fix zn P 2ω such that
Uzn “ An for every n P ω. Set z “ h´1pz0, z1, . . .q. It is straightforward to verify
that Vz “ A. �

Corollary 7.3. Let Z be a space that contains a copy of 2ω, and let D Ď Ppωq.
Then there exists a Z-universal set for ΓDpZq.

Proof. By Proposition 7.2, we can fix a 2ω-universal set U for ΓDpZq. Let W Ď Z

be such that W « 2ω, and fix a homeomorphism h : 2ω ÝÑ W . Notice that
ph ˆ idZqrU s P ΓDpW ˆ Zq by Lemma 6.4.3. Therefore, by Lemma 6.4.1, there
exists V P ΓDpZ ˆ Zq such that V X pW ˆ Zq “ ph ˆ idZqrU s. Using Lemma 6.4
again, one can easily check that V is a Z-universal set for ΓDpZq. �

Lemma 7.4. Let Z be a space, and let D Ď Ppωq. Assume that there exists a

Z-universal set for ΓDpZq. Then ΓDpZq is non-selfdual.

Proof. Fix a Z-universal set U Ď Z ˆ Z for ΓDpZq. Assume, in order to get a
contradiction, that ΓDpZq is selfdual. Let f : Z ÝÑ ZˆZ be the function defined by
fpxq “ px, xq, and observe that f is continuous. Since f´1rU s P ΓDpZq “ Γ̌DpZq,
we see that Zzf´1rU s P ΓDpZq. Therefore, since U is Z-universal, we can fix
z P Z such that Uz “ Zzf´1rU s. If z P Uz then fpzq “ pz, zq P U by the
definition of Uz, contradicting the fact that Uz “ Zzf´1rU s. On the other hand,
If z R Uz then fpzq “ pz, zq R U by the definition of Uz, contradicting the fact that
ZzUz “ f´1rU s. �

The case Z “ ωω of the following result is [VW1, Proposition 5.0.3], and it is
credited to Addison by Van Wesep.

Theorem 7.5. Let Z be a zero-dimensional space that contains a copy of 2ω, and
let D Ď Ppωq. Then ΓDpZq P NSDpZq.

Proof. The fact that ΓDpZq is non-selfdual follows from Corollary 7.3 and Lemma
7.4. Therefore, it will be enough to show that ΓDpZq is a Wadge class. By Propo-
sition 7.2, we can fix a 2ω-universal set U Ď 2ω ˆ Z for ΓDpZq. Let W Ď Z be
such that W « 2ω ˆ Z, and fix a homeomorphism h : 2ω ˆ Z ÝÑ W . By Lemma
6.4, we can fix A P ΓDpZq such that A X W “ hrU s. We claim that ΓDpZq “ rAs.
The inclusion Ě follows from Lemma 6.4.2. In order to prove the other inclusion,
pick B P ΓDpZq. Since U is 2ω-universal, we can fix z P 2ω such that B “ Uz.
Consider the function f : Z ÝÑ 2ω ˆ Z defined by fpxq “ pz, xq, and observe that
f is continuous. It is straightforward to check that h ˝ f : Z ÝÑ Z witnesses that
B ď A in Z. �

8. Van Wesep’s theorem

The following is one of the main results of VanWesep’s doctoral thesis (see [VW1,
Theorem 5.3.1], whose proof also employs results of Steel from [St1] and results of
Radin), and it will allow us to obtain the harder half of Theorem 8.3. Notice how
Corollary 8.2 guarantees that every non-selfdual Wadge class is amenable to the
machinery of relativization.
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Theorem 8.1 (Van Wesep). Assume AD. For every Γ P NSDpωωq there exists

D Ď Ppωq such that Γ “ ΓDpωωq.

Corollary 8.2. Assume AD. Let Z be a zero-dimensional Polish space, and let

Γ P NSDpZq. Then there exists D Ď Ppωq such that Γ “ ΓDpZq.

Proof. By [Ke, Theorem 7.8], there exists a closed W Ď ωω such that Z « W .
Therefore, using Lemma 6.4.3, we can assume without loss of generality that Z is
a closed subspace of ωω. Hence, by [Ke, Proposition 2.8], we can fix a retraction
ρ : ωω ÝÑ Z. Let A Ď Z be such that Γ “ rAs. Set B “ ρ´1rAs, and let Λ “ rBs
be the Wadge class generated by B in ωω.

Using Lemma 3.1, it is easy to see that Λ P NSDpωωq. Therefore, by Theorem
8.1, we can fix D Ď Ppωq such that Λ “ ΓDpωωq. We claim that Γ “ ΓDpZq.
Notice that A “ B X Z P ΓDpZq by Lemma 6.4.1, hence Γ Ď ΓDpZq by Lemma
6.4.2. Finally, to see that ΓDpZq Ď Γ, pick C P ΓDpZq. Observe that ρ´1rCs P
ΓDpωωq “ Λ by Lemma 6.4.2. This means that ρ´1rCs ď B “ ρ´1rAs in ωω, hence
C ď A in Z by Lemma 3.1. So C P rAs “ Γ, which concludes the proof. �

Finally, we can “put everything together” and state the full result promised in
the introduction to Section 6.

