
What Can Changes Tell about Software Processes?

Barbara Russo
Free University of Bozen-Bolzano

Faculty of Computer Science
P.za domenicani, 3

Bozen, Italy
Barbara.Russo@unibz.it

Maximilian Steff
Free University of Bozen-Bolzano

Faculty of Computer Science
P.za domenicani, 3

Bozen, Italy
maximilian.steff@gmail.com

ABSTRACT
Code changes propagate. Type, frequency, size of changes
typically explain and even predict impact of changes in soft-
ware products. What can changes tell about software pro-
cesses? In this study, we propose a novel method to render
software processes by graphs of linked commits as carriers of
change information. Mining histories in such commit graphs
allows to exploit techniques of graph analysis and coloring
that can be used to understand activities in software pro-
cesses. As application of our method, we analysed colored
commit graphs to investigate the presence of large archi-
tectural changes and their likelihood of occurrence in bug
fixing. For this, we introduced a new measure of architec-
tural change based on hashing and a linear-time kernel for
bit-labels graphs. We applied our approach to analyse the
evolution of change of Eclipse JDT and Spring Framework.

Categories and Subject Descriptors
C.4 [Performance of Systems ]: Measurement techniques;
H.2.8 [Database Applications]: Data mining

General Terms
Software process, software evolution

Keywords
Software changes, commits, directed graph, architectural
change, churn

1. INTRODUCTION
When developers commit their code they must know the

effects of their changes. Changes may introduce new changes
that can eventually affect the quality of software products.
Causality, localization, classification of changes have been
matter of intensive research in software evolution and qual-
ity. Several technologies that help developers to understand
the impact of their changes on code have been proposed.

Such technologies are valuable, but suffer from the informa-
tion used for changes, typically based on churn, i.e., lines
added and/or deleted from file. Only recently, other types
of data like code dependencies are being investigated, [18].

Changes have effects on software development activities
too. Lehman [15], clearly warned about the risk of leaving
changes and their complexity uncontrolled: software devel-
opment processes must adapt to changes as well. Of course,
the opposite is also true: development methods and strate-
gies drive code changes. For example, we can sometimes
observe an increase of the change rate before a new release
is announced.

Mining data to evaluate the effect of changes on software
development activities is not so simple. One of the major is-
sues is subjectivity and discretion of developers in reporting
software process data. Herzig and Zeller found that 20% of
commits were incorrectly assigned to bug fixing as develop-
ers delivered changes to accomplish multiple tasks in a single
commit, [11]. On the other hand, changes related to one sin-
gle task may not occur in close temporal proximity. Thus,
analysing product or process behavior with measures based
on a temporal order of changes (e.g., consecutive changes as
in [17]) might not always be the most satisfactory approach.
In this work, we try to answer the second issue by model-
ing software processes with topological graphs of commits.
Specifically, the main contributions of this paper are:

- A labeled commit graph. It is a directed graph whose
nodes are commits and edges are determined by files
changed in commits. The graph can be colored by as-
signing semantics of different nature to commits (e.g.,
bug fix commit).

- A method to color commits by large values of change
measures. In particular, we introduce a novel measure
of architectural change. It uses a linear-time kernel
technique to compute distance between architectures
of a system over time.

- An extension to graphs and histories of the well-known
gamma score [19]. The extension allows to compare
histories in graphs

- A proof of concept that our approach can be applied
to object oriented projects, as shown by a case study
of Spring Framework and Eclipse JDT.

2. RELATED WORK
Class, file, or method changes have been long investigated

to determine the past and future state of a software project.

1

Original source of publication: What Can Changes Tell about Software Processes? WETSoM’14 June 3, 2014, Hyderabad, 
India , DOI: Copyrighthttp://dx.doi.or2014 ACMg/10.1145/2593868.2593869978-1-4503-2854-8/1
The original publication is available at http://dl.acm.org/citation.cfm?id=2593869



Examples include impact analysis, change classification, and
change measurement.

