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Abstract

Recent network traffic studies argue that network arrival pro-
cesses are much more faithfully modeled using statistically
self-similar processes instead of traditional Poisson pro-
cesses [LTWW94, PF95]. One difficulty in dealing with self-
similar models is how to efficiently synthesize traces (sam-
ple paths) corresponding to self-similar traffic. We present a
fast Fourier transform method for synthesizing approximate
self-similar sample paths for one type of self-similar process,
Fractional Gaussian Noise, and assess its performance and
validity. We find that the method is as fast or faster than ex-
isting methods and appears to generate close approximations
to true self-similar sample paths. We also discuss issues in
using such synthesized sample paths for simulating network
traffic, and how an approximation used by our method can
dramatically speed up evaluation of Whittle's estimator for
H , the Hurst parameter giving the strength of long-range de-
pendence present in a self-similar time series.

1 Introduction

When modeling network traffic, packet arrivals are often
assumed to be Poisson processes because such processes
have attractive theoretical properties [FM94]. Recent work,
however, argues convincingly that local-area network traffic
is much better modeled using statisticallyself-similar pro-
cesses [LTWW94], which have much different theoretical
properties than Poisson processes. A subsequent investiga-
tion suggests that the same holds for wide-area network traf-
fic [PF95].

The strength of self-similar models is that they are able
to incorporatelong-range dependence, which informally
means significant correlations across arbitrarily large time
scales. For many networking questions, the presence or ab-
sence of long-range dependence plays a crucial role in the
behavior predicted by analytic models. For example, the

�This paper appears inComputer Communication Review 27(5), pp. 5-
18, Oct. 1997. This work was supported by the Director, Officeof Energy
Research, Office of Computational and Technology Research,Mathemati-
cal, Information, and Computational Sciences Division of the United States
Department of Energy under Contract No. DE-AC03-76SF00098.

presence of long-range dependence can completely alter the
tail of queue waiting times [ENW96].

The theory of self-similar stochastic processes is not
nearly as well-developed as that for Poisson processes. But
given the strong empirical evidence that self-similar mod-
els are much better than Poisson models at capturing cru-
cial network traffic characteristics such as burstiness, it has
become important to develop tools for understanding self-
similar processes, and for generating synthetic network traf-
fic that reflects the salient characteristics of these processes.

In this paper we present a fast algorithm for generating
approximate sample paths for a type of self-similar process
known asfractional Gaussian noise (FGN) [B92b]. The al-
gorithm is based on synthesizing sample paths that have the
same power spectrum as FGN. These sample paths can then
be used in simulations as traces of self-similar network traf-
fic. The key to the algorithm is a fast approximation of the
power spectrum of an FGN process; this approximation also
has application for fast estimation of the strength of long-
range dependence (Hurst parameter) present in network ar-
rival processes.

The next section defines self-similar processes and
presents some of their properties and existing methods of
synthesizing self-similar sample paths. These methods have
drawbacks of either being computationally expensive, or
generating approximate self-similar sample paths that suffer
from bias in the Hurst parameter, in that the achieved Hurst
parameter differs from the target Hurst parameter. The fol-
lowing section discusses Whittle's estimator, which is used
to estimate a sample's Hurst parameter, giving the strength of
the long-range dependence in the sample. Inx 4 we present
our Fourier transform method for synthesizing approximate
FGN, and inx 5 evaluate the method in several ways to assess
how well it approximates FGN. We then inx 6 discuss some
issues in using synthesized FGN for simulating network traf-
fic. x 7 presents a method for speeding up Whittle's estimator
dramatically at little cost to accuracy, andx 8 summarizes our
findings. In an appendix we give a program written in theS

language for implementing our method.
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2 Self-similar processes

We begin with two definitions. A stationary process islong-

range dependent (LRD) if its autocorrelation functionr(k)
is nonsummable (i.e.,

P

k

r(k) =1) [C84]. Thus, the defi-
nition of long-range dependence applies only to infinite time
series.

The simplest models with long-range dependence
are self-similar processes, which are characterized by
hyperbolically-decaying autocorrelation functions. Self-
similar and asymptotically self-similar processes are partic-
ularly attractive models because the long-range dependence
can be characterized by a single parameter, the Hurst param-
eterH , which can be estimated using Whittle's procedure
(seex 3 below).

More specifically, the processfX
t

g

t=0;1;2;:::

is asymptot-

ically self-similar if

r(k) � k

�(2�2H)

L(k) as k !1; (1)

for Hurst parameterH satisfying1=2 < H < 1 andL
a slowly-varying function;1 and the process isexactly self-

similar if [BSTW95] [C84, p.59]:

r(k) = 1=2

�

(k + 1)

2H

� 2k

2H

+ (k � 1)

2H

�

:

For any processfX
t

g

t=0;1;2;:::

we can consider an “ag-

gregated” versionfX(m)

t

g constructed by partitioningfX
t

g

into non-overlapping blocks ofm sequential elements and
constructing a single element ofX(m)

t

from the average of
them elements:

X

(m)

t

=

1

m

tm

X

i=tm�m+1

X

i

: (2)

ThusfX(m)

t

g corresponds to viewing the processfX
t

g us-
ing a time scale that is a factor ofm coarser than that used to
view fX

t

g itself.
For typical stochastic processes, asm increases the auto-

correlation offX(m)

t

g decreases until in the limit the ele-
ments offX(m)

t

g are uncorrelated. For a self-similar pro-
cess, on the other hand, the processfX

t

g and the aggregated
processfX(m)

t

g have thesame autocorrelation function.
From these definitions it is not obvious at first glance that

self-similar processes actually exist, but in fact a number of
families of self-similar processes are known [ST94].

The most widely-studied self-similar processes arefrac-

tional Gaussian noise (FGN) and fractional ARIMA pro-

cesses [B92b, ST94, GW94]. Associated with FGN is frac-
tional Brownian motion (FBM), which is simply the inte-
grated version of FGN (that is, an FBM process is simply
the sum of FGN increments). In this paper we are concerned
with synthesizing FGN. There are several existing methods

1For a slowly-varying functionL, lim
t!1

L(tx)=L(x) = 1 for all
x > 0. Constants and logarithms are examples of slowly-varying functions.

for synthesizing sample paths for self-similar processes—see
[WTLW95] for a more complete discussion and citations—
but they have drawbacks:

� Consider an alternating renewal processR(t) in which
the on and off periods have durations from a “heavy-
tailed” (e.g., Pareto) distribution. LetS

n

be the process
constructed by multiplexingn independent instances of
theR(t) process, whereS

n

(t) is the number ofR(t)

processes that are in “on” periods at timet. ThenS
n

is
asymptotically (asn approaches1) a self-similar pro-
cess [LTWW94].