Theorem 8.3. Assume AD. Let Z be an uncountable zero-dimensional Polish

space. Then

NSDpZq “ tΓDpZq : D Ď Ppωqu

Proof. This follows immediately from Theorem 7.5 and Corollary 8.2. �

9. Basic facts on expansions

The following notion is essentially due to Wadge (see [Wa1, Chapter IV]), and
it is inspired by work of Kuratowski. Recall that, given 1 ď ξ ă ω1 and spaces
Z and W , a function f : Z ÝÑ W is Σ0

ξ-measurable if f´1rU s P Σ0
ξpZq for every

U P Σ0
1pW q.

Definition 9.1. Let Z be a space, and let ξ ă ω1. Given Γ Ď PpZq, define

Γpξq “ tf´1rAs : A P Γ and f : Z ÝÑ Z is Σ0
1`ξ-measurableu.

We will refer to Γpξq as an expansion of Γ.

The following is the corresponding definition in the context of Hausdorff opera-
tions. Corollary 10.4 below shows that this is in fact the “right” definition.

Definition 9.2. Let Z be a space, let D Ď Ppωq, and let ξ ă ω1. Define

Γ
pξq
D pZq “ tHDpA0, A1, . . .q : An P Σ0

1`ξpZq for every n P ωu.

As an example (that will be useful later), consider the following simple observa-
tion.

Proposition 9.3. Let 1 ď η ă ω1. Then there exists D Ď Ppωq such that

Γ
pξq
D pZq “ DηpΣ0

1`ξpZqq for every space Z and every ξ ă ω1.

Proof. This is proved like Proposition 6.2 (in fact, the same D will work). �

The following proposition shows that Definition 9.2 actually fits in the context
provided by Section 6.
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Proposition 9.4. Let D Ď Ppωq, and let ξ ă ω1. Then there exists E Ď Ppωq

such that Γ
pξq
D pZq “ ΓEpZq for every space Z.

Proof. This is proved by combining Propositions 6.3 and 5.3. �

Corollary 9.5. Let Z be an uncountable zero-dimensional Polish space, let D Ď

Ppωq, and let ξ ă ω1. Then Γ
pξq
D pZq P NSDpZq.

Proof. This is proved by combining Proposition 9.4 and Theorem 7.5. �

The following useful result is the analogue of Lemma 6.4 in the present context.

Lemma 9.6. Let Z and W be spaces, let D Ď Ppωq, and let ξ ă ω1.

(1) Assume that W Ď Z. Then B P Γ
pξq
D pW q iff there exists A P Γ

pξq
D pZq such

that B “ A X W .

(2) If f : Z ÝÑ W is continuous and B P Γ
pξq
D pW q then f´1rBs P Γ

pξq
D pZq.

(3) If f : Z ÝÑ W is Σ0
1`ξ-measurable and B P ΓDpW q then f´1rBs P Γ

pξq
D pZq.

(4) If h : Z ÝÑ W is a homeomorphism then A P Γ
pξq
D pZq iff hrAs P Γ

pξq
D pW q.

Proof. This is a straightforward consequence of Proposition 5.4. �

10. Kuratowski’s transfer theorem

The aim of this section is to collect the tools needed to successfully employ the
notion of expansion. For example, Corollary 10.3 will be a crucial ingredient in the
proof of Theorem 11.3. A stronger form of Theorem 10.1 appears as [Lo2, Theorem
7.1.6], where it is called “Kuratowski’s transfer theorem”.

Theorem 10.1 (Kuratowski). Let pZ, τq be a Polish space, let 1 ă ξ ă ω1, and let

A Ď Σ0
ξpZ, τq be countable. Then there exists a zero-dimensional Polish topology σ

on the set Z such that τ Ď σ Ď Σ0
ξpZ, τq and A Ď σ.

Proof. This follows from [Ke, Exercise 22.20], using the fact that every element of
Σ0

ξpZ, τq can be written as a countable union of elements of ∆0
ξpZ, τq. �

Corollary 10.2. Let Z be a zero-dimensional Polish space, let 1 ď ξ ă ω1, and let

A Ď Σ0
ξpZq be countable. Then there exists a zero-dimensional Polish space W and

a Σ0
ξ-measurable bijection f : Z ÝÑ W such that f rAs P Σ0

1pW q for every A P A.

Proof. The case ξ “ 1 is trivial, so assume that ξ ą 1. The space W is simply the
set Z with the finer topology given by Theorem 10.1, while f “ idZ . �

Corollary 10.3. Let Z be a zero-dimensional Polish space, let D Ď Ppωq, and

let ξ ă ω1. Assume that A Ď Γ
pξq
D pZq and B Ď Σ0

1`ξpZq are countable. Then

there exists a zero-dimensional Polish space W and a Σ0
1`ξ-measurable bijection

f : Z ÝÑ W such that f rAs P ΓDpW q for every A P A and f rBs P Σ0
1pW q for

every B P B.

