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Feat: Functional Enumeration of Algebraic Types

Jonas Duregård Patrik Jansson Meng Wang
Chalmers University of Technology and

University of Gothenburg
{jonas.duregard,patrikj,wmeng}@chalmers.se

Abstract
In mathematics, an enumeration of a set S is a bijective function
from (an initial segment of) the natural numbers to S. We define
“functional enumerations” as efficiently computable such bijec-
tions. This paper describes a theory of functional enumeration and
provides an algebra of enumerations closed under sums, products,
guarded recursion and bijections. We partition each enumerated set
into numbered, finite subsets.

We provide a generic enumeration such that the number of each
part corresponds to the size of its values (measured in the num-
ber of constructors). We implement our ideas in a Haskell library
called testing-feat, and make the source code freely available.
Feat provides efficient “random access” to enumerated values. The
primary application is property-based testing, where it is used to
define both random sampling (for example QuickCheck genera-
tors) and exhaustive enumeration (in the style of SmallCheck). We
claim that functional enumeration is the best option for automati-
cally generating test cases from large groups of mutually recursive
syntax tree types. As a case study we use Feat to test the pretty-
printer of the Template Haskell library (uncovering several bugs).

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Testing
and Debugging]: Testing tools

Keywords Enumeration, Property-based testing, Memoisation

1. Introduction
Enumeration is used to mean many different things in different
contexts. Looking only at the Enum class of Haskell we can see
two distinct views: the list view and the function view. In the list
view succ and pred let us move forward or backward in a list
of the form [start . .end ]. In the function view we have bijective
function toEnum :: Int→ a that allows direct access to any value of
the enumeration. The Enum class is intended for enumeration types
(types whose constructors have no fields), and some of the methods
(fromEnum in particular) of the class make it difficult to implement
efficient instances for more complex types.

The list view can be generalised to arbitrary types. Two exam-
ples of such generalisations for Haskell are SmallCheck [Runci-
man et al. 2008] and the less well-known enumerable package.
SmallCheck implements a kind of enumToSize ::N→ [a ] function
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that provides a finite list of all values bounded by a size limit.
Enumerable instead provides only a lazy [a] of all values.

Our proposal, implemented in a library called Feat, is based on
the function view. We focus on an efficiently computable bijective
function indexa ::N→ a, much like toEnum in the Enum class. This
enables a wider set of operations to explore the enumerated set.
For instance we can efficiently implement enumFrom :: N → [a]
that jumps directly to a given starting point in the enumeration and
proceeds to enumerate all values from that point. Seeing it in the
light of property-based testing, this flexibility allows us to generate
test cases that are beyond the reach of the other tools.

As an example usage, imagine we are enumerating the values
of an abstract syntax tree for Haskell (this example is from the
Template Haskell library). Both Feat and SmallCheck can easily
calculate the value at position 105 of their respective enumerations:

*Main> index (10^5) :: Exp
AppE (LitE (StringL "")) (CondE (ListE [])
(ListE []) (LitE (IntegerL 1)))

But in Feat we can also do this:

*Main> index (10^100) :: Exp
ArithSeqE (FromR (AppE (AppE (ArithSeqE
(FromR (ListE []))) ... -- and 20 more lines!

Computing this value takes less than a second on a desktop com-
puter. The complexity of indexing is (worst case) quadratic in the
size of the selected value. Clearly any simple list-based enumera-
tion would never reach this far into the enumeration.

On the other hand QuickCheck [Claessen and Hughes 2000],
in theory, has no problem with generating large values. However,
it is well known that reasonable QuickCheck generators are really
difficult to write for mutually recursive datatypes (such as syntax
trees) – sometimes the generator grows as complex as the code to be
tested! SmallCheck generators are easier to write, but fail to falsify
some properties that Feat can.

We argue that functional enumeration is the only available
option for automatically generating useful test cases from large
groups of mutually recursive syntax tree types. Since compilers are
a very common application of Haskell, Feat fills an important gap
left by existing tools.

For enumerating the set of values of type a we partition a into
numbered, finite subsets (which we call parts). The number asso-
ciated with each part is the size of the values it contains (measured
in the number of constructors). We can define a function for com-
puting the cardinality for each part i.e. carda :: Part→ N. We can
also define selecta :: Part→ N→ a that maps a part number p and
an index i within that part to a value of type a and size p. Using
these functions we define the bijection that characterises our enu-
merations: indexa ::N→ a.

We describe (in §2) a simple theory of functional enumera-
tion and provide an algebra of enumerations closed under sums,
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products, guarded recursion and bijections. We present an efficient
Haskell implementation (in §3). These operations make defining
enumerations for Haskell data types (even mutually recursive ones)
completely mechanical.

The efficiency of Feat relies on memoising (of meta informa-
tion, not values) and consequently on sharing, which is illustrated
in detail in §3 and §4.

We discuss (in §5) the generation of data types with invariants,
and show (in §6) how to define random sampling (QuickCheck
[Claessen and Hughes 2000] generators) and exhaustive enumera-
tion in the style of SmallCheck and combinations of these. In §7 we
show results from a case study using Feat to test the pretty-printer
of the Template Haskell library and some associated tools.

2. Functional enumeration
For the type E of functional enumerations, the goal of Feat is an
efficient indexing function index :: E a→ N→ a. For the purpose
of property-based testing it is useful with a generalisation of index
that selects values by giving size and index. Inspired by this fact, we
represent the enumeration of a (typically infinite) set S as a partition
of S, where each part is a numbered finite subset of S representing
values of a certain size. Our theory of functional enumerations is a
simple algebra of such partitions.

DEFINITION 1 (Functional Enumeration). A functional enumera-
tion of the set S is a partition of S that is

• Bijective, each value in S is in exactly one part (this is implied
by the mathematical definition of a partition).

• Part-Finite, every part is finite and ordered.
• Countable, the set of parts is countable.

�

The countability requirement means that each part has a number.
This number is (slightly simplified) the size of the values in the
part. In this section we show that this algebra is closed under
disjoint union, Cartesian product, bijective function application and
guarded recursion. In table 1 there is a comprehensive overview
of these operations expressed as a set of combinators, and some
important properties that the operations guarantee (albeit not a
complete specification).

To specify the operations we make a tiny proof of concept
implementation that does not consider efficiency. In §3 and §4 we
show an efficient implementation that adheres to this specification.

Representing parts The parts of the partition are finite ordered
sets. We first specify a data type Finite a that represents such sets
and a minimal set of operations that we require. The data type is
isomorphic to finite lists, with the additional requirement of unique
elements. It has two consumer functions: computing the cardinality
of the set and indexing to retrieve a value.

cardF :: Finite a→ N
(!!F ) :: Finite a→ N→ a

As can be expected, f !!F i is defined only for i< cardF f . We can
convert the finite set into a list:

valuesF :: Finite a→ [a]
valuesF f = map (f !!F ) [0 . .cardF f −1]

The translation satisfies these properties:

cardF f ≡ length (valuesF f )
f !!F i ≡ (valuesF f ) !! i

For constructing Finite sets, we have disjoint union, product and
bijective function application. The complete interface for building
sets is as follows:

Enumeration combinators:

empty :: E a

singleton :: a→ E a

(⊕) :: E a→ E b→ E (Either a b)

(⊗) :: E a→ E b→ E (a,b)

biMap :: (a→ b)→ E a→ E b

pay :: E a→ E a

Properties:

index (pay e) i ≡ index e i

(index e i1 ≡ index e i2)≡ (i1 ≡ i2)

pay (e1⊕ e2) ≡ pay e1⊕pay e2

pay (e1⊗ e2) ≡ pay e1⊗ e2
≡ e1⊗pay e2

fix pay ≡ empty

biMap f (biMap g e) ≡ biMap (f ◦g) e

singleton a⊗ e ≡ biMap (a,) e
e⊗ singleton b ≡ biMap (,b) e

empty⊕ e ≡ biMap Right e
e⊕ empty ≡ biMap Left e

Table 1. Operations on enumerations and selected properties

emptyF :: Finite a
singletonF :: a→ Finite a
(⊕F ) :: Finite a→ Finite b→ Finite (Either a b)
(⊗F ) :: Finite a→ Finite b→ Finite (a,b)
biMapF :: (a→ b)→ Finite a→ Finite b

The operations are specified by the following simple laws:

valuesF emptyF ≡ [ ]

valuesF (singletonF a)≡ [a]
valuesF (f1⊕F f2) ≡

map Left (valuesF f1)++map Right (valuesF f2)
valuesF (f1⊗F f2) ≡

[(x,y) | x← valuesF f1,y← valuesF f2 ]
valuesF (biMapF g f ) ≡ map g (valuesF f )

To preserve the uniqueness of elements, the operand of biMapF
must be bijective. Arguably the function only needs to be injective,
it does not need to be surjective in the type b. It is surjective into the
resulting set of values however, which is the image of the function
g on f .