This method is particularly attractive because it matches
empirical evidence of the behavior of Ethernet traffic
sources [WTSW97].

The principle difficulty with using a simulation ofS
n

for synthesizing a self-similar process is that one must
trade off speed of computation (lown) against the
degree of agreement with a true self-similar process
(asymptotically highn).

� Consider an M/G/1 queue model, where customers ar-
rive according to a Poisson process and have service
times drawn from a heavy-tailed distribution with in-
finite variance [C84, LTWW94, PF95]. In this model,
X

t

is the number of customers in the system at timet,
and fX

t

g is asymptotically self-similar in the sense
of Eqn. 1.

The drawback of a method based on this observation
is that the process is only asymptotically self-similar,
so again one must trade off length of computation for
degree of self-similarity.

� A third method of synthesizing a self-similar process is
the “Random Midpoint Displacement” (RMD) method
[LEWW95], which works by progressively subdividing
an interval over which to generate the sample path. At
each division, a Gaussian displacement is used to deter-
mine the value of the sample path at the midpoint of the
subinterval. Self-similarity comes about by appropriate
scaling of the variance of this displacement.

This method has the attractive property that it is fast
(see below) and that it can be used to interpolate a self-
similar sample path between observations made on a
larger time scale. The drawbacks of the method are
that it only generates an approximately self-similar pro-
cess. In particular, the Hurst parameter for the sam-
ple paths tends to be larger than the target value for
0:5 < H < 0:75, and smaller than the targetH
for 0:75 < H < 1, where the “target”H is the
value that should result if the approximations used by
the method were actually exact. In addition, for a tar-
getH = 0:5, the sample path should correspond to
white noise, but the authors found that instead it appears
correlated, since the estimatedbH for their synthesized
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sample paths was almost two standard deviations above
H = 0:5.

� A fourth method involves computing wavelet coeffi-
cients corresponding to a wavelet transform of FBM.
The coefficients are then used with an inverse wavelet
transformation to yield sample paths of FBM [F92].
The method is only approximate because the wavelet
coefficients are not independent, but it is difficult to cap-
ture their interdependence. The author of [F92] points
out that the RMD method is essentially equivalent to the
wavelet method for a particular (non-orthonormal) ba-
sis. Unfortunately, the paper does not include an anal-
ysis of the quality of the synthesized FBM nor the run-
ning time of an implementation of the method. A later
study claims a high degree of accuracy when using the
method, but the authors evaluated sample paths of only
800 points, and used a heuristic for assessing the quality
of the generated FBM [SLN94].

� A fifth method, due to Hoskings, is discussed by Garrett
and Willinger in [GW94]. This algorithm generates
sample paths from a fractional ARIMA process, which
are asymptotically self-similar. Hoskings algorithm has
the very attractive property of beingexact, but its run-
ning time isO(n

2

) for generatingn points, quite slow;
the authors report that generating 171,000 points re-
quired 10 CPU hours.

� Finally, the authors of [RP94] discuss generating FBM
using an approximation to the definition of FBM. In-
stead of computing for each new sample point the cor-
relational contribution of all the previous sample points
(which is one way of defining FBM, and results in an
O(n

2

) algorithm for computingn points), they “block”
together sample points in the distant path and only com-
pute their aggregate contribution. By using a logarith-
mic blocking scheme, their approximation can produce
n points inO(n) time. While they claim their algo-
rithm reproduces FBM accurately, their assessment of
the algorithm's accuracy is terse, making it difficult to
evaluate the method's promise.

Most of the synthesis methods take large amounts of CPU
time. For example, [WTLW95] discusses an AR(1) method
which requires 3-5 minutes to synthesize a trace of 100,000
points when running on a massively parallel computer with
16,384 processors. The first two methods mentioned above
have running times on the order of CPU hours for traces of
comparable length. However, it is possible that these imple-
mentations could be sped up considerably by hand optimiza-
tion, so we use these figures only as “ballpark” estimates to
qualitatively assess running time.

The RMD method, on the other hand, is quite fast, re-
quiring a couple of minutes on a SPARCstation 20 to gen-
erate 260,000 points, making it much more attractive com-
putationally. Our method is likewise fast, one of its main
strengths.

Finally, we note that a drawback of some of the fast meth-
ods (RMD, inverse wavelet transformation, and our FFT al-
gorithm) is that they must store either part of the time series
(RMD method) or the entire time series (the other methods)
in memory before producing any values. Consequently, they
cannot be used to generate new values “on the fly.”

3 Whittle's estimator

A key problem when studying samples of self-similar pro-
cesses is estimating the Hurst parameterH . A “quick and
dirty” approximate estimator, based on a maximum likeli-
hood technique due to Whittle, is given by Beran [B92b,
LTWW94, GW94]2. We now give an overview of Whittle's
estimator, because some of the properties of FGN processes
upon which it is based are also used by our FGN synthe-
sis method, and because a key approximation used by our
method can also be used to rapidly evaluate Whittle's esti-
mator (seex 7).

In brief, supposefx
t

g is a sample of a self-similar pro-
cessX for which all parameters exceptVar(X) andH are
known. Letf(�;H) denote the power spectrum ofX when
normalized to have variance 1, andI(�) the periodogram
(i.e., power spectrum as estimated using a Fourier transform)
of fx

t

g. Then to estimateH , find bH that minimizes:

g(

b

H) =

Z

�

��

I(�)

f(�;

b

H)

d�: (3)

If fx
t

g has lengthn, then the above integral is readily con-
verted to a discrete summation over the frequencies:

� =

2�

n

;

4�

n

; : : : ;

2(n� 1)�

n

:

The form of this estimator relies on the fact that the peri-
odogram ordinatesI(�) are asymptotically independent and
exponentially distributed with meanf(�;H) (we use this
property below).

Along with the estimator one can compute�2
H

, its vari-
ance [G93, B92a]:

�

2

H

= 4�

"

Z

�

��

�

@ log f(!)

@H

�

2

d!

#

�1

:

When synthesizing self-similar sample paths, we can then
use Whittle's estimator along with�2

H

to determine whether
our bH is acceptably close to theH we intended.

An important point regarding Whittle's estimator bears re-
peating: it isnot atest for whether a sample of a time series is
consistent with long-range dependence (see [B92a] for such
a test). Rather, it is anestimator of H , given the assump-

tion that the power spectrum of the underlying process does

indeed correspond to f(�;H).

