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Huang’s Empirical Mode Decomposition (EMD) is an algorithm for analyzing nonsta-
tionary data that provides a localized time-frequency representation by decomposing the
data into adaptively defined modes. EMD can be used to estimate a signal’s instanta-
neous frequency (IF) but suffers from poor performance in the presence of noise. To
produce a meaningful IF, each mode of the decomposition must be nearly monochro-
matic, a condition that is not guaranteed by the algorithm and fails to be met when the
signal is corrupted by noise. In this work, the extraction of modes containing both signal
and noise is identified as the cause of poor IF estimation. The specific mechanism by
which such “transition” modes are extracted is detailed and builds on the observation
of Flandrin and Goncalves that EMD acts in a filter bank manner when analyzing pure
noise. The mechanism is shown to be dependent on spectral leak between modes and
the phase of the underlying signal. These ideas are developed through the use of simple
signals and are tested on a synthetic seismic waveform.

Keywords: Empirical Mode Decomposition; intrinsic mode functions; instantaneous fre-
quency; noise.

1. Introduction

Empirical Mode Decomposition (EMD) is an analysis tool for nonstationary data

introduced by Huang et al. in 1998. Nonstationary signals have statistical properties

that vary as a function of time and should be analyzed differently than stationary

data. Rather than assuming that a signal is a linear combination of predetermined

basis functions, the data are instead thought of as a superposition of fast oscilla-
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tions onto slow oscillations [Flandrin and Goncalves (2004)]. EMD identifies those

oscillations that are intrinsically present in the signal and produces a decomposition

using these modes as the expansion basis. We note that throughout this work the

term “basis” is used in the same sense as used by Huang [1998]: the modes of a

signal’s decomposition do not span a particular space, but provide an expansion for

the specific signal. In this way, the basis is data driven and adaptively defined each

time a decomposition is performed [Flandrin and Goncalves (2004)]. EMD has been

used for data analysis in a variety of applications including engineering, biomedical,

financial and geophysical sciences [Huang and Shen (2005)].

In contrast with Fourier analysis, EMD requires no assumptions on its input

and is therefore well suited to analyze nonstationary data. Since nonstationarity

implies that a signal is not well represented by pure tones, a significant number

of harmonics is required to represent a nonstationary signal in the Fourier basis.

Energy must be spread across many modes to accommodate deviations from a pure

tone. In producing an adaptive decomposition consisting of modes that allow for

such deviations, EMD efficiently represents the signal by relaxing the need to ex-

plore all frequencies. A signal is expanded using only a small number of adaptively

defined modes.

As EMD is an algorithm and not yet a theoretical tool, its limits must

be tested experimentally. Several authors have reported on its performance in

the presence of noise [Huang and Shen (2005); Flandrin and Goncalves (2004);

Kijewski-Correa and Kareem (2007)]. In this work, we propose a new understand-

ing of the mechanism that prevents the algorithm from properly estimating the

instantaneous frequency of a noisy signal. The paper is organized as follows. Sec-

tion 2 gives a brief description of the EMD algorithm and demonstrates its use

in estimating the instantaneous frequency of a clean signal. The same estimation,

performed in the presence of noise, is seen to be problematic in Section 3 and the

cause is identified. Section 4 outlines a new explanation for this poor performance.

Finally synthetic seismic data are used in Section 5 to extend our study from simple

signals to a model for real world data.

2. Empirical Mode Decomposition

2.1. Algorithm

The goal of Empirical Mode Decomposition is to represent a signal as an expan-

sion of adaptively defined basis functions with well defined frequency localization.

Each basis function, called an Intrinsic Mode Function (IMF), should be physi-

cally meaningful, representing ideally one frequency (nearly monochromatic). To

accomplish this, an IMF is defined as a function for which (1) at any point,

the mean of the envelopes defined by local maxima and minima is zero, and (2)
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the number of extrema and the number of zero crossings differ by at most one

[Huang et al. (1998)]. Such a definition attempts to ensure that a meaningful in-

stantaneous frequency can be obtained from each IMF, a process that is defined

and detailed in the next subsection, but does not guarantee that each IMF is nar-

row band [Huang et al. (1998)]. To decompose a signal x(t), the EMD algorithm

works as follows [Flandrin and Goncalves (2004)]:

(1) Interpolate (usually with cubic splines) the local maxima of x(t) to form an

envelope. Repeat for the minima.

(2) Compute the mean, m(t), of the two envelopes.

(3) Compute the detail, d(t), by subtracting the mean from the signal, d(t) =

x(t) −m(t). Extract the detail as an IMF.

(4) Repeat the iteration on the residual m(t). Continue until the residual is such

that no IMF can be extracted and represents the trend.

