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Abstract
Parsing Expression Grammars (PEGs) define languages by
specifying a recursive-descent parser that recognises them.
The PEG formalism exhibits desirable properties, such as
closure under composition, built-in disambiguation, unifica-
tion of syntactic and lexical concerns, and closely matching
programmer intuition. Unfortunately, state of the art PEG
parsers struggle with left-recursive grammar rules, whichare
not supported by the original definition of the formalism and
can lead to infinite recursion under naive implementations.
Likewise, support for associativity and explicit precedence
is spotty. To remedy these issues, we introduce Autumn, a
general purpose PEG library that supports left-recursion,left
and right associativity and precedence rules, and does so ef-
ficiently. Furthermore, we identify infix and postfix opera-
tors as a major source of inefficiency in left-recursive PEG
parsers and show how to tackle this problem. We also ex-
plore the extensibility of the PEG paradigm by showing how
one can easily introduce new parsing operators and how our
parser accommodates custom memoization and error han-
dling strategies. We compare our parser to both state of the
art and battle-tested PEG and CFG parsers, such as Rats!,
Parboiled and ANTLR.
Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Parsing
Keywords parsing expression grammar, parsing,
left-recursion, associativity, precedence

1. Introduction
Context Parsing is well studied in computer science.
There is a long history of tools to assist programmers in
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this task. These include parser generators (like the venerable
Yacc) and more recently parser combinator libraries [5].

Most of the work on parsing has been built on top of
Chomsky’s context-free grammars (CFGs). Ford’s parsing
expression grammars (PEGs) [3] are an alternative formal-
ism exhibiting interesting properties. Whereas CFGs use
non-deterministic choice between alternative constructs,
PEGs use prioritized choice. This makes PEGs unambiguous
by construction. This is only one of the manifestations of a
broader philosophical difference between CFGs and PEGs.

CFGs are generative: they describe a language, and the
grammar itself can be used to enumerate the set of sen-
tences belonging to that language. PEGs on the other hand
are recognition-based: they describe a predicate indicating
whether a sentence belongs to a language.

The recognition-based approach is a boon for program-
mers who have to find mistakes in a grammar. It also en-
ables us to add new parsing operators, as we will see in sec-
tion 4. These benefits are due to two PEG characteristics.
(1) The parser implementing a PEG is generally close to the
grammar, making reasoning about the parser’s operations
easier. This characteristic is shared with recursive-descent
CFG parsers. (2)The single parse rule: attempting to match
a parsing expression (i.e. a sub-PEG) at a given input posi-
tion will always yield the same result (success or failure) and
consume the same amount of input. This is not the case for
CFGs. For example, with a PEG, the expression(a∗) will al-
ways greedily consume all thea’s available, whereas a CFG
could consume any number of them, depending on the gram-
mar symbols that follow.

Challenges Yet, problems remain. First is the problem of
left-recursion, an issue which PEGs share with recursive-
descent CFG parsers. This is sometimes singled out as a rea-
son why PEGs are frustrating to use [11]. Solutions that do
support left-recursion do not always let the user choose the
associativity of the parse tree for rules that are both left-and
right-recursive; either because of technical limitations[1] or
by conscious design [10]. We contend that users should be
able to freely choose the associativity they desire.

Whitespace handling is another problem. Traditionally,
PEG parsers do away with the distinction between lexing
and parsing. This alleviates some issues with traditional lex-
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ing: different parts of the input can now use different lex-
ing schemes, and structure is possible at the lexical level
(e.g. nested comments) [3]. However, it means that whites-
pace handling might now pollute the grammar as well as
the generated syntax tree. Finally, while PEGs make linear-
time parsing possible with full memoization1, there is a fine
balance to be struck between backtracking and memoiza-
tion [2]. Memoization can bring about runtime speedups at
the cost of memory use. Sometimes however, the run time
overhead of memoization nullifies any gains it might bring.