2Alternative estimation techniques based on wavelet decompositions are
discussed in [KK93] and [AV97].
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4 The Fourier Transform method

In this section we present a method, based on the Discrete
Time Fourier Transform (DTFT), for synthesizing fractional
Gaussian noise. The strategy behind our method is taken
from [F92], and can be summarized as follows. Suppose
we know f(�;H), the power spectrum of the FGN pro-
cess. Then we can construct a sequence of complex num-
bers z

i

corresponding to this power spectrum;z
i

is in a
sense a frequency-domain sample path. We can then use an
inverse-DTFT to obtainx

i

, the time-domain counterpart to
z

i

. Becausex
i

has (by construction) the power spectrum of
FGN, and because autocorrelation and power spectrum form
a Fourier pair,x

i

is guaranteed to have the autocorrelational
properties of an FGN process, which for many purposes are
its most salient characteristic.

The difficulty with this approach lies in accurately com-
putingf(�;H), and in findingz

i

truly corresponding to the
FGN power spectrum. In particular, there is noa priori rea-
son to assume that the individualz

i

are independent, and
capturing their interdependence may prove difficult. We ad-
dress this difficulty below.

Because the DTFT and its inverse can be rapidly com-
puted using the Fast Fourier Transform (FFT) algorithm, we
refer to our method as an FFT method of synthesizing frac-
tional Gaussian noise. We will not prove that the method
results in true FGN, and, indeed, it does not, due to sev-
eral approximations made when developing the method. But
we will instead argue that the methodeffectively produces
FGN. By this we mean that the sample paths produced by the
method are indistinguishable (using current statistical tests)
from true FGN, so for practical purposes such as simulations
the sample paths can be used in lieu of true FGN with a
high degree of confidence. We refer to this approach as the
“quacks like a duck” approach, from the adage that if an ob-
ject looks like a duck, walks like a duck, and quacks like a
duck, we might as well call it a duck.

In line with this argument, there are four tests that a sam-
ple of purported FGN must pass:

� A variance-time plot should show that, if the sample is
aggregated by a factor ofm (corresponding to Eqn. 2),
then, asymptotically, the variance of the aggregated ver-
sion falls off by a factor ofm��, where� = 2(1�H)

[LTWW94, GW94]. This is a heuristic test in the
sense that the statistical properties of these plots are not
known, but it is valuable because of the accompanying
physical intuition: it indicates how “bursty” the sample
is when viewed over progressively larger time scales.
For this reason, we prefer it to other heuristic tests such
as periodogram plots or R/S plots [LTWW94, GW94].

� Beran's goodness-of-fit test for long-range dependence
[B92a] must indicate that the sample is consistent with
long-range dependence.

� Whittle's estimator (Eqn. 3) must yield an estimatedbH

consistent with the “true” value ofH used when gener-
ating the sample.

� The marginal distribution of the sample must be nor-
mal or nearly normal, since it corresponds to a Gaus-
sian process. This can be tested using the Anderson-
Darling A

2 omnibus test for the normal distribution
[DS86, P94]. Without this test, we must question
whether it is valid to use Whittle's estimator (previous
item).

Both Beran's test and Whittle's estimator (Eqn. 3) are in-
tricately tied to the estimated power spectrum of the process.
For an FGN process, the power spectrum is [B86]:

f(�;H) = A(�;H)

�

j�j

�2H�1

+ B(�;H)

�

(4)

for 0 < H < 1 and�� � � � �, where:

A(�;H) = 2 sin(�H)�(2H + 1)(1� cos�)

B(�;H) =

1

X

j=1

�

(2�j + �)

�2H�1

+ (2�j � �)

�2H�1

�

The main difficulty with using Eqn. 4 to compute the
power spectrum is the vexing infinite summation in the ex-
pression forB(�;H), for which no closed form is known. In
Appendix A we discuss a general method for approximating
such infinite sums, and in particular the approximation we
will use is:

B(�;H) � a

d

1

+ b

d

1

+ a

d

2

+ b

d

2

+ a

d

3

+ b

d

3

+

a

d

0

3

+ b

d

0

3

+ a

d

0

4

+ b

d

0

4

8H�

(5)

where:

d = �2H � 1

d

0

= �2H

a

k

= 2k� + �

b

k

= 2k� � � (6)

We then define~f(�;H) as the approximation of Eqn. 4 ob-
tained by using Eqn. 5 forB(�;H). We subsequently show
that this approximation is good enough to pass the “quacks
like a duck” criterion.

The inputs to our method areH , the desired Hurst param-
eter, andn, the desired (even) number of observations in the
synthesized sample path. Our method proceeds as follows:

1. Construct a sequence of valuesff
1

; : : : ; f

n=2

g, where
f

j

=

~

f(

2�j

n

;H), corresponding to the power spectrum
of an FGN process for frequencies from2�=n to �.

2. “Fuzz” eachff
i

g by multiplying it by an independent
exponential random variable with mean 1. Call the
fuzzed sequencef ^f

i

g.
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We do this because when estimating a process's power
spectrum using the periodogram of a sample, the power
estimated for a given frequency is distributed asymptot-
ically as an independent exponential random variable
with mean equal to the actual power ([B92b, G93]; and
seex3 above).

A question regarding the accuracy of our method in
producing true self-similar sample paths is the degree
to which this asymptotic result can be applied to a fi-
nite power spectrum without compromising the self-
similarity property.

3. Constructfz
1

; : : : ; z

n=2

g, a sequence of complex val-

ues such thatjz
i

j =

q

^

f

i

and the phase ofz
i

is uni-
formly distributed between 0 and2�. The random
phase technique, taken from [S92], preserves the power
spectrum (and thus autocorrelation) corresponding to
f

^

f

i

g, but ensures that different sample paths generated
using the method will be independent. It also makes
the marginal distributions of the final result normal, a
requirement for fractional Gaussian noise, and also for
applying the Whittle procedure using an expression for
f(�;H) corresponding to the FGN power spectrum.

One question here iswhy the phase randomization
leads to what we show in the next section is a sta-
tistically verifiable Gaussian process. (We have also
verified that the absence of phase randomization re-
sults in a non-Gaussian process.) It has been suggested
to us that, since phase randomization makes the dif-
ferent frequency components independent, when the
corresponding sines and cosines are added together dur-
ing the inverse transform operation, the process fits
with a version of the central limit theorem proved by
Lindeberg [F66, p. 262]. This theorem states that
if independent, differently-distributed random variables
are added, the sum converges to a normal distribution,
providing that some requirements are met. The first of
these—that each distribution has zero-mean and finite
variance—are readily met by the corresponding sines
and cosines. The third condition (the “Lindeberg con-
dition”), however, requires that the variances of the dif-
ferent distributions remain small compared to their total
sum, and we have not verified that this condition holds.
If it does, then the theorem explains why randomization
leads to a normal marginal distribution.