2.1 Impact Analysis.
The impact of code changes is typically studied for causal-

ity of changes or prediction of other code measures. For ex-
ample, German et al. introduced the change impact graph
to detect and visualize the propagation of function changes
and help developers to localize bugs, [5]. Herzig and Zeller,
[10], mined method definitions and calls over time to inves-
tigate change causality. Nagappan et al. defined measures
of consecutive changes (bursts) to predict defect counts [17].
Tomaszewski et al [21] use the history of previous releases to
predict LOC changes of the current release by the number of
added and changed methods per class. Lee et al [14] anal-
ysed the impact of various changes on the overall system.
They identified a number of fine-grained changes and how
the impact of these changes could be evaluated before imple-
mentation. Both Tomaszewski et al [21] and Lee et al [14]
focus on the addition and modification of methods as they
aim at predicting code changes at early stages of develop-
ment. Recently, Wu et al [23] examined eleven open-source
systems and their histories of changes. They found power-
law distributions for change sizes and structural changes,
and that these changes were occurring across the system.
Unlike ours, the measure of structural change they intro-
duced refers to local modification to classes’ dependencies.
As the authors also say, their definition of structural change
is affected by how one interprets the local changes and how
frequently structural snapshots are captured. Interestingly,
the authors discovered long-range correlations in time se-
ries of change” from which they inferred a self-organised
criticality in the evolution of the systems. They concluded
that major changes keep occurring and that the development
process should be adapted accordingly. However, their re-
sults regarding long-term correlations were then challenged
by Herraiz et. al. [9] albeit on a different dataset.

2.2 Change Classification.
Literature mainly focuses on syntactical types or types

determined by the task they accomplish. Gall et al [4] in-
troduce logical coupling as change pattern similarity of files
over releases. Logical coupling has also been recently consid-
ered in Canfora et al [1], where the authors use the Granger
causality test on time series to determine whether a change
to a file really causes subsequent changes to other files. In
a similar vein, Herzig and Zeller [10] have mined method
definitions and calls over time to the so-called change ge-
nealogies in which previous changes enable and cause later
modifications.

Giger et al., [6] classified syntactical changes to predict
them in future releases. Hindle co-authored a series of works
to classify maintenance activities with the information con-
tained in commit messages. Recently, Hindle et al. further
proposed a method to extract maintenance activity types
from commit messages, [13]. A recent paper of Cataldo et
al [2] compares three types of dependencies among files: syn-
thetic, logical, and work/social dependencies (the last being
the number of linked developers working on a file). The pa-
per recommends to consider both logical and work / social
dependencies in the estimation of fault proneness of files.

2.3 Change Measurement.

Change measures are defined on code change (diff) at dif-
ferent granularity levels (e.g., files, classes, methods, or com-
mit, versions, releases). The typical measure of change is
churn. Churn measures the size of a change set in a com-
mit and has been often employed in prediction models, e.g.,
[7]. Other measures based on syntactical dependencies have
been introduced more recently, e.g., Nakamura and Basili,
[18].

While literature has mainly focused on the effects of changes
on software product, our work proposes to investigate changes
also to understand software process. The manner in which
process activities are carried out is reflected in the structure
of the history of (sets of) files. We believe that the com-
mit graph as analysis tool has promising applications also
beyond the study given in this paper, [20]. As we are going
to show, commit graphs can be colored to represent product
and process in one single shot.

3. METHOD
The key assumption behind this work is that changes

made to complete a developer’s task might not occur in
close temporal proximity and they might be better related
by what in common they change. For this reason, we be-
lieve that the development process can be rendered with a
topological graph that we can color and examine through its
substructures. Existing literature can also be re-read with
the use of the graph.

3.1 Commit Graphs
A commit C is a tuple (t,F ), where t is a time stamp and

F is a set of modules, called change set. A Commit Graph
(CG) is a directed graph that consists of:

- a set of commits {(t,F )} as nodes

- a set of links {L} between commits such that L links
C1 to C2 , ((C1, L, C2)), if and only if

i. t1 < t2 and F1 ∩ F2 6= ∅ and

ii. ∀(t,F ) with t1 < t < t2 : F1 ∩ F2 ∩ F3 = ∅

Two commits that changed one or more common modules
are linked if no other commit has changed any of the modules
in between. Fig. 1 shows an example of CG. The total
number of commits directly linked to one commit C does
not exceed the cardinality of its change set, F .