Other problems plague parsing tools of all denomina-
tions. While solutions exist, they rarely coexist in a single
tool. Error reporting tends to be poor, and is not able to ex-
ploit knowledge held by users about the structure of their
grammars. Syntax trees often consist of either a full parse
tree that closely follows the structure of the grammar, or
data structures built on the fly by user-supplied code (seman-
tic actions). Both approaches are flawed: a full parse tree is
too noisy as it captures syntactic elements with no seman-
tic meaning, while tangling grammatical constructs and se-
mantic actions (i.e. code) produces bloated and hard-to-read
grammars. Generating trees from declarative grammar anno-
tations is possible, but infrequent.
Solution To tackle these issues, we introduce a new pars-
ing library called Autumn. Autumn implements a generic
PEG parser with selective memoization. It supports left-
recursion (including indirect and hidden left-recursion)and
both types of associativity. It also features a new construct
called expression cluster. Expression clusters enable the
aforementioned features to work faster in parts of gram-
mars dedicated to postfix and infix expressions. Autumn
also tackles, to some extent, the problems of whitespace
handling, error reporting, and syntax tree creation. By alle-
viating real and significant pain points with PEG parsing,
Autumn makes PEG parsing more practical.
Structure This paper starts by describing the issues that
occur when using left-recursion to define the syntax of in-
fix and postfix binary operators (section 2). Next we will
describe our solutions to these issues (section 3). Then, we
show the freedom afforded by the PEG paradigm regarding
extensibility and lay down our understanding of how this
paradigm may be extended further (section 4). Finally, we
compare Autumn to other PEG and CFG parsers (section 5)
and review related work (section 6) before concluding. Be-
cause of space restrictions, we do not review the basics of
the PEG formalism, but refer to Ford’s original paper [3].

2. Problems Caused by Binary Operators
This section explains why infix and postfix binary2 opera-
tors are a significant pain point in terms of expressivity, per-

1 In this context, memoization means caching the result of theinvocation of
a parsing expression at a given position.
2 Binary should be understood broadly here:n-ary infix operators (such
as the ternary conditional operator) can be modelled in terms of binary
operators.

formance, and syntax tree construction. Even more so with
PEGs, due to their backtracking nature and poor handling
of left-recursion. These issues motivate many of the features
supported by our parser library. Our running example is a
minimalistic arithmetic language with addition, subtraction,
multiplication and division operating on single-digit num-
bers. Table 1 shows four PEGs that recognise this language,
albeit with different associativity. They all respect the usual
arithmetic operator precedence. Grammars (a), (b) and (c)
are classical PEGs, whose specificities we now examine.
Grammar (d) exhibits our ownexpression clusters and repre-
sents our solution to the problems presented in this section.
No support for left-recursion. The recursive-descent na-
ture of PEGs means that most PEG parsers cannot support
all forms of left-recursion, including indirect and hiddenleft
recursion.3 Left-recursion is direct when a rule designates
a sequence of which the first element is a recursive refer-
ence, or when a rule designates a choice which has such a
sequence as alternate. The reason this type of recursion is
singled out is that it is easy to transform into a non-left-
recursive form. Left-recursion is hidden when it might or
might not occur depending on another parsing expression.
For instance,X = Y ? X can result in hidden left-recursion
becauseY ? might succeed consuming no input.

PEG parsers that do not support left-recursion can only
handle grammars (a) and (b). These parsers are unable to
produce a left-associative parse of the input. Some tools
can handle direct left-recursive rules by rewriting them to
the idiomatic (b) form and re-ordering their parse tree to
simulate a left-associative parse [4, 9].

We argue it is necessary to support indirect and hidden
left-recursion, so that the grammar author is able to organise
his grammar as he sees fit. Autumn supports left-recursion
natively, as will be described in section 3. Using expression
clusters, the associativity for operators that are both left-
and right-recursive can be selected explicitly by using the
@left recur annotation (as shown in grammar (d)). Right-
associativity is the default, so no annotations are required in
that case.
Performance issues in non-memoizing parsers. Gram-
mar (a) is parsed inefficiently by non-memoizing parsers.
Consider a grammar for arithmetic with L levels of prece-
dence and P operators. In our example,L = P = 2. This
grammar will parse a single number inO((P + 1)L) ex-
pression invocations (i.e. attempts to match an expression).
For the Java language this adds up to thousands of invoca-
tions to parse a single number. The complexity is somewhat
amortized for longer arithmetic expressions, but the cost re-
mains prohibitively high. Memoizing all rules in the gram-
mar makes the complexityO(PL), but this coarse-grained
solution might slow things down because of the inherent
memoization overhead: cache lookups can be expensive [2].

