
Quad Ropes: Immutable, Declarative
Arrays with Parallelizable Operations

Florian Biermann ∗ Peter Sestoft
IT University of Copenhagen

Computer Science Department
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

{fbie, sestoft}@itu.dk

Abstract
We describe the quad rope data structure, a representation of im-
mutable two-dimensional arrays that avoids many of the perfor-
mance pitfalls of plain C-style two-dimensional arrays. Our mo-
tivation is that, for end-user development in high-level declara-
tive programming languages, it is impractical to let users choose
between different array-like data structures. Instead, one should use
the same, somewhat performance-robust, representation for every
programming task.

Quad ropes roughly retain array efficiency, as long as program-
mers express their programs using high-level constructs. Moreover,
they allow for fast concatenation and dynamic task-based paral-
lelism and are well suited to represent sparse arrays. We describe
their operational semantics and evaluate the performance of indi-
vidual functions on quad ropes as well as declarative algorithms
that use our quad rope implementation.

CCS Concepts •Software and its engineering → Very high
level languages; Functional languages; Semantics; •General
and reference→ Performance; •Applied computing→ Spread-
sheets

Keywords Declarative arrays, Spreadsheets, End-user develop-
ment

1. Introduction
Programmers choose data structures for their programs based on
their performance properties. For instance, arrays allow random
access and update in constant time, and bulk operations are easily
parallelizable, whereas linked lists are inherently sequential and
random access takes linear time, but adding a value at the head
takes constant time. The choice of data structure often has a crucial
impact on performance.

For end-user development in high-level declarative program-
ming languages it is impractical to let users choose between
different data structures, since they are not primarily educated
as programmers. Instead, one should use the same, somewhat

∗ Supported by the Sino-Danish Center for Education and Research.

performance-robust, representation for every programming task.
One declarative language for end-user development is the experi-
mental functional spreadsheet language Funcalc [13], which only
distinguishes between scalar values and two-dimensional arrays.

In this paper, we describe the design of the quad rope data
structure, a representation of immutable two-dimensional arrays. It
avoids many of the performance pitfalls of naively using C-style
two-dimensional arrays to represent immutable data collections,
such as repeated concatenation and update. Quad ropes roughly
retain array efficiency, as long as programmers express their pro-
grams using high-level constructs.

Quad ropes are a combination of ropes [4] and quad trees [7]:
a quad rope is a binary tree with one concatenation constructor for
each dimension and with small contiguous two-dimensional arrays
at its leaves.

1.1 Choosing a Declarative Array Representation
To find an immutable 2D-array representation that efficiently and
pragmatically caters to the needs of high-level declarative array
programming, let us begin by considering some requirements for
a two-dimensional array representation:

1. The data structure must be immutable; immutabillity gives us
considerable freedom for the implementation and allows for im-
plicit parallelization, constant-time slicing, caching, speculative
evaluation and evaluation order independence. It is also easy for
end-user developers to reason about.

2. It should gracefully handle array programming anti-patterns,
such as gradual array construction by repeated concatenation.

3. Higher-order functions should be efficient and able to exploit
data-parallelism.

4. Users should not experience seemingly arbitrary performance
differences between operations in different dimensions, e.g.
horizontal and vertical. We call this performance symmetry.

Random-access arrays are highly efficient for the majority of
use cases, except for repeated concatenation, so it is difficult to
design a data structure that behaves like immutable arrays and is
equally fast. Most prior research focused on efficient persistent
or immutable functional arrays using versioning approaches [6,
10] without efficient concatenation. Kaplan and Tarjan [9] showed
how to implement fast concatenation of persistent deques, which
however do not grant random access.

Stucki et al. [16] designed the (one-dimensional) relaxed radix-
bound (RRB) tree with constant-time indexing and concatenation,
fulfilling requirements 1 – 3. Extending RRB trees to two dimen-
sions is not feasible: performance symmetric two-dimensional con-

catenation requires managing many corner cases and often leaves
us in situations where we cannot avoid excessive re-allocations.

Finkel and Bentley [7] designed quad trees to allow for multi-
dimensional key retrieval. The main idea is to recursively sub-
divide the rectangle that contains values into further rectangles,
where empty rectangles are simply not represented. They fulfill all
requirements, but may exhibit excess parallelism.

The discontinued Fortress language used ropes to implement
parallel collections [14, 15]. A rope is an immutable binary tree
with strings or arrays at its leaves [4]. The idea is to group scalar
values at the leaves into small contiguous arrays and to extract
parallelism by forking threads at each tree branch, where a lower
bound on the leaf size avoids excess parallelism. The binary tree
structure also allows for constant-time concatenation.

We can easily generalize ropes to two dimensions to fulfill all
four requirements, in the same way in which quad trees general-
ize binary trees. We call the resulting data structure a quad rope.
Quad ropes have only a modest performance overhead compared
to immutable two-dimensional arrays, apart from indexing, which
runs in logarithmic time instead of constant time. Since we want
to encourage a high-level style of array programming using higher-
order functions, we deem this acceptable. For small array sizes,
quad ropes simply fall back to the default array implementation,
eliminating any overhead whatsoever.

1.2 Contributions
In the remainder of this paper, we give an operational semantics for
the quad rope data structure and discuss the implications for per-
formance; we show that it is straightforward to use quad ropes to
represent sparse matrices; we discuss balancing and parallelization
of operations and show that it is not possible to use a lazy tree split-
ting [1] scheduler on quad ropes; and we discuss implementation
and performance benchmarks of quad ropes.

2. Quad Rope Semantics
We use an operational evaluation semantics to describe quad ropes,
with the usual semantics for arithmetic operations, lambda abstrac-
tion and application. Abstractions accept an arbitrary number of
arguments. We illustrate most rules only using hcat. The rules
for vcat are analogous and operate on the values that describe
columns.