Modules can have different granularity depending on the
type of research we want to perform. We can consider meth-
ods, classes, files (if we do not want to distinguish inner and
nested classes), or packages. Links can be enriched with fur-
ther information too. For example, a link can be weighted
by the number of modules shared between its commits, or
tagged by the developers that changed them. With our def-
inition, nodes can also have different granularity ranging
form commits to major versions.

3.2 Commit Histories.
CG is made of a set of commit histories. Studying them

can shed some new light on software systems and their evo-
lution. For example, one can study the evolution of logical
coupling [4], by studying paths in the full history (FH) of a
commit C = (t,F ) :

FH = {(ti,Fi) : ti < t Fi ∩ F = ∅}

2



Figure 1: An example of CG.

In this study, we introduce two other types of history:
progeny and ancestry. Progeny (Ancestry) is the set of com-
mits that follow (precede) a commit in the commit graph.
In this study, we limit progenies and ancestries to two-steps
histories of a commit C:

PH = {A|∃L : (C,L,A) ∨ ∃B,L′, L : (C,L,B)∧ (B,L′, A)}

Likewise, ancestry is the set of commits of parents and gran-
parents:

AH = {A|∃L : (A,L,C) ∨ ∃B,L′, L : (A,L′, B)∧(B,L,C)}

PH and AH are different from FH as they can include
commits that changed files not in change set of C.
Coloring CGs. Nodes in graphs can be given colors to
render the development process at different angles. Colors
are labels with some given semantics. In this work, we color
commits in two ways: by maintenance tasks (using develop-
ers’ tags) and by their technical nature (using large values
of measures of change). In future work, we will investigate
whether large values of measure of changes can identify spe-
cific development tasks.

3.3 Progeny Score.
The Gamma score is a non-parametric statistical tech-

niques that was introduced by Pelz in 1985 [19] to compare
precedence of categorical items (e.g., modification requests
[22]) appearing in time series.

We adapt the score to describe the order of occurrence of
different types of commits in colored graphs. As a matter of
example, in this work, we analyse the probability for a com-
mit of a given color to have at least a commit of a different

color in its progeny. For this, we propose the score I :

IA,B =
P −Q
P +Q

where P (Q) is the number of color-A (B) commits with at
least one color-B (A) commit in their progeny. With this
score, we can examine, for example, whether large architec-
tural changes occur behind large churn changes or whether
any type of large change follows up bug fixes.

3.4 Architecture Graphs
Architectural change measures dissimilarity between ar-

chitectures of a software system at different time instants.
In this paper, we represent an architecture as graph in which
nodes are architectural components and links are relations
among components. As for CGs, components in Architec-
tural Graphs (AGs) can have different granularity and rela-
tions different definitions. In this work, we assume that:

- Each class and interface in the source code is assigned
a node. Node labels are class names.

- Inheritance, association and use dependencies are links

- External libraries are not included

Architectural Change. Using graph kernel theory, a dis-
tance between two AGs, A and A′, can be defined as

d(A,A′) =
√
K(A,A)− 2K(A,A′) +K(A′, A′)

where K(·, ·) is a kernel function. When d is 0, no change
happens between A and A′; when d is 1 the change is max-
imal. In other words, the distance d measure the similarity
between two architectures.

The most well-known graph kernel is the the random walk
kernel also used in Nakamura and Basili, [18]. In this study,
we instead propose a linear-time kernel introduced by Hido
and Kashima [12] for bit-labels graphs. For this, we first
need to map an AG into a bit-labels graph (BG) by hash-
ing. Hashing codes node labels as bit labels. Bit labels are
binary arrays of bits of fixed length, B = {b1, ...bk}, where bi
are bits. As node labels in AGs are finite set of discrete val-
ues, without loss of generality, we can convert a node label
v into a randomly chosen bit label of a given length using
a one-to-one mapping function l. Since node labels are dis-
tinct in our settings, accidental hash collisions only occurs
with probability 2−k. Experimenting with several different
lengths k, we found in our graphs k = 2 ∗ (n+ 1) where n is
minimum bit number such that 2n ≥ card(AG).

