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ABSTRACT
We give a high precision polynomial-time approximation
scheme for the supremum of any honest n-variate (n + 2)-
nomial with a constant term, allowing real exponents as well
as real coefficients. Our complexity bounds count field op-
erations and inequality checks, and are polynomial in n and
the logarithm of a certain condition number. For the spe-
cial case of polynomials (i.e., integer exponents), the log of
our condition number is sub-quadratic in the sparse size.
The best previous complexity bounds were exponential in
the sparse size, even for n fixed. Along the way, we partially
extend the theory of A-discriminants to real exponents and
exponential sums, and find new and natural NPR-complete
problems.
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1. INTRODUCTION AND MAIN RESULTS
Maximizing or minimizing polynomial functions is a central
problem in science and engineering. Typically, the polyno-
mials have an underlying structure, e.g., sparsity, small ex-
pansion with respect to a particular basis, invariance with
respect to a group action, etc. In the setting of sparsity,
Fewnomial Theory [Kho91] has succeeded in establishing
bounds for the number of real solutions (or real extrema)
that depend just on the number of monomial terms. How-
ever, the current general complexity bounds for real solving
and nonlinear optimization (see, e.g., [BPR06, S08, Par03])
are still stated in terms of degree and number of variables,
and all but ignore any finer input structure. In this paper,
we present new speed-ups for the optimization of certain
sparse multivariate polynomials, extended to allow real ex-
ponents as well. Along the way, we also present two new
families of problems that are NPR-complete, i.e., the ana-
logue of NP-complete for the BSS model over R. (The
BSS model, derived in the 1980s by Blum, Shub, and Smale
[BSS89], is a generalization of the classical Turing model of
computation with an eye toward unifying bit complexity and
algebraic complexity.)

Our framework has both symbolic and numerical aspects
in that (a) we deal with real number inputs and (b) our al-
gorithms give either yes or no answers that are always cor-
rect, or numerically approximate answers whose precision
can be efficiently tuned. Linear Programming (LP) forms
an interesting parallel to the complexity issues we encounter.
In particular, while LP admits polynomial-time algorithms
relative to the Turing model, polynomial-time algorithms
for linear programming relative to the BSS model over R
(a.k.a. strongly polynomial-time algorithms or polynomial
arithmetic complexity) remain unknown. Furthermore, the
arithmetic complexity of LP appears to be linked with a fun-
damental invariant measuring the intrinsic complexity of nu-
merical solutions: the condition number (see, e.g., [VY93,
CCP03]). Our results reveal a class of non-linear problems
where similar subtleties arise when comparing discrete and
continuous complexity.

To state our results, let us first clarify some basic notation
concerning sparse polynomials and complexity classes over
R. Recall that ⌊x⌋ is the greatest integer not exceeding a
real number x, and that R∗ is the multiplicative group of
nonzero elements in any ring R.
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Definition 1.1. When aj ∈ Rn, the notations aj =
(a1,j , . . . , an,j), xaj = x

a1,j

1 · · ·xan,j
n , and x = (x1, . . . , xn)

will be understood. If f(x) :=
∑m

j=1 cix
aj where cj ∈ R∗

for all j, and the aj are pair-wise distinct, then we call f
a (real) nnn-variate mmm-nomial, and we define Supp(f) :=
{a1, . . . , am} to be the support of f . We also let Fn,m

denote the set of all n-variate ⌊m⌋-nomials1 and, for any
m≥n + 1, we let F∗

n,m⊆Fn,m denote the subset consisting
of those f with Supp(f) not contained in any (n − 1)-flat.
We also call any f ∈F∗

n,m an honest nnn-variate mmm-nomial
(or honestly nnn-variate). ⋄

For example, the dishonestly 4-variate trinomial

−1 +
√
7x2

1x2x
7
3x

3
4 − e43x198e2

1 x99e2

2 x693e2

3 x297e2

4

(with support contained in a line segment) has the same
supremum over R4

+ as the honest univariate trinomial

−1 +
√
7y1 − e43y99e2

1

has over R+. More generally, via a monomial change of
variables, it will be natural to restrict to F∗

n,n+k (with k≥1)
to study the role of sparsity in algorithmic complexity over
the real numbers.

We will work with some well-known complexity classes
from the BSS model over R (treated fully in [BCSS98]), so
we will only briefly review a few definitions, focusing on
a particular extension we need. Our underlying notion of
input size, including a variant of the condition number, is
clarified in Definition 2.1 of Section 2.1 below, and
illustrated in Example 1.6 immediately following our first
main theorem.

So for now let us just recall the following basic
inclusions of complexity classes: NC1

R$PR⊆NPR [BCSS98,
Ch. 19, Cor. 1, pg. 364]. (The properness of the latter
inclusion remains a famous open problem, akin to the more
famous classical P ?

=NP question.) Let us also recall that
NCk

R is the family of real valued functions (with real inputs)
computable by arithmetic circuits2 with size polynomial in
the input size and depth O

(
logk(Input Size)

)
(see [BCSS98,

Ch. 18] for further discussion).
To characterize a natural class of problems with efficiently

computable numerical answers, we will define the notion of
a High Precision Polynomial Time Approximation
Scheme: We let HPTASR denote the class of functions
φ : R∞ −→ R ∪ {+∞} such that, for any ε > 0, there
is an algorithm guaranteed to approximate φ(x) to within
a 1 + ε factor, using a number of arithmetic operations
polynomial in size(x) and log log 1

ε
.3 Our notation is

inspired by the more familiar classical family of problems
FPTAS (i.e., those problems admitting a Fully
Polynomial Time Approximation Scheme), where
instead the input is Boolean and the complexity need only
be polynomial in 1

ε
. The complexity class FPTAS was

formulated in [ACGKM-SP99] and a highly-nontrivial
example of a problem admitting a FPTAS is counting
matchings in bounded degree graphs [BGKNT07].

