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ABSTRACT 
Weather forecasting is usually solved through numerical weather 
prediction (NWP), which can sometimes lead to unsatisfactory per- 
formance due to inappropriate setting of the initial states. In this 
paper, we design a data-driven method augmented by an effective 
information fusion mechanism to learn from historical data that 
incorporates prior knowledge from NWP. We cast the weather fore- 
casting problem as an end-to-end deep learning problem and solve 
it by proposing a novel negative log-likelihood error (NLE) loss 
function. A notable advantage of our proposed method is that it si- 
multaneously implements single-value forecasting and uncertainty 
quantification, which we refer to as deep uncertainty quantification 
(DUQ). Efficient deep ensemble strategies are also explored to fur- 
ther improve performance. This new approach was evaluated on 
a public dataset collected from weather stations in Beijing, China. 
Experimental results demonstrate that the proposed NLE loss sig- 
nificantly improves generalization compared to mean squared error 
(MSE) loss and mean absolute error (MAE) loss. Compared with 
NWP, this approach significantly improves accuracy by 47.76%, 
which is a state-of-the-art result on this benchmark dataset. The 
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preliminary version of the proposed method won 2nd place in an 
online competition for daily weather forecasting 1. 
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1 INTRODUCTION 
Meteorological elements, such as temperature, wind and humidity, 
profoundly affect many aspects of human livelihood [3, 11]. They 
provide analytical support for issues related to urban computing 
such as traffic flow prediction, air quality analysis, electric power 
generation planning and so on [26]. The most common method 
currently utilized in meteorology is the use of physical models to 
simulate and predict meteorological dynamics known as numeri- 
cal weather prediction, or NWP. The advantage of NWP is that it 
is based on the numerical solution of atmospheric hydro thermo 
dynamic equations and is able to obtain high prediction accuracy 
if the initial solution is appropriately chosen. However, NWP may 
not be reliable due to the instability of these differential equations 
[20]. With the growing availability of meteorological big data, re- 
searchers have realized that introducing data-driven approaches 
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into meteorology can achieve considerable success. Several ma- 
chine learning methods have been applied to weather forecasting 
[4, 5, 17]. The merit of data-driven methods is that they can quickly 
model patterns through learning to avoid solving complex differen- 
tial equations. Nevertheless, learning from historical observations 
alone requires big data and a tedious amount of feature engineering 
to achieve satisfying performance, which presented us with the 
following challenge. Could we combine the advantages of NWP and 
machine learning to make a more efficient and effective solution? 
At the same time, single-value (i.e. point estimation) forecasting 
lacks credibility and flexibility for numerous types of human deci- 
sion. Could we provide more information to indicate the prediction 
interval based on high-quality uncertainty quantification? This pa- 
per aims to introduce a unified deep learning method to address 
these problems through end-to-end learning. In particular, we will 
predict multiple meteorological variables across different weather 
stations at multiple future steps. The proposed approach has sev- 
eral advantages: efficient data pre-processing, end-to-end learning, 
high accuracy, uncertainty quantification and easy-to-deploy which 
makes it have considerable practical significance. The contributions 
of this work are summarized as follows: 

(1) It proposes an effective deep model and information fusion 
mechanism to handle weather forecasting problems. To the 
best of our knowledge, this is the first machine learning 
method which combines historical observations and NWP 
for weather forecasting. Data and source codes will be re- 
leased and can be used as a benchmark for researchers to 
study machine learning in the meteorology field 2. 

(2) It establishes effective assumptions and constructs a novel 
negative log-likelihood error (NLE) loss function. Unlike 
Bayesian deep learning (BDL), deep uncertainty quantifica- 
tion (DUQ) can be seamlessly integrated with current deep 
learning frameworks such as Tensorflow and Pytorch. It 
can be directly optimized via backpropagation (BP). Our ex- 
periments show that compared with typical mean squared 
error (MSE) and mean absolute error (MAE) loss, training by 
NLE loss significantly improves the generalization of point 
estimation. This phenomenon has never been reported in 
previous researches. 