Proof. Let A “ tAm : m P ωu. Given m P ω, fix Am,n P Σ0
1`ξpZq for n P ω such

that Am “ HDpAm,0, Am,1, . . .q. Define C “ tAm,n : m,n P ωu Y B. By Corollary
10.2, we can fix a Polish space W and a Σ0

1`ξ-measurable bijection f : Z ÝÑ W

such that f rCs P Σ0
1pW q for every C P C. It remains to observe that

f rAms “ f rHDpBm,0, Bm,1, . . .qs “ HDpf rBm,0s, f rBm,1s, . . .q P ΓDpW q

for every m P ω, where the second equality follows from Proposition 5.4.3. �
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Corollary 10.4. Let Z be an uncountable zero-dimensional Polish space, let D Ď

Ppωq, and let ξ ă ω1. Then ΓDpZqpξq “ Γ
pξq
D pZq.

Proof. The inclusion ΓDpZqpξq Ď Γ
pξq
D pZq follows from Lemma 9.6.3. In order to

prove the other inclusion, pick A P Γ
pξq
D pZq. By Corollary 10.3, we can fix a zero-

dimensional Polish space W and a Σ0
1`ξ-measurable bijection f : Z ÝÑ W such

that f rAs P ΓDpW q. Since Z contains a copy of 2ω andW is zero-dimensional, using
Lemma 6.4.3 we can assume without loss of generality that W is a subspace of Z, so
that f : Z ÝÑ Z. By Lemma 6.4.1, we can fix B P ΓDpZq such that BXW “ f rAs.
It is easy to check that A “ f´1rBs, which concludes the proof. �

Corollary 10.5. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let ξ ă ω1. Then Γpξq P NSDpZq for every Γ P NSDpZq.

Proof. This follows from Corollary 8.2, Corollary 10.4, and Proposition 9.5. �

Corollary 10.6. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let ξ ă ω1. Then Γ Ď Λ iff Γpξq Ď Λpξq for every Γ,Λ P NSDpZq.

Proof. The fact that Γ Ď Λ implies Γpξq Ď Λpξq is a trivial consequence of the
definition of expansion. Now fix Γ,Λ P NSDpZq such that Γpξq Ď Λpξq. Assume, in
order to get a contradiction, that Γ Ę Λ. Then Λ̌ Ď Γ by Lemma 3.2, hence

}Λpξq “ Λ̌pξq Ď Γpξq Ď Λpξq.

Since Λpξq is non-selfdual by Corollary 10.5, this is a contradiction. �

11. The expansion theorem

The main result of this section is Theorem 11.3, which will be a crucial tool in
obtaining the closure properties in the next section, and will be referred to as the
expansion theorem. The proof given here is essentially the same as [Lo2, proof of
Theorem 7.3.9.ii]. This result can be traced back to [LSR1, Théorème 8], which
is however limited to the Borel context. We need to introduce the following two
notions. The first is [Wa1, Definition D1], while the second is taken from [LSR1]
(see also [Lo2, Section 7.3.4]).16

Definition 11.1 (Wadge). Let Z be a space, let Γ Ď PpZq, and let ξ ă ω1. Define
PUξpΓq to be the collection of all sets of the form

ď

nPω

pAn X Vnq,

where eachAn P Γ, each Vn P ∆0
1`ξpZq, the Vn are pairwise disjoint, and

Ť
nPω Vn “

Z. A set in this form is called a partitioned union of sets in Γ.

Notice that the sets Vn in the above definition are not required to be non-empty.
It is easy to check that PUξpΓq is continuously closed whenever Γ is. Furthermore,
it is clear that

Γ Ď PUξpΓq Ď PUηpΓq

whenever Γ Ď PpZq and ξ ď η ă ω1.

Definition 11.2 (Louveau, Saint-Raymond). Let Z be a space, let Γ Ď PpZq be
continuously closed, and let ξ ă ω1. Define

16 In [LSR1], the notation ∆
0

1`ξ
-PU is used instead of PUξ, and λC is used instead of ℓ.
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‚ ℓpΓq ě ξ if PUξpΓq “ Γ,
‚ ℓpΓq “ ξ if ℓpΓq ě ξ and ℓpΓq ğ ξ ` 1,
‚ ℓpΓq “ ω1 if ℓpΓq ě η for every η ă ω1.

We refer to ℓpΓq as the level of Γ.

As a trivial example, observe that ℓpt∅uq “ ℓptZuq “ ω1. Using the definition
of Wadge-reduction, it is a simple exercise to see that ℓpΓq ě 0 for every Wadge
class Γ. We remark that it is not clear at this point whether for every non-selfdual
Wadge class Γ there exists ξ ď ω1 such that ℓpΓq “ ξ.17 This happens to be true
under AD, and it can be proved using techniques from [Lo2] (see [CMM, Corollary
18.3]). However, this fact is never used in this article.

Theorem 11.3. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, let Γ P NSDpZq, and let ξ ă ω1. Then the following conditions are equivalent:

(1) ℓpΓq ě ξ,

(2) Γ “ Λpξq for some Λ P NSDpZq.