The Neighborhood Hash (NH) algorithm, [12], incorpo-
rates in the hash value information about the adjacent nodes
through two operations on the bit labels (XOR and rota-
tion):

XOR(B,B′) = {XOR(b1, b
′
1), ..., XOR(bk, b

′
k)}

ROT (B, o) = {bo, bo+1, ..., bk, b1, b2, ..., bo−1}

If v is a node label and {v1, ..., vs} are its adjacent nodes, the
NH value is obtained by executing the following algorithm:

B = l(v)

Bi = l(vi)

S= {B1, ..., Bm}
TEMP ← 0

for Bj in S

TEMP ← XOR(TEMP, Bj)

NH(v) ← XOR(ROT(B),TEMP)

3



Two nodes, v and w, with the same hash value l(v) = l(w),
have the same NH value when they have identical neigh-
borhood nodes. Otherwise, they will have different values
except for accidental hash collisions. The reason for this is
that the hash value is independent of the order of the neigh-
borhood values due to the properties of XOR, [12]. The
NH operation for a node v is done in O(k*d) where d is the
degree of v.

Using the Hido Kashima kernel has two advantages over
random walk kernels as used by Nakamura and Basili, [18].
First, random walk kernels are at least of quadratic run-
time complexity. Second, the kernel maintains information
about nodes in the nodes themselves. When comparing more
than two graphs, this allows for tracing structural changes
in nodes across several revisions while retaining information
on the reasons for the change. This is not possible with
random walk kernels.

Finally, after we mapped A and A′ into their correspond-
ing BGs, we align the BGs with radix sort and compute the
kernel as the mutual Jaccard index on the sorted bit-labeled
nodes:

K(A,A′) =
c

nA + nA′ − c
where c is the number of bit-labeled nodes that match in
the two BGs and nA and n′A are the cardinalities of the two
AGs.

To measure the evolution from an initial structure to a
final observed one, Nakamura and Basili, [18] introduced
the measure of relative similarity between architectures:

L(A) =
d(A,A0)− d(A,Af )

d(A,A0) + d(A,Af )

where A0 and Af are the architectures at the initial and
the final observation, respectively. L(A) ranges between −1
and 1. Again relative similarity as measure of architectural
change can be analysed at different levels of granularity. We
can consider commits, versions, or major releases depending
on the type of research. In this work, we use commits. Thus,
A is the structure of a system at commit C and L(A) is the
architectural change of commit C.

4. RESULTS
As a proof of concept, we applied this method to study

the occurrence of large architectural / churn changes in re-
cent histories of bug fix commits of Eclipse JDT1 and Spring
Framework2. In both projects we collect commits that re-
late to the development of a future release. Among these
commits we highlighted the major versions. Both projects
use a similar release strategy with milestones and release
candidates, Fig. 2 and 3.

For JDT, we collected data from 23,880 commits of the
CVS trunk repository (January 2002 - December 2004, ver-
sions 2.0, 2.1 and 3.0).

For Spring, we collected data from 5365 commits of the
Subversion trunk repository (July 2008 - December 2011,
version 3.0 and 3.1). For this study, we collected classes and
interfaces ignoring all non-Java and test classes reducing the
total number of useful commits (Table 1).

From the bug tracking systems - JIRA for Spring and
BugZilla for Eclipse JDT - we extracted all bug reports

1http://www.eclipse.org/
2http://www.springsource.org/

(fixed or closed) that affected the above commits. We did
this by matching the bug ID in bug reports and addition-
ally commit logs text similarity as described in the follow-
ing. Typically, there is no direct connection in either the
bug-tracker or the VCS linking entries in both. However, it
is considered good practice to note a key or an ID from the
bug-tracker in the commit message for the versioning control
system to indicate whether a commit is related to a ticket in
the bug-tracker. There are several techniques described in
the literature to identify commits using identifiers from the
bug tracker. We devised an additional matching for not-
yet-matched entries. Bug-trackers usually provide a short
description of a defect. We use the Levenshtein distance on
these descriptions and the messages from the commit log to
determine their pairwise similarity. We created sets of pairs
by selecting entries from either list that were in close tem-
poral proximity. A few samples were typically sufficient to
determine a cutoff value for the similarity to decide which
commits to add to the list of bug-fixing commits. We choose
the cutoff value in a way to minimise the false positives.
The drawback of false positives is arguably higher than that
of false negatives: we would label bug-fixing commits that
other approaches would probably not do.