4. Constructfz0
0

; : : : ; z

0

n�1

g, an “expanded” version of
fz

1

; : : : ; z

n=2

g:

z

0

j

=

8

<

:

0; if j = 0,
z

j

; if 0 < j � n=2, and
z

n�j

if n=2 < j < n.

wherez
n�j

denotes the complex conjugate ofz
n�j

.
fz

0

j

g retains the power spectrum used in constructing
fz

i

g, but because it is symmetric aboutz0
n=2

, it now

corresponds to the Fourier transform of a real-valued
signal (again, see [S92]).

5. Inverse-Fourier transformfz0
j

g to obtain the approxi-
mate FGN sample pathfx

i

g.

Appendix B gives a program written in theS language for
implementing the above method.

5 Evaluation of the method

We have implemented the method described in the previ-
ous section in theS language (see Appendix B). It is quite
fast: generating a sample path of 32,768 points takes about
11 CPU seconds on a SPARCstation IPX, and 262,144 takes
about 80 seconds. We have found that on numeric-intensive
tasks theS interpreter runs about twice as fast on a SPARC-
station 20 as on the IPX model, so comparing these timings
with those for the RMD method given inx 2 indicates that
our implementation of the FFT method runs more than twice
as fast as the implementation of the RMD method used by
[LEWW95]. It could easily be that the RMD method (or the
FFT method) can be sped up further by some hand-tuning;
however, the general conclusion that the FFT method runs
quite quickly and is comparable in efficiency with the RMD
method seems clear.

We then assessed how well samples produced by the
method match what we would expect for FGN. For each of
H = 0:50; 0:55;. . .; 0:90; 0:95 we generated ten samples of
32,768 points each, corresponding to different random seeds.
We then applied the four tests mentioned above: variance-
time plot, Beran's goodness of fit test, Whittle's estimator,
and Anderson-Darling for normal marginal distribution.

H

b

H Range Beran Normal V-T Plot

.50 .499-.505
p p p

.55 .547-.556
p p p

.60 .591-.606
p p p

.65 .647-.659
p p p

.70 .693-.708
p p p

.75 .745-.754
p p

sometimes lowy

.80 .794-.806
p p

sometimes lowy

.85 .842-.855
p p

usually lowy

.90 .895-.904
p

No� usually lowy

.95 .943-.959
p

No� always lowy

Table 1: Evaluation of Synthesized Fractional Gaussian
Noise.

Table 1 summarizes the results of the tests. For each “true”
value ofH , the second column gives the range over the ten
seeds of thebH estimate ofH produced by using the Whittle
procedure. As noted inx 3, in addition to bH , the Whittle
procedure also produces a standard deviation�

H

associated
with the estimate. For our tests,�

H

was always about 0.004.
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We were thus able to test eachbH to see whether it lay within
two standard deviations of the actual value ofH . This test
failed four times for the 100 sample paths tested, well within
the margin of error of the Whittle procedure.3 Two of these
instances were forH = 0:60 (one forH = 0:65, one for
H = 0:95). Two failures, each with probabilityp = 0:05,
out of ten samples forH = 0:60, is again within the margin
of error. Thus, as far as Whittle's estimator is concerned,
our simulated data is wholly consistent with FGN with the
desired value ofH .

A second consistency test is to check for any trends ofb

H

being greater thanH or less thanH more often than should
occur by chance. Of the 100 samples, 55 hadbH < H and
45 had bH > H . This variation lies within the margin of
error for the null hypothesis thatbH is equally likely to be
larger or smaller thanH (i.e., no trend). When looking at
fixed values ofH , it takes bH < H or bH > H occurring
9 or 10 times for the trend to be significant (i.e., less than 5%
chance of occurring by chance). This happened three times:
for H = 0:5, 9 of the 10 samples hadbH > 0:5; for H = 0:7

andH = 0:75, 9 out of 10 samples hadbH < H . Thus
for H = 0:5 our method appears biased toward values ofb

H

that are slightly too high and forH = 0:7 andH = 0:75

they are slightly too low (though in all cases still within two
standard deviations). We note that the failure forH = 0:5 is
not as severe as in the case for the RMD method, since, for
our method, in all cases the value ofbH is comfortably within
two standard deviations ofH , while for the RMD method the
authors report the values ofH are barely within two standard
deviations. But it remains a deficiency.

Given that the RMD method has a bias towardsH = 0:75,
we also checked for separate trends for0:55 � H � 0:65

(skippingH = 0:7 due to the bias already noted above) and
0:80 � H � 0:95. In the first case, 14 out of the 30
samples hadbH > H and, in the second case, 20 out of
the 40. Both of these are within the expected range. Thus
our method does not appear to suffer from the same bias.

We then applied Beran's goodness-of-fit test, for which
two of the samples paths failed at the 5% level, again within
the margin of error.

ForH < 0:85, all or all but one of the sample paths passed
theA2 test at the 5% level for normality of the marginal dis-
tribution. That they passed means that they exhibit a striking
degree of normality, as the test is very sensitive to minor de-
viations from normality (particularly in the tails), especially
for large datasets. ForH = 0:85, two of the sample paths
failed and eight passed, still within the margin of error. For

3Here and in the sequel, when we discuss a finding ofk events out of
n as being within the margin of error, we mean the following. Assume
thek events are independent and each has probabilityp, wherep depends
on the exact form of the event (in this case,p = 0:05 since the event is
“more than two standard deviations from the mean”). Then theprobability
that we would observe at leastk such events,if indeed they are spurious, is
given by the binomial distribution for the given values ofn, k, andp. If this
probability is greater than 5%, then the finding ofk events might reasonably
have occurred simply due to chance, and we declare the findingwithin the
margin of error.
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Figure 1: Q-Q Plot for Marginal Distribution of Synthesized
Fractional Gaussian Noise,H = 0:95.

H � 0:9 the sample paths failed theA2 test, but they still
“look” strongly normal. For example, as shown in Figure 1,
a Q-Q plot forH = 0:95 is indistinguishable to the eye from
that of a normal distribution.
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Figure 2: Variance-Time Plot for Synthesized Fractional
Gaussian Noise.