3 To the best of our knowledge, Autumn is the only available parser to
support all forms of left-recursion with associativity selection.
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E = S ‘+’ E | S ‘−’ E | S

S = N ‘∗’ S |N ‘/’ S | N

N = [0− 9]

(a) Layered,
right-associative

E = S ( ‘+’ E) ∗ | S ( ‘−’ E) ∗ | S

S = N ( ‘∗’ S) ∗ |N ( ‘/’ S) ∗ | S

N = [0− 9]

(b) Idiomatic

E = E ‘+’ S | E ‘−’ S | S

S = S ‘∗’ N | S ‘/’ N | N

N = [0− 9]

(c) Layered,
left-associative

E = expr

→ E ‘+’ E @+ @left recur

→ E ‘−’ E

→ E ‘∗’ E @+ @left recur

→ E ‘/’ E

→ [0− 9] @+

(d) Autumn expression cluster

Table 1: 4 PEGs describing a minimal arithmetic language.
E stands for Expression, S for Summand and N for Number.
In contrast, parsing a number in grammar (b) is always
O(PL). Nevertheless, grammar (a) still produces a mean-
ingful parse if the operators are right-associative. Not sofor
grammar (b), which flattens the parse into a list of operands.

PEG parsers supporting left-recursion can use grammar
(c), the layered, left-associative variant of grammar (a).Our
own implementation of left-recursion requires breaking left-
recursive cycles by marking at least one expression in the
cycle as left-recursive. This can optionally be automated.
If the rules are marked as left-recursive, using grammar (c)
we will parse a single-digit number inO(PL). If, however,
the cycle breaker elects to mark the sequence expressions
corresponding to each operator (e.g.(E ‘+’ S)) as left-
recursive, then the complexity isO((P + 1)L).

Expression clusters (grammar (d)) do enable parsing in
O(PL) without user intervention or full memoization. This
is most welcome, since the algorithm we use to handle left-
recursion does preclude memoization while parsing a left-
recursive expression.
Implicit precedence. Grammars (a), (b) and (c) encode
precedence by grouping the rules by precedence level: op-
erators inS have more precedence than those inE. We say
such grammars arelayered. We believe that these grammars
are less legible than grammar (d), where precedence is ex-
plicit. In an expression cluster, precedence starts at 0, the
@+ annotation increments the precedence for the alternate
it follows, otherwise precedence remains the same. It is also
easy to insert new operators in expression clusters: simply
insert a new alternate. There is no need to modify any other
parsing expression.4

3. Implementation
This section gives an overview of the implementation of
Autumn, and briefly explains how precedence and left-
recursion handling are implemented.

4 We are talking about grammar evolution here, i.e. editing a grammar.
Grammar composition is not yet supported by the library.

3.1 Overview
Autumn is an open source parsing library written in Java,
available online athttp://github.com/norswap/autumn.

The library’s entry points take a PEG and some text to
parse as input. A PEG can be thought of as a graph of parsing
expressions. For instance a sequence is a node that has edges
towards all parsing expressions in the sequence. The PEG
can be automatically generated from a grammar file, or built
programmatically, in the fashion of parser combinators.

Similarly, parsing can be seen as traversing the parsing
expression graph. The order and number of times the chil-
dren of each node are visited is defined by the node’s pars-
ing expression type. For instance, a sequence will traverse
all its children in order, until one fails; a choice will tra-
verse all its children in order, until one succeeds. This be-
haviour is defined by how the class associated to the pars-
ing expression type implements theparse method of the
ParsingExpression interface. As such, each type of pars-
ing expression has its own mini parsing algorithm.

3.2 Precedence
Implementing precedence is relatively straightforward. First,
we store the current precedence in a global parsing state,
initialized to 0 so that all nodes can be traversed. Next, we
introduce a new type of parsing expression that records the
precedence of another expression. A parsing expression of
this type has the expression to which the precedence must
apply as its only child. Its role is to check if the precedence
of the parsing expression is not lower than the current prece-
dence, failing if it is the case, and, otherwise, to increasethe
current precedence to that of the expression.

Using explicit precedence in PEGs has a notable pitfall.
It precludes memoization over(expression, position) pairs,
because the results become contingent on the precedence
level at the time of invocation. As a workaround, we can
disable memoization for parts of the grammar (the default),
or we can memoize over(expression, position, precedence)
triplets using a custom memoization strategy.

3.3 Left-Recursion and Associativity
To implement left-recursion, we build upon Seaton’s work
on the Katahdin language [8]. He proposes a scheme to han-
dle left-recursion that can accommodate both left- and right-
associativity. In Katahdin, left-recursion is strongly tied to
precedence, much like in our own expression clusters. This
is not a necessity however, and we offer stand-alone forms
of left-recursion and precedence in Autumn too.