(3) Besides precise point estimation, DUQ simultaneously in- 
ferences the sequential prediction interval. This attractive 

2 RELATED WORKS 
Weather Forecasting Weather forecasting has been well studied 
for more than a century. Most contemporary weather forecasting 
relies on the use of NWP approaches to simulate weather systems 
using numerical methods [9, 14, 20]. Some researchers have ad- 
dressed weather forecasting as a purely data-driven task using 
ARIMA [1], SVM [16], forward neural network [21], etc. These shal- 
low models explore only a few variables, which may not capture 
the spatio-temporal dynamics of diverse meteorological variables. 
Deep learning has also shown promise in the field of weather pre- 
diction. The study in [5] first adopted an auto-encoder to reduce 
and capture non-linear relationships between variables, and then 
trained a multi-layer perceptron for prediction. In [4], a deep hy- 
brid model was proposed to jointly predict the statistics of a set of 
weather-related variables. The study in [18] formulated precipita- 
tion nowcasting as a spatio-temporal sequence forecasting problem 
and proposed convolutional LSTM to handle it. However, these 
purely data-driven models are limited in that: 1) they all ignore 
important prior knowledge contained in NWP, which may not 
capture the spatio-temporal dynamics of diverse meteorological 
variables; 2) some need tedious feature engineering, such as extract- 
ing seasonal features as inputs and kernel selection, which seems 
contrary to the end-to-end philosophy of deep learning; 3) all lack 
the flexibility of uncertainty quantification. 
Deep Learning Although deep learning for regression has achieved 
great success and benefits from the powerful capability of learning 
representation, solutions like [23, 25, 27] only focus on point esti- 
mation and there is a substantial gap between deep learning and 
uncertainty quantification. 
Uncertainty Quantification For ease of explaining uncertainty in 
regression scenario, let us only consider the equation: Ŷ = f   X  + ϵ , 
where statistically f is the mean estimation (predictable point 
estimation) of the learned machine learning model and is also called 
the epistemic part. Its uncertainty comes from model variance de- 
noted by σ 2 ; ϵ is the irreducible noise, also named the aleatoric part. 
The reason it exists is because there are unobtained explanatory 
variables or unavoidable random factors, so it is called data variance. 
Due to the difficulty of expressing ϵ with a deterministic equation, 
data variance is usually modeled by a Gaussian distribution with 
zero mean and a variance σ 2 (Central Limit Theorems). If σ 2 does 
not change, it is a homosked

d
astic problem, otherwise it is regarded as heteroskedastic. Then the total variance σ 2 = σ 2 + σ 2 . The 

feature has not been studied well in previous deep learn- d m 

ing research for time series forecasting. It can be applied to 
various time series regression scenarios. 

(4) It explores efficient deep ensemble strategies. The experi- 
mental results demonstrate that the ensemble solution sig- 
nificantly improves accuracy. 

The rest of the paper is structured as follows. We discuss related 
works in Section II and introduce our method in Section III. In 
Section IV, we discuss experiments and performance analysis . Last, 
we conclude with a brief summary and shed light on valuable future 
works in Section VI. 

 
 

2 Released codes: https://github.com/BruceBinBoxing/Deep_Learning_Weather_Forecasting 

learning process is usually implemented by maximum likelihood 
estimation, which will learn the estimated σ̂ 2. 
Uncertainty quantification can provide more reference informa- 
tion for decision-making and has received increased attention from 
researchers in recent years [6] . However, most uncertainty quan- 
tification methods are based on shallow models and do not take 
advantages of deep learning. Deep models can automatically extract 
desirable representations, which is very promising for high-quality 
uncertainty quantification. To this end, Bayesian deep learning 
(BDL), which learns a distribution over weights, is currently the 
most popular technique [22]. Nevertheless, BDL has a prominent 
drawback in that it requires significant modification, adopting vari- 
ational inference (VI) instead of back-propagation (BP), to train 
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deep models. Consequently, BDL is often more difficult to imple- 
ment and computationally slower. An alternative solution is to 
incorporate uncertainty directly into the loss function and directly 
optimize neural networks by BP [7, 12, 13]. This still suffers from 
certain limitations. 1) Regression is solved as a mapping problem 
rather than curve fitting, hence this method cannot naturally be 
applied to multi-step time series forecasting [13, 15]. 2) The output 
only consider a single dimension. If it is to be extended to multiple 
dimensions or for multi-step time series forecasting, the method 
must be based on effective and reasonable assumptions. 3) Only 
a shallow forward neural network is used for illustration and the 
superior performance of deep learning is not explored. 
The proposed DUQ addresses these limitations by combining deep 
learning and uncertainty quantification to forecast multi-step mete- 
orological time series. It can quantify uncertainty, fuse multi-source 
information, implement multi-out prediction, and can take advan- 
tage of deep models. Meantime, it is optimized directly by BP. 

 
3 OUR METHOD 
3.1 Problem Statement 
Let us say we have historical meteorological observations from 
a chosen number of weather stations and a preliminary weather 
forecast from NWP. For each weather station, we concern weather 
forecasting to approximate ground truth in the future. We define 
this formally below: 

3.1.1 Notations. For a weather station s, we are given: 

(1) Historical observed meteorological time series 
E t   =  e1 t , e2 t , ..., eN1 t RN1 , where the variable ei 
is one type of meteorological element, for t = 1, ..., TE . 