While the trend does not meet the definition of an IMF, we will refer to it as the

final IMF for convenience. Before the detail, d(t), can be considered an IMF, a

“sifting” process takes place during which the detail is treated as a new signal and

is iterated until a predefined stopping criterion is reached. The purpose of this step

is to enforce the definition of an IMF [Flandrin and Goncalves (2004)]. Ideally, all

modes are now nearly monochromatic and can be used to give a meaningful esti-

mate of the signal’s instantaneous frequency.

The algorithm can be described in the time-frequency domain as a collection

of data-dependent projections. Olhede and Walden [2004] formalize this idea by

defining projection operators PRj
, not necessarily orthogonal, that project a signal

x(t) into regions Rj of the time-frequency plane. The signal may then be written

as

x(t) =

K
∑

j=1

[PRj
x](t),

where K is the number of IMFs produced, with the Kth IMF being the trend. Since

each projection gives rise to an IMF, an expansion of the signal is then given by

x(t) =
K
∑

j=1

Xj(t),

where Xj is the jth IMF.

2.2. Estimation of instantaneous frequency

A signal is often characterized in terms of its frequency content. When a signal’s

statistical properties are shift-invariant in time, it is said to be stationary. As this

definition implies, frequency remains constant throughout the signal’s duration, and
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is easily defined as the number of periods per unit time. However, if the signal’s

frequency varies with time, it is said to be nonstationary, and this global definition

of frequency loses meaning. It is therefore necessary to characterize the frequency

content of the signal in a local manner. For example, a chirp with a quadratic phase

has frequency that changes linearly from one instant to the next. It is not possi-

ble to pinpoint one frequency for the entire chirp. Instead the chirp’s frequency is

described as a (linear) function of time. It is therefore more useful to characterize

such a signal in terms of its instantaneous frequency.

Boashash [1992] describes instantaneous frequency (IF) as “a time-varying pa-

rameter which defines the location of the signal’s spectral peak as it varies with

time.” He points to seismic, radar, sonar, communication, and biomedical applica-

tions as fields where IF is utilized. Two conditions are needed to produce a physically

meaningful and well defined instantaneous frequency. The signal must be analytic

and it must be narrow band. An analytic signal is produced via the Hilbert trans-

form:

[Hx](t) =
1

π
PV

∫ ∞

−∞

x(t′)

t− t′
dt′,

where PV denotes the Cauchy principle value. Given a real valued signal, x(t), its

analytic representation is then defined as z(t) = x(t)+ i[Hx](t). The analytic signal

z(t) may be written in the form

z(t) = a(t)eiφ(t),

and the instantaneous frequency, v(t), can then be defined [Boashash (1992)] in

terms of the derivative of the phase φ(t):

v(t) =
1

2π

dφ

dt
.

The derivative must be well defined since physically there can only be one instan-

taneous frequency value v(t) at a given time t. This is ensured by the narrow band

condition: the signal must contain nearly one frequency. Further, as detailed by

Boashash [1992], the Hilbert transform produces a more physically meaningful re-

sult the closer its input signal is to being narrow band. However, we wish to work

with signals that are much more interesting than those that are monochromatic.

This can be achieved by decomposing such a signal into several nearly monochro-

matic components, each of which provides a well defined, meaningful instantaneous

frequency. An overall IF estimate of a signal x, given its decomposition into K

IMFs, is then calculated as a weighted sum of the individual IFs:

IF
(

x(t)
)

=

∑K
j=1 A

2
j (t)vj(t)

∑K
j=1 A

2
j (t)

,

where Aj(t) and vj(t) are, respectively, the magnitude and instantaneous frequency

of the analytic representation of IMF Xj [Olhede and Walden (2004)].
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To demonstrate the calculation of IF, consider x(t) = sin(200t2) + sin(20t), the

superposition of a linear chirp onto a stationary sine wave, on the interval t ∈ [0, 1]

seconds. Figure 1a shows the true analytica IF (in red) and the overall IF estimate

(in blue) obtained from the IMFs (shown in figure 1b) of x(t). We are able to calcu-

late a physically meaningful instantaneous frequency when using the decomposition

of a signal in the absence of noise.

Huang et al. [2009] give a detailed discussion on the shortcomings of this method

of IF calculation. In particular, they note that the analytic signal obtained from the

Hilbert transform is only physically meaningful if the conditions of the Bedrosian

theorem are met. They introduce a normalization scheme that empirically sepa-

rates the AM and FM components of each IMF, where the AM carries the envelope

and the FM is the constant amplitude variation in frequency. The “normalized”

FM component of an IMF is guaranteed to satisfy the Bedrosian theorem and is

therefore suitable for the Hilbert transform. Alternatively, once an IMF has been

normalized, Huang et al. [2009] propose eschewing any Hilbert transform in favor

of applying a 90 degree phase shift by means of a direct quadrature. Both methods

are demonstrated to be more accurate on clean signals than the standard method

presented above. Since the focus of our work is the performance of EMD in the

presence of noise, the performance of this normalization scheme on noisy data will

be addressed in the next section.

aThe analytic IF of the superposition of two signals, x(t) = A1(t)eiφ1(t) + A2(t)eiφ2(t), is
defined as the average of the individual IFs of each signal only when |A1(t)| = |A2(t)|
[Loughlin and Tacer (1997)]. We note that this condition holds for this example, and we compute
the analytic IF accordingly. An example for which the condition does not hold will be encountered
in section 5.
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(a) IF estimate (b) IMFs

Fig. 1. The instantaneous frequency estimate and IMFs of a clean signal.