A type of functional enumerations Given the countability re-
quirement, it is natural to define the partition of a set of type a as a
function from N to Finite a. For numbers that do not correspond to
a part, the function returns the empty set (emptyF is technically not
a part, a partition only has non-empty elements).

type Part = N
type E a = Part→ Finite a
empty :: E a
empty = const emptyF

singleton :: a→ E a
singleton a 0 = singletonF a
singleton = emptyF

Indexing in an enumeration is a simple linear search:
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index :: E a→ N→ a
index e i = go 0 where

go p = if i< cardF (e p)
then e p !!F i
else index e (i− cardF (e p))

This representation of enumerations always satisfies countability,
but care is needed to ensure bijectivity and part-finiteness when we
define the operations in Table 1.

The major drawback of this approach is that we can not deter-
mine if an enumeration is finite, which means expressions such as
index empty 0 fail to terminate. In our implementation (§3) we have
a more sensible behaviour (an error message) when the index is out
of bounds.

Bijective-function application We can map a bijective function
over an enumeration.

biMap f e = biMapF f ◦ e

Part-finiteness and bijectivity are preserved by biMap (as long as
it is always used only with bijective functions). The inverse of
biMap f is biMap f−1.

Disjoint union Disjoint union of enumerations is the pointwise
union of the parts.

e1⊕ e2 = λp→ e1 p⊕F e2 p

It is again not hard to verify that bijectivity and part-finiteness are
preserved. We can also define an “unsafe” version using biMap
where the user must ensure that the enumerations are disjoint:

union :: E a→ E a→ E a
union e1 e2 = biMap (either id id) (e1⊕ e2)

Guarded recursion and costs Arbitrary recursion may create in-
finite parts. For example in the following enumeration of natural
numbers:

data N = Z | S N deriving Show
natEnum :: E N
natEnum = union (singleton Z) (biMap S natEnum)

All natural numbers are placed in the same part, which breaks
part-finiteness. To avoid this we place a guard on (at least) all
recursive enumerations called pay, which pays a “cost” each time
it is executed. The cost of a value in an enumeration is simply the
part-number associated with the part in which it resides. Another
way to put this is that pay increases the cost of all values in an
enumeration:

pay e 0 = emptyF
pay e p = e (p−1)

This definition gives fix pay ≡ empty. The cost of a value can be
specified given that we know the enumeration from which it was
selected.

cost :: E t→ t→ N
cost (singleton ) ≡ 0
cost (a⊕b) (Left x) ≡ cost a x
cost (a⊕b) (Right y)≡ cost b y
cost (a⊗b) (x,y) ≡ cost a x+ cost b y
cost (biMap f e) x ≡ cost e (f −1x)
cost (pay e) x ≡ 1+ cost e x

We modify natEnum by adding an application of pay around the
entire body of the function:

natEnum = pay (union (singleton Z) (biMap S natEnum))

Now because we pay for each recursive call, each natural number
is assigned to a separate part:

*Main> map valuesF (map natEnum [0 . .3 ])
[[ ], [Z ], [S Z ], [S (S Z)]]

Cartesian product Product is slightly more complicated to de-
fine. The specification of cost allows a more formal definition of
part:

DEFINITION 2 (Part). Given an enumeration e, the part for cost p
(denoted as Pp

e) is the finite set of values in e such that

(v∈Pp
e)⇔ (coste v≡ p)

�

The specification of cost says that the cost of a product is the sum of
the costs of the operands. Thus we can specify the set of values in
each part of a product: Pp

a⊗b =
⋃p

k=0 Pk
a×Pp−k

b . For our functional
representation this gives the following definition:

e1⊗ e2 = pairs where
pairs p = concatF (conv (⊗F ) e1 e2 p)

concatF :: [Finite a ]→ Finite a
concatF = foldl unionF emptyF

conv :: (a→ b→ c)→ (N→ a)→ (N→ b)→ N→ [c]
conv f fx fy p = [fx k ‘f ‘ fy (p− k) | k← [0 . .p]]

For each part we define pairs p as the set of pairs with a combined
cost of p, which is the equivalent of Pp

e1⊗e2
. Because the sets of

values “cheaper” than p in both e1 and e2 are finite, pairs p is
finite for all p. For surjectivity: any pair of values (a,b) have costs
ca= coste1 a and cb= coste2 b. This gives (a,b)∈ (e1 ca⊗F e2 cb).
This product is an element of conv (⊗F ) e1 e2 (ca+cb) and as such
(a,b) ∈ (e1 ⊗ e2) (ca + cb). For injectivity, it’s enough to prove
that pairs p1 is disjoint from pairs p2 for p1 6≡ p2 and that (a,b)
appears once in pairs (ca+ cb). Both these properties follow from
the bijectivity of e1 and e2.

3. Implementation
The implementation in the previous section is thoroughly ineffi-
cient; the complexity is exponential in the cost of the input. The
cause is the computation of the cardinalities of parts. These are
recomputed on each indexing (even multiple times for each index-
ing). In Feat we tackle this issue with memoisation, ensuring that
the cardinality of each part is computed at most once for any enu-
meration.

Finite sets First we implement the Finite type as specified in the
previous section. Finite is implemented directly by its consumers:
a cardinality and an indexing function.

type Index = Integer
data Finite a = Finite {cardF :: Index

, (!!F ) :: Index→ a
}

Since there is no standard type for infinite precision natural num-
bers in Haskell, we use Integer for the indices. All combinators
follow naturally from the correspondence to finite lists (specified
in §2). Like lists, Finite is a monoid under append (i.e. union):

(⊕F ) :: Finite a→ Finite a→ Finite a
f1⊕F f2 = Finite car ix where

car = cardF f1 + cardF f2
ix i = if i< cardF f1

then f1 !!F i
else f2 !!F (i− cardF f1)
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emptyF = Finite 0 (λ i→ error "Empty")
instance Monoid (Finite a) where

mempty = emptyF
mappend = (⊕F )

It is also an applicative functor under product, again just like lists:

(⊗F ) :: Finite a→ Finite b→ Finite (a,b)
(⊗F ) f1 f2 = Finite car sel where

car = cardF f1 ∗ cardF f2
sel i = let (q,r) = (i ‘divMod‘ cardF f2)

in (f1 !!F q, f2 !!F r)
singletonF :: a→ Finite a
singletonF a = Finite 1 one where

one 0 = a
one = error "Index out of bounds"

instance Functor Finite where
fmap f fin = fin {(!!F ) = f ◦ (fin!!F )}

instance Applicative Finite where
pure = singletonF
f 〈∗〉a = fmap (uncurry ($)) (f ⊗F a)

For indexing we split the index i < c1 ∗ c2 into two components
by dividing either by c1 or c2. For an ordering which is consistent
with lists (s.t. valuesF (f 〈∗〉a)≡ valuesF f 〈∗〉valuesF a) we divide
by the cardinality of the second operand. Bijective map is already
covered by the Functor instance, i.e. we require that the argument
of fmap is a bijective function.