Here also, the solution is to introduce a new type of
parsing expression. This new parsing expression has a single
child expression, indicating that this child expression should
be treated as left-recursive. All recursive references must be
made to the new left-recursive expression.

Algorithm 1 presents a simplified version of the parse
method for left-recursive parsing expressions. The algorithm
maintains two global data structures. First, a map from(po-
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sition, expression) pairs to parse results. Second, a set of
blocked parsing expressions, used to avoid right-recursion
in left-associative parses. A parse result represents any data
generated by invoking a parsing expression at an input po-
sition, including the syntax tree constructed and the amount
of input consumed. We call the parse results held in our data
structureseeds [1] because they represent temporary results
that can “grow” in a bottom-up fashion. Note that our global
data structures are “global” (in practice, scoped to the on-
going parse) so that they persist between (recursive) invoca-
tions of the algorithm. Other implementations of theparse

method need not be concerned with them.
Let us first ignore left-associative expressions. When in-

voking a parsing expression at a given position, the algo-
rithm starts by looking for a seed matching the pair, return-
ing it if present. If not, it immediately adds a special seed that
signals failure. We then parse the operand, update the seed,
and repeat until the seed stops growing. The idea is simple:
on the first go, all left-recursion is blocked by the failure
seed, and the result is our base case. Each subsequent parse
allows one additional left-recursion, until we have matched
all the input that could be. For rules that are both left- and
right-recursive, the first left-recursion will cause the right-
recursion to kick in. Because of PEG’s greedy nature, the
right-recursion consumes the rest of the input that can be
matched, leaving nothing for further left-recursions. There-
sult is a right-associative parse.

Things are only slightly different in the left-associative
case. Now the expression is blocked, so it cannot recurse,
except in left position. Our loop still grows the seed, ensur-
ing a left-associative parse.

The algorithm has a few pitfalls. First, it requires memo-
ization to be disabled while the left-recursive expressionis
being parsed. Otherwise, we might memoize a temporary
result. Second, for left-associative expressions, it blocks
all non-left recursion while we only need to block right-
recursion. To enable non-right recursion, our implemen-
tation includes an escape hatch operator that inhibits the
blocked set while its operand is being parsed. This operator
has to be inserted manually.

3.4 Expression Clusters
Expression clusters integrate left-recursion handling with
precedence. As outlined in section 2, this results in a read-
able, easy-to-maintain and performant construct.

An expression cluster is a choice where each alternate
must be annotated with a precedence (recall the @+ anno-
tation from earlier), and can optionally be annotated with an
associativity. Alternates can additionally be marked as left-
associative, right-associativity being the default. All alter-
nates at the same precedence level must share the same as-
sociativity, hence it needs to be mentioned only for the first
alternate.

Like left-recursive and precedence expressions, expres-
sion clusters are a new kind of parsing expression. Algorithm

1 seeds ={}
2 blocked = []
3 parse expr: left-recursive expression at position:
4 if seeds[position] [expr]exists then
5 return seeds[position][expr]

6 else if blockedcontains expr then
7 return failure

8 current = failure
9 seeds[position][expr] = failure

10 if expr is left-associative then
11 blocked.add(expr)

12 repeat
13 result = parse(expr.operand)
14 if resultconsumed more input than currentthen
15 current = result
16 seeds[position][expr] = result

17 else
18 remove seeds[position][expr]
19 if expr is left-associative then
20 blocked.remove(expr)

21 return current

Algorithm 1: Left-recursion and associativity handling.

2 describes theparse method of expression clusters. The
code presents a few key differences with respect to the regu-
lar left-recursion parsing algorithm. We now maintain a map
from cluster expressions to theircurrent precedence. We it-
erate over all the precedence groups in our cluster, in de-
creasing order of precedence. For each group, we verify that
the group’s precedence is not lower than the current prece-
dence. If not, the current precedence is updated to that of the
group. We then iterate over the operators in the group, try-
ing to grow our seed. After growing the seed, we retry all
operators in the groupfrom the beginning. Note that we can
do away with the blocked set: left-associativity is handled
via the precedence check. For left-associative groups, we in-
crement the precedence by one, forbidding recursive entry
in the group. Upon finishing the invocation, we remove the
current precedence mapping only if the invocation was not
recursive: if it was, another invocation is still making useof
the precedence.