The final evaluation we made was to construct variance-
time plots to see whether when the sample path was aggre-
gated by a factor ofm its variance fell off by the expected
factor ofm�2(1�H). Figure 2 shows such plots for one sam-
ple each ofH = 0:5; 0:6; 0:7; 0:8; 0:9. The x-axis gives
log

10

of the aggregation levelm, and they-axis giveslog
10

of the (normalized) variance of the aggregated process.
The lines drawn from the origin correspond

to y = x

�2(1�H) (after alog
10

transformation), so we ex-
pect that for a true self-similar process the variance-time plot
for a given value ofH will coincide with the corresponding
line. We found this to be the case forH � 0:7, but that
for H � 0:75, the variance-time plot was sometimes, usu-
ally, or always lower (i.e., steeper-sloped) than expected, as
indicated in Table 1. However, (1) the variance-time plot is
based on an asymptotic relationship [C84], so this anomaly
may simply be due to stronger long-range dependence (i.e.,

6



higher values ofH) requiring longer sample paths to exhibit
their true dependence; and (2) the authors of [TTW95] found
that estimatingH from a variance-time plot introduces a bias
towards underestimation ofH , which may account for the
discrepency. Because of this latter consideration, we marked
the underestimates withy's to indicate that the problem may
lie in the estimation itself, and not in the synthesis.

6 Application to network simulations

We have shown in the previous section that in general FGN
sample paths synthesized using the FFT method pass the
“quacks like a duck” criterion, in that existing statistical tools
are unable to detect that the sample paths were generated us-
ing an approximate method. This finding suggests that the
method can be profitably used in networking simulations.

Networking researchers wishing to simulate long-range
dependent traffic face a number of issues. We comment
here on some of those issues and how they relate to the FFT
method.

One of the most important questions is: even if network
traffic is long-range dependent, are self-similar models suf-
ficient for capturing the long-range dependence, and if so,
is the fractional Gaussian noise model an appropriate self-
similar model? One way of demonstrating that self-similar
models are appropriate is to show that the characteristics of
network traffic match one of the theoretical models leading
to self-similarity. For example, one could show that net-
work connection characteristics match theM=G=1 queue
or the heavy-tailed on/off models discussed inx 2 (see also
[ENW96] and [WTSW97]). Even without compelling evi-
dence of such a match, self-similar models still remain more
attractive than traditional Poisson-based models of network
arrival processes, since the latter have no long-range depen-
dence whatsoever.

In assessing whether FGN models are appropriate, we
must consider whether network arrival processes appear a
close match to Gaussian processes. One important test in
this regard is whether the marginal distribution of the net-
work arrival process is close to normal, which can be as-
sessed with a Q-Q plot (this is better than using anA

2 test
since, as shown above,A2 can be too sensitive and reject a
very-close-to-normal distribution due to minor noise). We
studied the wide-area link-level traces used in [PF95] to as-
sess the degree to which the associated arrival processes have
normal marginal distributions. (With our coauthor, we ar-
gued in [PF95] that these traces showed clear long-range de-
pendence or at least “large-scale correlations.”) These traces
came from two sites: the Lawrence Berkeley National Lab-
oratory's link to the external Internet (for which we examine
the “PKT-4” trace below), and Digital Equipment Corpora-
tion's external Internet link, which was situated at DEC's
Western Research Laboratory (the “WRL-4” trace below).
The LBNL link represents a medium level of aggregation
(much greater than a few sources, considerably less than a
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Figure 3: Q-Q Plots of Marginal Distribution for PKT-4 Ar-
rivals (top) and Log-transformed (bottom)

backbone), while the DEC link represents a fairly high level
of aggregation.

For the LBNL link, we found that none of the arrival
processes drawn from the traces had a marginal distribu-
tion close to normal when viewed on time scales less than
10 seconds. (Here the arrival processes are packets arrivals
per fixed-duration bin.)

The authors of [LTWW94] address this problem and sug-
gest applying a logarithmic transformation to the arrival pro-
cess in an effort to pull the tails of the distribution closer
to normality. We found this transformation effective, re-
sulting in close-to-normal marginal distributions when view-
ing the arrival processes at time scales of 1 second, and in
some cases 0.1 seconds. Figure 3 illustrates the effect of the
transformation. The data in the plots is taken from [PF95]'s
PKT-4 trace, which captured 1.3 million wide-area packets
(one hour's worth) of all protocols. Here we have binned the
trace into 1-second bins and taken the bin counts as a sample
of the WAN packet arrival process. The top plot shows a Q-Q
plot of the arrival process sample against quantiles of a nor-
mal distribution. The line corresponds to the plot we would
expect if the sample was drawn from a normal distribution
with the same mean and variance. The bottom plot shows the
same sort of Q-Q plot after applying alog

2

-transformation to
the bin counts. The fit is clearly much better, though still not
exact in the tails.

The need for such a transformation suggests that, for the
regime of medium levels of aggregation, either there isnot an
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Figure 4: Q-Q Plots of Marginal Distribution for WRL-4 Ar-
rivals (top) and Log-transformed (bottom)

underlying physical process that gives a fundamental FGN
characteristic to network arrivals, or that, if there is such a
process, it is only a partial description and must be supple-
mented with additional elements (such as short-range depen-
dence) to explain the departure from normality. This does not
rule out, however, that FGN might serve as a goodapprox-

imation for (log-transformed) network processes, or that it
might still serve as a close match to more highly-aggregated
traffic (next paragraph). And, of course, there might be phys-
ical processes leading directly to other self-similar models.

On the other hand, for the more highly-aggregated DEC
link, we find that the marginal distribution is much closer to
normal, even without using a log-transform. Figure 4 shows
the same pair of plots for the WRL-4 dataset, which captured
5.6 million wide-area packets, more than four times as many
as in PKT-4. Clearly, the match to a normal marginal distri-
bution is quite good, and is actually better than that obtained
after a log-transform. This suggests that for high levels of
aggregation, the normality requirement does not present any
difficulty to using FGN to model packet arrivals. Further-
more, [LTWW94] found that the fit of self-similar models
becomes progressively better (less asymptotic and more ex-
act) for higher levels of traffic aggregation, suggesting that
the log-transform required in Figure 3 is an indication that
PKT-4 is less exactly self-similar than WRL-4.

Let us now consider the general question of transform-
ing FGN sample paths generated by the FFT (or another)
method. For FGN, the mean, variance, and Hurst parameter

are all independent parameters. Thus, an FGN sample path
can be scaled by a linear transformation (which preservesH)
to achieve any desired mean and variance. In particular, the
FFT method as given in Appendix B generates a zero-mean
sample path, so it is replete with negative values, which are
non-physical for arrival processes. If, however, one has a
desired mean and variance in mind when generating the traf-
fic, then applying the corresponding transformation should
result in all or almost all positive values. If it does not, then
the validity of modeling the arrival process using a Gaussian
process with the given mean and variance becomes suspect.