Enumerate As we hinted earlier, memoisation of cardinalities
(i.e. of Finite values) is the key to efficient indexing. The remain-
der of this section is about this topic and implementing efficient
versions of the operations specified in the previous section. A sim-
ple solution is to explicitly memoise the function from part num-
bers to part sets. Depending on where you apply such memoisation
this gives different memory/speed tradeoffs (discussed later in this
section).

In order to avoid having explicit memoisation we use a different
approach: we replace the outer function with a list. This may
seem like a regression to the list view of enumerations, but the
complexity of indexing is not adversely affected since it already
does a linear search on an initial segment of the set of parts.
Also the interface in the previous section can be recovered by just
applying (!!) to the list. We define a data type Enumerate a for
enumerations containing values of type a.

data Enumerate a = Enumerate {parts :: [Finite a ]}
In the previous section we simplified by supporting only infinite
enumerations. Allowing finite enumerations is practically useful
and gives an algorithmic speedups for many common applications.
This gives the following simple definitions of empty and singleton
enumerations:

empty :: Enumerate a
empty = Enumerate [ ]
singleton :: a→ Enumerate a
singleton a = Enumerate [singletonF a]

Now we define an indexing function with bounds-checking:

index :: Enumerate a→ Integer→ a
index = index′ ◦parts where

index′ [ ] i = error "index out of bounds"

index′ (f : rest) i
| i< cardF f = f !!F i
| otherwise = index′ rest (i− cardF f )

This type is more useful for a propery-based testing driver (see §6)
because it can detect with certainty if it has tested all values of the
type.

Disjoint union Our enumeration type is a monoid under disjoint
union. We use the infix operator (♦) = mappend (from the library
Data.Monoid) for both the Finite and the Enumerate union.

instance Monoid (Enumerate a) where
mempty = empty
mappend = union

union :: Enumerate a→ Enumerate a→ Enumerate a
union a b = Enumerate $ zipPlus (♦) (parts a) (parts b)

where
zipPlus :: (a→ a→ a)→ [a]→ [a]→ [a]
zipPlus f (x : xs) (y : ys) = f x y : zipPlus f xs ys
zipPlus xs ys = xs++ ys

It is up to the user to ensure that the operands are really disjoint.
If they are not then the resulting enumeration may contain repeated
values. For example pure True♦pure True type checks and runs but
it is probably not what the programmer intended. If we replace one
of the Trues with False we get a perfectly reasonable enumeration
of Bool.

Cartesian product and bijective functions First we define a
Functor instance for Enumerate in a straightforward fashion:

instance Functor Enumerate where
fmap f e = Enumerate (fmap (fmap f ) (parts e))

An important caveat is that the function mapped over the enumer-
ation must be bijective in the same sense as for biMap, otherwise
the resulting enumeration may contain duplicates.

Just as Finite, Enumerate is an applicative functor under product
with singleton as the lifting operation.

instance Applicative Enumerate where
pure = singleton
f 〈∗〉a = fmap (uncurry ($)) (prod f a)

Similar to fmap, the first operand of 〈∗〉 must be an enumeration
of bijective functions. Typically we get such an enumeration by
lifting or partially applying a constructor function, e.g. if e has type
Enumerate a then f = pure (,)〈∗〉e has type Enumerate (b→ (a,b))
and f 〈∗〉 e has type Enumerate (a,a).

Two things complicate the computation of the product com-
pared to its definition in §2. One is accounting for finite enumer-
ations, the other is defining the convolution function on lists.

A first definition of conv (that computes the set of pairs of
combined cost p) might look like this (with mconcat equivalent to
foldl (⊕F ) emptyF ):

badConv :: [Finite a ]→ [Finite b ]→ Int→ Finite (a,b)
badConv xs ys p = mconcat

(zipWith (⊗F ) (take p xs) (reverse (take p ys)))

The problem with this implementation is memory. Specifically
it needs to retain the result of all multiplications performed by
(⊗F ) which yields quadratic memory use for each product in an
enumeration.

Instead we want to perform the multiplications each time the
indexing function is executed and just retain pointers to e1 and e2.
The problem then is the reversal. With partitions as functions it is
trivial to iterate an inital segment of the partition in reverse order,
but with lists it is rather inefficient and we do not want to reverse
a linearly sized list every time we index into a product. To avoid
this we define a function that returns all reversals of a given list.
We then define a product funtion that takes the parts of the first
operand and all reversals of the parts of the second operand.
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reversals :: [a ]→ [[a ]]
reversals = go [ ] where

go [ ] = [ ]
go rev (x : xs) = let rev′ = x : rev

in rev′ : go rev′ xs
prod :: Enumerate a→ Enumerate b→ Enumerate (a,b)
prod e1 e2 = Enumerate $

prod′ (parts e1) (reversals (parts e2))

prod′ :: [Finite a ]→ [[Finite b ]]→ [Finite (a,b)]

In any sensible Haskell implementation evaluating an inital seg-
ment of reversals xs uses linear memory in the length of the seg-
ment, and constructing the lists is done in linear time.

We define a version of conv where the second operand is already
reversed, so it is simply a concatenation of a zipWith.

conv :: [Finite a ]→ [Finite b ]→ Finite (a,b)
conv xs ys = Finite

(sum $ zipWith (∗) (map cardF xs) (map cardF ys))
(λ i→ mconcat (zipWith (⊗F ) xs ys) !!F i)

The worst case complexity of this function is the same as for the
conv that reverses the list (linear in the list length). The best case
complexity is constant however, since indexing into the result of
mconcat is just a linear search. It might be tempting to move the
mconcat out of the indexing function and use it directly to define
the result of conv. This is semantically correct but the result of the
multiplications are never garbage collected. Experiments show an
increase in memory usage from a few megabytes to a few hundred
megabytes in a realistic application.

For specifying prod′ we can revert to dealing with only infinite
enumerations i.e. assume prod′ is only applied to “padded” lists:

parts = let rep = repeat emptyF in Enumerate $
prod′ (parts e1 ++ rep) (reversals (parts e2 ++ rep))

Then we define prod′ as:

prod′ xs rys = map (conv xs) rys

Analysing the behaviour of prod we notice that if e2 is finite then
we eventually start applying conv xs on the reversal of parts e2 with
a increasing chunk of emptyF prepended. Analysing conv reveals
that each such emptyF corresponds to just dropping an element
from the first operand (xs), since the head of the list is multiplied
with emptyF . This suggest a strategy of computing prod′ in two
stages, the second used only if e2 is finite:

prod′ xs@( : xs′) (ys : yss) = goY ys yss where
goY ry rys = conv xs ry : case rys of

[ ] → goX ry xs′

(ry′ : rys′)→ goY ry′ rys′

goX ry = map (flip conv ry)◦ tails
prod′ = [ ]

If any of the enumerations are empty the result is empty, otherwise
we map over the reversals (in goY) with the twist that if the list
is depleted we pass the final element (the reversal of all parts of
e2) to a new map (goX) that applies conv to this reversal and every
suffix of xs. With a bit of analysis it is clear that this is semantically
equivalent to the padded version (except that it produces a finite
list if both operands are finite), but it is much more efficient if
one or both the operands are finite. For instance the complexity of
computing the cardinality at part p of a product is typically linear
in p, but if one of the operands is finite it is max p l where l is the
length of the part list of the finite operand (which is typically very
small). The same complexity argument holds for indexing.