1Here we allow real coefficients, unlike [BRS09] where the
same notation included a restriction to integer coefficients.
2This is one of 2 times we will mention circuits in the sense
of complexity theory: Everywhere else in this paper, our
circuits will be combinatorial objects as in Definition 2.7
below.
3When φ(x) = 0 we will instead require an additive error
of ε or less. When φ(x)=+∞ we will require the approxi-
mation to be +∞, regardless of ε.

Remark 1.2. For a vector function φ = (φ1, . . . , φk) :
R∞ −→ (R ∪∞)k it will be natural to say that φ admits an
HPTAS iff each coordinate of φi admits an HPTAS. ⋄

1.1 Sparse Real Optimization
The main computational problems we address are the
following.

Definition 1.3. Let R+ denote the positive real numbers,
and let SUP denote the problem of deciding, for a given

(f, λ)∈
( ⋃

n∈N

R[xa | a∈Rn]

)
× R, whether supx∈Rn

+
f ≥λ or

not. Also, for any subfamily F ⊆
⋃

n∈N
R[xa | a∈Rn], we

let SUP(F) denote the natural restriction of SUP to inputs
in F. Finally, we let FSUP (resp. FSUP(F)) denote the
obvious functional analogue of SUP (resp. SUP(F)) where

(a) the input is instead (f, ε) ∈
( ⋃

n∈N

R[xa | a∈Rn]

)
× R+

and (b) the output is instead a pair
(x̄, λ̄)∈(R+ ∪ {0,+∞})n × (R ∪ {+∞})

with x̄ = (x̄1, . . . , x̄n) (resp. λ̄) an HPTAS for x∗ (resp.
λ∗) where λ∗ := supx∈Rn

+
f = limx→x∗ f(x) for some x∗ =

(x∗
1, . . . , x

∗
n)∈(R+ ∪ {0,+∞})n.

Remark 1.4. Taking logarithms, it is clear that our
problems above are equivalent to maximizing a function of
the form g(y)=

∑m
i=1 cie

ai·y over Rn. When convenient, we
will use the latter notation but, to draw parallels with the
algebraic case, we will usually speak of “polynomials” with
real exponents. ⋄

We will need to make one final restriction when
optimizing n-variate m-nomials: we let F∗∗

n,n+k denote the
subset of F∗

n,n+k consisting of those f with Supp(f) ∋ O.
While technically convenient, this restriction is also natural
in that level sets of (n+ k)-nomials in F∗∗

n,n+k become zero
sets of (n+ k′)-nomials with k′≤k.

We observe that checking whether the zero set of an f ∈
R[x1, . . . , xn] is nonempty (a.k.a. the real (algebraic)
feasibility problem) is equivalent to checking whether the
maximum of −f2 is 0 or greater. So it can be argued that the
NP-hardness (and NPR-hardness) of SUP has been known
at least since the 1990s [BCSS98]. However, it appears that
no sharper complexity upper bounds in terms of sparsity
were known earlier.

Theorem 1.5. We can efficiently optimize n-variate
(n + k)-nomials over Rn

+ for k ≤ 2. Also, for k a slowly
growing function of n, optimizing n-variate (n+ k)-nomials
over Rn

+ is NP-hard. More precisely:

0. Both SUP
(⋃

n∈N
F∗∗

n,n+1

)
and FSUP

(⋃
n∈N

F∗∗
n,n+1

)

are in NC1
R.

1. SUP
(⋃

n∈N
F∗∗

n,n+2

)
∈PR and FSUP

(⋃
n∈N

F∗∗
n,n+2

)
∈

HPTASR.

2. For any fixed δ>0, SUP(
⋃

n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn])is NPR-complete.

Example 1.6. Suppose ε > 0. A very special case of
Assertion (1) of Theorem 1.5 then implies that we can
approximate within a factor of 1+ ε — for any real nonzero
c1, . . . , cn+2 and D — the maximum of the function f(x)
defined to be



c1 + c2(x
D
1 · · ·xDn

n ) + c3x
2D
1 · · ·x2nDn

n + · · ·+ cn+2x
(n+1)D
1 · · ·x(n+1)nDn

n ,
using a number of arithmetic operations linear in

n2(log(n) + logD) + log log 1
ε
.

The best previous results in the algebraic setting (e.g., the
critical points method as detailed in [S08], or by combining
[BPR06] and the efficient numerical approximation results
of [MP98]) would yield a bound polynomial in

nnDn + log log 1
ε

instead, and only under the assumption that D ∈ N. Al-
ternative approaches via semidefinite programming also ap-
pear to result in complexity bounds superlinear in nnDn (see,
e.g., [Par03, Las06, DN08, KM09]), and still require D∈N.
Moving to Pfaffian/Noetherian function techniques, [GV04]
allows arbitrary real D but still yields an arithmetic com-
plexity bound exponential in n. It should of course be pointed
out that the results of [BPR06, MP98, S08, Par03, Las06,
DN08, KM09, GV04] apply to real polynomials in complete
generality. ⋄

We thus obtain a significant speed-up for a particular class of
analytic functions, laying some preliminary groundwork for
improved optimization of (n + k)-nomials with k
arbitrary. Our advance is possible because, unlike earlier
methods which essentially revolved around commutative
algebra (and were more suited to complex algebraic
geometry), we are addressing a real analytic problem with
real analytic tools. Theorem 1.5 is proved in Section 3.2
below. Our main new technique, which may be of
independent interest, is an extension of A-discriminants
(a.k.a. sparse discriminants) to real exponents (Theorem 2.9
of Section 2.3).