Finally, we converted JDT CVS to Subversion repository
using cvs2svn3 and processed both Subversion repositories
using SVNPlot4.

Table 1: Projects descriptive analysis

No. commits Period Major vers.
JDT 23,880 01.2002 - 12.2004 2.0, 2.1, 3.0
Spring 5365 07.2008 - 12.2011 3.0 & 3.1

The period we selected for the two projects illustrates two
different maturity stages. Eclipse JDT is in its initial re-
leases. By contrast, the two versions of Spring framework
have been selected after the first major public release.

To extract dependencies from Java code, we first used
Partial Program Analysis for Java, [3] which creates partial
builds from Java source code ignoring unfulfilled dependen-
cies, compile the code into byte-code, and then use Apache
BCEL5 to extract dependencies among classes per single
build. Finally, we labelled a commit as “arch” if architec-
tural change happens in it, “churn” if it does not, and “bug
fix” if the commit has been labeled so by the committer.
The first four rows of Table 2 describe the BGs obtained.
As nodes correspond to commits, by comparing Table 1 and
2 we see that there is a substantial number of isolated com-
mits. In these commits, files have been changed only once
across the versions considered.

4.1 Jumps
To color the commit graph, we compute jumps of our mea-

sures. Jumps are commits that contain large changes, which
in principle might indicate some peculiar development ac-
tivity. We first mapped changes over releases to have a first
understanding of the occurrence of jumps. To identify them,
we use a typical statistical approach that categorises large
values by the distance from the values’ distribution mean
µ. The distance is measured by multiples of the standard

3http://cvs2svn.tigris.org/
4http://code.google.com/p/svnplot/
5http://commons.apache.org/bcel/

4



deviation, σ. In this study, jumps are commit whose churn,
architectural change, or both exceed µ+σ of their respective
distributions. The last four rows of Table 2 describe jumps
in the two systems.

Table 2: Descriptive analysis of BGs. “arch” stands for ar-
chitectural change, “churn” for churn, “arch & churn” for
both.

Spring JDT
#nodes 3,113 17,474
#links 6,139 42,343
#bug-fix nodes 511 6,564
#arch nodes 1,200 2,145
#jumps 186 685
#arch jumps 61 228
#churn jumps 84 371
#churn & arch jumps 41 86

4.2 Progeny precedence analysis
Fig. 2 and Fig. 3 plot churn, architectural change, and

number of bug fixing commits cumulatively over commits
of Eclipse JDT and Spring framework respectively. In the
figures, we can see that architectural changes do not follow
bug fixing activities as churn does in Eclipse. By contrast,
in Spring framework architectural changes and churn have a
similar trend and opposite to one of the number of bug fixing
commits. At a first sight, one would imply that in Eclipse ar-
chitectural changes are not performed for bug fixing. This is
implication might not be completely correct. The two plots
can only illustrate trends on individual commits. Changes in
commits can originate from preceding changes or affect fu-
ture changes, though. For example, bug fixing can originate
new churn, architectural change or new bug to fix. Gamma
score on histories can help understand the precedence among
different activities in commits as we show in Table 3. Table

Table 3: Precedence of colored commits

Color A Color B Spring JDT
churn jump arch jump 0.15 0.09
bug fix churn jump 0.23 0.78
bug fix arch jump 0.22 0.71
bug fix arch & churn jump 0.10 0.84
arch bug fix churn jump -0.01 0.14
arch bug fix arch jump 0.04 0.06
arch bug fix arch & churn jump -0.18 0.39
churn bug fix churn jump 0.13 0.76
churn bug fix arch jump 0.07 0.68
churn bug fix arch & churn jump -0.20 0.81

3 illustrates the results of the Progeny score applied to the
graph colored by the two types of jumps and the bug fixing
type. The table shows that architectural and churn changes
tend not to synchronise in both systems. In particular, in
the first row, churn jumps statistically precede architectural
change jumps. Nakamura and Basili [18] hypothesised that
if this happens, i.e., if architectural changes is far behind
churn growth, the change cost will be high. The next three
rows indicate that the probability that jumps occur in pro-
genies of bug fixes is statistically higher than they occur in
ancestries (especially for Eclipse JDT). This might suggest

that bug fixing has a follow-up effect (e.g., refactoring). The
two systems are definitely different in fixing bugs that do not
require architectural changes (last row). In Eclipse JDT,
bug fix commits that do not have architectural changes like-
lier precedes large changes in both architecture and churn.
Again this is the case in which maintenance costs easier in-
crease.