(2) Another feature series consist of forecasting timesteps, sta- 
tion ID and NWP forecasting, i.e., 
D t   =  d1 t , d2 t , ..., dN2 t     RN2 , where the variable  
di t is one of N2 features, for t = TE + 1, ..., TE + TD , and 
TD is the required number of forecasting steps. 

(3) Ground truth of target meteorological variables denoted 
as Y t    =  y1 t  , y2 t  , ..., yN3 t RN3 , where the vari- 
able y t is one of N3 target variables, for t = T + 1, T + 
2, ..., TE  + TD  and its estimation denoted as Ŷ t  . 

(4) Then we define: 
ETE = [E(1), E(2), ..., E(TE )] ∈ RTE ×N1 

DTD = [D(TE + 1), D(TE + 2), ..., D(TE + TD )] ∈ RTD ×N2 

XTD = [ETE ; DTD ] 
T N YTD = [Y(TE + 1), Y(TE + 2), ..., Y(TE + TD )] ∈ R D × 3 . 

3.1.2 Task Definition. Given XTD , the point estimation will predict 
ŶTD  to approximate YTD  as far as possible. The prediction interval 

N3 = 3. The proposed method can be easily extended for any time 
interval prediction and more target variables. 

3.2 Information Fusion Methodology 
Data exploration analysis provides insights for the motivation and 
methodology of information fusion. Fig. 1 shows the variation of 
three target meteorological variables over the past three years. It 
can seen that only temperature reflects a strong seasonal variation, 
while relative humidity and wind speed are subjected to much noise. 
Based on this observation, methods that extract seasonal features 
from historical data may not provide the best results, since weather 
changes too dramatically [1, 4]. Frequent concept drift cause long- 
term historical meteorological data lack value [8]. One conclusion 
summarizes that "For many time series tasks only a few recent time 
steps are required"[2]. On the other hand, NWP is a relatively reliable 
forecasting method, but inappropriate initial states can introduce 
undesirable error bias. To address this, we propose a balanced fusion 
methodology: 

First, only recent observations, i.e., ET should be adopted 
for modeling recent meteorological dynamics. 
Second, a wise NWP fusion strategy should incorporate 
NWP forecasting at a counterpart forecasting timestep to 
easily correcting bias in NWP. Conversely, an unwise fu- 
sion strategy that is not carefully designed may absorb NWP 
which is not conducive to capturing important NWP signals. 
Hence we incorporate NWP forcasting into DTD rather than 
into ETE or hidden coding (see Fig. 3). 

Fig. 2 aggregates historical statistics of mean (solid line) and 90% 
confidence interval (shade area) for 10 stations from 3:00 intraday 
to 15:00 (UTC). We find that: 1) There exists obvious difference of 
mean and variance statistics, e.g., the mean value of station-ID 7 
follows a different trend compared with other stations. 2) Every 
hour at every station has different meteorological characteristics of 
mean and variance. To address this, we will introduce station ID 
and time ID into DTD . 

3.3 Data Preprocessing 
3.3.1 Missing values. There are two kind of missing values, i.e. 
block missing (one-day data lost) and local missing (local non- 
continuous time series), which vary in severity. For block missing 
[24], we just delete the data of those days from the dataset. For local 
missing data, we use linear interpolation to impute missing values. 
Taking the training set as an example, we delete 40 days with block 
missing values from a total of 1188 days, leaving the training data 
from 1148 (1188-40) days. 

3.3.2 Normalization of Continuous Variables. Continuous variables 
without normalization sometimes result in training failure for deep 

[Ŷ L   , ŶU   ] will ensure YT     ∈ [Ŷ L   , ŶU   ] (element-wise) with the D leaning, so we use min-max normalization to normalize each con- 
predefined tolerance probability. The prediction interval will cover 
the ground truth with at least the expected tolerance probability. 

This research was driven by a real-world weather forecasting 
competition. For feasible comparison, it focuses on a set time period, 
i.e., from 3:00 intraday to 15:00 (UTC) of the next day, hence TD = 37. 
The target variables include temperature at 2 meters (t2m), relative 
humidity at 2 meters (rh2m) and wind at 10 meters (w10m), hence 

tinuous feature into [0, 1]. In the evaluation, we re-normalize the 
predicted values back to the normal scale. 

3.3.3 Category Variables. There are two category variables, i.e. 
Timesteps ID and Station ID. Rather than hard-coding, such as one- 
hot or sin-cosine coding, we code them by embedding, which has 
achieved better performance than hard-coding [10]. 