3. Performance in the Presence of Noise

A clean signal can produce a decomposition that lends itself to a meaningful in-

stantaneous frequency estimate. However, as is the case in many applications, data

are often contaminated by noise. Decomposing a noisy signal produces both narrow

and wide band IMFs. While most of the wide band IMFs contain noise and may be

discarded, a small number capture the transition from noise to signal and must be

kept. This leads to a corrupted estimate of the instantaneous frequency.

3.1. Evidence of a problem

In the previous section the calculation of instantaneous frequency was described.

This process is now applied to the same signal contaminated with additive white

Gaussian noise such that its SNR is 27dB. Throughout this work we use SNR

= 10 log10
(‖x‖2

σ

)

dB, where σ is the standard deviation of the noise. The result is
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shown in figure 2 and it is clear that a meaningful instantaneous frequency estimate

was not produced.

Fig. 2. The corrupted instantaneous frequency estimate of a noisy signal.

To understand this poor result, recall that a signal’s IF is computed as a weighted

sum of the IF from each of its IMFs. The analytic representation of each IMF is

required and thus each IMF must be narrow band to ensure a meaningful Hilbert

transform. Moreover, IF is well defined only in the case of a nearly monochromatic

signal. Therefore, for the purpose of computing a meaningful IF, the key feature of

the decomposition is that each IMF contains nearly one frequency.

It is important to recall that the definition of an IMF does not guarantee

monochromaticity. This is illustrated with a deterministic example. The decom-

position of a signal composed of a slow sinusoid with high frequency sinusoids

superimposed at each crest and trough is shown in figure 3. Despite the fact that

this signal was constructed in a completely deterministic manner, its first two IMFs

contain both high and low frequencies. Such IMFs are not suitable for the Hilbert

transform and will not yield a well defined IF. Wu and Huang [2009] use a very

similar example, developed independently from our example, to note that a decom-

position may give rise to IMFs containing oscillations of drastically different scales.

They refer to the creation of such IMFs as “mode mixing,” and introduce the En-

semble EMD (EEMD) to alleviate this issue. We will discuss the performance of

EEMD on noisy data in section 4.
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Fig. 3. IMFs of a deterministic signal. IMFs 1 and 2 contain both high and low frequencies,
illustrating that monochromaticity is not guaranteed.

3.2. Identifying the culprit

The poor quality IF estimate from a noisy signal can be explained by the cre-

ation of wide band IMFs. More precisely, the EMD decomposition of a noisy signal

will generate some “noisy” IMFs. As explained below, such noisy IMFs are neither

monochromatic signals nor pure noise; rather their Fourier transform is localized

over a well defined frequency range. Consequently, such IMFs cannot contribute a

well defined IF because noise is wide band by definition. Figure 4 shows the decom-

position of the noisy example signal. We identify three categories of IMFs:

(1) Noisy: IMFs 1-4 are wide band as they clearly contain noise.

(2) Transition: IMFs 5-7 contain both signal and noise. These IMFs capture the

“transition” from the noise captured in IMFs 1-4 and the monochromatic com-

ponents extracted as IMFs 8-11.
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(3) Monochromatic: IMFs 8-11 are nearly monochromatic and yield meaningful

IF contributions.

Fig. 4. IMFs of a noisy signal. IMFs 1-4 capture most of the noise, while IMFs 5-7 represent the
transition from noise to signal, and IMFs 8-11 are nearly monochromatic.

To demonstrate the effect of each type of IMF on the overall IF estimate, figure

5 highlights an example from each category. IMF 2 (left) is a noisy IMF; IMF 5

(center) contains both signal and noise and is a transition IMF; IMF 9 (right) is

nearly monochromatic. Spectrogramsb are used to illustrate the frequency content

that characterizes each IMF. The spectrogram of the noisy mode, IMF 2, shows

that it is wide band and therefore yields an IF that is not physically meaningful.