The need in some of the situations discussed above for a
logarithmic transformation, however, suggests an alternate
way for converting the FGN sample path to a representation
consistent with a physical process, namely the transforma-
tion y

i

= 2

x

i . This transformation both preservesH [G93]
(so the transformed process remains long-range dependent)
and results in a physical arrival process that, as shown above,
in some cases more closely matches measured (wide-area)
network traffic. fy

i

g does not, however, correspond to an
FGN sample path anymore, and this must be kept in mind
when analyzing its properties.4

A second issue is that often what is of interest for network
simulations are interarrival times (for example, for queueing
studies) and not arrival counts per bin. Since it is the arrival
process that is long-range dependent and not the interarrival
process, we need some way to convert arrival counts to in-
terarrivals. First one converts the real-valued arrival process
to integer counts, and then one must convert the given num-
ber of arrivals per bin into interarrivals occurring during that
bin. Simple ways of distributing the arrivals over the bin
are to distribute them uniformly (corresponding to exponen-
tial interarrivals) or with constant interarrivals [LEWW95].
One would expect these methods, however, to underestimate
burstiness [PF95].

Another option is to use the RMD method to interpolate
further self-similar sample paths within each bin. This ap-
proach makes sense if the number of arrivals is large. At
some point, however, the number of arrivals is small enough
that further interpolation becomes problematic, and perhaps
incorrect inasmuch as the arrival process at such fine time
scales may no longer be self-similar [LEWW95].

An alternative approach relates to a third issue, which is
the presence of short-range dependence (SRD) in network
arrival processes. In general, on small (e.g., 0.01 seconds)
time scales SRD can dominate network arrivals, leading to
traffic which is only asymptotically self-similar [LTWW94].
While the presence of LRD can have a dramatic effect on
queueing, SRD can also significantly effect queueing behav-
ior [ENW96]. The need to incorporate SRD into simulated
network traffic suggests that one should look for ways of dis-

4The logarithmic transformation brings about another problem: sincey
i

is always positive, it is impossible to generate an arrival count of zero. As
discussed shortly, however, one must convert the real-valued sample path to
an integer count anyway; incorporating rounding into this conversion will
provide a mechanism for generating zero counts.
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tributing individual arrivals within a bin in such a way as
to introduce SRD. For example, perhaps ARMA techniques
can be applied on a bin-by-bin basis (perhaps with matching
across bin boundaries) to introduce the desired level of SRD.

Better still would be a method of synthesizing self-similar
sample paths that consistently integrates the presence of
LRD and SRD. One such method, based on the Haar wavelet
transform, is discussed by Kaplan and Kuo in [KK94]. At
the moment their method is somewhat limited due to diffi-
culties in parameter estimation, but still appears promising.
In general, we believe wavelet methods hold great promise
for characterizing and synthesizing self-similar traffic, due
to the natural match between the notion of “scaling” in a
wavelet transform and the notion of “invariance across dif-
ferent scales” in a self-similar process. Furthermore, wavelet
transforms and inverse transforms can be done inO(n) time,
while the FFT method is limited toO(n logn), so in princi-
ple wavelet methods should also prove more efficient. See
[AV97] for an extensive discussion of using wavelet tech-
niques for analyzing LRD network traffic.

7 Application to fast Whittle estima-

tion

In this section we turn to the problem of efficiently estimat-
ing b

H for a given sample. While the form of Whittle's esti-
mator given in Eqn. 3 is fairly simple, it involves evaluating
f(�;H) (Eqn. 4), the power spectrum of the self-similar pro-
cess from which the sample is presumed to have been drawn.
As discussed above, for FGN exact evaluation off(�;H) is
an open problem, and instead one must turn to estimates. Our
S program for doing Whittle estimation (written by J. Beran)
addresses this problem by summing the first 200 terms of the
summation expression forB(�;H).

As shown in Appendix A, this is a good approximation,
but it is slow to compute. Given that Eqn. 5 appears to be
a good approximation toB(�;H), at least for synthesizing
FGN, we might then wonder whether the corresponding ap-
proximation tof(�;H) might be useful for computing Whit-
tle's estimator more quickly.

To explore this possibility, we devised a modified Whit-
tle's estimator (the estimates of which we will labelbH) and
ran it against the sample paths evaluated in the previous sec-
tion. In all cases,bH was within �

H

of bH , with a maxi-
mum difference between the two of 0.0028. Furthermore,
we computedbH and bH to a tolerance of 0.001. That is,
the minimization corresponding to Eqn. 3 stopped when it
found b

H

1

and bH
2

bracketing a local minimum for which
j

b

H

2

�

b

H

1

j � 0:001. Fully 75 of the 100 samples had
j

b

H�

b

H j < 0:001, indicating a high degree of accuracy. In 60
of the 100 samples,bH was greater thanbH, indicating a clear
(but slight) bias towards higher values ofbH. But for those
samples withj bH �

b

H j � 0:001, 14 of the 25 hadbH greater
than bH , well within the margin of error and suggesting that

the slight bias might be of no practical consequence.
While the differences betweenbH and bH are slight, the

differences in running time are dramatic: using the original
form of Whittle's estimator required on average about 6,500
CPU seconds on a SPARCstation IPX, while the modified es-
timator required about 120 CPU seconds, a savings of over
a factor of 50. We conclude that using Eqn. 5 to approxi-
mate the power spectrum buys significant performance gains
at only a slight cost of accuracy.

Finally, we note that we have not tested the agreement be-
tween bH and bH for tolerances less than 0.001; it is possible
that the agreement continues to be good, or that at finer levels
limitations in the approximation of the power spectrum result
in slightly inaccurate values ofbH. Even in the latter case, one
can still speed up computation ofbH using our approxima-
tion as follows: perform the initial part of the minimization
in Eqn. 3 usingbH, to a tolerance of 0.005 (say); at that point
switch to the more accurate but computationally expensive
b

H method, until achieving the desired accuracy. Thus, the
approximation serves to rapidly find “the right ballpark,” af-
ter which additional precision is bought with more lengthy
and exact computation.

8 Summary and future work

One of the general problems network researchers face is how
to synthesize “authentic” traffic for use in simulations and
analysis. We have presented the principles behind an FFT-
based method for synthesizing approximate sample paths
corresponding to fractional Gaussian noise (FGN), the sim-
plest self-similar process. We then showed that an imple-
mentation of the method is both as fast or faster than ex-
isting techniques and generates sample paths that in most
regards are indistinguishable using current statistical tech-
niques from true FGN. In particular, the FFT method appears
to suffer from less bias than the Random Midpoint Displace-
ment method, the other fast algorithm of which we are aware,
though it is not completely free of bias.