Assigning costs So far we are not assigning any costs to our enu-
merations, and we need the guarded recursion operator to complete
the implementation:

pay :: Enumerate a→ Enumerate a
pay e = Enumerate (emptyF : parts e)

To verify its correctness, consider that parts (pay e) !! 0 ≡ emptyF
and parts (pay e) !! (p+ 1) ≡ parts e !! p. In other words, applying
the list indexing function on the list of parts recovers the definition
of pay in the previous section (except in the case of finite enumer-
ations where padding is needed).

Examples Having defined all the building blocks we can start
defining enumerations:

boolE :: Enumerate Bool
boolE = pay $ pure False♦pure True
blistE :: Enumerate [Bool ]
blistE = pay $ pure [ ]

♦ ((:) 〈$〉boolE 〈∗〉blistE)

A simple example shows what we have at this stage:

*Main> take 16 (map cardF $ parts blistE)
[0,1,0,2,0,4,0,8,0,16,0,32,0,64,0,128 ]
*Main> valuesF (parts blistE !! 5)
[[False,False ], [False,True ], [True,False ], [True,True ]]

We can also very efficiently access values at extremely large in-
dices:

*Main> length $ index blistE (101000)
3321

*Main> foldl1 xor $ index blistE (101000)
True

*Main> foldl1 xor $ index blistE (101001)
False

Computational complexity Analysing the complexity of index-
ing, we see that union adds a constant factor to the indexing func-
tion of each part, and it also adds one to the generic size of all
values (since it can be considered an application of Left or Right).
For product we choose between p different branches where p is
the cost of the indexed value, and increase the generic size by one.
This gives a pessimistic worst case complexity of p ∗ s where s is
the generic size. If we do not apply pay directly to the result of
another pay, then p 6 s which gives s2. This could be improved to
s log p by using a binary search in the product case, but this also
increases the memory consumption (see below).

The memory usage is (as always in a lazy language) difficult to
measure exactly. Roughly speaking it is the product of the number
of distinguished enumerations and the highest part to which these
enumerations are evaluated. This number is equal to the sum of
all constructor arities of the enumerated (monomorphic) types. For
regular ADTs this is a constant, for non-regular ones it is bounded
by a constant multiplied with the highest evaluated part.

Sharing As mentioned, Feat relies on memoisation and subse-
quently sharing for efficient indexing. To demonstrate this, we
move to a more realistic implementation of the list enumerator
which is parameterised over the underlying enumeration.

listE :: Enumerate a→ Enumerate [a]
listE aS = pay $ pure [ ]

♦ ((:) 〈$〉aS 〈∗〉 listE aS)
blistE2 :: Enumerate [Bool ]
blistE2 = listE boolE
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This simple change causes the performance of blistE2 to drop
severely compared to blistE. The reason is that every evaluation of
listE2 aS creates a separate enumeration, even though the argument
to the function has been used previously. In the original we had
blistE in the tail instead, which is a top level declaration. Any
clever Haskell compiler evaluates such declarations at most once
throughout the execution of a program (although it is technically
not required by the Haskell language report). We can remedy the
problem by manually sharing the result of the computation with a
let binding (or equivalently by using a fix point combinator):

listE2 :: Enumerate a→ Enumerate [a ]
listE2 aS = let listE = pay $ pure [ ]

♦ ((:) 〈$〉aS 〈∗〉 listE)
in listE

blistE3 :: Enumerate [Bool ]
blistE3 = listE2 boolE

This is efficient again but it has one major problem, it requires
the user to explicitly mark recursion. This is especially painful for
mutually recursive data types since all members of a system of such
types must be defined in the same scope:

data Tree a = Leaf a | Branch (Forest a)
newtype Forest a = Forest [Tree a ]
treeE = fst ◦ treesAndForests
forestE = snd ◦ treesAndForests
treesAndForests :: Enumerate a→ (Enumerate (Tree a)

,Enumerate (Forest a))
treesAndForests eA =

let eT = pay $ (Leaf 〈$〉 eA)♦ (Branch 〈$〉 eF)
eF = pay $ Forest 〈$〉 listE2 eT

in (eT,eF)

Also there is still no sharing between different evaluations of treeS
and forestS in other parts of the program. This forces everything
into the same scope and crushes modularity. What we really want
is a class of enumerable types with a single overloaded enumeration
function.

class Enumerable a where
enumerate :: Enumerate a

instance Enumerable Bool where
enumerate = boolE

instance Enumerable a⇒ Enumerable (Tree a) where
enumerate = pay $ (Leaf 〈$〉 enumerate)

♦ (Branch 〈$〉 enumerate)
instance Enumerable a⇒ Enumerable [a ] where

enumerate = listE2 enumerate
instance Enumerable a⇒ Enumerable (Forest a) where

enumerate = pay $ Forest 〈$〉 enumerate

This solution performs well and it’s modular. The only potential
problem is that there is no guarantee of enumerate being evaluated
at most once for each monomorphic type. We write potential prob-
lem because it is difficult to determine if this is a problem in prac-
tice. It is possible to provoke GHC into reevaluating instance mem-
bers, and even if GHC mostly does what we want other compilers
might not. In the next section we discuss a solution that guarantees
sharing of instance members.

4. Instance sharing
Our implementation relies on memoisation for efficient calculation
of cardinalities. This in turn relies on sharing; specifically we want

to share the instance methods of a type class. For instance we may
have:

instance Enumerable a⇒ Enumerable [a] where
enumerate = pay $ pure [ ]

♦ ((:) 〈$〉 enumerate 〈∗〉 enumerate)

The typical way of implementing Haskell type classes is using dic-
tionaries, this essentially translates the instance above into a func-
tion similar to enumerableList :: Enumerate a → Enumerate [a].
Determining exactly when GHC or other compilers recompute the
result of this function requires significant insight into the workings
of the compiler and its runtime system. Suffice it to say that when
re-evaluation does occur it has a significant negative impact on the
performance of Feat. In this section we present a practical solution
to this problem.

A monad for type-based sharing The general formulation of
this problem is that we have a value x :: C a⇒ f a, and for each
monomorphic type T we want x :: f T to be shared, i.e. to be evalu-
ated at most once. The most direct solution to this problem seems to
be a map from types to values i.e. Bool is mapped to x :: f Bool and
() to x :: f (). The map can then either be threaded through a compu-
tation using a state monad and updated as new types are discovered
or updated with unsafe IO operations (with careful consideration of
safety). We have chosen the former approach here.

The map must be dynamic, i.e. capable of storing values of
different types (but we still want a type safe interface). We also
need representations of Haskell types that can be used as keys. Both
these features are provided by the Typeable class.

We define a data structure we call a dynamic map as an (ab-
stract) data type providing type safe insertion and lookup. The type
signatures of dynInsert and dynLookup are the significant part of
the code, but the full implementation is provided for completeness.

import Data.Dynamic (Dynamic, fromDynamic, toDyn)
import Data.Typeable (Typeable,TypeRep, typeOf )
import Data.Map as M
newtype DynMap = DynMap (M.Map TypeRep Dynamic)

deriving Show
dynEmpty :: DynMap
dynEmpty = DynMap M.empty
dynInsert :: Typeable a⇒ a→ DynMap→ DynMap
dynInsert a (DynMap m) =

DynMap (M.insert (typeOf a) (toDyn a) m)

To associate a value with a type we just map its type representation
to the dynamic (type casted) value.

dynLookup :: Typeable a⇒ DynMap→Maybe a
dynLookup (DynMap m) = hlp run⊥ where

hlp :: Typeable a⇒
(TypeRep→Maybe a)→ a→Maybe a

hlp f a = f (typeOf a)
run tr = M.lookup tr m>>= fromDynamic

Lookup is also easily defined. The dynamic library provides a func-
tion fromDynamic ::Dynamic→Maybe a. In our case the M.lookup
function has already matched the type representation against a type
stored in the map, so fromDynamic is guaranteed to succeed (as
long as values are only added using the insert function).