5. CONCLUSIONS
In this paper, we represent software development pro-

cesses with colored commit graphs and study histories of
changes in these graphs. To color commits as architectural
change, we introduce a measure of architectural change. The
measure extends the similarity distance between two code
architectures of Nakamura and Basili [18], improving it by
using an efficient hashing algorithm and a simple kernel func-
tion on bit-labels graphs defined by Hido and Kashima [12].
We color graphs with either labels coming from the commit
message or jumps of architecture or size change.

Then we build the commit graphs for Eclipse JDT and
Spring framework. Using a non-parametric score to com-
pute the order of occurrence of commits of different colors,
we highlight the differences in the two projects. A correct
interpretation of the differences or a causality analysis re-
quires a deeper investigation of the type of systems and their
maintenance process that it is out of scope of this work.

There are few facts we need to reflect on, though. First,
bug fix commits can accomplish other tasks. Herzig and
Zeller [11] found that 16.6 % of all source files are incor-
rectly associated to bug fixes and proposed an algorithm to
detect and filter out wrong associations. As this noise can
have a sever impact on any causality analysis, future work
will explore the Herzig and Zeller algorithm on commit histo-
ries. Second, our hashing works fine until the module label is
modified during the change process, in which case the nodes
in the AGs before and after the renaming no longer match.
To this aim, we detect such refactored classes in the follow-
ing way. First, we isolated the classes that were removed in
the first and were added in the second commit. Second, we
compare the two subsets of classes pairwise using the Nor-
malised Compression Distance, [16]. With several different
cut-off values narrowing down possible matches, we manu-
ally inspected the suggested matches. While certainly not
always recommendable due to the effort required for manual
inspection, it did solve the problem in our case.

6. FUTURE WORK AND LIMITATIONS
Commit graphs can be colored in different ways depend-

ing on the information available in the repositories. We used
jumps to identify specific commits, but other ways can be
foreseen. Literature typically use commit labels to deter-
mine what activity is performed in a a commit, but labels
might not be enough, [11]. Developers usually commit file
changes for more than one reason. It is an actual open prob-
lem to determine what activities are performed in a single
commit. Histories in commit graphs can be inspected and
classified to characterise them by the activities performed.
In this way, not only a commit but its neighborhood can
help to describe the development process. Granger causal-
ity [8] can be extended to understand the effect of commit
activities in histories. This will be a matter of future work.

As in any proof of concept, there are limitations related

5



to the choices made to exemplify a method on real data.
For example, the definition of jump can be different. We
use here the standard deviation unit to identify a jump, but
depending on the research purpose, a different threshold can
be considered and the graph will change accordingly. Also,
the way we labeled commit as bug fixing undergoes the usual
limitation. Developers might mislabel their commits or the
text similarity we used might produce some false negative
and positive. The only means to overcome the issue is to
interview project stakeholders. This would be matter of
future work.

7. REFERENCES

[1] G. Canfora, M. Ceccarelli, L. Cerulo, and
M. Di Penta. Using multivariate time series and
association rules to detect logical change coupling:
An empirical study. In Proceedings of the
International Conference on Software Maintenance,
ICSM ’10, pages 1–10, 2010.

[2] M. Cataldo, A. Mockus, J. A. Roberts, and J.
D. Herbsleb. Software dependencies,work
dependencies, and their impact on failures. In
Software Engineering, IEEE Transactions on, Vol.
35, No. 6, pages 864–878, 2009.

[3] B. Dagenais and L. Hendren. Enabling static analysis
for partial java programs. In Proceedings of the
Conference on Object-oriented Programming Systems
Languages and Applications, OOPSLA ’08, pages
313–328, 2008.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
Software Maintenance, 1998. Proceedings.,
International Conference on, pages 190–198, 1998.