4. Customizing Parser Behaviour
4.1 Adding New Parsing Expression Types
The core idea of Autumn is to represent a PEG as a graph
of parsing expressions implementing a uniform interface.
By implementing theParsingExpression interface, users
can create new types of parsing expressions. Many of the
features we will introduce in this section make use of this
capability.
Restrictions The only restriction on custom parsing ex-
pressions isthe single parse rule: invoking an expression at
a given position should always yield the same changes to the
parse state. Custom expressions should follow this rule, and
ensure that they do not cause other expressions to violate it.
This limits the use of global state to influence the behaviour
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1 seeds ={}
2 precedences ={}
3 parse expr:cluster expression at position:
4 if seeds[position] [expr]exists then
5 return seeds[position][expr]

6 current = failure
7 seeds[position][expr] = failure
8 min precedence = precedences[expr] if defined, else 0
9 loop: for groupin expr.groupsdo

10 if group.precedence< min precedencethen
11 break

12 precedences[expr] = group.precedence +
13 group.left associative ? 1 : 0
14 for op in group.opsdo
15 result = parse(op)
16 if resultconsumed more input than currentthen
17 current = result
18 seeds[position][expr] = result
19 goto loop

20 remove seeds[position][expr]
21 if there is no other ongoing invocation of exprthen
22 remove precedences[expr]

23 return current

Algorithm 2: Parsing with expression clusters.

of sub-expressions. Respecting the rule makes memoization
possible and eases reasoning about the grammar.

The rule is not very restrictive, but it does preclude the
user from changing the way other expressions parse. This is
exactly what our left-recursion and cluster operators do, by
blocking recursion. We get away with this by blocking mem-
oization when using left-recursion or precedence. There is
a workaround: use a transformation pass to make modified
copies of sub-expressions. Experimenting with it was not
one of our priorities, as experience shows that super-linear
parse times are rare. In practice, the fact that binary opera-
tors are exponential in the number of operators (while still
linear in the input size) is a much bigger concern, which is
adequately addressed by expression clusters.
Extending The Parse State To be practical, custom pars-
ing expressions may need to define new parsing states, or
to annotate other parsing expressions. We enable this by en-
dowing parsing expressions, parsers and parse states with an
extension object: essentially a fast map that can hold arbi-
trary data. There are also a few hooks to the library’s inter-
nals. Our design objective was to allow most native operators
to be re-implemented as custom expressions. Since many of
our features are implemented as parsing expressions, the re-
sult is quite flexible.

4.2 Grammar Instrumentation
Our library includes facilities to transform the expression
graph before starting the parse. Transformations are speci-
fied by implementing a simple visitor pattern interface. This
can be used in conjunction with new parsing expression
types to instrument grammars. In particular, we successfully

used custom parsing expression types to trace the execution
of the parser and print out debugging information.

We are currently developing a grammar debugger for Au-
tumn and the same principle is used to support breakpoints:
parsing expressions of interest are wrapped in a special pars-
ing expression that checks whether the parse should proceed
or pause while the user inspects the parse state.

Transforming expression graphs is integral to how Au-
tumn works: we use such transformations to resolve recur-
sive reference and break left-recursive cycles in grammars
built from grammar files.

4.3 Customizable Error Handling & Memoization
Whenever an expression fails, Autumn reports this fact to
the configured error handler for the parse. The default error
reporting strategy is to track and report the farthest error
position, along with some contextual information.

Memoization is implemented as a custom parsing expres-
sion taking an expression to memoize as operand. When-
ever the memoization expression is encountered, the current
parse state is passed to the memoization strategy. The default
strategy is to memoize over(expression, position) pairs. Cus-
tom strategies allow using memoization as a bounded cache,
discriminating between expressions, or including additional
parse state in the key.

4.4 Syntax Tree Construction
In Autumn, syntax trees do not mirror the structure of the
grammar. Instead, an expression can becaptured, meaning
that a node with a user-supplied name will be added in
the syntax tree whenever the expression succeeds. Nodes
created while parsing the expression (via captures on sub-
expressions) will become children of the new node. This
effectively elides the syntax tree and even allows for some
nifty tricks, such as flattening sub-trees or unifying multiple
constructs with different syntax. The text matched by an
expression can optionally be recorded. Captures are also
implemented as a custom parsing expression type.