Using this map type we define a sharing monad with a function
share that binds a value to its type.

type Sharing a = State DynMap a
runSharing :: Sharing a→ a
runSharing m = evalState m dynEmpty
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share :: Typeable a⇒ Sharing a→ Sharing a
share m = do

mx← gets dynLookup
case mx of

Just e → return e
Nothing→ mfix $ λe→ do

modify (dynInsert e)
m

Note that we require a monadic fixpoint combinator to ensure
that recursive computations are shared. If it had not been used
(i.e. if the Nothing case had been m>>=modify ◦ dynInsert) then
any recursively defined m would eventually evaluate share m and
enter the Nothing case. Using the fix point combinator ensures
that a reference to the result of m is added to the map before m
is computed. This makes any evaluations of share m inside m end
up in the Just case which creates a cyclic reference in the value
(exactly what we want for a recursive m). For example if we have
x = share (liftM pay x) the fixpoint combinator ensures that we get
runSharing x≡ fix pay instead of ⊥.

Self-optimising enumerations Now we have a monad for shar-
ing and one way to proceed is to replace Enumerate a with
Sharing (Enumerate a) and re-implement all the combinators for
that type. We don’t want to lose the simplicity of our current type
though and it seems a very high price to pay for guaranteeing shar-
ing which we are used to getting for free.

Our solution extends the enumeration type with a self-optimising
routine, i.e. all enumerations have the same functionality as before
but with the addition of an optimiser record field:

data Enumerate a = Enumerate
{parts :: [Finite a ]
, optimiser :: Sharing (Enumerate a)
} deriving Typeable

The combinator for binding a type to an enumeration is called
eShare.

eShare :: Typeable a⇒ Enumerate a→ Enumerate a
eShare e = e {optimiser = share (optimiser e)}

We can resolve the sharing using optimise.

optimise :: Enumerate a→ Enumerate a
optimise e = let e′ = runSharing (optimiser e) in

e′ {optimiser = return e′}
If eShare is used correctly, optimise is semantically equivalent to
id but possibly with a higher degree of sharing. But using eShare
directly is potentially harmful. It’s possible to create “optimised”
enumerations that differ semantically from the original. For in-
stance λe→ eShare t e yields the same enumerator when applied
to two different enumerators of the same type. As a general rule
the enumeration passed to eShare should be a closed expression
to avoid such problems. Luckily users of Feat never have to use
eShare, instead we provide a safe interface that uses it internally.

An implication of the semantic changes that eShare may intro-
duce is the possibility to replace the Enumerable instances for any
type throughout another enumerator by simply inserting a value
in the dynamic map before computing the optimised version. This
could give unintuitive results if such enumerations are later com-
bined with other enumerations. In our library we provide a sim-
plified version of this feature where instances can be replaced but
the resulting enumeration is optimised, which makes the replace-
ment completely local and guarantees that optimise still preserves
the semantics.

The next step is to implement sharing in all the combinators.
This is simply a matter of lifting the operation to the optimised

enumeration. Here are some examples where ... is the original
definitions of parts.

fmap f e = e {...
optimiser = fmap (fmap f )$ optimiser e}

f 〈∗〉a = Enumerate {...
optimiser = liftM2 (〈∗〉) (optimal f ) (optimiser a)}

pure a = Enumerate { ...
optimiser = return (pure a)}

The only noticeable cost of using eShare is the reliance on Typeable.
Since almost every instance should use eShare and consequently
require type parameters to be Typeable and since Typeable can be
derived by GHC, we chose to have it as a superclass and implement
a default sharing mechanism with eShare.

class Typeable a⇒ Enumerable a where
enumerate :: Enumerate a

shared :: Enumerable a⇒ Enumerate a
shared = eShare enumerate
optimal :: Enumerable a⇒ Enumerate a
optimal = optimise shared

The idiom is that enumerate is used to define instances and shared
is used to combine them. Finally optimal is used by libraries to
access the contents of the enumeration (see §6).

Non-regular enumerations The sharing monad works very well
for enumerations of regular types, where there is a closed system
of shared enumerations. For non-regular enumerations (where the
number of enumerations is unbounded) the monadic computation
may fail to terminate. In these (rare) cases the programmer must
ensure termination.

Free pairs and boilerplate instances There are several ways to
increase the sharing further, thus reducing memory consumption.
Particularly we want to share the cardinality computation of every
sequenced application (〈∗〉). To do this we introduce the FreePair
data type which is just like a pair except constructing one carries
no cost i.e. the cost of the pair is equal to the total costs of its
components.

data FreePair a b = FreePair a b
deriving (Show,Typeable)

instance (Enumerable a,Enumerable b)⇒
Enumerable (FreePair a b) where

enumerate = FreePair 〈$〉 shared 〈∗〉 shared

Since the size of FreePair a b is equal to the sum of the sizes of a
and b, we know that for these functions:

f :: a→ b→ c
g :: FreePair a b→ c
g (FreePair a b) = f a b

We have f 〈$〉 shared 〈∗〉 shared isomorphic to g 〈$〉 shared but in
the latter case the product of the enumerations for a and b are
always shared with other enumerations that require it (because
shared :: FreePair a b is always shared. In other words deep un-
currying functions before applying them to shared often improve
the performance of the resulting enumeration. For this purpose we
define a function which is equivalent to uncurry from the Prelude
but that operates on FreePair.

funcurry :: (a→ b→ c)→ FreePair a b→ c
funcurry f (FreePair a b) = f a b

Now in order to make an enumeration for a data constructor we
need one more function:
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unary :: Enumerable a⇒ (a→ b)→ Enumerate b
unary f = f 〈$〉 shared

Together with pure for nullary constructors, unary and funcurry
can be used to map any data constructor to an enumeration. For
instance pure [ ] and unary (funcurry (:)) are enumerations for the
constructors of [a ]. In order to build a new instance we still need
to combine the enumerations for all constructors and pay a suitable
cost. Since pay is distributive over ♦, we can pay once for the whole
type:

consts :: [Enumerate a ]→ Enumerate a
consts xs = pay $ foldl (♦) mempty xs

This gives the following instance for lists:

instance Enumerable a⇒ Enumerable [a] where
enumerate = consts [pure [ ],unary (funcurry (:))]

5. Invariants
Data type invariants are a major challenge in property-based test-
ing. An invariant is just a property on a data type, one often wants to
test that it holds for the result of a function. But we also want to test
other properties only with input that is known to satisfy the invari-
ant. In random testing this can sometimes be achieved by filtering:
discarding the test cases that do not satisfy the invariant and gener-
ating new ones instead, but if the invariant is an arbitrary boolean
predicate finding test data that satisfies the invariant can be as dif-
ficult as finding a bug. For systematic testing (with SmallCheck or
Feat) this method is slightly more feasible since we do not repeat
values which guarantees progress, but filtering is still a brute force
solution.

In QuickCheck programmers can manually define custom test
data generators that guarantee any invariant, but it may require a
significant programmer effort and analysing the resulting generator
to ensure correctness and statistical coverage can be difficult. Intro-
ducing this kind of complexity into testing code is hazardous since
complex usually means error prone.

In Feat the room for customised generators is weaker (corre-
sponding to the difference between monads and applicative func-
tors). In theory it is possible to express any invariant by providing a
bijection from a Haskell data type to the set of values that satisfy the
invariant (since functional enumerations are closed under bijective
function application). In practice the performance of the bijection
needs to be considered because it directly affects the performance
of indexing.