Proof. In order to show that p1q Ñ p2q, assume that ℓpΓq ě ξ. Let Λ P NSDpZq
be minimal with respect to the property that Γ Ď Λpξq. Assume, in order to
get a contradiction, that Λpξq Ę Γ. It follows from Lemma 3.2 that Γ Ď Λ̌pξq,
hence Γ Ď ∆pΛpξqq. Fix A Ď Z such that Γ “ rAs. Also fix D,E Ď Ppωq such

that Γ “ ΓDpZq and Λ “ ΓEpZq. Then tA,ZzAu Ď ΓEpZqpξq “ Γ
pξq
E pZq, where

the equality holds by Corollary 10.4. Then, by Corollary 10.3, we can fix a zero-
dimensional Polish space W and a Σ0

1`ξ-measurable bijection f : Z ÝÑ W such

that tf rAs, f rZzAsu Ď ΓEpW q.
Next, we will show that rf rAss P SDpW q. Assume, in order to get a contradiction,

that this is not the case. By Corollary 8.2, we can fix F Ď Ppωq such that rf rAss “
ΓF pW q. Notice that ΓF pW q Ď ΓEpW q. Furthermore W zf rAs “ f rZzAs P ΓEpW q,
hence Γ̌F pW q Ď ΓEpW q. Since ΓEpW q is non-selfdual by Theorem 7.5, it follows
that ΓF pW q Ĺ ΓEpW q. Therefore, ΓF pZq Ĺ ΓEpZq “ Λ by Proposition 6.5.
On the other hand, Lemma 9.6.3 and Corollary 10.4 show that A “ f´1rf rAss P

Γ
pξq
F pZq “ ΓF pZqpξq. Hence Γ Ď ΓF pZqpξq, which contradicts the minimality of Λ.
Since rf rAss P SDpW q, by Corollaries 4.2 and 8.2, we can fix An Ď W , Gn Ď Ppωq

and pairwise disjoint Vn P ∆0
1pW q for n P ω such that f rAs “

Ť
nPωpAn X Vnq and

An P ΓGn
pW q Ĺ ΓEpW q for each n. Notice that ΓGn

pZq Ĺ ΓEpZq for each n by
Proposition 6.5, hence ΓDpZq Ę ΓGn

pZqpξq for each n by the minimality of Λ. It

follows from Corollary 10.4 and Lemma 3.2 that Γ̌
pξq
Gn

pZq Ď ΓDpZq. Then, using

Propositions 9.4 and 6.5, one sees that Γ̌
pξq
Gn

pW q Ď ΓDpW q.

Set Bn “ W zAn P Γ̌Gn
pW q for n P ω. Observe that f´1rBns P Γ̌

pξq
Gn

pZq Ď

ΓDpZq “ Γ for each n by Lemma 9.6.3. Furthermore, it is clear that f´1rVns P
∆0

1`ξpZq for each n. In conclusion, since W zf rAs “
Ť

nPωpBn X Vnq, we see that

ZzA “
ď

nPω

pf´1rBns X f´1rVnsq P PUξpΓq “ Γ,

where the last equality uses the assumption that ℓpΓq ě ξ. This contradicts the
fact that Γ is non-selfdual.

17For example, it is conceivable that PUηpΓq “ Γ for all η ă ξ, where ξ is a limit ordinal,

while PUξpΓq ‰ Γ.
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In order to show that p2q Ñ p1q, let Λ P NSDpZq be such that Λpξq “ Γ. Pick
An P Γ and pairwise disjoint Vn P ∆0

1`ξpZq for n P ω such that
Ť

nPω Vn “ Z. We

need to show that
Ť

nPωpAn X Vnq P Γ. By Corollary 8.2, we can fix D Ď Ppωq
such that Λ “ ΓDpZq. By Corollary 10.3, we can fix a Polish space W and a
Σ0

1`ξ-measurable bijection f : Z ÝÑ W such that each f rAns P ΓDpW q and each

f rVns P ∆0
1pW q. Let B “

Ť
nPωpf rAns X f rVnsq. Since ΓDpW q is a Wadge class

in W by Theorem 7.5, one sees that B P PU0pΓDpW qq “ ΓDpW q. It follows from
Lemma 9.6.3 that

ď

nPω

pAn X Vnq “ f´1rBs P Γ
pξq
D pZq “ Λpξq “ Γ,

where the second equality holds by Corollary 10.4. �

Corollary 11.4. Assume AD. Let Z and W be uncountable zero-dimensional Pol-

ish spaces, let D Ď Ppωq, and let ξ ă ω1. Then ℓpΓDpZqq ě ξ iff ℓpΓDpW qq ě ξ.

Proof. We will only prove the left-to-right implication, as the other one can be
proved similarly. Assume that ℓpΓDpZqq ě ξ. Then, by Theorems 7.5 and 11.3,
there exists Λ P NSDpZq such that Λpξq “ ΓDpZq. By Corollary 8.2, we can fix
E Ď Ppωq such that Λ “ ΓEpZq. By Proposition 9.4, we can fix F Ď Ppωq such

that ΓF pZq “ Γ
pξq
E pZq and ΓF pW q “ Γ

pξq
E pW q. Notice that ΓF pZq “ ΓDpZq by

Corollary 10.4, hence ΓF pW q “ ΓDpW q by Proposition 6.5. By applying Corollary

10.4 again, we see that ΓDpW q “ ΓEpW qpξq, hence ℓpΓDpW qq ě ξ by Theorems
7.5 and 11.3. �

12. Good Wadge classes

The following key notion is essentially due to van Engelen, although he did not
give it a name. One important difference is that van Engelen’s treatment of this
notion is fundamentally tied to Louveau’s classification of the Borel Wadge classes
from [Lo1], hence it is limited to the Borel context. The notion of level and the
expansion theorem allow us to completely bypass [Lo1], and extend this concept to
arbitrary Wadge classes.