In contrast, the nearly monochromatic IMF 9 is seen to be narrow band and con-

tributes a well defined IF. Finally, despite its signal content, transition IMF 5 is

wide band and cannot contribute a clean IF. The inclusion of IF contributions from

wide band IMFs pollutes the overall IF and is responsible for the poor result seen

in figure 2.

bSpectrograms are displayed as a log-scale color representation of the power spectral density calcu-
lated using a Kaiser window of duration 0.1 seconds with 90% overlap. Red and blue correspond to
higher and lower density, respectively, and the scale is uniform within a figure but not necessarily
throughout the paper.
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(a) IMF 2 - Noisy (b) IMF 5 - Transition (c) IMF 9 - Monochromatic

Fig. 5. Characteristic IMFs representing (a) noise, (b) transition from noise to signal, and (c)
monochromatic components extracted from a noisy signal.

Since the inclusion of certain IMFs results in a poor IF estimate, it is reasonable

that some nonlinear thresholding process would yield better results. Specifically,

discarding the IMFs identified as noise will provide a more meaningful IF estimate.

In figure 6 the IF of the noisy version of the signal shown in figure 1a(top) is

now computed using only IMFs 5-11. It is important to note that IMF 5 is not dis-

carded because as a transition IMF, it contains both signal and noise. We would like

to ignore such an IMF since it will provide poor IF information derived partially

from noise, but cannot discard its signal content. Therefore, it must be included

and contaminates our overall estimate. The same is true of IMFs 6 and 7. Other

thresholding methods may be utilized, including using only those IMFs with energy

between specified thresholds [Huang and Shen (2005)]. However, to our knowledge,

there is not a clear cut method of thresholding that will produce a faithful IF es-

timation. While the thresholded estimate in figure 6 is an improvement over the

previous estimate shown in figure 2, the transition IMFs’ contribution has left the

IF mostly incoherent. The necessary inclusion of transition IMFs is therefore iden-
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tified as the main problem in estimating the IF in the presence of noise.

Fig. 6. Instantaneous frequency estimate using IMFs 5-11. The necessary inclusion of transition
IMFs prevents a clean estimation.

It is also reasonable that computing the IF from normalized IMFs

[Huang et al. (2009)] (see section 2) might yield cleaner results. However,

Huang et al. [2009] note that the normalized scheme encounters problems when an

IMF contains noise and recommend computing the analytic signal with the standard

Hilbert transform approach. Figure 7 shows the normalized version of the exam-

ple IMFs from figure 5. We observe that we still have (from left to right) a noisy

IMF, a transition IMF, and a monochromatic IMF. The IF contribution from each

normalized IMF is shown, calculated by direct quadrature (middle) and normalized

Hilbert transform (bottom). Just as in the standard unnormalized case, transition

IMFs with corrupted IF contributions still exist and their necessary inclusion will

prevent a clean IF estimate (not shown).
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(a) IMF 2 - Noisy (b) IMF 5 - Transition (c) IMF 9 - Monochromatic

Fig. 7. Normalized IMFs of a noisy signal (top), IF contribution from direct quadrature (middle),
and IF contribution from normalized Hilbert transform (bottom).

4. Analysis of Noisy Decompositions

With an understanding of how transition IMFs pollute the estimation of IF, we

address the more fundamental question of why transition IMFs are produced when

EMD operates on a noisy signal. To begin, we note the work of Flandrin and

Goncalves [2004] showing that EMD acts as a filter bank when decomposing pure

noise, and add our observation that the boundaries of the frequency bands vary with

time. We propose two mechanisms that lead to the creation of transition IMFs:

(1) Spectral leak between frequency bands: frequency content of the underlying

signal falls within a band treated as noise.

(2) Phase alignment: the alignment of the signal with the lowest level of noise

present in the band is controlled by the signal’s phase.

Spectral leak is mostly a nonstationary condition while the contribution of phase

alignment is best seen in the stationary setting.
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4.1. EMD decomposition of pure white noise

Before returning to the decomposition of a noisy signal, EMD’s performance on

pure noise is analyzed. Figure 8 shows the spectrogram of a realization of white

Gaussian noise (zero mean, standard deviation of 0.2). It is not surprising that the

spectrogram shows nearly uniform power spectral density since, in principle, the

density of such noise should be constant. This specific noise realization will be used

in all experiments that follow in this section.

Fig. 8. Spectrogram of white Gaussian noise used throughout this section.