Fig. 1 shows the language used to describe quad ropes. We have
two basic forms for constructing a quad rope: make(i, j, r, c, e) rep-
resents a new quad rope of size r× c for some initial offsets i and j
and an initialization function e, as defined by the rule MK in Fig. 2;
whereas rep(r, c, v) creates a quad rope that contains the same
value v at all indices, by rule REP. Quad ropes can be concatenated
in horizontal or vertical direction using hcat or vcat, as defined
by rules HCAT and VCAT. We could generalize quad ropes to more
than two dimensions either by statically adding further concatena-
tion constructors or by using a single concatenation form with an
additional “dimension” parameter. However, we focus on the 2D
case in the remaining text.

The rows construct allows to query a quad rope for its number
of rows. Both branches of a hcat node have the same number of
rows, so it does not matter which branch we recurse on. Rules for
computing the number of columns with cols are analogous, and
both branches of a vcat must have the same number of columns.
We define a shape operator · on quad ropes for later use:

q = (rows(q), cols(q))

The form slc(i, j, r, c, q) describes a rectangular sub-set of a
quad rope q and adheres to the slicing semantics of one-dimensional
ropes [4]. Finally, indexing and updating (get and set) take log-

e ::= n Number.
q Quad rope.
x Variable.
e(e) Function application.
λ(x̄).e Abstraction with x̄ = x1, x2, . . . , xn.
e⊕ e Binary application, short for ⊕(e, e).

n ::= v, i, j, r, c Numeric constant.
n+ n Addition.
n− n Subtraction.
rows(q) Number of rows in q.
cols(q) Number of columns in q.
get(q, i, j) Random access.
red(e, v, q) Reduction binary operator.

q ::= rep(r, c, v) Replicated quad rope of size r × c.
make(i, j, r, c, e) Build quad rope leaf of size r × c.
hcat(q, q) Concatenate horizontally.
vcat(q, q) Concatenate vertically.
slc(i, j, r, c, q) Build a rectangular subset of values.
map(e, q) Project by lifting a scalar function.
zip(e, q, q) Combine two quad ropes pointwise.
scan(e, e, v, q) Generalized prefix-sum.
set(q, i, j, v) Set the value of an index pair.

Figure 1. Call by value source language which we use throughout
the paper to describe the quad rope semantics. We deliberately
do not distinguish between concrete and abstract syntax; we use
some syntax restrictions to allow for omitting a definition of static
semantics.

arithmic time in the hcat and vcat case on balanced quad ropes,
which we will take a closer look at in Sec. 5.2. We omit rules for
updating via set; they follow the GET rules closely, but update the
leaf node at the given index with the new value and reconstruct
all nodes on the path from the leaf to the root node, re-using the
unchanged sibling nodes.

It is useful to think of quad ropes not only as binary trees,
but also as rectangles that are constructed from smaller rectangles.
Fig. 3 illustrates the relationship between quad ropes as binary trees
and quad ropes as 2D arrays. There does not exist a single canonical
term to describe a quad rope. This is a consequence of having
two concatenation forms hcat and vcat. Two quad ropes that
are element-wise equal do not necessarily share the same internal
structure.

It is straightforward to support additional operations on quad
ropes, such as transpose and row- and column-wise reversal.

2.1 Projection
The well known map(e, q) form lifts a scalar unary function e to
operate on a quad rope q and applies it recursively to all branches
and each of their elements, as by rules MAP-MK and MAP-H in
Fig. 4. The zip form is the usual binary variant of map; however,
we need to distinguish between the external shape and the internal
structure of two quad ropes, since there is no canonical term for
a quad rope of a given shape. If the structures of two quad ropes
match, we can use rules ZIP-MK to directly combine make forms
and ZIP-H for recursing on the branches of hcat forms.

When this is not the case, we must rely on slicing. It is then
enough to recurse on the structure of the left hand side argument
and to slice the right hand side to match the left hand side’s shape,
as in ZIP-GEN-H. Fig. 5 illustrates this case for a hcat node and
another quad rope of different structure.

MK
e ⇓ λ(x, y).e′

make(i, j, r, c, e) ⇓ make(i, j, r, c, e)
0 ≤ i ∧ 0 ≤ j

REP
rep(r, c, v) ⇓ make(0, 0, r, c, λ(x, y).v)

HCAT
hcat(q1, q2) ⇓ hcat(q1, q2)

rows(q1) = rows(q2)

VCAT
vcat(q1, q2) ⇓ vcat(q1, q2)

cols(q1) = cols(q2)

ROWS-MK
q ⇓ make(i, j, r, c, e)

rows(q) ⇓ r

ROWS-H
q ⇓ hcat(q1, q2)

rows(q) ⇓ rows(q1)

ROWS-V
q ⇓ vcat(q1, q2)

rows(q) ⇓ rows(q1) + rows(q2)

SLC-MK

q ⇓ make(i′, j′, r′, c′, e)
min(r, r′ − i) ⇓ r′′
min(c, c′ − j) ⇓ c′′

i+ i′ ⇓ i′′ j + j′ ⇓ j′′
make(i′′, j′′, r′′, c′′, e) ⇓ q′

slc(i, j, r, c, q) ⇓ q′
0 ≤ i ∧ 0 ≤ j

SLC-H

q ⇓ hcat(q1, q2)
slc(i, j, r, c, q1) ⇓ q′1

slc(i, j − cols(q1), r, c− cols(q′1), q2) ⇓ q′2
slc(i, j, r, c, q) ⇓ hcat(q′1, q

′
2)