Our algorithms are quite implementable (see Algorithm
3.2 of Section 3.2) and derived via a combination of
tropical geometric ideas and A-discriminant theory, both
extended to real exponents. In particular, for n-variate
(n + 1)-nomials, a simple change of variables essentially
tells us that tropical geometry rules (in the form of Viro
diagrams [GKZ94, Ch. 5, pp. 378–393], but extended to
real exponents), and in the case at hand this means that
one can compute extrema by checking inequalities involving
the coefficients (and possibly an input λ). Tropical geom-
etry still applies to the n-variate (n + 2)-nomial case, but
only after one evaluates the sign of a particular generalized
A-discriminant.4 More precisely, an n-variate m-nomial f
(considered as a function on Rn

+) with bounded supremum
λ∗ must attain the value λ∗ at a critical point of f in the
nonnegative orthant. In particular, the nonnegative zero set
of f − λ∗ must be degenerate, and thus we can attempt to
solve for λ∗ (and a corresponding maximizer) if we have a
sufficiently tractable notion of discriminant to work with.

So our hardest case reduces to (a) finding efficient formulas
for discriminants of n-variate m-nomials and
(b) efficiently detecting unboundedness for n-variate m-
nomials. When m = n + 2, (a) fortuitously admits a solu-
tion, based on a nascent theory developed further in [CR09].
We can also reduce Problem (b) to Problem (a) via some
tropical geometric tricks. So our development ultimately
hinges deriving an efficient analogue of discriminant polyno-
mials for discriminant varieties that are no longer algebraic.

4For n-variate (n + 3)-nomials, knowing the sign of a dis-
criminant is no longer sufficient, and efficient optimization
still remains an open problem. Some of the intricacies are
detailed in [DRRS07, BHPR09].

Example 1.7. Consider the trivariate pentanomial f :=

c1+c2x
999
1 +c3x

73
1 x

√
363

3 +c4x
2009
2 +c5x

74
1 x108e

2 x3, with c1, . . . ,
c4 < 0 and c5 > 0. Theorem 2.10 of Section 2.4 then
easily implies that f attains a maximum of λ∗ on R3

+ iff
f − λ∗ has a degenerate root in R3

+. Via Theorem 2.9 of
Section 2.3 below, the latter occurs iff

bb55 (c1 − λ∗)b1cb22 cb33 cb44 − bb11 bb22 bb33 bb44 cb55
vanishes, where b := (b1, b2, b3, b4,−b5) is any generator of
the kernel of the map ϕ : R5 −→ R4 defined by the matrix



1 1 1 1 1
0 999 73 0 74
0 0 0 2009 108e

0
√
363 0 0 1


,

normalized so that b5 > 0. In particular, such a b can be
computed easily via 5 determinants of 4 × 4 submatrices
(via Cramer’s Rule), and we thus see that λ∗ is nothing
more than c1 minus a monomial (involving real exponents)
in c2, . . . , c5. Via the now classical fast algorithms for ap-
proximating log and exp [Bre76], real powers of real numbers
(and thus λ∗) can be efficiently approximated. Similarly, de-
ciding whether λ∗ exceeds a given λ reduces to checking an
inequality involving real powers of positive numbers. ⋄

1.2 Related Work
The computational complexity of numerical analysis contin-
ues to be an active area of research, both in theory and
in practice. On the theoretical side, the BSS model over
R has proven quite useful for setting a rigourous founda-
tion. While this model involves exact arithmetic and field
operations, there are many results building upon this model
that elegantly capture round-off error and numerical condi-
tioning (see, e.g., [CS99, ABKM09]). Furthermore, results
on PR and NPR do ultimately impact classical complexity
classes. For instance, the respectiveBoolean parts of these
complexity classes, BP(PR) and BP(NPR), are defined as
the respective restrictions of PR and NPR to integer inputs.
While the best known bounds for these Boolean parts are
still rather loose —

P/Poly⊆BP(PR)⊆PSPACE/Poly [ABKM09],
NP/Poly⊆BP(NPR)⊆CH [ABKM09],

— good algorithms for the BSS model and good algorithms
for the Turing model frequently inspire one another, e.g.,
[Koi99, BPR06]. We recall that P/Poly, referred to as
non-uniform polynomial-time, consists of those decision
problems solvable by a non-uniform family of circuits5 of size
polynomial in the input. CH is the counting hierarchy

PP∪PPPP∪PPPP
PP∪· · · , which happens to be contained

in PSPACE (see [ABKM09] and the references therein).
Let us also point out that the number of natural

problems known to be NPR-complete remains much smaller
than the number of natural problems known to be NP-
complete: deciding the existence of a real roots for
multivariate polynomials (and various subcases involving
quadratic systems or single quartic polynomials) [BCSS98,
Ch. 5], linear programming feasibility [BCSS98, Ch. 5], and
bounding the real dimension of algebraic sets [Koi99] are the
main representative NPR-complete problems.
Optimizing n-variate (n+nδ)-nomials (with δ>0 fixed and n
unbounded), and the corresponding feasibility problem (cf.
Corollary 1.10 below), now join this short list.

While sparsity has been profitably explored in the context
of interpolation (see, e.g., [KY07, GLL09]) and factoriza-

5i.e., there is no restriction on the power of the algorithm
specifying the circuit for a given input size



tion over number fields [Len99, KK06, AKS07], it has been
mostly ignored in numerical analysis (for nonlinear polyno-
mials) and the study of the BSS model over C and R. For
instance, there appear to be no earlier published complex-
ity upper bounds of the form SUP (F1,m)∈PR (relative to
the sparse encoding) for any m≥3, in spite of beautiful re-
cent work in semi-definite programming (see, e.g., [Las06,
DN08, KM09]) that begins to address the optimization of
sparse multivariate polynomials over the real numbers. In
particular, while the latter papers give significant practi-
cal speed-ups over older techniques such as resultants and
Gröbner bases, the published complexity bounds are still
exponential (relative to the sparse encoding) for n-variate
(n + 2)-nomials, and require the assumption of integer ex-
ponents.

We can at least obtain a glimpse of sparse optimization
beyond n-variate (n + 2)-nomials by combining our frame-
work with an earlier result from [RY05]. The proof is in
Section 3.3.

Corollary 1.8.
(0) Using the same notion of input size as for FSUP (cf.