Furthermore, the approximation used by the FFT method
also has applications to fast evaluation of Whittle's estima-
tor. We found that speedups by a factor of 50 were possi-
ble with only a slight loss of accuracy. Results outlined in
Appendix A suggest that even this slight inaccuracy can be
avoided by minor adjustments to the approximation, though
we have not fully evaluated this possibility.

Section 6 raised three key issues that must be addressed
when using synthesized traces for network simulations: the
need to match the marginal distribution of actual traffic; the
need to convert arrival counts into interarrival times; and the
problem of incorporating short-range dependence into the
synthesized trace. In the remainder of the section we expand
on these points and related, open questions.

Suppose a group of researchers wish to perform simula-
tion studies of network traffic, and that they accept the FFT
method as an adequate mechanism for generating fractional

9



Gaussian noise. We believe that, in addition to the issues
discussed inx 6, they need to address at least the following
points:

� To what degree are they confident that the network pro-
cess of interest is long-range dependent, and not sim-
ply non-stationary? This question is crucial because
non-stationarity can exhibit itself in ways that look re-
markably similar to long-range dependence (in partic-
ular, what appears to be strong low-frequency compo-
nents, which can lead to Whittle estimates ofH > 0:5,
and variance-time plots with shallow slopes). The au-
thors of [LTWW94] took considerable care to rule out
non-stationarity effects as an explanation of long-range
dependence in LAN traffic. Reference [PF95] presents
an argument that time scales of 1-2 hours are station-
ary with regard to TCP connection arrivals, but further
work is needed to convincingly rule out non-stationarity
influences in WAN traffic on those time scales.

A basic test for stationarity here is to split the dataset
into two halves, and estimateH independently for each
half. The two estimates should, within their margins
of error, yield comparable values; otherwise, it appears
thatH is varying with time, and hence that the underly-
ing process is non-stationary.

� Is long-range dependence a property of the traffic
sources, or only of the traffic as seen aggregated upon
the network link? The difficulty here is that differ-
ent traffic sourcesinteract with one another, essen-
tially competing for a fixed resource, namely the link
bandwidth. This is particularly true for TCP traffic,
the dominant source of wide-area traffic today, due to
TCP's adaptive window mechanism. These interactions
will lengthen the “on” times during which connections
transmit traffic, while also tending to homogenize the
rates at which they transmit. Both of these effects will
strengthen the match between network traffic and the
heavy-tailed on/off model for generating self-similar
traffic discussed inx 2.

Thus one must use caution in assuming that traffic
sources are well modeled using self-similar processes.
Similarly, in some situations a traffic “source” might
actually be traffic aggregated on a previous, upstream
link. It may be tempting to model the upstream traf-
fic as a self-similar source; but because the traffic will
be further distorted by network dynamics, such a model
may prove incomplete even if it is known that the traf-
fic ultimately measured on the upstream link is indeed
self-similar.

Furthermore, even if a traffic source is self-similar, and
the resulting link-level traffic is self-similar, it is possi-
ble that the relationship between the two is complex:
network dynamics may significantly alter the mean,
variance, Hurst parameter, and character of short-range

dependence in the source. That is, theentire process
might alter.

Both the [LTWW94] and the [PF95] studies analyze
network traffic at the link level, and thus do not pro-
vide strong guidance for how sources should be mod-
eled. The authors of [GW94], on the other hand, show
that video sourcesshould be modeled as self-similar,
and [WTSW97] presents compelling evidence that Eth-
ernet sources behave in a heavy-tailed on/off fashion,
which they prove yields asymptotic self-similarity when
aggregated.

No studies have yet been made on the effects of net-
work dynamics on distorting traffic; such a study holds
great promise for deepening our understanding of net-
works. A good starting point might be to analyze a traf-
fic trace to characterize packet loss patterns and the re-
sulting TCP adaptations. If, for example, TCP traffic
is shaped more by the (fixed) receiver window than the
(adaptive) congestion avoidance mechanisms, then it is
likely that network dynamics play a minor role in con-
tributing to self-similarity. But if, on the contrary, TCP
traffic (especially large transfers, as they contribute the
most to long-range dependence) is primarily shaped by
congestion avoidance, then it is vital to include TCP
effects when simulating networks. We show in [P97]
that packet loss is not a rare event in the Internet, so we
would expect that often TCP transfers are indeed oper-
ating in the congestion avoidance regime.

� Related to the previous point, if the goal of synthe-
size self-similar traffic is to use it asbackground traffic

against which, e.g., a new transport protocol is assessed,
then one must recognize that due to network dynamics it
may not be possible to cleanly separate the background
traffic from the introduced traffic. For example, suppose
the introduced traffic attempts to aggressively use spare
bandwidth as it becomes available. It may be quite un-
realistic to assume that the rate of background traffic is
not affected by the resulting changes in available band-
width.

How to incorporate such changes into the background
traffic remains an open problem (that is, can the FFT or
RMD methods be modified to extrapolate altered traffic
after a change is introduced to the traffic parameters?).
Indeed, as related in the previous item, even understand-
ing what changes need to be incorporated, e.g., mod-
ified mean, variance, and Hurst parameter, is an open
problem.

� It is crucial to understand the relative importance of
an arrival process's short-range dependence versus its
long-range dependence. There is no fixed balance be-
tween the two; for some situations SRD may dominate,
for others LRD, and for still others each might con-
tribute different important effects. For example, when

10



performing a queueing simulation using a finite queue
buffer, the strength of SRD in the packet arrivals might
play a significant role in the delay distribution, while the
strength of LRD greatly influences the packet drop pat-
terns. The authors of [GW94] emphasize this point in
a queueing simulation of video traffic by showing that
the value of the Hurst parameterH is necessary but not
sufficient for characterizing the burstiness of the video
source.

In summary, we view the FFT method not as a final answer
to simulating self-similarity in network traffic, but simply as
a promising starting point.
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A Approximating infinite sums

Since no closed form is known for the expressionB(�;H)

in Eqn. 4, for our method we must instead find a suitable
approximation.

Supposef(x) is a monotone decreasing function for
which

P

1

i=1

f

i

converges. Then, provided the integrals ex-
ist, we have:

Z

1

1

f(x) dx �

1

X

i=1

f

i

�

Z

1

0

f(x) dx:

Without additional information regarding the behavior of
f(x), we might then use the midpoint of these integrals as
an approximation for the infinite sum, since in a mean-error
squared sense it is likely to be a better approximation than
either the upper or the lower bound:

1

X

i=1

f

i

�

R

1

0

f(x) dx+

R

1

1

f(x) dx

2

�

1

2

Z

1

0

f(x) dx+

Z

1

1

f(x) dx:

We can further improve this approximation by explicitly re-
tainingk of the first terms of the summation:

1

X

i=1

f

i

�

k

X

j=1

f

j

+

1

2

Z

k+1

k

f(x) dx+

Z

1

k+1

f(x) dx: (7)

With this addition, the approximation can be made arbitrarily
close by increasingk.