GET-MK

q ⇓ make(i′, j′, r, c, e)
e(i+ i′, j + j′) ⇓ v
get(q, i, j) ⇓ v

i′ ≤ i < r ∧ j′ ≤ j < c

GET-H1
q ⇓ hcat(q1, q2)

get(q, i, j) ⇓ get(q1, i, j)
j < cols(q1)

GET-H2

q ⇓ hcat(q1, q2)
j − cols(q1) ⇓ j′

get(q, i, j) ⇓ get(q2, i, j
′)

j ≥ cols(q1)

Figure 2. Operational semantics for quad ropes. The rules for
cols are analogous to those of rows with hcat and vcat swapped.
For every rule on hcat nodes with an H suffix, there exists an
analogous rule on vcat nodes, suffixed with V. The only case
where we show this explicitly are the ROWS rules.

hcat

vcat

q1 q2

vcat

q3 q4

vcat

hcat

q1 q3

hcat

q2 q4

q1

q2

q3

q4

Figure 3. A quad rope illustrated twice as binary tree and once as
box diagram. To simplify the example, we assume that ∀qi, qj ∈
q[1,4]. qi = qj .

2.2 Reduction and Scan
We focus on parallelizable reduction to a single scalar, requiring the
operator to be associative and have an identity. Thus all reduction
(RED) rules in Fig. 6 have these side conditions:

• ⊕ is associative, and
• ε⊕ e = e⊕ ε = e, so ε is the identity element for ⊕.

Reduction of an empty quad rope gives ε. We can use generalized
2D reduction and slicing to implement row- and column-wise re-
duction.

One-dimensional scan is usually defined for a binary operator.
To make scan as general as possible, our 2D “wavefront” scan
uses a function that accepts four arguments: one prefix from the
current row, one from the current column and the “diagonal” prefix.
Let Σa be the prefix sum of some array a for a function f . Then
Σa[i, j] = f(Σa[i, j − 1],Σa[i − 1, j − 1],Σa[i − 1, j], a[i, j]).
This primitive is useful for dynamic programming on 2D arrays.

We describe scan semantics in Fig. 7. We use two functions
ρ and γ for rows and columns, respectively, to translate row- and
column-prefixes from the left branch to the right branch of hcat
and vcat nodes.

The scan semantics does not exhibit any obvious possibilities
for parallel execution. We will however see in Sec. 5 that there
are configurations where it is possible to recursively evaluate some
branches in parallel.

3. Block-Sparseness
3.1 Making Replication Canonical
In Sec. 2 we have defined the rule REP, saying that rep(r, c, v) ⇓
make(0, 0, r, c, λ(x, y).v). We can optimize the representation of
such constant or replicated quad ropes by making the rep form
canonical. That is, we replace rule REP by REP’ in Fig. 8, such that
the replication form evaluates to itself. This retains the information
that all elements in the resulting quad rope are equal. It is easy to
show that ∀i ∈ [0, r), j ∈ [0, c) :

get(rep(r, c, v), i, j) ≡ get(make(0, 0, r, c, λ(x, y).v), i, j),

since the only value that we can ever access via get is v.
The rule MAP-REP shows the benefit of making replication

canonical: we only need to apply the lifted function once, instead
of to each individual value in the quad rope. Similarly, when we
want to reduce a replicated quad rope with some binary associative
operator⊕ and an identity element ε, we can avoid all computation
if the replicated quad rope only contains ε. Since we assume ε⊕e =
e⊕ ε = e it holds that ε⊕ ε = ε.

3.2 Block-Sparse Numerical Operations
More well known optimizations for numeric operators apply to
replicated quad ropes. For instance, pointwise combination using
the zip form can make use of sparseness. If we add two quad ropes
pointwise to each other and one of them is of the form rep(r, c, 0),
it is sufficient to evaluate to the other quad rope; this is correct since
zero is the identity element for addition.

q1 ⇓ rep(r, c, 0)

zip(+ , q1, q2) ⇓ q2
Similarly for pointwise multiplication, which we, among other

algorithms, use to implement functional matrix multiplication on
quad ropes.

q1 ⇓ rep(r, c, 1)

zip(· , q1, q2) ⇓ q2
q1 ⇓ rep(r, c, 0)

zip(· , q1, q2) ⇓ q1

MAP-MK
q ⇓ make(i, j, r, c, e′) λ(x, y).e(e′(x, y)) ⇓ e′′

map(e, q) ⇓ make(i, j, r, c, e′′)
MAP-H

q ⇓ hcat(q1, q2) map(e, qi) ⇓ qi
map(e, q) ⇓ hcat(q′1, q

′
2)

ZIP-MK

q1 ⇓ make(i1, j1, r, c, e
′)

λ(x, y).(e′(x+ i1, y + j1)⊕ get(q2, x+ i2, y + j2)) ⇓ e
zip(⊕, q1, q2) ⇓ map(0, 0, r, c, e)

ZIP-H
q1 ⇓ hcat(q11, q12) q2 ⇓ hcat(q21, q22) zip(⊕, q1i, q2i) ⇓ q′i

zip(⊕, q1, q2) ⇓ hcat(q′1, q
′
2)

cols(q1i) = cols(q2i)

ZIP-GEN-H

q1 ⇓ hcat(q11, q12) slc(0, 0, rows(q2), cols(q11), q2) ⇓ q21
slc(0, cols(q11), rows(q2), cols(q12), q2) ⇓ q22 zip(⊕, q1i, q2i) ⇓ q′i

zip(⊕, q1, q2) ⇓ hcat(q′1, q
′
2)

Figure 4. Operational semantics for higher-order function application on quad ropes. The ZIP rules have side condition q1 = q2 .

zip(⊕, hcat(q1 , q2) , q3)

⇓
hcat(zip(⊕, q1 , q3a), zip(⊕, q2 , q3b))

Figure 5. Zipping two quad ropes of equal external shape but
different internal structure. The boxes illustrate the shape of the
respective branches. Branch q3a is the left part of q3, sliced to
match the width of q1; branch q3b is the respective right part and
sliced to match the width of q2.