Definition 12.1. Let Z be a space, and let Γ be a Wadge class in Z. We will say
that Γ is good if the following conditions are satisfied:

‚ Γ is non-selfdual,
‚ ∆pDωpΣ0

2pZqqq Ď Γ,
‚ ℓpΓq ě 1.

The following proposition gives some concrete examples of good Wadge classes.

Proposition 12.2. Let Z be an uncountable zero-dimensional Polish space, let

ω ď η ă ω1, and let 2 ď ξ ă ω1. Then DηpΣ0
ξpZqq is a good Wadge class in Z.

Proof. Set Γ “ DηpΣ0
ξpZqq. The fact that Γ P NSDpZq follows from Propositions 9.3

and 9.5. The inclusion ∆pDωpΣ0
2pZqqq Ď Γ holds trivially. Finally, using Corollary

10.4 and [LSR1, Théorème 8],18 one sees that ℓpΓq ě 1. �

18Here, we apply [LSR1, Théorème 8] instead of Theorem 11.3 simply because the former does
not require AD.
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The main result of this section is Theorem 12.4, which will be crucial in showing
that good Wadge classes are reasonably closed (see Lemma 13.2). The case Z “ ωω

of the following lemma is due to Andretta, Hjorth, and Neeman (see [AHN, Lemma
3.6.a]), and the general case follows easily from this particular case (thanks to the
machinery of relativization).

Lemma 12.3. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let Γ P NSDpZq. Assume that DnpΣ0
1pZqq Ď Γ for every n P ω.

‚ If A P Γ and C P Π0
1pZq then A X C P Γ.

‚ If A P Γ and U P Σ0
1pZq then A Y U P Γ.

Proof. Observe that, since Γ̌ also satisfies the assumptions of the lemma, it will be
enough to prove the first statement. So pick A P Γ and C P Π0

1pZq. By Corollary
8.2, we can fix D Ď Ppωq such that Γ “ ΓDpZq. Set Λ “ ΓDpωωq. Using Lemma
6.4.3, we can assume without loss of generality that Z is a closed subspace of ωω. By
[Ke, Proposition 2.8], we can fix a retraction ρ : ωω ÝÑ Z. Notice that ρ´1rAs P Λ

by Lemma 6.4.2. Furthermore, it is clear that C P Π0
1pωωq.

Next, we claim that ||Λ|| ě ω (see Definition 3.4). Since DnpΣ0
1pZqq Ď Γ for

every n P ω, using Propositions 6.2 and 6.5 one sees that DnpΣ0
1pωωqq Ď Λ for every

n P ω. Since these are Wadge classes by Theorem 7.5, and they form a strictly
increasing sequence by [Ke, Exercise 22.26.iv], our claim is proved. Therefore, we
can apply [AHN, Lemma 3.6.a], which shows that ρ´1rAs XC P Λ. Finally, Lemma
6.4.1 shows that A X C “ pρ´1rAs X Cq X Z P ΓDpZq “ Γ. �

Theorem 12.4. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let Γ P NSDpZq. Assume that DnpΣ0
2pZqq Ď Γ for every n P ω and

ℓpΓq ě 1.

‚ If A P Γ and G P Π0
2pZq then A X G P Γ.

‚ If A P Γ and F P Σ0
2pZq then A Y F P Γ.

In particular, the above two statements hold for every good Wadge class Γ in Z.

Proof. Observe that, since Γ̌ also satisfies the assumptions of the theorem, it will
be enough to prove the first statement. So pick A P Γ and G P Π0

2pZq. By Theorem
11.3, we can pick Λ P NSDpZq such that Λp1q “ Γ. By Corollary 8.2, we can fix
E Ď Ppωq such that ΓEpZq “ Λ.

Since Λp1q “ Γ, there exists a Σ0
2-measurable function f : Z ÝÑ Z and B P Λ

such that A “ f´1rBs. Furthermore, using Corollary 10.4 for a suitable choice ofD,
it is easy to check that Π0

1pZqp1q “ Π0
2pZq. Therefore, there exists a Σ0

2-measurable
function g : Z ÝÑ Z and C P Π0

1pZq such that G “ g´1rCs. By applying Lemma
6.4.2 to the projection on the first coordinate π : Z ˆ Z ÝÑ Z, one sees that
B ˆ Z P ΓEpZ ˆ Zq. Furthermore, it is clear that Z ˆ C P Π0

1pZ ˆ Zq.
We claim that DnpΣ0

1pZ ˆ Zqq Ď ΓEpZ ˆ Zq for every n P ω. So fix n P ω, and
let D Ď Ppωq be the set given by Proposition 9.3 when η “ n. Notice that

ΓDpZqp1q “ Γ
p1q
D pZq “ DnpΣ0

2pZqq Ď Γ “ ΓEpZqp1q,

where the first equality holds by Corollary 10.4. Therefore ΓDpZq Ď ΓEpZq by
Corollary 10.6. An application of Proposition 6.5 with W “ Z ˆ Z concludes the
proof of our claim.