A simple and very common example of an invariant is the non-
empty list. The function uncurry (:) is a bijection into non-empty
lists of a from the type (a, [a]). The preferred way of dealing with
these invariants in Feat is by defining a newtype for each restricted
type, and a smart constructor which is the previously mentioned
bijection and export it instead of the data constructor.

newtype NonEmpty a = MkNonEmpty {nonEmpty :: [a ]}
deriving Typeable

mkNonEmpty :: a→ [a]→ NonEmpty a
mkNonEmpty x xs = MkNonEmpty (x : xs)
instance Enumerable a⇒ Enumerable (NonEmpty a) where

enumerate = consts [unary (funcurry mkNonEmpty)]

To use this in an instance declaration, we only need the nonEmpty
record function. In this example we look at the instance for the data
type Type from the Template Haskell abstract syntax tree which
describes the syntax of (extended) Haskell types. Consider the
constructor for universal quantification:

ForallT :: [TyVarBndr ]→ Cxt→ Type→ Type

This constructor must not be applied to the empty list. We use
nonEmpty to ensure this:

instance Enumerable Type where
enumerate = consts [...
, funcurry $ funcurry $ ForallT ◦nonEmpty ]

Here ForallT ◦nonEmpty has type:

NonEmpty TyVarBndr→ Cxt→ Type→ Type

The only addition from the unrestricted enumeration is ◦nonEmpty.

Enumerating Sets of natural numbers Another fairly common
invariant is sorted lists of unique elements i.e. Sets. It is not ob-
vious that sets can be built from our basic combinators. We can
however define a bijection from lists of natural numbers to sets of
natural numbers: scanl (((+)◦ (+1)). For example the list [0,0,0 ]
represents the set [0,1,2 ], the list [1,1,0 ] represents [1,3,4] and
so on. We can define an enumerator for natural numbers using a
bijection from Integer.

newtype Nat = Nat {nat :: Integer}
deriving (Show,Typeable,Eq,Ord)

mkNat :: Integer→ Nat
mkNat a = Nat $ abs $ a∗2− if a>0 then 1 else 0
instance Enumerable Nat where

enumerate = unary mkNat

Then we define sets of naturals:

newtype NatSet = MkNatSet {natSet :: [Integer ]}
deriving Typeable

mkNatSet :: [Nat ]→ NatSet
mkNatSet = MkNatSet ◦ scanl1 ((+)◦ (+1))◦map nat

Generalising to sets of arbitrary types Sets of naturals are useful
but what we really want is a data type Set a = MkSet {set :: [a]}
and a bijection to this type from something which we can already
enumerate. Since we just defined an enumeration for sets of natu-
rals, an efficient bijective mapping from natural numbers to a is all
we need. Since this is the definition of a functional enumeration,
we appear to be in luck.

mkSet :: Enumerate a→ NatSet→ Set a
mkSet e = MkSet ◦map (index e)◦natSet
instance Enumerable a⇒ Enumerable (Set a) where

enumerate = unary (mkSet optimal)

This implementation works but it’s slightly simplified, it doesn’t
use the cardinalities of a when determining the indices to use. This
distorts the cost of our sets away from the actual size of the values.

6. Accessing enumerated values
This section discusses strategies for accessing the values of enu-
merations, especially for the purpose of property-based testing. The
simplest function values is simply all values in the enumeration par-
titioned by size. We include the cardinalities as well, this is often
useful e.g. to report to the user how many values are in a part be-
fore initiating testing on values. For this reason we give values type
Enumerate a→ [(Integer, [a])].

Given that Feat is intended to be used primarily with the type
class Enumerable we have implemented the library functions to use
class members, but provide non-class versions of the functions that
have the suffix With:
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type EnumL a = [(Integer, [a])]
values :: Enumerable a⇒ [(Integer, [a])]
values = valuesWith optimal
valuesWith :: Enumerate a→ [(Integer, [a])]
valuesWith = map (λ f → (cardF f ,valuesF f ))◦parts

Parallel enumeration A generalisation of values is possible since
we can “skip” an arbitrary number of steps into the enumeration at
any point. The function striped takes a starting index and a step
size n and enumerates every nth value after the initial index in the
ordering. As a special case values = striped 0 0 1. One purpose
of this function is to enumerate in parallel. If n processes execute
uncurry striped k n where k is a process-unique id in the range
[0 . .n−1 ] then all values are eventually evaluated by some process
and, even though the processes are not communicating, the work is
evenly distributed in terms of number and size of test cases.

stripedWith :: Enumerate a→ Index→ Integer→ EnumL a
stripedWith e o0 step = stripedWith′ (parts e) o0 where

stripedWith′ (Finite crd ix : ps) o =
(max 0 d, thisP) : stripedWith′ ps o′

where
o′ = if space6 0 then o− crd else step−m−1
thisP = map ix (genericTake d $ iterate (+step) o)
space = crd−o
(d,m) = divMod space step

Bounded enumeration Another feature afforded by random-
access indexing is the ability to systematically select manageable
portions of gigantic parts. Specifically we can devise a function
bounded :: Integer → EnumL a such that each list in bounded n
contains at most n elements. If there are more than n elements in
a part we systematically sample n values that are evenly spaced
across the part.

samplePart :: Integer→ Finite a→ (Integer, [a])
samplePart m (Finite crd ix) =

let step = crd % m
in if crd 6 m

then (crd,map ix [0 . .crd−1])
else (m, map ix [ round (k ∗ step)

| k← map toRational [0 . .m−1 ]])
boundedWith :: Enumerate a→ Integer→ EnumL a
boundedWith e n = map (samplePart n)$ parts e

Random sampling A noticeable feature of Feat is that it pro-
vides random sampling with uniform distribution over a size-
bounded subset of a type. This is not just nice for compatibility
with QuickCheck, it is genuinely difficult to write a uniform gener-
ator even for simple recursive types with the tools provided by the
QuickCheck library.

The function uniform :: Enumerable a⇒ Part→ Gen a gener-
ates values of the given size or smaller.

uniformWith :: Enumerate a→ Int→ Gen a
uniformWith = uni◦parts where

uni :: [Finite a ]→ Int→ Gen a
uni [ ] = error "uniform: empty enumeration"

uni ps maxp = let (incl,rest) = splitAt maxp ps
fin = mconcat incl

in case cardF fin of
0→ uni rest 1
→ do i← choose (0,cardF fin−1)

return (fin !!F i)

*Main> sample (sized uniform :: Gen [[Bool ]])
[ ]
[[ ]]
[[ ], [ ]]
[[True ]]
[[False ], [ ], [ ]]
[[ ], [False,False,True ]]
[[False,True,False,True,True ]]
[[False ], [ ], [ ], [ ]]
[[True ], [True ], [ ], [False,True ]]
[[False ], [False,True,False,False,True ]]

Table 2. Randomly chosen values from the enumeration of [Bool ]

data Exp = CaseE Exp [Match ] | ...
data Match = Match Pat Body [Dec ]

data Body = NormalB Exp | ...
data Dec = FunD Name [Clause ] | ...
data Clause = Clause [Pat ] Body [Dec ]

data Pat = ViewP Exp Pat | ...

Table 3. Parts of the Template Haskell AST type. Note that all the
types are mutually recursive.

Since we do not make any local random choices, performance
is favourable compared to hand written generators. The typical
usage is sized uniform, which generates values bounded by the
QuickCheck size parameter. In Table 2 we present a typical output
of applying the function sample from the QuickCheck library to the
uniform generator for [[Bool ]]. The function drafts values from the
generator using increasing sizes from 0 to 20.

7. Case study: Enumerating the ASTs of Haskell
As a case study, we use the enumeration technique developed in
this paper to generate values of Haskell ASTs, specifically the ab-
stract syntax of Template Haskell, taken from the module Lan-
guage.Haskell.TH.Syntax.