Flandrin and Goncalves [2004] reported that EMD acts as a filter bank when

decomposing pure Gaussian noise. By selecting entire frequency bands as IMFs

rather than a single frequency, the IMFs are by definition multicomponent. We

observe a similar result and note that the boundaries of each band are not straight

line cuts through the frequency axis, but instead vary as a function of time. This is

clearly seen in the IMFs of the noise as their spectrograms (figure 9) show that the

borders of the frequency-bands do not resemble straight lines. The spectrograms

also reveal that the IMFs provide a nearly dyadic decomposition of the spectrum

shown in figure 8. Since the noise is composed of realizations of random variables, we

define its mean power spectral density Mpsd(t) and associated standard deviation
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SDpsd(t) at a given time t as follows:

Mpsd(t) =

Fs/2
∑

k=0

k · P (k, t)

M2
psd(t) =

Fs/2
∑

k=0

k2 · P (k, t)

SDpsd(t) =

√

M2
psd(t)−

(

Mpsd(t)
)2

where Fs is the sampling rate and P (k, t) is the normalized power spectral density

at frequency k and time t. The plots of the mean power spectral density with error

bars representing one standard deviation show that the statistics of the IMFs vary

with time (figure 10). Some frequency mixing between modes is also observed.
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Fig. 9. Spectrogram of first six IMFs of white Gaussian noise, highlighting EMD’s filter bank
behavior.

Fig. 10. Mean (with error bars representing one standard deviation) power spectral density of
IMFs extracted from white Gaussian noise. Note the different scales on the frequency axis, clearly
indicating an almost dyadic decomposition of the noise spectrum.
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4.2. EMD decomposition of a signal corrupted by noise

4.2.1. Spectral leak

Kijewski-Correa and Kareem [2007] attributed the poor quality of IF estimation in

the presence of noise to the empirical nature of the algorithm, leading to a basis

derived from the noise. They observed the mixing of the input signal over many

IMFs, making it difficult to isolate the clean signal from the noise. We extend this

explanation with our observations to explain the extraction of transition IMFs. The

process is best understood by considering the noisy signal in the time-frequency

plane. The algorithm is operating on projections in this plane, starting with the

highest frequency band and adaptively moving down the frequency axis. These

projections are not completely orthogonal, and thus there is some frequency mixing

in the modes. As EMD tiles down the time-frequency plane, it first extracts pure

noise as it has not yet reached the frequency of the signal. While in the pure noise

region, EMD behaves as a filter bank, as observed by Flandrin and Goncalves,

extracting noise in an almost dyadic manner.

Fig. 11. A model of EMD’s filter bank action shown in the time-frequency plane. Pieces of chirping
signal are captured in noisy bands. The bands contributing to IMFs 1-4 are illustrated and the
boundaries between the bands are idealized.
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A model for this process in the time-frequency plane is provided in figure 11.

The model shows a spectrogram of the noisy chirp sin(2πft2)+n(t), where f = 225

Hz, t ∈ [0, 1], and n(t) is the exact same realization of noise shown in figure 8. The

boundaries between the bands are idealized, highlighting EMD’s filter bank behav-

ior. Noise is removed until a frequency present in the signal matches or exceeds that

of the noise. The model demonstrates the situation where a portion of a nonsta-

tionary signal leaks into an otherwise noisy band (IMF 3 in this example). In this

case, the signal’s frequency is high enough to be included in the IMF for only part

of its duration. Still behaving in the noise regime, EMD extracts both signal and

noise as it cannot distinguish which should be removed. Because of the variation

in the boundaries of the identified frequency bands (seen in figures 9 and 10, not

shown in the model), EMD will encounter such a band even when decomposing a

noisy stationary signal. This is the general process that leads to the creation of a

transition IMF, and will be seen explicitly in the following example.

Fig. 12. Decomposition of a noisy linear chirp. Note the signal content present in the transition
IMFs 4-6.
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To demonstrate the extraction of transition IMFs, we add the exact same re-

alization of noise shown in figure 8 to the linear chirp sin[2π(35t2 + 10t)]. The

decomposition of this noisy signal is shown in figure 12 and spectrograms of the

first six IMFs are shown in figure 13. IMFs 1-3 show the filter bank action of EMD.

The frequency of the signal is well below that of the noise, and EMD extracts the

noise in a nearly dyadic fashion. We note the boundaries of the frequency bands

vary with time, as expected. Once IMFs 1-3 have been removed, the next frequency

band selected contains both noise and signal as can be seen in the spectrogram of

IMF 4 (see figure 13). The noise remaining in the residual forces EMD to continue

behaving as a filter bank. However, the highest frequency content of the chirp now

falls within this band. In removing this band, a portion of the signal is pushed

into IMF 4. In this respect, we observe the signal leaking into the noise. IMF 4

will be composed of a mixture of noise and signal: noise for the temporal locations

corresponding to those where the chirp’s frequency is too low to be included; signal

for the temporal locations where the chirp’s frequency reaches into the noise band.

Thus a transition IMF is produced, containing signal that has been prematurely

removed. Because this portion of signal no longer remains in the residual, it cannot

be accounted for in the next IMF. Therefore, subsequent IMFs will be damaged as

each is derived from the remaining incomplete residual. This process continues for

IMFs 5 and 6, and the portions of the chirp that leak into the empirically defined

bands are removed with the noise in a manner similar to IMF 4. We see the forma-

tion of transition IMFs is consistent with the model presented in figure 11.