Definition 2.1 below), the positive roots of any real
trinomial in F1,3 ∩ R[x1] admit an HPTAS.

(1) SUP(F∗∗
1,4 ∩ R[x1]) ∈ PR and FSUP(F∗∗

1,4 ∩ R[x1]) ∈
HPTASR.

As for earlier complexity lower bounds for SUP in terms
of sparsity, we are unaware of any. For instance, it is not
even known whether SUP(R[x1, . . . , xn]) is NPR-hard for
some fixed n (relative to the sparse encoding).

The paper [BRS09], which deals exclusively with decision
problems (i.e., yes/no answers) and bit complexity (as op-
posed to arithmetic complexity), is an important precursor
to the present work. Here, we thus expand the context to
real coefficient and real exponents, work in the distinct set-
ting of optimization, and derive (and make critical use of) a
new tool: generalized A-discriminants for exponential sums.
As a consequence, we are also able to extend some of the
complexity lower bounds from [BRS09] as follows. (See Sec-
tion 3.2 for the proof.)

Definition 1.9. Let FEASR (resp. FEAS+) denote the
problem of deciding whether an arbitrary system of equations
from

⋃
n∈N

R[xa | a∈Rn] has a real root (resp. root with all
coordinates positive). Also, for any collection F of tuples
chosen from

⋃
k,n∈N

(R[xa | a ∈ Rn])k, we let FEASR(F)

(resp. FEAS+(F)) denote the natural restriction of FEASR

(resp. FEAS+) to inputs in F. ⋄

Corollary 1.10. For any δ>0,
FEASR(

⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn])

and
FEAS+(

⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn])

are each NPR-complete.

2. BACKGROUND

2.1 Input Size
To measure the complexity of our algorithms, let us fix the

following definitions for input size and condition number.

Definition 2.1. Given any subset A={a1, . . . , am}⊂Rn

of cardinality m, let us define Â to be the (n + 1) × m
matrix whose jth column is {1} × aj, and βJ the absolute

value of the determinant of the submatrix of Â consisting of
those columns of Â with index in a subset J ⊆ {1, . . . , m}
of cardinality n + 1. Then, given any f ∈ F∗

n,m written
f(x)=

∑m
i=1 cix

ai , we define its condition number, C(f),
to be(

m∏
i=1

max
{
3, |ci|, 1

|ci|

})
× ∏

J⊆{1,...,m}
#J=n+1

max∗
(
3, |βJ |, 1

|βJ |

)
,

where max∗(a, b, c) is max{a, b, c} or a, according as max{b, c}
is finite or not.

Throughout this paper, we will use the following notions of
input size for SUP and FSUP: The size of any
instance (f, λ) of SUP (resp. an instance (f, ε) of FSUP)

is log
(
max∗

(
3, |λ|, 1

|λ|

))
+ log C(f) (resp. log C(f)). ⋄

While our definition of condition number may appear
unusual, it is meant to concisely arrive at two important
properties: (1) log C(f) is polynomial in n log deg f when
f ∈Fn,n+k ∩ R[x1, . . . , xn] and k is fixed, (2) C(f) is closely
related to an underlying discriminant (see Theorem 2.9
below) that dictates how much numerical accuracy we will
need to solve FSUP. We also point out that for f ∈Z[x1, . . . , xn],
it is easy to show that log C(f) = O(nS(f)) where S(f) is
the sparse size of f , i.e., S(f) is the number of bits needed
to write down the monomial term expansion of f . For
sufficiently sparse polynomials, algorithms with
complexity polynomial in S(f) are much faster than those
with complexity polynomial in n and deg(f). [Len99, KK06,
AKS07, KY07, GLL09, BRS09] provide other interesting
examples of algorithms with complexity polynomial in S(f).

2.2 Tricks with Exponents
A simple and useful change of variables is to use
monomials in new variables.

Definition 2.2. For any ring R, let Rm×n denote the set
of m × n matrices with entries in R. For any M = [mij ]∈
Rn×n and y = (y1, . . . , yn), we define the formal expres-
sion yM := (y

m1,1

1 · · · ymn,1
n , . . . , y

m1,n

1 · · · ymn,n
n ). We call

the substitution x :=yM a monomial change of variables.
Also, for any z :=(z1, . . . , zn), we let xz :=(x1z1, . . . , xnzn).
Finally, let GLn(R) denote the group of all invertible matri-
ces in Rn×n. ⋄

Proposition 2.3. (See, e.g., [LRW03, Prop. 2].) For
any U, V ∈Rn×n, we have the formal identity

(xy)UV =(xU)V (yU)V .
Also, if detU 6= 0, then the function eU (x) := xU is an
analytic automorphism of Rn

+, and preserves smooth points
and singular points of positive zero sets of analytic functions.
Finally, U ∈GLn(R) implies that e−1

U (Rn
+)=Rn

+ and that eU
maps distinct open orthants of Rn to distinct open orthants
of Rn. �

A consequence follows: Recall that the affine span of a
point set A ⊂ Rn, AffA, is the set of real linear
combinations

∑
a∈A caa satisfying

∑
a∈A ca = 0. To

optimize an f ∈F∗∗
n,n+1 it will help to have a much simpler

canonical form. In what follows, we use # for set cardinality
and ei for the ith standard basis vector of Rn.



Corollary 2.4. For any f ∈F∗∗
n,n+1 we can compute c∈

R and ℓ∈{0, . . . , n} within NC1
R such that

f̄(x) :=c+ x1 + · · ·+ xℓ − xℓ+1 − · · · − xn

satisfies:
(1) f̄ and f have exactly the same number of positive

coefficients, and
(2) f̄(Rn

+)=f(Rn
+).