Therefore, we can apply Lemma 12.3, which shows that B ˆ C “ pB ˆ Zq X
pZ ˆ Cq P ΓEpZ ˆ Zq. Consider the function pf, gq : Z ÝÑ Z ˆ Z defined by
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pf, gqpxq “ pfpxq, gpxqq, and observe that pf, gq is Σ0
2-measurable. By Lemma

9.6.3, it follows that

A X G “ pf, gq´1rB ˆ Cs P Γ
p1q
E pZq “ Λp1q “ Γ,

where the second equality holds by Corollary 10.4. �

13. Reasonably closed Wadge classes

In this section we will define reasonably closed Wadge classes and prove that
every good Wadge class is reasonably closed. This notion is an ad hoc definition,
and it is the key idea of an ingenious lemma due to Harrington (see [St2, Lemma
3]). This lemma is a crucial ingredient in the proof of Theorem 15.1. Here, we will
follow the approach of [vE3, Section 4.1].

Given i P 2, set

Qi “ tx P 2ω : xpnq “ i for all but finitely many n P ωu.

Notice that every element of 2ωzpQ0 Y Q1q is obtained by alternating finite blocks
of zeros and finite blocks of ones. Define the function φ : 2ωzpQ0 Y Q1q ÝÑ 2ω by
setting

φpxqpnq “

"
0 if the nth block of zeros of x has even length,
1 otherwise,

where we start counting with the 0th block of zeros. It is easy to check that φ is
continuous.

Definition 13.1. Let Γ be a Wadge class in 2ω. We will say that Γ is reasonably
closed if φ´1rAs Y Q0 P Γ for every A P Γ.

The following result is essentially the same as [vE3, Lemma 4.2.17], except that
it is not limited to the Borel context.

Lemma 13.2. Assume AD. Let Γ be a good Wadge class in 2ω. Then Γ is

reasonably closed.

Proof. By Corollary 8.2, we can fix D Ď Ppωq such that Γ “ ΓDp2ωq. Set Z “
2ωzpQ0YQ1q. PickA P Γ. Notice that φ´1rAs P ΓDpZq by Lemma 6.4.2. Therefore,
by Lemma 6.4.1, there exists B P Γ such that B X Z “ φ´1rAs. Since Γ is a good
Wadge class and Z P Π0

2p2ωq, it follows from Theorem 12.4 that φ´1rAs P Γ.
Finally, again by Theorem 12.4, we see that φ´1rAs YQ0 P Γ, which concludes the
proof. �

14. Wadge classes of homogeneous spaces are good

The main result of this section is that rXs is a good Wadge class whenever X

is a homogeneous space of sufficiently high complexity (see Theorem 14.4 for the
precise statement). Together with Lemma 13.2, this will allow us to apply Theorem
15.1 in the next section.

We will need three preliminary results. Lemmas 14.1, 14.2, and 14.3 correspond
to [vE3, Lemma 4.2.16], [vE3, Lemma 4.4.2], and [vE3, Lemma 4.4.1] respectively,
while Theorem 14.4 corresponds to [vE3, Lemma 4.4.3]. Once again, the difference
is that we work with arbitrary sets instead of just Borel sets. In the case of Lemma
14.3, this yields at the same time a substantially simpler proof, inspired by [Lo2,
proof of Theorem 7.3.10.ii].
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Lemma 14.1. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let Γ be a good Wadge class in Z. Assume that A and B are subspaces

of Z such that B P Γ and A « B. Then A P Γ.

Proof. Let h : A ÝÑ B be a homeomorphism. By [Ke, Theorem 3.9], we can fix
G,H P Π0

2pZq and a homeomorphism f : G ÝÑ H such that h Ď f . By Corollary
8.2, we can fix D Ď Ppωq such that Γ “ ΓDpZq. Notice that B P ΓDpHq by
Lemma 6.4.1. It follows from Lemma 6.4.2 that A P ΓDpGq. Therefore, according
to Lemma 6.4.1, there exists C P ΓDpZq such that C X G “ A. Since G P Π0

2pZq,
an application of Theorem 12.4 concludes the proof. �

Lemma 14.2. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, let Γ be a good Wadge class in Z, and let X be a homogeneous subspace

of Z. Assume that A P Σ0
1pXq is non-empty and A P Γ. Then X P Γ.

Proof. Define U “ thrAs : h is a homeomorphism of Xu. Notice that U is a cover of
X because X is homogeneous and A is non-empty. Let tAn : n P ωu be a countable
subcover of U . Observe that each An P Γ by Lemma 14.1. Fix Un P Σ0

1pZq for
n P ω such that Un X X “ An for each n. Set Vn “ Unz

Ť
kăn Uk for n P ω, and

observe that Vn P ∆0
2pZq for each n. Furthermore, it is easy to check that

X “
ď

´1ďnăω

pVn X Anq,

where V´1 “ Zz
Ť

năω Vn “ Zz
Ť

năω Un and A´1 “ ∅. In conclusion, we see that
X P PU1pΓq. Since ℓpΓq ě 1, it follows that X P Γ. �

Lemma 14.3. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, let Γ P NSDpZq be such that ℓpΓq “ 0, and let X P Γ be codense in Z.