Spectral leak is similar to the mode mixing observed by Wu and Huang [2009].

To resolve the mode mixing issue, they introduce EEMD to produce IMFs that

represent only one scale of oscillation. EEMD cleverly uses noise perturbations to

force the algorithm to explore all frequencies while not adding too much noise so as

to push the algorithm into the spectral leak regime. Noise is added to the original

signal and a standard EMD decomposition is performed. This is repeated with dif-

ferent noise realizations for a fixed number of times. The resulting IMFs from each

run are then averaged, producing an “ensemble” result. Wu and Huang demonstrate

that this is an effective way of eliminating mode mixing even in signals that contain

a mild amount of noise. Our analysis continues this line of thought by examining

decompositions of signals with noise of higher levels, as is often encountered in real

world data. It is this noise that causes spectral leak between IMFs and presents a

different problem than that solved by EEMD. Adding more noise to the already

contaminated signal will not produce cleaner results. The realization of the original

contaminating noise remains the same over all trials and thus cannot be eliminated

through averaging. For these reasons, our analysis is focused on the standard EMD

decomposition of noisy signals.
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Fig. 13. Spectrograms of the decomposition of a noisy linear chirp. Transition IMFs 4-6 display
the spectral leak of signal into noise. Note the change in scale on the frequency axis.

4.2.2. Phase alignment

The spectral explanation is not the entire story; the phase of the underlying signal

also plays a role in the creation of transition IMFs. We have seen that the bound-

aries of the frequency bands of noisy IMFs dip lower in some locations and extend

higher in others (figure 9). We also have observed that the standard deviation of

a band’s frequency varies with time (figure 10). When the energy of the noise is

high, the energy of the signal cannot be felt by the algorithm. In this way, we think

of the noise as insulating the signal from extraction. However, at a given time, if

the energy of the noise is small, EMD may include part of the underlying signal

in the current IMF as well. At these time locations, the noise does not insulate

the signal from extraction. Thus signal leaks into an otherwise noisy IMF at the

locations where the standard deviation is small. This process is illustrated by the
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model seen in figure 14, showing a noisy signal in the time-frequency plane. From

0.5 to 0.6 seconds there is a clear dip in the energy of the noise. In this region, the

energy of the signal is exposed and will be extracted into the next IMF. Outside

of this region, the energy of the noise is high and insulates the underlying signal.

Here, only the noise will be extracted and the signal will remain untouched. The

locations at which signal is extracted into an otherwise noisy IMF will be shown to

be phase dependent.

Fig. 14. A model of a noisy signal in the time-frequency plane. Signal will be extracted in the
region corresponding to 0.5-0.6 seconds. Here the energy of the noise is too low to insulate the
signal from extraction. Outside of this region, only the energy of the noise will be extracted.

Consider two signals with identical spectral content, differing only by a constant

phase factor and contaminated with the same noise realization. For simplicity, we

consider two stationary signals. Using a stationary example will limit the effect of

spectral leak, as unlike the chirp used in the previous nonstationary case, a signal

with one frequency should not have energy spread over many IMFs. Let f = 75

Hz and t ∈ [0, 1] seconds. We examine x1 = sin(2πft) and a phase-shifted copy

x2 = sin(2πft+ .9p), where p = 1
f is the period of x1. Because x1 and x2 have the

same frequency content, we expect that when contaminated with the same noise

realization, EMD should produce very similar results. Figure 15 shows that the first

transition IMFs for each noisy signal contain signal in different locations. Examining

the residual from which each transition IMF was extracted lends an explanation.

The smallest standard deviation in each residual occurs near 0.7 seconds and 0.4

seconds for x1 and x2 respectively and is highlighted in red. These time locations
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correspond exactly with the location of signal content in each transition IMF. At

these locations, the level of the noise is too small to insulate the signal from ex-

traction into the current IMF. This process demonstrates that the extraction of

transition IMFs is also phase dependent.

(a) x1 (b) x2

Fig. 15. Two stationary signals with identical spectral content differing only by a phase shift. From
top to bottom: the clean signal, spectrograms of the noisy residual from which the first transition
IMFs are extracted, mean power spectral density (PSD) of the residual with error bars representing
one standard deviation, and the first transition IMFs. The mean PSD sections highlighted in red
(around 0.7s for x1 and 0.4s for x2) correspond to those with the smallest standard deviations and
is where signal leaks into the otherwise noisy IMFs.



22 D.N. Kaslovsky and F.G. Meyer

In the above example, the first IMF contains pure noise for both signals. Be-

cause the exact same noise realization was used to contaminate both signals, one

might expect that the first IMF, and thus the first residual, for each signal would

be identical. However, as noted above and seen in figure 15, the statistics of the

residuals are different, showing dips in the energy of the noise at different locations.