Proof: Suppose f has support A = {0, a2, . . . , an+1} and
corresponding coefficients c1, . . . , cn+2. Letting B denote
the n× n matrix whose ith column is ai+1, Proposition 2.3,

via the substitution x= yB−1

, tells us that we may assume
that f is of the form c1 + c2x1 + · · ·+ cn+1xn. Moreover, to
obtain f̄ , we need only perform a suitable positive rescaling
and reordering of the variables. In summary, c is simply the
constant term of f and ℓ is the number of positive coefficients
not belonging to the constant term — both of which can be
computed simply by a search and a sort clearly belonging to
NC1

R. �

Note that we don’t actually need to compute B−1 to obtain
ℓ: B−1 is needed only for the proof of our corollary.

A final construction we will need is the notion of a
generalized Viro diagram. Recall that a triangulation
of a point set A is simply a simplicial complex Σ whose ver-
tices lie in A. We say that a triangulation of A is induced
by a lifting iff it its simplices are exactly the domains of
linearity for some function that is convex, continuous, and
piecewise linear on the convex hull of6 A.

Definition 2.5. Suppose A ⊂ Rn is finite, dimAffA =
n, and A is equipped with a triangulation Σ induced by a
lifting and a function s : A −→ {±} which we will call
a distribution of signs for A. We then define a piece-
wise linear manifold — the generalized Viro diagram
VA(Σ, s) — in the following local manner: For any n-cell
C ∈Σ, let LC be the convex hull of the set of midpoints of
edges of C with vertices of opposite sign, and then define
VA(Σ, s) :=

⋃
C an n-cell

LC . When A= Supp(f) and s is the

corresponding sequence of coefficient signs, then we also call
VΣ(f) :=VA(Σ, s) the (generalized) Viro diagram of f .
⋄

We use the appelation “generalized” since, to the best of our
knowledge, Viro diagrams have only been used in the special
case A⊂Zn (see, e.g., Proposition 5.2 and Theorem 5.6 of
[GKZ94, Ch. 5, pp. 378–393]). We give examples of Viro
diagrams in Section 2.4 below.

2.3 Generalized Circuit Discriminants and
Efficient Approximations

Our goal here is to extract an extension of A-discriminant
theory sufficiently strong to prove our main results.

Definition 2.6. Given any A = {a1, . . . , am} ⊂ Rn of
cardinality m and c1, . . . , cm ∈ C∗, we define ∇A ⊂ Pm−1

C

— the generalized A-discriminant variety — to be the
closure of the set of all [c1 : · · · : cm] ∈ Pm−1

C
such that

g(x)=
∑m

i=1 cie
ai·y has a degenerate root in Cn. In particu-

lar, we call f an n-variate exponential m-sum. ⋄

To prove our results, it will actually suffice to deal with a
small subclass of A-discriminants.

6i.e., smallest convex set containing...

Definition 2.7. We call A ⊂ Rn a (non-degenerate)
circuit7 iff A is affinely dependent, but every proper sub-
set of A is affinely independent. Also, we say that A is a
degenerate circuit iff A contains a point a and a proper
subset B such that a∈B, A \ a is affinely independent, and
B is a non-degenerate circuit. ⋄

For instance, both and are circuits, but is a
degenerate circuit. In general, for any degenerate circuit A,
the subset B named above is always unique.

Definition 2.8. For any A ⊂ Rn of cardinality m, let
GA denote the set of all n-variate exponential m-sums with
support A. ⋄

There is then a surprisingly succinct description for ∇A
when A is a non-degenerate circuit. The theorem below is
inspired by [GKZ94, Prop. 1.2, pg. 217] and [GKZ94, Prop.
1.8, Pg. 274] — important precursors that covered the spe-
cial case of integral exponents.

Theorem 2.9. Suppose A = {a1, . . . , an+2} ⊂ Rn is a
non-degenerate circuit, and let b := (b1, . . . , bn+2) where bi
is (−1)i times the determinant of the matrix with columns

1× a1, . . . , 1̂× ai, . . . , an+2 ((̂·) denoting omission). Then:

1. ∇A ⊆
{
[c1 : · · · : cn+2]∈Pn+1

C
:

n+2∏
i=1

∣∣∣ cibi
∣∣∣
bi
=1

}
. Also,

(b1, . . . , bn+2) can be computed in NC2
R.

2. There is a [c1 : · · · : cn+2]∈Pn+1
R

with
(i) sign(c1b1)= · · · =sign(cn+2bn+2)

and

(ii)
n+2∏
i=1

(sign(bici)ci/bi)
sign(bici)bi =1

iff the real zero set of g(y) :=
∑n+2

i=1 cie
ai·y contains a

degenerate point ζ. In particular, any such ζ satisfies
eai·ζ = sign(b1c1)bi/ci for all i, and thus the real zero
set of g has at most one degenerate point.

Theorem 2.9 is proved in Section 3 below.
We will also need a variant of a family of fast algorithms

discovered independently by Brent and Salamin.

Brent-Salamin Theorem. [Bre76, Sal76] Given any
positive x, ε>0, we can approximate log x and exp(x) within
a factor of 1+ ε using just O

(
| log x|+ log log 1

ε

)
arithmetic

operations. �

While Brent’s paper [Bre76] does not explicitly mention gen-
eral real numbers, he works with a model of floating point
number from which it is routine to derive the statement
above.

2.4 Unboundedness and Sign Checks
Optimizing an f ∈F∗∗

n,n+1 will ultimately reduce to checking
simple inequalities involving just the coefficients of f . The
optimum will then in fact be either +∞ or the
constant term of f . Optimizing an f ∈ F∗∗

n,n+2 would be
as easy were it not for two additional difficulties: decid-
ing unboundedness already entails checking the sign of a
generalized A-discriminant, and the optimum can be a tran-
scendental function of the coefficients.

7This terminology comes from matroid theory and has noth-
ing to do with circuits from complexity theory.



To formalize the harder case, let us now work at the level
of exponential sums: let us define Gn,m, G∗

n,m, and G∗∗
n,m to

be the obvious respective exponential m-sum analogues of
Fn,m, F∗

n,m, and F∗∗
n,m. Recall that ConvA is the convex

hull of A.