RED-MK

q ⇓ make(i, j, r, c, e′)
e′(i, j)⊕ · · · ⊕ e′(i+m− 1, j + n− 1) ⇓ v

red(⊕, ε, q) ⇓ v

RED-H

q ⇓ hcat(q1, q2)
red(⊕, ε, q1)⊕ red(⊕, ε, q2) ⇓ v

red(⊕, ε, q) ⇓ v

Figure 6. Operational semantics for reduction of a quad rope to a
scalar value via the red form.

These optimizations can be generalized to any ring. Further-
more, the zip form reduces to map when one of the arguments is
sparse.

q1 ⇓ rep(r, c, v)

zip(⊕ , q1, q2) ⇓ map(λ(x).(v ⊕ x), q2)

All sparseness optimizations can also be applied if the right-
hand q2 side is sparse. For the latter optimization, if q2 is of form
rep, the right-hand side argument to ⊕ is fixed to q2’s v.

4. Two-Way Nodes vs. Four-Way Nodes
As stated in Sec. 2, a given quad rope does not necessarily have
a canonical form. In particular, due to having both horizontal
and vertical concatenation, hcat(vcat(q1, q2), vcat(q3, q4)) and
vcat(hcat(q1, q3), hcat(q2, q4)) are two representations of the
same quad rope. This section explains why we do not use the “ob-
vious” four-way construction operator to avoid this ambiguity.

Suppose we have a four-way node construct node(q1, q2, q3, q4)
that evaluates to itself and let ε be the canonical empty quad rope.

We define hcat(q1, q2) ⇓ node(q1, ε, q2, ε) and vcat(q1, q2) ⇓
node(q1, q2, ε, ε).

All expressions on quad ropes can now neglect special rules for
each dimension, but must take ε into account. Hence, the number
of overall rules remains the same. Furthermore, slicing becomes
vastly more complex. If we slice a node, we would first slice branch
q1, and then branches q2 and q3 in arbitrary order, where we offset
the slicing indices accordingly to the size of q1 and the desired
height and width by the size of the slicing result q′1.

Finally, we want to slice q4. It becomes clear that the index off-
sets depend on the structure of the node. If cols(q1) < cols(q2),
we can use the number of columns of q1 and q′1 in order to com-
pute the number of columns of q′4. If cols(q2) < cols(q1), as
illustrated in Fig. 9, then we must use the number of columns of q2
and q′2 instead of q1 and q′1.

Furthermore, without additional adjustments, we would be able
to construct a new quad rope node(q′1, ε, ε, q

′
4), q′4 6= ε for the case

slc(0, 0, r, c, q), where q ⇓ node(q1, q2, q3, q4), ∀qi. qi 6= ε and
r ≤ rows(q1), c ≤ cols(q1), again as illustrated in Fig. 9. This
happens regardless of the original structure of q. Slicing q1 results
in empty q′2 and q′3. If we simply try to use the size of the latter two
to compute the desired size of q′4, the result will be a quad rope that
has no rectangular shape and therefore cannot be a valid quad rope
instance.

One solution to these problems is to introduce additional rules
for slc with side conditions for handling the above cases, which
would complicate the semantics considerably. Another solution is
to make this situation impossible and to duplicate rules for each
dimension; which is why we have chosen hcat and vcat over four-
way nodes.

5. Implementation
We have implemented quad ropes1 in the F# language for the .Net
platform [17].

Thanks to the immutability of quad ropes, we can implement
slicing using views. This allows for constant time slicing, which
ultimately allows for a fast implementation of zip that directly
follows the operational semantics from Sec. 2.1. Materialization of
slices directly follows from the operational semantics for slc. We
use explicit materialization internally where appropriate.

Our quad rope implementation uses the .Net Task Parallel Li-
brary [11] and pushes a new task to a work-stealing queue for each

1 Available at
https://github.com/popular-parallel-programming/
quad-ropes

https://github.com/popular-parallel-programming/quad-ropes
https://github.com/popular-parallel-programming/quad-ropes

SCAN-MK

q ⇓ make(i, j, r, 1, e)
e′(0, 0) ⇓ f(ρ(0), ρ(−1), γ(0), get(q, 0, 0))

∀x, 0 < x. e′(x, 0) ⇓ f(ρ(x), ρ(x− 1), e′(x− 1, 0), get(q, x, 0))
∀y, 0 < y. e′(0, y) ⇓ f(e′(0, y), γ(y − 1), γ(y), get(q, 0, y))

∀x, y, 0 < x, 0 < y. e′(x, y) ⇓ f(e′(x, y − 1), e′(x− 1, y − 1), e′(x− 1, y), get(q, x, y))

scan(f, ρ, γ, q) ⇓ make(0, 0, r, c, e′)
ρ(−1) = γ(−1)

SCAN-H

q ⇓ hcat(q1, q2) scan(f, ρ, γ, q1) ⇓ q′1
λ(x).(get(q′1, x, cols(q′1)− 1)) ⇓ ρ′ λ(y).(γ(y + cols(q′1))) ⇓ γ′

scan(f, ρ′, γ′, q2) ⇓ q′2
scan(f, ρ, γ, q) ⇓ hcat(q′1, q

′
2)

Figure 7. Operational semantics for computing prefix-sums via scan.