4.5 Whitespace Handling
The parser can be configured with a parsing expression to
be used as whitespace. This whitespace specification is tied
to token parsing expressions, whose foremost effect is to
skip the whitespace that follows the text matched by their
operand. A token also gives semantic meaning: it represents
an indivisible syntactic unit. The error reporting strategy can
use this information to good effect, for instance.

We mentioned earlier that we can record the text matched
by an expression. If this expression references tokens, the
text may contain undesirable trailing whitespace. To avoid
this, we make Autumn keep track of the furthest non-
whitespace position before the current position.

5. Evaluation
In Table 2, we measure the performance of parsing the
source code of the Spring framework (∼ 34 MB of Java
code) and producing matching parse trees. The measure-

Parsing Expression Grammars Made Practical 5 2016/9/20



Parser Time (Single) Time (Iterated) Memory

Autumn 13.17 s 12.66 s 6 154 KB

Mouse 101.43 s 99.93 s 45 952 KB
Parboiled 12.02 s 11.45 s 13 921 KB
Rats! 5.95 s 2.41 s 10 632 KB

ANTLR v4 (Java 7) 4.63 s 2.31 s 44 432 KB

Table 2: Performance comparison of Autumn to other PEG
parsing tools as well as ANTLR. Measurements done over
34MB of Java code.
ments were taken on a 2013 MacBook Pro with a 2.3GHz
Intel Core i7 processor, 4GB of RAM allocated to the Java
heap (Java 8, client VM), and an SSD drive. TheTime (Sin-
gle) column reports the median of 10 task runs in separate
VMs. TheTime (Iterated) column reports the median of 10
task runs inside a single VM, after discarding 10 warm-up
runs. The reported times do not include the VM boot time,
nor the time required to assemble the parser combinators
(when applicable). For all reported times, the average is al-
ways within 0.5s of the median. All files are read directly
from disk. TheMemory column reports the peak memory
footprint, defined as the maximum heap size measured after
a GC activation. The validity of the parse trees was verified
by hand over a sampling of all Java syntactical features.

The evaluated tools areAutumn; Rats! [4], a state of the
art packrat PEG parser generator with many optimizations;
Parboiled, a popular Java/Scala PEG parser combinator li-
brary;Mouse [6], a minimalistic PEG parser generator that
does not allow memoization; and, for comparison,ANTLR
v4 [9] a popular and efficient state of the art CFG parser.

Results show that Autumn’s performance is well within
the order of magnitude of the fastest parsing tools. This
is encouraging, given that we did not dedicate much effort
to optimization yet. Many optimizations could be applied,
including some of those used in Rats! [4]. Each parser was
evaluated with a Java grammar supplied as part of its source
distribution. For Autumn, we generated the Java grammar
by automatically converting the one that was written for
Mouse. We then extracted the expression syntax into a big
expression cluster and added capture annotations. The new
expression cluster made the grammar more readable and is
responsible for a factor 3 speedup of the parse with Autumn
(as compared to Autumn without expression clusters).

6. Related Work
Feature-wise, some works have paved the way for full left-
recursion and precedence handling.OMeta [12] is a tool
for pattern matching over arbitrary data types. It was the
first tool to implement left-recursion for PEGs, albeit allow-
ing only right-associative parses.Katahdin [8] is a language
whose syntax and semantics are mutable at run-time. It pio-
neers some of the techniques we successfully deployed, but
is not a parsing tool per se.IronMeta is a port of OMeta to
C# that supports left-recursion using an algorithm developed
by Medeiros et al. [7]. This algorithm enables left-recursion,

associativity and precedence by compiling parsing expres-
sions to byte code for a custom virtual machine. However,
Iron Meta doesn’t support associativity handling.

7. Conclusion
Left-recursion, precedence and associativity are poorly sup-
ported by PEG parsers. Infix and postfix expressions also
cause performance issues in left-recursion-capable PEG
parsers. To solve these issues, we introduce Autumn, a
parsing library that handles left-recursion, associativity and
precedence in PEGs, and makes it efficient through a con-
struct calledexpression cluster. Autumn’s performance is
on par with that of both state of the art and widely used
PEG parsers. Autumn is built with extensibility in mind, and
makes it easy to add custom parsing expressions, memoiza-
tion strategies and error handlers. It offers lightweight solu-
tions to ease syntax tree construction, whitespace handling
and grammar instrumentation. In conclusion, Autumn is a
practical parsing tool that alleviates significant pain points
felt in current PEG parsers and constitutes a concrete step
towards making PEG parsing practical.
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