Then there exists a non-empty U P ∆0
1pZq and Λ P NSDpZq such that Λ Ĺ Γ and

X X U P Λ.

Proof. Since ℓpΓq “ 0, using Lemma 3.2 and the fact that PU1pΓq is continuously
closed, it is easy to see that Γ̌ Ď PU1pΓq. Therefore, we can fix An P Γ and pairwise
disjoint Vn P ∆0

2pZq for n P ω such that
Ť

nPωpAn XVnq “ ZzX . Since Z is a Baire
space, we can fix n P ω and a non-empty U P ∆0

1pZq such that U Ď Vn.
Notice that Γ ‰ tZu and Γ ‰ t∅u because ℓpΓq “ 0, hence it is possible to

apply Proposition 3.5. In particular, one sees that UzX “ An X U P Γ, hence
ZzpX X Uq “ pZzUq Y pUzXq P Γ. So, we have X X U P Γ (again by Proposition
3.5) and ZzpXXUq P Γ. This easily yields the desired result ifXXU is non-selfdual,
so assume that X X U is selfdual. By Corollary 4.2, we can fix pairwise disjoint
Un P ∆0

1pUq and non-selfdual Bn ă X X U in Z for n P ω such that
Ť

nPω Un “ U

and
Ť

nPωpBn X Unq “ X X U . If we had Bn “ Z for each n such that Un ‰ ∅

then the assumption that X is codense in Z would be contradicted, so assume that
n P ω is such that Bn ‰ Z and Un ‰ ∅. To conclude the proof, set Λ “ rBns and
observe that X X Un “ Bn X Un ď Bn by Proposition 3.5. �

Theorem 14.4. Assume AD. Let Z be an uncountable zero-dimensional Polish

space, and let X be a homogeneous dense subspace of Z such that X R ∆pDωpΣ0
2pZqqq.

Then rXs is a good Wadge class in Z.

Proof. Fix Γ P NSDpZq minimal with respect to the property that X X U P Γ Y Γ̌

for some non-empty U P ∆0
1pZq. Fix a non-empty U P ∆0

1pZq such that X X U P
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Γ Y Γ̌. Assume without loss of generality that X X U P Γ (the case X X U P Γ̌ is
similar). First we will prove that Γ is a good Wadge class, then we will show that
rXs “ Γ. Observe that DωpΣ0

2pZqq and ĎωpΣ0
2pZqq are good Wadge classes in Z

by Proposition 12.2. We claim that X X U R ∆pDωpΣ0
2pZqqq. Assume, in order to

get a contradiction, that X X U P ∆pDωpΣ0
2pZqqq. Then, by the density of X , it

is possible to apply Lemma 14.2 (twice), obtaining that X P ∆pDωpΣ0
2pZqqq. Since

this contradicts our assumptions, our claim is proved. By Lemma 3.2, it follows
that ∆pDωpΣ0

2pZqqq Ď Γ.
Next, we claim that ℓpΓq ě 1. Assume, in order to get a contradiction, that

ℓpΓq “ 0. By Corollary 8.2, we can fix D Ď Ppωq such that ΓDpZq “ Γ. Since X is
dense in Z and homogeneous, if U were countable then X would be countable, by
the same argument as in the proof of Proposition 2.6. So U is an uncountable zero-
dimensional Polish space, and ℓpΓDpUqq “ 0 by Corollary 11.4. Furthermore, X
must be codense in Z, otherwise it would follow that X is Polish by Proposition 2.6,
hence X P Π0

2pZq by [Ke, Theorem 3.11]. Therefore, by Lemma 14.3, there exists a
non-empty V P ∆0

1pUq and Λ P NSDpUq such that Λ Ĺ ΓDpUq and X XV P Λ. By
Corollary 8.2, we can fix E Ď Ppωq such that ΓEpUq “ Λ. Observe that ΓEpZq Ĺ
ΓDpZq by Proposition 6.5. Therefore, in order to contradict the minimality of Γ,
it remains to show that X X V P ΓEpZq. By Lemma 6.4.1, there exists A P ΓEpZq
such that AXU “ XXV . Notice that ΓEpZq ‰ tZu, otherwise it would follow that
X “ Z, which contradicts our assumptions. Therefore X XV “ AXU P ΓEpZq by
Proposition 3.5.

At this point, we know that Γ is a good Wadge class, so we can apply Lemma
14.2, obtaining that X P Γ. To conclude the proof, it will be enough to show that
X is non-selfdual, as it will follow from the minimality of Γ and Proposition 3.5
that rXs “ Γ. Assume, in order to get a contradiction, that X is selfdual. Then,
by Corollary 4.2, there exist a non-empty V P ∆0

1pZq and a non-selfdual A ă X in
Z such that A X V “ X X V . Set Λ “ rAs, and observe that Λ Ĺ Γ. Notice that
Λ ‰ tZu, otherwise it would follow that V Ď X , hence X would not be codense
in Z. Therefore X X V “ A X V P Λ by Proposition 3.5. This contradicts the
minimality of Γ. �

15. The main results

This sections contains our main results. Theorem 15.2 extends (and is inspired
by) [vE4, Lemma 2.7]. All the work done so far was aimed at applying the following
result, which is a particular case of [St2, Theorem 2]. Given a Wadge class Γ in 2ω

and X Ď 2ω, we will say that X is everywhere properly Γ if X X rss P ΓzΓ̌ for every
s P 2ăω.