Applying Eqn. 7 to Eqn. 4, we then have:

e

B

k

(�;H) =

k

X

j=1

(a

d

j

+ b

d

j

) +

a

d

0

k

+ a

d

0

k+1

+ b

d

0

k

+ b

d

0

k+1

8�H

whered, d0, a
k

, b
k

, and the like are defined as in Eqn. 6.
Computationally, a great attraction of this expression is that
for a givenk the summation can be “unrolled” and the re-
sulting expression is then amenable to fast evaluation for a
vector of different�'s. Since theS language is vector-based,
this means (even on a uniprocessor) it can efficiently evaluate
e

B

k

(�;H).
The one remaining question when using this approxima-

tion is what value ofk to use for the best trade-off between
accuracy and computational speed. We first performed the
evaluations discussed inx 5 for k = 0 andk = 1, but found
that the resultingbH estimates were either always lower than
the target value (k = 0), or nearly always (k = 1). We
skippedk = 2 since the assessment procedure is lengthy (re-
quiring several CPU days for the Whittle estimations), and
found k = 3 provided a satisfactory approximation. It is
possible thatk = 2 also performs satisfactorily, and it would
run a bit faster.

One might also wonder about using the asymptotic
form for the power spectrum given in [ST94], which is
h(�) � k�

1�2H . This was the first form we tried, but,
like k = 0, it resulted in bH estimates that were always too
low.

We now make a brief assessment of the error introduced
by using eB

3

(�;H) as an approximation forB(�;H). For
different values of� andH we computed “near exact” val-
ues forB(�;H) by summing the first 10,000 terms of the
summation in Eqn. 4. We then compared these values to
those obtained usingeB

3

(�;H), and also when summing only
the first 200 terms (which is what our Whittle estimation
procedure uses). We refer to this latter approximation as
B

200

(�;H).
Figure 5 shows the relative error when using theeB

3

(�;H)

approximation. Here the relative error is:

rel. error=
e

B

3

(�;H)� B(�;H)

B(�;H)

:

We see that in all cases the error is less than 0.5%. We also
note thateB

3

(�;H) is always larger thanB(�;H), suggesting
that perhaps a simple adjustment can be made to the approx-
imation to reduce much of the error; we return to this point
below.
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Figure 6 shows a similar plot comparing summing 200
terms with summing 10,000 terms. We see that (as ex-
pected), summing only 200 terms consistently results in
underestimation ofB(�;H), perforce since the summation
terms are all positive. In general, using 200 terms instead of
10,000 results in little error, except for small values ofH .
Since in this caseB

200

(�;H) underestimates B(�;H) and
e

B

3

(�;H) overestimate B(�;H), the error between the two
approximations is particularly large forH = 0:5, ranging
as high as 0.8%. This discrepancy may account for some
of the purported bias towards slightly high values ofbH for
H = 0:5, as reported inx 5.

As noted above, the fact thateB
3

(�;H) is consistently
larger thanB(�;H) suggests that some simple fitting might
improve the approximation. We first fitted the mean absolute
error eB

3

(�;H)�B(�;H) as a function ofH (since the abso-
lute error is relatively invariant with respect to�), resulting
in the following correction:

e

B

3

(�;H)

0

=

e

B

3

(�;H) � 2

�7:65H�7:4

:

With this change, the relative error dropped from a maximum
of 0.5% (as shown in Figure 5) to 0.025%, an improvement

of a factor of 20. The positive bias has also disappeared, of
course. We then added a correction for linear variation in�:

e

B

3

(�;H)

00

= [k

1

+ k

2

�]

e

B

3

(�;H)

0

;

where:

k

1

= 1:0002

k

2

= �0:000134:

Doing so further reduces the error to 0.0075%, a factor of 3
improvement. This is within a factor of 2.5 of the relative
error forB

200

(�;H) for H = 0:9 (see Figure 6), and signif-
icantly better thanB

200

(�;H) for H � 0:7, suggesting that
e

B

3

(�;H)

00 could be profitably used for fast, accurate Whit-
tle estimation. To this end, further evaluation ofeB

3

(�;H)

00

remains to be done.

B A program for generating self-

similar traces

Here is a set of S functions for implementing the method
described in this paper. This program and a translation of it
into C (written by Christian Schuler) are available from the
Internet Traffic Archive:http://www.acm.org/sigcomm/ITA/

ss.gen.fourier <-

function(n, H)

{

# Returns a Fourier-generated sample path

# of a "self similar" process, consisting

# of n points and Hurst parameter H

# (n should be even).

n <- n/2

lambda <- ((1:n)*pi)/n

# Approximate ideal power spectrum.

f <- FGN.spectrum(lambda, H)

# Adjust for estimating power

# spectrum via periodogram.

f <- f * rexp(n)

# Construct corresponding complex

# numbers with random phase.

z <- complex(modulus = sqrt(f),

argument = 2*pi*runif(n))

# Last element should have zero phase.

z[n] <- abs(z[n])

# Expand z to correspond to a Fourier

# transform of a real-valued signal.

zprime <- c(0, z, Conj(rev(z)[-1]))
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# Inverse FFT gives sample path.

Re(fft(zprime, inv=T))

}

FGN.spectrum <- function(lambda, H)

{

# Returns an approximation of the power

# spectrum for fractional Gaussian noise

# at the given frequencies lambda and

# the given Hurst parameter H.

2 * sin(pi*H) * gamma(2*H+1) *

(1-cos(lambda)) *

(lambdaˆ(-2*H-1) +

FGN.B.est(lambda, H))

}

FGN.B.est <- function(lambda, H)

{

# Returns the estimate for

# B(lambda,H).

d <- -2*H - 1

dprime <- -2*H

a <- function(lambda,k) 2*k*pi+lambda

b <- function(lambda,k) 2*k*pi-lambda

a1 <- a(lambda,1)

b1 <- b(lambda,1)

a2 <- a(lambda,2)

b2 <- b(lambda,2)

a3 <- a(lambda,3)

b3 <- b(lambda,3)

a4 <- a(lambda,4)

b4 <- b(lambda,4)

a1ˆd+b1ˆd+a2ˆd+b2ˆd+a3ˆd+b3ˆd +

(a3ˆdprime+b3ˆdprime +

a4ˆdprime+b4ˆ dprime)/(8*pi*H)

}
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