• 
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Figure 1: Three historical target variable series from 03/01/2015-05/31/2018. They show a strong seasonal variation of t2m, a 
weak seasonal variation of 2-meter rh2m , and almost no seasonal variation of w10m. 

 

(a) t2m (b) rh2m (c) w10m 
 

Figure 2: The variation of mean (solid line) and 90% confidence interval (shaded area) for 10 stations during the target forecast- 
ing time zone (3:00 intraday to 15:00 of the next day) from 03/01/2015-05/31/2018. Values of Y-axis are following normalization. 

 
 
 
 
 
 

 
 
 
 

Figure 3: DUQ for sequential point estimation and prediction interval. 
 

3.3.4 Input/Output Tensors. Lastly, we load data from all stations 
and dates and reshape it to three tensors as follows: 

• (I , TE , S, N1), (I , TD , S, N2) (i.e., input tensors). 
• (I , TD , S, N3) (i.e., ground truth tensor). 

Note that I is the date index and S is the station index. When draw- 
ing training samples, we first draw integer date i ∈ I and station 
s ∈ S. We can then index by i, s from these three tensors and ob- tain one training instance Xi,s =[Ei,s ; Di,s ] and Yi,s abbreviated as 

3.4 Model Architecture 
The proposed DUQ is based on sequence-to-sequence (seq2seq, also 
a.k.a Encoder-Decoder). Its detailed formula is not discussed here. 
Readers can refer to [19] for more detail. There are already many 
high-performance variants for different tasks, but most of them 
focus on making improvements from the structural perspective 
to make point estimation more precise. We first incorporate se- 
quential uncertainty quantification for weather forecasting into the 

X =[E ; D ] and Y TD TE TD TD architecture presented in Fig. 3. The encoder first extracts latent 
TD TE TD TD for brevity. The advantage of organizing representations c from the observed feature series ET : 

data in this four-tuple style is that we can conveniently index the 
data via the specific dimension for hindsight inspection and con- 
sideration of scalability. For example, we can index specific dates 
and stations for later transfer learning research. Readers can refer 
to the instantiated example Parameter Settings for Reproducibility 
in Section V for deeper understanding. 

E 
 

c = Enc(ETE ; θ1) 

where c captures the current meteorological dynamics and is then 
transferred to form the initial state of the decoder. Based on the 
memory of c, the decoder absorbs DTD including station identity 
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(StaID), forecasting time identity (TimeID), and NWP forecasting. 
Two embedding layers will be introduced for StaID and TimeID 

where C is a constant which can be omitted during training. yo t is 
the ground truth of a target variable o at timestep t of the counter- 

respectively to automatically learn the embedding representations. part station s on the day i, σ 2 (Xi,s ) and uo;θ (Xi,s ) are respectively 
This architecture will generate sequential point estimation u o;θ t t 
used as Ŷ to predict Y as well as the variance ˆ 2 TD the variance and mean of a Gaussian distribution parameterized 

TD 

estimate [Ŷ L , ŶU 
]: 

σ̂ 2 
D 

TD 

 
 
, ŶTD 

 
 
= Dec(c, DTD 

 
 
; θ2) 

σTD 
utilized to by DUQ. The aim of the entire learning phase is to minimize NLE. 

Optimizing by deep models can easily lead to overfitting on the 
training set, therefore it is necessary to implement early-stopping 
on the validation set. Algorithm 1 outlines the procedure for the 
learning phase. 

where θ1 and θ2 are learnable parameters. We use f (·) to represent    
the combination of Encoder-Decoder and use XT = ET ; DT 
which can then be regarded as: 

Algorithm 1: Algorithm for learning 
 

 Input : N1, N2, N3, TE , TD ; 
2 ˆ 

Input tensors: (I , TE , S, N1), (I , TD , S, N2); 
σ̂TD 

, YTD  = f (XTD ) 

3.5 Learning Phase 
DUQ predicts two values at each timestep corresponding to the 
predicted mean and variance to parameterize the Gaussian distribu- 
tions 3. The NLE is calculated for the Gaussian distributions, which 
must be based on reasonable hypotheses. Three mild but experimen- 
tally effective assumptions are proposed (degree of effectiveness 
can be seen in the experimental results in Table 5): 

(1) Each day and each station are independent. This assumption 
ensures it is reasonable that the number of all training sam- 
ples can be regard as I S. Based on this, we can minimize 
the negative log-likelihood error loss: 

 
I S 

N LE  = − pθ (YTD |XTD ) 

Output tensor: I , T , S, N3 ; 
Maximum iterations; 
Tolerance iterations for early-stopping; 