Theorem 2.10. Suppose we write g∈G∗∗
n,n+2 in the form

g(y) =
∑n+2

i=1 cie
ai·y with A = {a1, . . . , an+2}. Let us also

order the monomials of f so that B := {a1, . . . , aj′} is the
unique non-degenerate sub-circuit of A and let b :=(b1, . . . , bn+2)
where bi is (−1)i times the determinant of the matrix with

columns 1×a1, . . . , 1̂× ai, . . . , an+2 ((̂·) denoting omission).
Then supy∈Rn g(y)=+∞ ⇐⇒ one of the following 2 condi-
tions hold:

1. cj>0 for some vertex aj of ConvA not equal to O.

2. O 6∈B, we can further order the monomials of f so that
aj′ is the unique point of B in the relative

interior of B, cj′ >0, and
∏j′

i=1

(
sign(bj′)

ci
bi

)sign(bj′ )bi
<1.

Finally, if supy∈Rn g(y)=λ∗<+∞ and aj=O, then λ∗=cj,
or λ∗ is the unique solution to(
sign(bj′)

cj−λ∗

bj

)sign(bj′ )bj × ∏
i∈{1,...,j′}\{j}

(
sign(bj′)

ci
bi

)sign(bj′ )bi
=1

with (cj − λ∗)bjbj′ > 0; where the equation for λ∗ holds iff:

3. O∈B, we can further order the monomials of f so that
aj′ is the unique point of B in the relative interior of
B, and cj′ >0.

It is easily checked that c1b1bj′ , . . . , cj′−1bj′−1bj′ > 0 when
Conditions 2 or 3 hold. While the 3 cases above may ap-
pear complicated, they are easily understood from a tropical
perspective: our cases above correspond to 4 different fam-
ilies of generalized Viro diagrams that characterize how the
function g can be bounded from above (or not) on Rn. Some
representative examples are illustrated below:

Case 1

y1

y2

O

Case 2

y1

y2

O

Not Case 3

y1

(λ∗<+∞)

y1

y2

O

Case 3

y1

(λ∗<+∞)

O

y2

For example, the first two illustrations are meant to encode
the fact that there exist directions in the positive quadrant
along which g increases without bound. Similarly, the last
2 illustrations respectively show cases where g either ap-
proaches a supremum as some yi −→ −∞ or has a unique
maximum in the real plane.

Sketch of Proof of Theorem 2.10: First, we identify
the graph of g over Rn with the real zero set Z of z − g(y).
Since the supremum of g is unaffected by a linear change of
variables, we can then assume (analogous to Corollary 2.4)
that g is of the form

c+ ey1 + · · ·+ eyℓ − eyℓ+1 − · · · − eyn + c′eα·y.
(Note in particular that a linear change of variables for an
exponential sum is, modulo applications of exp and log, the
same as a monomial change of variables.) Note also that
the classical Hadamard bound for the determinant guaran-
tees that log C(g) increases by at worst a factor of n after
our change of variables. Let P denote the convex hull of
{O, e1, . . . , en, en+1, α}.

Via a minor variation of the moment map (see, e.g.,
[Ful93]) one can then give a homeomorphism ϕ : Rn+1 −→
Int(P ) that extends to a map ϕ̄ encoding the “limits at
toric infinity” of Z in terms of data involving P . (See also
[LRW03, Sec. 6].) In particular, ϕ̄(Z) intersects the facet
of P parallel to the yi coordinate hyperplane iff Z contains
points with yi coordinates approaching −∞. Similarly, the
function g is unbounded iff ϕ̄(Z) intersects a face of P inci-
dent to en+1 and some point in {e1, . . . , en, α}. This corre-
spondence immediately accounts for Condition 1.

This correspondence also accounts for Condition 2, but in
a more subtle manner. In particular, Z has topology de-
pending exactly on which connected component of the com-
plement of ∇A contains g. Thanks to Theorem 2.9, this can
be decided by determining the sign of expression involving
powers of ratios of ci and bi. In particular, Condition 2 is
nothing more than an appropriate accounting of when ϕ̄(Z)
intersects a face of P incident to en+1 and some point in
{e1, . . . , en, α}.

To conclude, one merely observes that Condition 3 corre-
sponds to ϕ̄(Z) intersecting a face of P incident to O and
en+1. In particular, the sign conditions merely guarantee
that g has a unique maximum as some yi tend to −∞. �

3. THE PROOFS OF OUR MAIN RESULTS:
THEOREMS 2.9 AND 1.5, AND COROL-
LARIES 1.10 AND 1.8

We go in increasing order of proof length.

3.1 The Proof of Theorem 2.9

Assertion (1): It is easily checked that ZC(f) has a degen-
erate point ζ iff

Â




c1e
a1·ζ

...
cn+2e

an+2·ζ


 =



0
...
0


 .

In which case, (c1e
a1·y, . . . , cn+2e

an+2·y)T must be a gen-

erator of the right null space of Â. On the other hand,
by Cramer’s Rule, one sees that (b1, . . . , bn+2)

T is also a

generator of the right null space of Â. In particular, A a
non-degenerate circuit implies that bi 6=0 for all i.

We therefore obtain that
(c1e

a1·ζ , . . . , cn+2e
an+2·ζ)=α(b1, . . . , bn+2)

for some α∈C∗. Dividing coordinate-wise and taking abso-
lute values, we then obtain(
|c1/b1|ea1·Re(ζ), . . . , |cn+2/bn+2|ean+2·Re(ζ)

)
=(|α|, . . . , |α|).

Taking both sides to the vector power (b1, . . . , bn+2) we then



clearly obtain(
|c1/b1|b1 · · · |cn+2/bn+2|bn+2

) (
e(b1a1+···bn+2an+2)·Re(ζ)

)
= |α|b1+···+bn .

Since Â(b1, . . . , bn+2)
T = O, we thus obtain

n+2∏
i=1

∣∣∣ cibi
∣∣∣
bi

= 1.