REP’
rep(r, c, v) ⇓ rep(r, c, v)

ROWS-REP
q ⇓ rep(r, c, v)

rows(q) ⇓ r

GET-REP
q ⇓ rep(r, c, v)

get(q, i, j) ⇓ v
0 ≤ i < r ∧ 0 ≤ j < c

SLC-REP

q ⇓ rep(r′, c′, v)
r′′ = min(r, r′ − i)
c′′ = min(c, c′ − j)

slc(i, j, r, c, q) ⇓ rep(r′′, c′′, e)
0 ≤ i ∧ 0 ≤ j

MAP-REP

f ⇓ λ(x).e
q ⇓ rep(r, c, v) f(v) ⇓ v′

map(f, q) ⇓ rep(r, c, v′)

RED-REP
q ⇓ rep(r, c, v)

⊕r·c
0 v ⇓ v′

red(⊕, v, q) ⇓ v′

Figure 8. Additional operational semantics for a canonical rep
form.

q1

q2

q3

q4

Figure 9. A four-way node configuration node(q1, q2, q3, q4). The
red rectangle illustrated the size of the slice we want to compute.
The number in columns in q′4 depend on q2. Furthermore, the
resulting slice consists of only three branches, node(q′1, q

′
2, ε, q

′
4).

hcat or vcat branch. Leaves of the form make have size at most
smax in both dimensions, and we merge too-small leaves when
their combined size is ≤ smax by copying, as for one-dimensional
ropes [4]. Hence, the choice of smax determines the maximum
amount of work that should be executed sequentially [1, 15]. Lim-
iting leaf size to smax allows for a uniform parallelization scheme
for all quad rope instances and for fast performance of set.

Most bulk operations, such as map and reduce, can be parallal-
ized in a straightforward fashion. Note that slicing is an inherently
sequential operation and hence cannot be performed in parallel.

As noted in Sec. 2.2, the operational semantics for scan does
not display any obvious opportunities for parallelization. Still, there

are two configurations of hcat and vcat nodes for which scan can
be parallelized:

hcat(vcat(a, b), vcat(c, d)) (1)
vcat(hcat(a, c), hcat(b, d)) (2)

Since scan computes the prefix sum from the top left to the
bottom right, the sequential dependency for these configurations is
a ≺ {b, c} and {b, c} ≺ d iff rows(c) ≤ rows(a) ∧ cols(b) ≤
cols(a). This means that, if there is no dependency between b and
c, scan(b) and scan(c) can be computed in parallel.

5.1 Lazy Tree Splitting Does Not Apply
Lazy tree splitting [1] is a scheduling technique based on lazy bi-
nary splitting [18] and uses ropes [4] to represent parallel collec-
tions. The basic idea is to enqueue new tasks on a by-need basis in-
stead of enqueueing new tasks eagerly. Whenever a worker thread is
idle, a new task is spawned off to handle half of the remaining work.
The check for idle worker threads piggy-backs on efficient work-
stealing queues [5] in that it peeks into the shared task queue in a
non-synchronized fashion. Thereby, no communication overhead is
introduced and synchronization happens whenever other functions
(for instance worker threads stealing tasks) force synchronization.
If the queue is empty, it is likely that spawning new tasks will pay
off performance-wise [1].

At any time, we must be able to stop execution, store the already
performed work and then evenly split the remaining work across
two tasks. When the work is stored in a random-access array, lazy
binary splitting is a matter of adjusting indices; already processed
work remains in the target array and the remaining index range is
simply split in two [18].

If the work is stored in some kind of tree, e.g. a rope, we can
use a zipper [8] to navigate over the tree and to keep track of the
work already done and what remains to do. When a worker thread
is idle, we need to stop execution and split the zipper context into
the processed part and the remaining part. Afterwards, we can split
the remaining part of the tree in two equally sized trees and process
them in parallel [1].

Thus we must be able to take the context apart in an arbitrary
fashion and construct two valid trees from it. This is possible on one
dimensional ropes, because two ropes can always be concatenated
to each other. Unfortunately, this is not the case for quad ropes due
to the existence of two concatenation constructors, hcat and vcat.
Fig. 10 shows an example where the current focus is on a leaf node
b that is the second argument to a vcat node. This means that its
left neighbor a has already been processed, while the last leaf, c is
not yet processed.

Due to the rectangular invariant, we know that rows(a) +
rows(b) = rows(c). If we try to separate a from the quad rope,

hcat

vcat

a b

c

Figure 10. Trying to split a quad rope into two valid quad ropes
during lazy tree splitting. In this example, the focus is currently on
leaf b. The dashed red line marks where we want to split the quad
rope in two.

we cannot use hcat to combine the not yet processed leaves since
rows(b) < rows(c). It follows that lazy tree splitting does not
apply to quad ropes, because we cannot pause execution at arbitrary
leaves.

Regarding lazy tree splitting, ropes are a special case of quad
ropes, where the maximum height or width is fixed at one. Because
quad ropes of height 1 can only be concatenated by vcat, the
problem does not occur and lazy tree splitting is possible again.

As a result, we currently must rely on the effectiveness of the
underlying task parallel library and perform eager splitting at each
node.

5.2 Balancing
If the quad rope tree is highly imbalanced, for instance a linear list,
our recursive parallelization scheme achieves only sequential exe-
cution. Also, indexing operations would require linear time, which
is unacceptable. Hence quad rope trees should be kept balanced.

Rebalancing of a one-dimensional binary tree can be imple-
mented via rotation in logarithmic time after an insertion or dele-
tion. We use a depth-metric to determine whether to rotate a quad
rope, as illustrated by the following F# style pseudo-code, where
we match on the constructor forms from Fig. 1:

let rec depth = function
| mk _ | rep _ ⇒ 0
| hcat(a, b) | vcat(a, b) ⇒

max(depth(a), depth(b)) + 1

In terms of parallelism, the depth of a quad rope is equal to its
span [3] modulo leaf size.