Theorem 15.1 (Steel). Assume AD. Let Γ be a reasonably closed Wadge class in

2ω. Assume that X and Y are subsets of 2ω that satisfy the following conditions:

‚ X and Y are everywhere properly Γ,

‚ X and Y are either both meager in 2ω or both comeager in 2ω.

Then there exists a homeomorphism h : 2ω ÝÑ 2ω such that hrXs “ Y .

Theorem 15.2. Assume AD. Let X and Y be homogeneous dense subspaces of 2ω.
Assume that X R ∆pDωpΣ0

2p2ωqqq, and that the following conditions are satisfied:

‚ rXs “ rY s,
‚ X and Y are either both meager spaces or both Baire spaces.
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Then there exists a homeomorphism h : 2ω ÝÑ 2ω such that hrXs “ Y .

Proof. Let Γ “ rXs. Notice that Γ is a good Wadge class by Theorem 14.4, hence
it is reasonably closed by Lemma 13.2. It is clear that if X and Y are both meager
spaces, then they are both meager in 2ω. On the other hand, if X and Y are both
Baire spaces, then they are comeager in 2ω by Proposition 2.7. Hence, by Theorem
15.1, it will be enough to show that X and Y are everywhere properly Γ. We will
only prove this for X , since the proof for Y is perfectly analogous. Pick s P 2ăω.
Using Proposition 3.5, one sees that X X rss P Γ. In order to get a contradiction,
assume that XXrss P Γ̌. Since Γ̌ is also a good Wadge class, it follows from Lemma
14.2 that X P Γ̌, which contradicts the fact that Γ is non-selfdual. �

Corollary 15.3. Assume AD. Let X be a zero-dimensional homogeneous space

that is not locally compact. Then X is strongly homogeneous.

Proof. Notice that X is crowded, otherwise it would be discrete by homogeneity.
Therefore, we can assume without loss of generality that X is a dense subspace of
2ω. If X P ∆pDωpΣ0

2p2ωqqq, then the desired result follows from [vE3, Corollary
4.4.6]. So assume that X R ∆pDωpΣ0

2p2ωqqq.
By Theorem 2.8, it will be enough to show that X X rss « X for every s P 2ăω.

Pick s P 2ăω. Let h : rss ÝÑ 2ω be a homeomorphism, and let Y “ hrX X rsss. It
is easy to check that Y is a homogeneous dense subspace of 2ω. Furthermore, it is
clear that X and Y are either both meager spaces or both Baire spaces. We claim
that rXs “ rY s. By Theorem 15.2, this will conclude the proof.

Set Γ “ rXs, and observe that Γ is a good Wadge class by Theorem 14.4. In
particular, Γ is non-selfdual. Hence, by Corollary 8.2, we can fix D Ď Ppωq such
that Γ “ ΓDp2ωq. Notice thatXXrss P ΓDprssq by Lemma 6.4.1, hence Y P ΓDp2ωq
by Lemma 6.4.3. This shows that rY s Ď rXs. In order to prove the other inclusion,
by Lemma 3.2, it will be enough to show that Y R Γ̌Dp2ωq. Assume, in order to
get a contradiction, that Y P Γ̌Dp2ωq. Then X X rss P Γ̌Dprssq by Lemma 6.4.3. It
follows easily from Lemma 6.4.1 and Proposition 3.5 that X X rss P Γ̌Dp2ωq “ Γ̌.
This implies that X P Γ̌ by Lemma 14.2, which contradicts the fact that Γ is
non-selfdual. �
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de Boréliens. Fund. Math. 131:3 (1988), 223–243.
[LSR2] A. Louveau, J. Saint-Raymond. The strength of Borel Wadge determinacy. In: Wadge

degrees and projective ordinals. The Cabal Seminar. Volume II, 74–101, Lect. Notes Log.
37, Assoc. Symbol. Logic, La Jolla, CA, 2012. Originally published in: Cabal seminar 81-85,
1–30, Lecture Notes in Math. 1333, Springer, Berlin, 1988.

[Me1] A. Medini. Products and h-homogeneity. Topology Appl. 158:18 (2011), 2520–2527.
[Me2] A. Medini. The topology of ultrafilters as subspaces of the Cantor set and other topics.

Ph.D. Thesis. University of Wisconsin - Madison. ProQuest LLC, Ann Arbor, MI, 2013. 110
pp. Available at http://www.math.wisc.edu/~lempp/theses/medini.pdf.

[Me3] A. Medini. On Borel semifilters. Topology Proc. 53 (2019), 97–122.
[Mv] S. V. Medvedev. About closed subsets of spaces of first category. Topology Appl. 159:8

(2012), 2187–2192.
[MvMZ] A. Medini, J. van Mill, L. Zdomskyy. Infinite powers and Cohen reals. Canad. Math.

Bull. 61:4 (2018), 812–821.
[MZ] A. Medini, L. Zdomskyy. Between Polish and completely Baire. Arch. Math. Logic. 54:1-2

(2015), 231–245.
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