Since the last equation is homogeneous in the ci, its zero set
in Pn+1

C
actually defines a closed set of [c1 : · · · : cn+2]. So

we obtain the containment for ∇A.
The assertion on the complexity of computing (b1, . . . , bn+2)

then follows immediately from the classic efficient parallel
algorithms for linear algebra over R [Csa76]. �

Assertion (2): We can proceed by almost exactly the same
argument as above, using one simple additional observation:
eai·ζ ∈R+ for all i when ζ ∈R. So then, we can replace our
use of absolute value by a sign factor, so that all real powers
are well-defined. In particular, we immediately obtain the
“⇐=” direction of our desired equivalence.

To obtain the “=⇒” direction, note that when
ZR

(∑n+2
i=1 cie

ai·y
)

has a degeneracy ζ, we directly obtain eai·ζ=sign(b1c1)bi/ci
for all i (and the constancy of sign(bici) in particular). We
thus obtain the system of equations(

e(a2−a1)·ζ , . . . , e(an+1−a1)·ζ
)
=

(
b2c1
b1c2

, . . . ,
bn+1c1
b1cn+1

)
,

and a2 − a1, . . . , an+1 − a1 are linearly independent since A
is a circuit. So, employing Proposition 2.3, we can easily
solve the preceding system for ζ by taking the logs of the

coordinates of
(

b2c1
b1c2

, . . . ,
bn+1c1
b1cn+1

)[a2−a1,...,an+1−a1]
−1

. �

3.2 Proving Corollary 1.10 and Theorem 1.5

Corollary 1.10 and Assertion (2) of Theorem 1.5:
Since our underlying family of putative hard problems shrinks
as δ decrease, it clearly suffices to prove the case δ < 1.
So let assume henceforth that δ < 1. Let us also define
QSATR to be the problem of deciding whether an input
quartic polynomial f ∈⋃

n∈N
R[x1, . . . , xn] has a real root

or not. QSAT
R
(referred to as 4-FEAS in [BCSS98]) is one

of the fundamental NPR-complete problems (see Chapter 4
of [BCSS98]).

That SUP∈NPR follows immediately from the definition
of NPR. So it suffices to prove that

SUP




⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn]




is NPR-hard. We will do this by giving an explicit reduction
of QSATR to

SUP




⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn]


,

passing through FEAS+(
⋃

n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn])along the way.

To do so, let f denote any QSAT
R
instance, involving,

say, n variables. Clearly, f has no more than
(
n+ 4
4

)

monomial terms. Letting QSAT+ denote the natural
variant of QSATR where one instead asks if f has a root
in Rn

+, we will first need to show that QSAT+ is NPR-
hard as an intermediate step. This is easy, via the introduc-
tion of slack variables: using 2n new variables

{
x±
i

}n

i=1
and

forming the polynomial f±(x±) :=f
(
x+
1 − x−

1 , . . . , x
+
n − x−

n

)
,

it is clear that f has a root in Rn iff f± has a root in R2n
+ .

Furthermore, we easily see that
size(f±)=(16 + o(1))size(f).

So QSAT+ is NPR-hard. We also observe that we may
restrict the inputs to quartic polynomials with full-
dimensional Newton polytope, since the original proof for
the NPR-hardness of QSAT

R
actually involves polynomials

having nonzero constant terms and nonzero x4
i terms for all

i [BCSS98].
So now let f be any QSAT+ instance with, say, n

variables. Let us also define, for any M ∈ N, the polyno-
mial tM (z) := 1 + zM+1

1 + · · · + zM+1
M − (M + 1)z1 · · · zM .

One can then check via the Arithmetic-Geometric Inequal-
ity [HLP88] that tM is nonnegative on RM

+ , with a unique
root at z = (1, . . . , 1). Note also that f2 has no more than(
n+ 4
4

)2

monomial terms. Forming the polynomial F (x, z) :=

f(x)2 + tM (z) with M :=

⌈(
n+ 4
4

)2/δ
⌉
, we see that f has

a root in Rn
+ iff F has a root in Rn+M

+ . It is also easily

checked that F ∈F∗∗
N,N+k with k≤Nδ′ , where N :=n +M

and 0<δ′≤δ. In particular,

k<

(
n+ 4
4

)2

≤
⌈(

n+ 4
4

)2/δ
⌉δ

=Mδ< (n+M)δ.

So we must now have that
FEAS+(

⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ ∩ R[x1, . . . , xn])

is NPR-hard. (A small digression allows us to succinctly
prove that

FEASR(
⋃

n∈N

0<δ′<δ

F∗∗
n,n+nδ ∩ R[x1, . . . , xn])

is NPR-hard as well: we simply repeat the argument from
the last paragraph, but use QSATR in place of QSAT+,

and define F (x, z) :=f(x)2 + tM (z21 , . . . , z
2
M ) instead.)

To conclude, note that F (x, z) is nonnegative on Rn
+. So

by checking whether −F has supremum ≥ 0 in Rn
+, we can

decide if F has a root in Rn
+. In other words,

SUP




⋃
n∈N

0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn]




must be NPR-hard has well. So we are done. �

Assertion (0) of Theorem 1.5: Letting (f, ε) denote
any instance of FSUP

(⋃
n∈N

F∗∗
n,n+1

)
, first note that via

Corollary 2.4 we can assume that
f(x)=c1 + x1 + · · ·+ xℓ − xℓ+1 − · · · − xn,

after a computation in NC1
R. Clearly then, f has an

unbounded supremum iff ℓ ≥ 1. Also, if ℓ = 0, then the
supremum of f is exactly c1. So FSUP

(⋃
n∈N

F∗∗
n,n+1

)
∈

NC1
R. That SUP

(⋃
n∈N

F∗∗
n,n+1

)
∈NC1

R is obvious as well:
after checking the signs of the ci, we make merely decide the
sign of c1 − λ. �

Remark 3.1. Note that checking whether a given f ∈
Fn,n+1 lies in F∗

n,n+1 can be done within NC2: one
simply finds d=dimSupp(f) in NC2 by computing the rank
of the matrix whose columns are a2 − a1, . . . , am − a1 (via
the parallel algorithm of Csanky [Csa76]), and then checks
whether d=n. ⋄

Assertion (1): We will first derive the HPTAS result. Let
us assume f ∈F∗∗

n,n+2 and observe the following algorithm:



Algorithm 3.2.
Input: A coefficient vector c := (c1, . . . , cn+2), a (possibly
degenerate) circuit A= {a1, . . . , an+2} of cardinality n + 2,
and a precision parameter ε>0.
Output: A pair (x̄, λ̄)∈(R+ ∪ {0,+∞})n × (R ∪ {+∞})
with x̄=(x̄1, . . . , x̄n) (resp. λ̄) an HPTAS for x∗ (resp. λ∗)
where f(x) :=

∑n+2
i=1 cix

ai and λ∗ :=supx∈Rn
+
f=limx→x∗ f(x)

for some x∗=(x∗
1, . . . , x

∗
n)∈(R+ ∪ {0,+∞})n.

Description:

1. If ci>0 for some i with ai 6=O a vertex of ConvA then
output
“f tends to +∞ along a curve of the form

{ctai}t→+∞”
and STOP.

2. Let b := (b1, . . . , bn+2) where bj is (−1)j times the
determinant of the matrix with columns 1 × a1, . . . ,

1̂× aj , . . . , an+2 ((̂·) denoting omission). If b or −b
has a unique negative coordinate bj′ , and cj′ is the
unique negative coordinate of c, then do the following:

(a) Replace b by −sign(bj′)b and then reorder b, c,
and A by the same permutation so that bj′ < 0
and [bi>0 iff i<j′].

(b) If ai 6=O for all i∈{1, . . . , j′} and
∏j′

i=1

(
sign(bj′)

ci
bi

)sign(bj′ )bi
<1

then output
“f tends to +∞ along a curve of the form

{ctaj′ }t→+∞”
and STOP.

(c) If aj=O for some j∈{1, . . . , j′} then output
“f(z) tends to a supremum of λ̄ as z tends

to the point x̄ on the (j′ − 2)-dimensional
sub-orbit corresponding to {a1, . . . , aj′}.”,
where x ∈ Rj′−2

+ is the unique solution to the
binomial system(
xa2−a1 , . . . , xaj′−1

−a1
)
=

(
b2c1
b1c2

, . . . ,
bn+1c1
b1cn+1

)
,

x̄ is a (1+ ε)-factor approximation8 of x, λ is the
unique solution of(

sign(bj′)
cj−λ

bj

)sign(bj′ )bj × ∏
i∈{1,...,j′}\{j}

(
sign(bj′)

ci
bi

)sign(bj′ )bi
=1

with (cj − λ)bjbj′ > 0, and λ̄ is a (1 + ε)-factor
approximation8 of λ; and STOP.

3. Output
“f approaches a supremum of cj as all xai with

ai incident to aj approach 0.”,
where aj=O, and STOP.

Our proof then reduces to proving correctness and a suit-
able complexity bound for Algorithm 3.2. In particular, cor-
rectness follows immediately from Theorem 2.10. So we now
focus on a complexity analysis.

Steps 1 and 3 can clearly be done within NC1
R, so let us

focus on Step 2.
For Step 2, the dominant complexity comes from Part

(b). (Part (a) can clearly be done in NC1
R, and Part (c) can

clearly be done in NC2
R via Csanky’s method [Csa76].) The

8We compute x̄ and λ̄ via Proposition 2.3 and the Brent-
Salamin Theorem.

latter can be done by taking the logarithm of each term,
thus reducing to checking the sign of a linear combination
of logarithms of positive real numbers. So the arithmetic
complexity of our algorithm is O

(
log C(f) + log log 1

ε

)
and

we thus obtain our HPTAS result.
The proof that SUP

(⋃
n∈N

F∗∗
n,n+2

)
∈PR is almost com-

pletely identical. �

Note that just as in Remark 3.1, checking whether a given
f ∈ Fn,n+2 lies in F∗

n,n+2 can be done within NC2 by
computing d = dimSupp(f) efficiently. Moreover, deciding
whether a circuit is degenerate (and extracting B from A
when A is degenerate) can be done in NC2 as well since
this is ultimately the evaluation of n+ 2 determinants.

3.3 The Proof of Corollary 1.8
Assertion (0): Since the roots of f in R+ are unchanged
under multiplication by monomials, we can clearly assume
f ∈F∗∗

1,3 ∩ R[x1]. Moreover, via the classical Cauchy bounds
on the size of roots of polynomials, it is easy to show that
the log of any root of f is O(log C(f)). We can then invoke
Theorem 1 of [RY05] to obtain our desired HPTAS as fol-
lows: If D := deg(f), [RY05, Theorem 1] tells us that we
can count exactly the number of positive roots of f using
O(log2 D) arithmetic operations, and ε-approximate all the
roots of f in (0, R) within O

(
(logD) log

(
D log R

ε

))
arith-

metic operations. Since we can take logR=O(log C(f)) via
our root bound observed above, we are done. �

Assertion (1): Writing any f ∈ F∗∗
1,4 ∩ R[x1] as f(x) =

c1 + c2x
a2 + c3x

a3 + c4x
a4 with a2 < a3 < a4, note that f

has unbounded supremum on R+ iff c4>0 So let us assume
c4<0.

Clearly then, the supremum of f is attained either at a
critical point in R+ or at 0. But then, any positive critical
point is a positive root of a trinomial, and by Assertion (0),
such critical points must admit an HPTAS. Similarly, since
f is a tetranomial (and thus evaluable within O(log deg(f))
arithmetic operations), we can efficiently approximate (as
well as efficiently check inequalities involving) supx∈R+

f .

So we are done. �
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