A quad rope can be rotated only in limited ways. We can rotate
nested hcat applications and nested vcat applications, but not
alternating applications of hcat and vcat:

let cond(a, b, c) =
depth(a) 6= depth(b)
∧ max(depth(a), depth(b)) > depth(c)

let rec balance = function
| hcat(hcat(a, b), c) when cond(a, b, c) ⇒

hcat(a, balance(hcat(b, c)))
| vcat(vcat(a, b), c) when cond(a, b, c) ⇒

vcat(a, balance(vcat(b, c)))
| ... (* Mirror cases omitted. *)
| qr ⇒ qr

This pattern never increases depth. The initial depth is (hcat case):

depth(hcat(hcat(a, b), c)) =

max(max(depth(a), depth(b)) + 1, depth(c)) + 1.

If cond holds, at least one of a and b is deeper than c. If depth(a)
is greater than depth(b), the balanced tree hcat(a,hcat(b,c)))
has a depth of depth(a)+1. If however depth(a) is less than
depth(b), the depth of b is defining the resulting depth, hence
depth(hcat(hcat(a,b),c) = depth(hcat(a,hcat(b,c)).

hcat

vcat

hcat

vcat

a b

s1

s2

s3

Figure 11. A quad rope constructed in adversarial manner without
balancing, using hcat and vcat alternatingly, where the right-hand
children si are instances of rep. The size of the box indicates the
shape of the sparse rep leaf that it represents.

vcat

hcat

vcat

a b

hcat

s1 s′3

hcat

s2 s′′3

Figure 12. The adversarial quad rope from Fig. 11 after balancing.
The leaf s′3 is the “upper two thirds” and s′′3 is the “lower third” of
s3.

Even though we cannot balance across dimensions, there is
a point to looking into adversarial cases, where a quad rope is
composed of a chain of alternating hcat and vcat instances at
every other node. It is not obvious to us whether this adversarial
pattern is common. If one of the branches is a rep leaf, as illustrated
in Fig. 11, we can use slicing and re-distribute the sliced rep leaves.
Note that this is not possible for hcat or vcat nodes: slicing does
not actually reduce the depth of a node and materializing a slice
would takeO(n logn) time at each recursive balancing step, where
n = max(r, c) of the resulting quad rope. With this insight, we can
extend the balancing algorithm as follows:

let rec balance = function
| ... (* Cases for hcat and vcat omitted. *)
| hcat(vcat(a, b), rep(r, c, e))

when depth(vcat(a, b)) > 2 ⇒
let s1 = rep(rows(a), c, e),

s2 = rep(rows(b), c, e) in
vcat(balance(hcat(a, s1)),

balance(hcat(b, s2)))
| vcat(...) (* Swap hcat and vcat. *)
| ... (* Mirror cases omitted. *)
| qr ⇒ qr

The result of this extended balancing algorithm, applied to
the quad rope from Fig. 11, is shown in Fig. 12. We never per-
form balancing if the remaining depth of the non-rep child is
less than or equal to 2. The worst-case complexity of balancing
is O(n logn), n = max(r, c). Since balance is called recur-
sively along the rotated branch and never increases depth, repeated
concatenations of quad ropes in the same dimension result in a bal-
anced tree that maintains a balancing invariant at least as strong as
the AVL balancing invariant.

5.3 Memory Allocation
Even though the semantics allows for lazy evaluation of quad rope
leaves, we have implemented quad ropes with contiguous 2D-
arrays at the leaves to avoid repeated computation of values. A
performance bottleneck of this implementation is leaf array alloca-
tion during quad rope creation. Consider the init(r, c, f) function
where r and c are row and column counts and f an initialization
function. The row and column counts are alternately divided by two
until they are at most smax. At this point, a naive implementation

would allocate a new 2D-array as a leaf and initialize it with f for
the appropriate offsets. The leaves are then concatenated via hcat
and vcat. This results in O(max(r

smax
, c
smax

)) array allocations.
It turns out that allocating one large array on .Net is not slower

than allocating one small array, but allocating many small arrays is
much slower than allocating a single large array. Hence, it pays
off to make use of the imperative features of F#: we first pre-
allocate one large 2D-array and fill it imperatively. We use array
pre-allocation in all functions that construct a new quad rope,
e.g. map and scan. Therefore, we store an additional sparseness
flag at each node which we check at each recursive step to not
unnecessarily allocate memory for sparse branches of a quad rope.
Note that the nodes of a quad rope are fully immutable.

We use an immutable view abstraction over the underlying large
2D-array to represent leaves. A positive side effect of this is that we
can slice views on 2D-arrays in constant time. Hence, materializing
a quad rope slice, as discussed in Sec. 5, only requires re-allocation
of the tree structure which takes logarithmic time on balanced quad
ropes.

Last, we can use the underlying array to implement scan with-
out explicit prefixes ρ and γ, since all prefix values are accessible
via the shared array.

6. Performance
We use an extended version of the .Net benchmarking infrastruc-
ture by Biboudis et al. [2]2. Our test machine is an Intel Xeon E5-
2680 v3 with 32 cores at 2.5 GHz and 32GB of memory, running
64 bit Windows 10, Version 1607, and .Net Framework 4.6.2. The
presented benchmark results are the mean of 10 runs, preceded by
three warm-up runs to trigger JIT compilation. We use automatic
iteration count adjustment to guarantee a minimum running time of
a quarter of a second [12].