We use the generated ASTs to test the Template Haskell pretty-
printer. The background is that in working with BNFC-meta
[Duregård and Jansson 2011], which relies heavily on meta pro-
gramming, we noticed that the TH pretty printer occasionally pro-
duced un-parseable output. BNFC-meta also relies on the more ex-
perimental package haskell-src-meta that forms a bridge between
the haskell-src-exts parser and Template Haskell. We wanted to test
this tool chain on a system-level.

The AST types We limited ourselves to testing expressions, fol-
lowing dependencies and adding a few newtype wrappers this
yielded a system of almost 30 data types with 80+ constructors.
A small part is shown in Table 3.

We excluded a few non-standard extensions (e.g. bang patterns)
because the specification for these are not as clear (especially the
interactions between different Haskell extensions).

Comparison to existing test frameworks We wanted to compare
Feat to existing test frameworks. For a set of mutual-recursive
datatypes of this size, it is very difficult to write a sensible
QuickCheck generator. We therefore excluded QuickCheck from
the case study.
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On the other hand, generators for SmallCheck and Feat are
largely boilerplate code. To avoid having the results skewed by
trying to generate the large set of strings for names (and to avoid
using GHC-internal names which are not printable), we fix the
name space and regard any name as having size 1. But we do
generate characters and strings as literals (and found bugs in these).

Test case distribution The result shows some interesting differ-
ences between Feat and SmallCheck on the distribution of the gen-
erated values. We count the number of values of each part (depth
for SmallCheck and size for Feat) of each generator.

Size 1 2 3 4 5 6 20
SmallCheck 1 9 951 × × × ×
Feat 0 1 5 11 20 49 65072965

Table 4. The number of test cases below certain size

It is clear that for big datatypes such as ASTs, SmallCheck quickly
hits a wall: the number of values below a fixed size grows ag-
gressively, and we are not able to complete the enumeration of
size 4 (given several hours of execution time). In the case of Feat,
the growth in the number of values in each category is more con-
trolled, due to its more refined definition of size. If we look more
closely into the values generated by SmallCheck by sampling the
first 10000 values of the series on depth 4. A count reveals that
the maximum size in this sample is 35, with more than 50% of the
values having a size more than 20. Thus, contrary to the goal of
generating small values, SmallCheck is actually generating pretty
large values from early on.

Testing the TH PrettyPrinter The generated AST values are
used as test cases to find bugs in Template Haskell’s prettyprinter
(Language.Haskell.TH.Ppr). We start with a simple property: a
pretty-printed expression should be syntactically valid Haskell. We
use haskell-src-exts as a test oracle:

prop parses e =
case parse $ pprint (e :: Exp) :: ParseResult Exp of

ParseOk → True
ParseFailed s→ False

After a quick run, Feat reports numerous bugs, some of which are
no doubt false positives. A small example of a confirmed bug is
expression [Con..]. The correct syntax has a space after the con-
structor name (i.e. [Con ..]). As we can see, this counter example
is rather small (having size 6 and depth 4). However, after hours of
testing SmallCheck is not able to find this bug even though many
much larger (but not deeper) values are tested. Given a very large
search space that is not exhaustible, SmallCheck tends to get stuck
in a corner of the space and test large but similar values. The pri-
mary cause of SmallCheck’s inability to deal with ASTs is that
the definition of “small” as “shallowly nested” means that there
are very many small values but many types can practically not be
reached at all. For instance generating any Exp with a where-clause
seems to require at least depth 8, which is far out of reach.

Comparatively, the behaviour of Feat is much better. It advances
quickly to cover a wider range of small values, which maximises
the chance of finding a bug. The guarantee “correct for all inputs
with 15 constructors or less” is much stronger than “correct for all
values of at most depth 3 and a few million of depth 4”. When there
is no bug reported, Feat reports a more meaningful portion of the
search space that has been tested.

It is worth mentioning that SmallCheck has the facility of per-
forming “depth-adjustment”, that allows manual increment of the
depth count of individual constructors to reduce the number of val-
ues in each category. For example, instead counting all construc-
tors as 1, one may choose to count a binary constructor as having

depth 2 to reflect the fact that it may create a larger value than a
unary one (similar to our pay function). In our opinion, this adjust-
ment is a step towards an imprecise approximation of size as used
in our approach. Even if we put time into manually adjusting the
depth it is unclear what kind of guarantee testing up to depth 8 im-
plies, especially when the definition of depth has been altered away
from generic depth.

Testing round trip properties We also tested an extension of this
property that does not only test the syntactic correctness but also
that the information in the AST is preserved when pretty printing.
We tested this by making a round trip function that pretty prints the
AST, parses it with haskell-src-exts and converts it back to Tem-
plate Haskell AST with haskell-src-meta. This way we could test
this tool chain on a system level finding bugs in haskell-src-meta as
well as the pretty printer. The minimal example of a pretty printer
error found was StringL "\n" which is pretty printed to "", dis-
carding the newline character. This error was not found by Small-
Check partly because it is too deep (at least depth 4 depending on
the character generator), and partly because the default character
generator only tests alphabetical characters. Presumably an expe-
rienced SmallCheck tester would use a newtype to generate more
sensible string literals.

8. Related Work
SmallCheck, Lazy SmallCheck and QuickCheck Our work
is heavily influenced by the property based testing frameworks
QuickCheck [Claessen and Hughes 2000] and SmallCheck [Runci-
man et al. 2008]. The similarity is greatest with SmallCheck and
we improve upon it in two distinct ways:

• (Almost) Random access times to enumerated values. This
presents a number of possibilities that are not present in Small-
Check, including random or systematic sampling of large val-
ues (too large to exhaustively enumerate) and overhead-free
parallelism.

• A definition of size which is closer to the actual size. Especially
for testing abstract syntax tree types and other “wide” types this
seems to be a very important feature (see §7).

Since our library provides random generation as an alternative
or complement to exhaustive enumeration it can be considered a
“best of two worlds” link between SmallCheck and QuickCheck.
We provide a QuickCheck compatible generator which should ease
the reuse of existing properties.

SmallCheck systematically tests by enumerating all values
bounded by depth of constructor nestings. In a sense this is also
a partitioning by size. The major problem with SmallCheck is that
the number of values in each partition grow too quickly often hit-
ting a wall after a few levels of depth. For AST’s this is doubly
true (the growth is proportional to the number of constructors in
the type, and it’s unlikely you can ever test beyond depth 4 or so.
This means that most constructors in an AST are never touched.

Lazy SmallCheck can cut the number of tests on each depth
level by using the inherent laziness of Haskell. It can detect if a
part of the tested value is evaluated by the property and if it is not it
refrains from refining this value further. In some cases this can lead
to an exponential decrease of the number of required test cases. In
the case of testing a pretty printer (as we do in §7) Lazy SmallCheck
would offer no advantage since the property fully evaluates its
argument every time.

After the submission of this paper, a package named GenCheck
is uploaded to Hackage [Uszkay and Carette 2012]. GenCheck is
designed to generalise both QuickCheck and SmallCheck, which
is similar to Feat in goal. This initial release has very limited
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documentation, which prevents a more comprehensive comparison
at the moment.

EasyCheck In the functional logic programming language Curry
[Hanus et al. 2006], one form of enumeration of values comes
for free in the form of a search tree. As a result, testing tools
such as EasyCheck [Christiansen and Fischer 2008] only need
to focus on the traversal strategy for test case generation. It is
argued in [Christiansen and Fischer 2008] that this separation of
the enumeration scheme and the test case generation algorithm is
particularly beneficial in supporting flexible testing strategies.

Feat’s functional enumeration, with its ability to exhaustively
enumerate finite values, and to randomly sample very large values,
lays an excellent groundwork for supporting various test case gen-
eration algorithms. One can easily select test cases of different sizes
with a desired distribution.

AGATA AGATA [Duregård 2009] is the previous work of Jonas
Duregård. Although it is based entirely on random testing it is a
predecessor of Feat in the sense that it attempts to solve the problem
of testing syntactic properties of abstract syntax trees. It is our
opinion that Feat subsumes AGATA in this and every other aspect.