[5] D. M. German, A. E. Hassan, and G. Robles. Change
impact graphs: Determining the impact of prior code
changes. Information and Software Technology,
51(10), pages 1394 – 1408, 2009. Source Code
Analysis and Manipulation, SCAM, 2008.

[6] E. Giger, M. Pinzger, and H. Gall. Can we predict
types of code changes? an empirical analysis. In
Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, MSR’12, pages 217–226,
2012.

[7] E. Giger, M. Pinzger, and H. C. Gall. Comparing
fine-grained source code changes and code churn for
bug prediction. In Mining Software Repositories
(MSR), 2011 8th IEEE Working Conference on,
MSR’11, pages 83–92, 2011.

[8] C.W.J. Granger Investigating Causal Relations by
Econometric Models and Cross-spectral Methods. In
Econometrica, Vol. 37, No. 3, pages 424–438, 1969

[9] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles.
Determinism and evolution. In Proceedings of the
international working conference on Mining Software
Repositories, MSR ’08, pages 1–10, 2008.

[10] K. Herzig and A. Zeller. Mining cause-effect-chains
from version histories. In Proceedings of the
International Symposium on Software Reliability
Engineering, ISSRE’11, pages 60 –69, 2011.

[11] K. Herzig and A. Zeller. The impact of tangled code
changes. In Mining Software Repositories (MSR),

2013 10th IEEE Working Conference on, MSR’13,
pages 121–130, 2013.

[12] S. Hido and H. Kashima. A linear-time graph kernel.
In International Conference on Data Mining,
ICDM’09, pages 179–188, 2009.

[13] A. Hindle, N. Ernst, M. Godfrey, and J. Mylopoulos.
Automated topic naming. Empirical Software
Engineering, 18(6), pages 1125–1155, 2013.

[14] M. Lee, A. J. Offutt, and R. T. Alexander.
Algorithmic analysis of the impacts of changes to
object-oriented software. In Proceedings of the
Technology of Object-Oriented Languages and
Systems, TOOLS ’00, pages 61–70, 2000.

[15] M. Lehman. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE, 68(9),
pages 1060–1076, 1980.

[16] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. The
similarity metric. Information Theory, IEEE
Transactions on, 50(12), pages 3250–3264, 2004.

[17] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change bursts as defect predictors.
In Software Reliability Engineering, 2010 IEEE 21st
International Symposium on, ISSRE, pages 309–318,
2010.

[18] T. Nakamura and V. R. Basili. Metrics of software
architecture changes based on structural distance. In
Proceedings of the International Software Metrics
Symposium, METRICS’05, pages 8–, 2005.

[19] D. C. Pelz Innovation Complexity and the Sequence
of Innovating Stages. In Knowledge: Creation,
Diffusion, Utilization, Vol. 6, pages 261–291, 1985

[20] M. Steff and B. Russo. Commit graphs. In Proc.
DAPSE, pages 4–5, 2013.

[21] P. Tomaszewski, H. Grahn, and L. Lundberg. A
method for an accurate early prediction of faults in
modified classes. In Proceedings of the International
Conference on Software Maintenance, ICSM’06,
pages 487 –496, 2006.

[22] G. Succi, W. Pedrycz, M. Stefanovic, B. Russo. An
Investigation on the Occurrence of Service Requests
in Commercial Software Applications. In Empirical
Software Engineering, Vol. 8, No. 2, pages–197-215,
2003

[23] J. Wu, R.C. Holt, and A.E. Hassan. Empirical
evidence for soc dynamics in software evolution. In
Proceedings of the International Conference on
Software Maintenance, ICSM’07, pages 244 –254,
2007.

Appendix
Fig. 2 and 3 compare cumulative plots of architectural
change (right y-axis) measured by the relative similarity
measure, churn (left y-axis), and number of bug fixing com-
mits. The x-axis plots all the commits before the release of
the major versions (including them). commits are ordered
and plotted according to their time stamp.

Milestones and release candidates ate reported with the
original labels (e.g., 2.0m4 is the release milestone 4 of ver-
sion 2.0 and 3.0rc2 is the release candidate 2 of version 3.0).

6



Figure 2: Cumulative architectural change and code churn over commits - Eclipse JDT.

Figure 3: Cumulative architectural change and code churn over commits - Spring.

7