6.1 Individual Functions
Fig. 13 shows performance data for individual functions on quad
ropes. We can see that sequential performance of higher-order
functions on quad ropes varies, but it is generally comparable to
standard immutable arrays. We can attribute the modest speed-up
of map and reduce to increased locality. We get parallel speed-ups
starting from four threads; this is likely due to the overhead of eager
task creation, which we cannot make up for with less hardware
threads. However, we cannot achieve linear parallel speedups with
quad ropes using the .Net TPL [11] and recursive task creation.

Since indexing is asymptotically worse on quad ropes than on
arrays, we compare getting and setting pseudo-random indices on
both. The benchmark results are displayed in Fig. 14. Note that,
even though indexing is much slower than on arrays, setting is
much faster, since in the worst case we only need to reallocate an
array of size smax × smax and a tree of depth O(logn).

6.2 Declarative Algorithms
Fig. 15 shows benchmark results for a collection of high-level func-
tional algorithms. Matrix multiplication uses slicing, zipping and
reduction and has a high level of nested parallelism. We multiply
a pseudo-random matrix to an upper diagonal matrix of ones, once
dense and once sparse. Note that a standard imperative algorithm
on mutable arrays of the same size using in-place updates is faster
by roughly a factor of ten. The algorithm for computing Van Der
Corput sequences uses repeated concatenation of singletons in be-
tween two larger arrays and mapping over the result. Fibonacci is
the classic recursive algorithm using indexing and concatenation.
Sieve of Erastothenes uses persistent set to modify an array of val-
ues repeatedly in order to compute all primes up to a given number.

2 See https://github.com/biboudis/LambdaMicrobenchmarking.

Benchmark ms × Arr t = 2 4 8 16
init 7.06 0.8 0.81 1.51 2.12 1.98
map 15.9 1.48 1.26 2.38 3.96 3.88
reduce 18.53 1.48 1.31 2.34 4.12 4.24
zip 17.16 1.05 1.02 1.61 2.43 1.75
scan 4.82 0.97 1.11 2.04 2.99 3.58

Figure 13. Results of performance benchmarks on quad ropes for
smax = 32 and size 1000 × 1000, double precision. The second
column shows the average absolute performance of sequential quad
ropes in milliseconds. All other values are speed-up factors; higher
is better. The third column shows sequential quad rope performance
relative to the performance of standard immutable 2D-arrays. The
following columns show performance of parallel execution with t
hardware-threads, relative to sequential execution.

Benchmark n = 10 100 1000
get 0.38 0.21 0.12
set 1.56 21.52 1790.42

Figure 14. Results of performance benchmarks for indexing oper-
ations on quad ropes for smax = 32 and size n × n. Values are
speed-up factors relative to standard immutable 2D-arrays; higher
is better. We generate index pairs pseudo-randomly.

Smith-Waterman is the functional array variant of a standard algo-
rithm for computing the edit distance of two character sequences
and uses a sequence of scan and reduce.

We can observe that quad ropes are faster than standard im-
mutable 2D-arrays already in the sequential function variants, with
the Smith-Waterman algorithm being the exception. For dense
matrix multiplication, the moderate performance increase can be
explained by faster slicing; sparse matrix multiplication uses the
optimizations from Sec. 3.2, hence the increased speed-up.

Van Der Corput benefits from fast concatenation of quad ropes
but seems restricted by calling map; Fibonacci on quad ropes runs
more than five times faster than on 2D-arrays; and Sieve of Eras-
tothenes is more than 44 times faster on quad ropes compared to
standard 2D-arrays, as the latter performs O(n2) work when re-
allocating the array during setting individual index pairs. Again,
the scan-based Smith-Waterman algorithm does not quite keep up
with the 2D-array variant.

None of the parallelizable algorithms on quad ropes scale very
well with an increased number of threads, even though quad ropes
are able to exploit some of the nested parallelism expressed in ma-
trix multiplication. The parallel slow-down of Van Der Corput is
difficult to interpret. Profiling shows that roughly a quarter of the
time is spent in map. One could suspect that repeatedly concatenat-
ing a singleton in between larger quad ropes may, in combination
with balancing, result in a large number of singleton leaves, lead-
ing to excess parallelism. That is not the case, since we combine
small leaves during balancing further down the tree. The parallel
speed-up for Smith-Waterman is modest. The declining speed-up
at t = 16 may be due to less exploitable parallelism, enforced by
sequential dependencies.

Even though quad ropes do not excel in their parallel perfor-
mance, it should be noted that the parallel algorithms on quad ropes
perform much better than on standard immutable 2D-arrays (num-
bers elided). Especially nested parallelism seems to be a major bot-
tleneck of the TPL’s parallel for-loops.

The choice of smax has an immediate effect on quad rope
performance. Larger values decrease the overhead of task creation
but affect cache locality negatively and encourage more frequent
merging of leaf arrays. Smaller values work the other way around.

https://github.com/biboudis/LambdaMicrobenchmarking

Benchmark n ms × Arr t = 2 4 8 16
Matrix mult. dense 100× 100 44.01 1.75 0.64 1.03 1.28 1.52
Matrix mult. sparse 100× 100 29.56 2.6 0.61 0.48 1.35 1.54
Van Der Corput 20 24.25 2.43 0.48 0.64 0.43 0.6
Fibonacci 1600 1.9 5.69 – – – –
Sieve of Erastothenes 1600 1.34 44.92 – – – –
Smith-Waterman 1000× 1000 980.65 0.94 1.19 1.04 1.38 1.04

Figure 15. Results of performance benchmarks on quad ropes for smax = 32. The value n describes the input size. See Fig. 13 for
explanation of the other columns. Our variants of the Fibonacci and Sieve of Erastothenes algorithms are not parallelizable, so no parallel
performance data is available.