For a more complete understanding of the demonstrated phase dependence, we con-

sider how the phase of a signal interacts with noise. The interference between the

sinusoidal function xi(t) = α cos(ωt+ βi) (i = 1 or 2) and a realization n(t) of the

white noise can be described by the following simple model. We consider n(t) to

be a realization of a white noise process sampled at a finite number of samples N .

We can decompose n(t) using a finite Fourier transform [Brillinger (2001)] and the

Fourier series expansion can be written as follows:

n(t) =

N−1
∑

k=0

ρk cos(2πk
t

N
+ ϕk)

where the ρk ≥ 0 and ϕk are defined by

ak = ρkcosϕk, bk = −ρksinϕk, and a0 = 2ρ0cosϕ0,

with

ak =
2

N

N−1
∑

t=0

n(t) cos(2πk
t

N
) (k = 0, . . .) and bk =

2

N

N−1
∑

t=0

n(t) sin(2πk
t

N
) (k = 1, . . .).

We now contaminate the signal xi(t) by adding the noise realization n(t) to xi(t),

xi(t) + n(t) = α cos(ωt+ βi) +

N−1
∑

k=0

ρk cos(2πk
t

N
+ ϕk) (t = 0, 1, . . . , N − 1).

Because the noise is white, we expect the realization of the noise to have a uniform

distribution of the energy in the Fourier domain. In other words, we expect that all

ρk have similar amplitudes.

We now examine under what circumstances the noise will interfere with the

signal. First, we assume that the signal amplitude is about the same as the noise

level, (α ≈ ρk0
). Second, we consider the frequency index of the noise that matches

the frequency of the signal, k0 such that ω ≈ 2πk0. At this frequency the noise will

interfere with the signal. Formally, we can consider the interaction of the two cosine

function,

α cos

(

ω
t

N
+ βi

)

+ ρk0
cos

(

2πk0
t

N
+ ϕk0

)

≈

2ρk0
cos

(

ω + 2πk0
2

t

N
+

βi + ϕk0

2

)

cos

(

ω − 2πk0
2

t

N
+

βi − ϕk0

2

)

.

If ω ≈ 2πk0, then the function

cos

(

ω − 2πk0
2

t

N
+

βi − ϕk0

2

)
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slowly modulates the other cosine function,

ρk0
cos

(

ω + 2πk0
2

t

N
+

βi + ϕk0

2

)

which still oscillates at the frequency ω since (ω +2πk0)/2 ≈ ω. The overall ampli-

tude of the slowly varying envelope cos((ω − 2πk0)/2 t/N + (βi − ϕk0
)/2) clearly

depends on the phase difference (βi − ϕk0
)/2, as is shown in figure 15.

We conclude that the exact amount of cancellation created by the interference

between the original signal xi(t) and the noise realization n(t) depends on the phase

of the signal xi(t). We note that this analysis is concerned with one realization of the

noise, and is not in contradiction with the fact that the noise statistical properties

are translation invariant, since the noise is considered to be stationary.

5. EMD Decomposition of Synthetic Seismic Data

Having demonstrated both the effect and mechanism of noise corruption on simple

synthetic examples, we turn our attention to a synthetic seismic signal which will

serve as a model for real world data. The signal was constructed using elemen-

tary chirplet wave packets. Such chirplet packets were proposed by Bardainne et al.

[2006] to decompose seismograms. Details of the construction are given in Appendix

A. Figure 16a shows the clean signal that will be considered along with the esti-

mate of its instantaneous frequencyc. In the absence of noise we observe that the

decomposition of the signal yields a physically meaningful IF (figure 16b).

cThis synthetic seismic waveform is the result of the superposition of several signals, each with
different frequency and amplitude functions. Therefore, the waveform is a multicomponent signal
and its analytic IF is not well defined. The IF must be computed numerically (as the weighted
sum of the IF from each of its IMFs) as shown in figure 16b.
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(a) Signal (b) Instantaneous Frequency

Fig. 16. Clean seismic signal from which a physically meaningful IF is calculated.

(a) Signal (b) Instantaneous Frequency

Fig. 17. Noisy seismic signal (SNR = 24dB) from which a physically meaningful IF cannot be
calculated.
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To investigate the effect of noise, the same signal is contaminated with additive

white Gaussian noise and we consider an SNR of 24dB. The noisy signal is shown

in figure 17a and it is clear that a meaningful IF was not produced (figure 17b).

Examining the IMFs of the noisy signal shows that IMF 1 contains noise and IMF

2 represents the transition from noise to signal. It is noted that 91.8% of the sig-

nal’s total energy is captured in this transition IMF. Eleven IMFs were produced

and figure 18 shows the first five, capturing 98.6% of the energy. It is clear that to

produce a meaningful instantaneous frequency, IMF 1 must be discarded. IMF 2

must be included as it contains almost all of the energy, but will be problematic as

it also contains noise. Recomputing the IF (not shown) using all but the first IMF

fails to produce a meaningful IF estimate due to the noise present in IMF 2.