Generating (Typed) Lambda Terms To test more aspects of a
compiler other than the libraries that perform syntax manipulation,
it is more desirable to generate terms that are type correct.

In [Yakushev and Jeuring 2009], well-typed terms are enumer-
ated according to their costs—a concept similar to our notion of
size. Similar to SmallCheck, the enumeration in [Yakushev and
Jeuring 2009] adopts the list view, which prohibits the sampling of
large values. On the other hand, the special-purpose QuickCheck
generator designed in [Pałka et al. 2011], randomly generates well-
typed terms. Unsurprisingly, it has no problem with constructing
individual large terms, but falls short in systematicness.

It is shown [Wang 2005] that well-scoped (but not necessarily
well-typed) lambda terms can be uniformly generated. The tech-
nique used in [Wang 2005] is very similar to ours, in the sense
that the number of possible terms for each syntactic constructs are
counted (with memoization) to guide the random generation for
a uniform distribution. This work can be seen as a special case of
Feat, and Feat can indeed be straightforwardly instrumented to gen-
erate well-scoped lambda terms.

Feat is at present not able to express complicated invariants such
as type correctness of the enumerated terms. One potential solution
is to adopt more advanced type systems as in [Yakushev and Jeuring
2009], so that the type of the enumeration captures more precisely
its intended range.

Combinatorial species In mathematics a combinatorial species
is an endo-functor on the category of finite sets and bijections.
Each object A in this category can be described by its cardinality
n and a finite enumeration of its elements: f : Nn → A. In other
words, for each n there is a canoncial object (label set) Nn. Each
arrow phi : A→ B in this category is between objects of the same
cardinality n, and can be described by a permutation of the set Nn.
This means that the object action S0 of an endofunctor S maps a
pair (n, f ) to a pair S0 (n, f ) whose first component is the cardinality
of the resulting set (we call it card n). (The arrow action S1 maps
permutations on Nn to permutations on Ncard n.)

In the species library (decribed in [Yorgey 2010]) there is a
method enumerate :Enumerable f ⇒ [a]→ [f a] which takes a (list
representation of) an object a to all f a-structures obtained by the S0
map. The key to comparing this with our paper is to represent the
objects as finite enumerations Nn→ a instead of as lists [a]. Then
enumerate′ :Enumerable f ⇒ (Nn→ a)→ (Ncard n→ f a). We can
further let a be Np and define sel p= enumerate′ id :Ncard p→ f Np.
The function sel is basically an inefficient version of the indexing

function in the Feat library. The elements in the image of g for a
particular n are (defined to be) those of weight n. The union of
all those images form a set (a type). Thus a species is roughly a
partition of a set into subsets of elements of the same size.

The theory of species goes further than what we present in this
paper, and the species library implements quite a bit of that theory.
We cannot (yet) handle non-regular species, but for the regular ones
we can implement the enumeration efficiently.

Boltzmann samplers A combinatorial class is basically the same
as what we call a “functional enumeration”: a set C of combina-
torial objects with a size function such that all the parts Cn of the
induced partitioning are finite. A Boltzmann model is a probability
distribution (parameterized over a small real number x) over such a
class C, such that a uniform discrete probability distribution is used
within each part Cn. A Boltzmann sampler is (in our terminology)
a random generator of values in the class C following the Boltz-
mann model distribution. The datatype generic Bolztmann sampler
defined in [Duchon et al. 2004] follows the same structure as our
generic enumerator. We believe a closer study of that paper could
help defining random generators for ASTs in a principled way from
our enumerators.

Decomposable combinatorial structures. The research field of
enumerative combinatorics has worked on what we call “functional
enumeration” already in the early 1990:s and Flajolet and Salvy
[1995] provide a short overview and a good entry point. They define
a grammar for “decomposable” combinatorial structures including
constructions for (disjoint) union, product, sequence, sets and cy-
cles (atoms or symbols are the implicit base case). The theory (and
implementation) is based on representing the counting sequences
{Ci} as generating functions as there is a close correspondance be-
tween the grammar constructs and algebraic operations on the gen-
erating functions. For decomposable structures they compute gen-
erating function equations and by embedding this in a computer
algebra system (Maple) the equations can be symbolically manip-
ulated and sometimes solved to obatin closed forms for the GFs.
What they don’t do is consider the pragmatic solution of just tabu-
lating the counts instead (as we do). They also don’t consider com-
plex algebraic datatypes, just universal (untyped) representations
of them. Complex ASTs can perhaps be expressed (or simulated)
but rather awkwardly. They also don’t seem to implement the index
function into the enumeration (only random generation). Neverthe-
less, their development is impressive, both as a mathematical theory
and as a computer library and we want to explore the connection
further in future work.

9. Conclusions and Future work
Since there are now a few different approaches to property-based
testing available for Haskell it would be useful with a library of
properties to compare the efficiency of the libraries at finding bugs.
The library could contain “tailored” properties that are constructed
to exploit weaknesses or utilise strengths of known approaches, but
it would be interesting to have naturally occurring bugs as well
(preferably from production code). It could also be used to evaluate
the paradigm of property-based testing as a whole.

Instance (dictionary) sharing Our solution to instance sharing is
not perfect. It divides the interface into separate class functions for
consuming and combining enumerations and it requires Typeable.

A solution based on stable names [Peyton Jones et al. 1999]
would remove the Typeable constraint but it’s not obvious that
there is any stable name to hold on to (the stable point is actually
the dictionary function, but that is off-limits to the programmer).
Compiler support is always a possible solution (i.e. by a flag or a
pragma), but should only be considered as a last resort.
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Enumerating functions For completeness, Feat should support
enumerating function values. We argue that in practice this is sel-
dom useful for property-based testing because non trivial higher
order functions often have some requirement on their function ar-
guments, for instance the ∗By functions in Data.List need functions
that are total orderings, a parallel fold needs an associative function
etc. This can not be checked as a precondition, the best bet is prob-
ably to supply a few manually written total orderings or possibly
use a very clever QuickCheck generator.

Regardless of this, it stands to reason that functional enumera-
tions should have support for functions. This is largely a question
of finding a suitable definition of size for functions, or an efficient
bijection from an algebraic type into the function type.

Invariants The primary reason why enumeration can not replace
the less systematic approach of QuickCheck testing is invariants.
QuickCheck can always be used to write a generator that satisfies
an invariant, but often with no guarantees on the distribution or
coverage of the generator.

The general understanding seems to be that it is not possible
to use systematic testing and filtering to test functions that require
e.g. type correct programs. Thus QuickCheck gives you something,
while automatic enumeration gives you nothing. The reason is that
the ratio type correct/syntactically correct programs is so small that
finding valid non-trivial test cases is too time consuming.

It would be worthwhile to try and falsify or confirm the general
understanding for instance by attempting to repeat the results of
[Pałka et al. 2011] using systematic enumeration.

Invariants and costs We have seen any bijective function can be
mapped on an enumeration, preserving the enumeration criterion.
This also preserves the cost of values, in the sense that a value x in
the enumeration fmap f e costs as much as f −1x.

This might not be the intention, particularly this means that
a strong size guarantee (i.e. that the cost is equal to the number
of constructors) is typically not preserved. As we show in §7 the
definition of size can be essential in practice and the correlation
between cost and the actual number of constructors in the value
should be preserved as far as possible. There may be useful opera-
tions for manipulating costs of enumerations.

Conclusions We present an algebra of enumerations, an efficient
implementation and show that it can handle large groups of mutu-
ally recursive datatypes. We see this as a step on the way to a unified
theory of test data enumeration and generation. Feat is available as
an open source package from the HackageDB repository:
http://hackage.haskell.org/package/testing-feat
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