7. Conclusion and Future Work
In this paper, we have presented quad ropes, a two-dimensional ex-
tension of the rope data structure [4] and inspired by quad trees [7],
for high-level, functional, parallel array programming. Quad ropes
don’t generally outperform standard, immutable two-dimensional
arrays, but gracefully handle array anti-patterns as well as nested
parallelism. This makes them a useful array representation in high-
level functional languages where expressiveness is of importance.

The performance of quad ropes is on par with immutable 2D-
arrays. Concatenation in both dimensions is asymptotically and
practically faster than on arrays, as discussed in Sec. 6. Parallel
speed-ups of individual functions are sub-linear and modest for
more complex functions. Understanding these results in detail is
future work. Nevertheless, sequential quad ropes run faster than ar-
rays for the large majority of the presented algorithms. Even though
.Net is very well engineered, it would be worthwile to implement
and benchmark quad ropes outside of a managed platform.

We have given an operational semantics to describe the quad
rope data structure and shown that lazy tree splitting scheduling [1]
does not apply to ropes of more than one dimension. We have also
shown caveats in the actual .Net implementation, such as the cost
of allocating many small arrays. It is possible that a modified mem-
ory pre-allocation mechanism, as discussed in Sec. 5.3, allows for
gradual flattening of quad ropes during bulk operations, e.g. map.
Flattened quad ropes, essentially leaves larger than smax, could al-
low us to use a lazy scheduling algorithm using indices [18]. We
consider gradual flattening as future work.

Quad ropes must maintain balancing invariants in order to pro-
vide the typical performance characteristics of binary trees, such as
logarithmic time indexing. Moreover, balancing is required to keep
the span low, which also increases potential parallelism. We cannot
currently balance quad ropes across dimensions without breaking
them and therefore consider this as future work as well.

Finally, our plan is to use quad ropes as the main array im-
plementation in the Funcalc [13] spreadsheet language to evaluate
their usefulness in a very high-level language.

Acknowledgments
We would like to thank Alexander Asp Bock for useful discussions
and feedback on an earlier draft, and the anonymous reviewers for
their useful comments.

References
[1] L. Bergstrom, M. Rainey, J. Reppy, A. Shaw, and M. Fluet. Lazy Tree

Splitting. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 93–104,
New York, NY, USA, 2010. ACM.

[2] A. Biboudis, N. Palladinos, and Y. Smaragdakis. Clash of the
Lambdas, July 2014. URL http://arxiv.org/abs/1406.6631.

[3] G. E. Blelloch. Programming Parallel Algorithms. Commun. ACM,
39(3):85–97, Mar. 1996.

[4] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: an Alternative to
Strings. Software – Practice & Experience, 25:1315–1330, Dec. 1995.

[5] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In
SPAA ’05: Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 21–28, New York,
NY, USA, 2005. ACM.

[6] P. F. Dietz. Fully persistent arrays. In F. Dehne, J. R. Sack, and
N. Santoro, editors, Algorithms and Data Structures, volume 382 of
Lecture Notes in Computer Science, pages 67–74. Springer Berlin
Heidelberg, 1989.

[7] R. A. Finkel and J. L. Bentley. Quad Trees A Data Structure for
Retrieval on Composite Keys. Acta Informatica, 4(1):1–9, Mar. 1974.

[8] G. Huet. The Zipper. Journal of Functional Programming, 7(05):
549–554, Sept. 1997.

[9] H. Kaplan and R. E. Tarjan. Persistent Lists with Catenation via
Recursive Slow-down. In Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’95, pages 93–102,
New York, NY, USA, 1995. ACM.

[10] A. Kumar, G. E. Blelloch, and R. Harper. Parallel Functional Arrays.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pages 706–718, New York,
NY, USA, 2017. ACM.

[11] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task
Parallel Library. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages
and Applications, volume 44 of OOPSLA ’09, pages 227–242, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0.

[12] P. Sestoft. Microbenchmarks in Java and C#. Lecture Notes, Sept.
2013. URL https://www.itu.dk/people/sestoft/papers/
benchmarking.pdf.

[13] P. Sestoft. Spreadsheet Implementation Technology: Basics and
Extensions. The MIT Press, Sept. 2014. ISBN 0262526646.

[14] G. L. Steele. Parallel Programming and Parallel Abstractions in
Fortress. In Proceedings of the 8th International Conference on
Functional and Logic Programming, FLOPS’06, page 1, Berlin,
Heidelberg, 2006. Springer-Verlag.

[15] G. L. Steele. Organizing Functional Code for Parallel Execution
or, Foldl and Foldr Considered Slightly Harmful. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional
Programming, volume 44 of ICFP ’09, pages 1–2, New York, NY,
USA, Aug. 2009. ACM.

[16] N. Stucki, T. Rompf, V. Ureche, and P. Bagwell. RRB Vector: A
Practical General Purpose Immutable Sequence. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 342–354, New York, NY, USA,
2015. ACM.

[17] D. Syme, A. Granicz, and A. Cisternino. Expert F# 4.0. Apress,
Berkely, CA, USA, 4th edition, 2015. ISBN 1484207416,
9781484207413.

[18] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy
Binary-splitting: A Run-time Adaptive Work-stealing Scheduler. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, volume 45 of PPoPP ’10, pages
179–190, New York, NY, USA, Jan. 2010. ACM.

http://arxiv.org/abs/1406.6631
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf

	Introduction
	Choosing a Declarative Array Representation
	Contributions

	Quad Rope Semantics
	Projection
	Reduction and Scan

	Block-Sparseness
	Making Replication Canonical
	Block-Sparse Numerical Operations

	Two-Way Nodes vs. Four-Way Nodes
	Implementation
	Lazy Tree Splitting Does Not Apply
	Balancing
	Memory Allocation

	Performance
	Individual Functions
	Declarative Algorithms

	Conclusion and Future Work