(a) IMFs (b) Spectrograms of IMFs

Fig. 18. First five IMFs with spectrograms from the decomposition of the noisy seismic signal.
91.8% of the total energy is captured in transition IMF 2. IMFs 3-5 are damaged by the extraction
of signal into IMF 2.
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The seismic signal is clearly nonstationary. We therefore expect that the tran-

sition IMF was formed due to spectral leak. The IMFs in figure 18 indicate that

the decomposition indeed followed the process presented in the model for spectral

leak (figure 11). IMF 1 is pure noise, extracted by EMD operating in the filter bank

regime. The spectrogram of IMF 2 shows that EMD continued down the frequency

axis in a somewhat dyadic fashion. In principle, IMF 2 would have contained only

pure noise, but the frequency content of the signal leaked into the bottom of this

frequency band. The spectrograms of IMFs 3 - 5 show that the extraction of signal

into the transition IMF damaged all subsequent IMFs.

Finally, there is also evidence of phase dependence. Let the original signal be

denoted by x, and consider x1 and x2, two phase-shifted copies of x with identical

spectral content. Phase shift is accomplished by adding a constant c to the argument

of the sine in the wave packet wk(t) (see Appendix A). The values used for c are

0.9π and 0.3π for x1 and x2, respectively. Figure 19 shows the transition from noise

to signal is captured in IMF 2 for x and x1. Although subtle, these IMFs contain

signal at different locations (most easily seen at 0.6 seconds). A more obvious effect

is seen in the decomposition of x2, where the transition begins in IMF 1 instead of

IMF 2.

(a) x (b) x1 (c) x2

Fig. 19. First two IMFs of noisy seismic signals differing only by a phase factor. IMF 2 is the
transition IMF for x and x1, while the transition begins in IMF 1 for x2. The transition IMFs
for x and x1 contain signal content in slightly different locations, most notable at time t = 0.6
seconds.
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6. Conclusions

All data analysis tools are susceptible to noise corruption; EMD is not an excep-

tion. Despite this reality, EMD has emerged as an effective tool for nonstationary

data analysis. Wavelet decompositions, which suffer from similar corruption in the

presence of noise, are accompanied by rich theory from which this noise corruption

may be studied and understood. A complete theoretical framework for EMD has

yet to emerge. Therefore, EMD is best understood through experiments to discover

and test its limits. EMD is an effective tool for estimating the IF of a clean signal

but provides a poor estimate in the presence of noise. When decomposing a noisy

signal, “transition” IMFs are extracted, capturing both noise and signal in the same

mode. Such IMFs are problematic as their noise pollutes the IF calculation yet their

signal content cannot be ignored. We have demonstrated both the existence of and

mechanism by which transition IMFs are created. Specifically, transition IMFs arise

from spectral leak between modes and EMD’s filter bank behavior in the presence

of noise. In addition, the manner in which signal leaks into an otherwise noisy IMF

has been shown to be phase dependent. Given this understanding, there is an op-

portunity to more faithfully estimate instantaneous frequency in the presence of

noise. In doing so, care must be taken to treat transition IMFs in a manner that

preserves any meaningful physical information, as this is an idea at the core of the

development of EMD.

Appendix A. Seismic Waveform

The synthetic seismic waveform, f(t), used in section 5 is based on the work of

Bardainne et al. [2006] and is constructed as follows:

Let f(t) =
∑4

k=1 akwk ((t− tk)/dk) , t ∈ [0, 1]

• Wave packet wk(t) = g(t) sin [2 π(fk + pkt
qk) t]

• Envelope g(t) = two Gaussians smoothly glued:






















exp

[

−

(

ck(1−lk)−t
1

2
ck(1−lk)

)2
]

if 0 < t < ck(1− lk)

1 if ck(1− lk) < t < ck + (1− ck)lk

exp

[

−

(

ck+(1−ck)lk−t
1

2
(1−ck)(1−lk)

)2
]

if ck + (1− ck)lk < t < 1

• (fk, pk, qk) control the frequency of the wave packet

• (ck, lk) control the boundary between the attack and the silencing of the wave

packet

The parameter values used are shown in table 1 below.
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Table 1. Parameters used for construction of seismic
waveform.

k tk dk fk ak ck lk pk qk
1 0 1 10 0.3 0.0 1 0 0
2 0.2 0.8 80 0.2 0.9 0.5 10 1

3 0.32 0.05 300 3 0.7 0.1 2 -1
4 0.45 0.24 195 10 0.2 0.2 -5 10
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