Output : Learned DUQ model 
// Learning phase 

1 Initialize all learnable parameters θ in DUQ 
2 repeat 
3 

4 while each training datum n (1 n BatchSize) do 
// Format training data samples 

5 Draw a random integer i uni f orm 0, I 
6 Draw a random integer s uni f orm 0, S 
7 Index by i, s from input and output tensors and get one 

training sample (XTD , YTD ) 
8 Put this sample into 
9 end 

10 Update θ via BP by minimizing the NLE loss on 
11 until stopping criteria are met;  

i=1 s =1 
(2) Each target variable and each timestep at one specific station 

are conditionally independent given XTD . Based on this, we 

 
3.6 Inference Phase After training, we can implement statistical inference for an input 

can further decompose pθ  YT    XT by the product rule 
and transform it via log operation as: XTD by: 

uθ (XTD ), σ 2 (XTD ) = f (XTD ) 

pθ (YTD |XTD ) = 
 N3  TE +TD 

 
   

pθ (yo (t )|Xt ) 
where uθ XTD 
X 

) is statistically the mean estimation i.e., ŶTD 
2 ( 

given 

tistically the variance estimation, i.e., σ̂ 2    given XTD . Recall our 
ˆ 

TD 

 N3  TE +TD assumption that YTD satisfies Gaussian distribution, so upper bound 

 TD TD 
o t ˆ L ˆ ˆ  ̂ TD D D 

(3) The target variables satisfy multivariate independent Gauss- and YTD = YTD − λσTD , where σTD is the standard deviation and, 
ian distribution and σ is a function of the input features, λ should be determined according to the pre-defined 1 − z. In this 
i.e., Y θ ∼ N (u  (X σ ( research, 1 − z = 0.9 thus λ is set to 1.65 according to the z-score of 

TD θ TD ), θ XTD )). Based on this assumption, Gaussian distribution. Algorithm 2 gives the inference procedure. 
the final loss is: 

I 
NLE = − 

 S    N3  TE +TD 
loд pθ (yo (t )|Xi,s ) 

3.7 Ensemble Methodology 
We adopt a simple but efficient principle for ensemble: each single 

i s o t model is a DUQ-based model initialized with specified nodes. The 
I S    N3  TE +TD  loдσ 2 

 
(Xi,s ) (yo (t ) − u 

 

 

 
o;θ (Xi,s ))2 

 

 

ensemble point estimation is the averaged point estimation of all 
DUQ-based models, which is scalable and easily implementable. 

i s o t 2 
 

 

2 o;θ (Xi,s ) 3.8 Evaluation Metrics 
3 We enforce the positivity constraint on the variance by passing the second output 
through the sof tplus function loд 1 + exp ), and add a minimum variance (e.g. 
10−6 ) for numerical stability. 

3.8.1 Point Estimation Measurement. We first calculate the root 
mean squared error (RMSE) for each objective variable from S=10 
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Algorithm 2: Algorithm for inference 
Input : XTD , z; 

Then PICPobj for the objective variable is defined as: 
 Cobj  

Output : Ŷ L   , ŶU   , ŶT   , σ̂T    ; D D 
PICPobj = 

S · TD 
// Inference phase 

1   ŶT   , σ̂T     = f   XT 
// determine λ by z from z-score of Gaussian distribution 

Ideally, PICPobj should be equal to or greater than the pre- 
defined  value, i.e., 1 z = 0.9 where z is the significant level and is set to 0.1 in our experiments. 

2   Ŷ L 

3   ŶU 
= ŶTD 

= ŶTD 

− λσ̂TD 
+ λσ̂TD 

 
4 EXPERIMENTS AND PERFORMANCE 

 4   de-normalize Ŷ L   , ŶU   , YT     for real-world evaluation. 

 
stations for daily evaluation. 

ANALYSIS 
4.1 Baselines 
SARIMA Seasonal autoregressive integrated moving average is a 
benchmark model for univariate time series, where parameters are 

   S 
 

 

 TE +TD (ys (t ) − ŷ s (t ))2 
chosen using AIC (Akaike information criterion). 

S · TD where ys (t ) and ŷ s (t ) are respectively the ground truth and the 
machine for regression estimation. 

GBRT Gradient boosting regression tree is an ensemble method o o for regression tasks and is widely used in practice. 
predicted value of the objective variable obj (i.e., t 2m, rh2m or w10m 
in this paper) of the station s at time t . 

 
RMSEday = 

RMSEt 2m + RMSErh2m + RMSEw 10m 
N3 

RMSEday is the ultimate RMSE criterion in the experimental re- 
ports for each day. RMSEavд is the average RMSEday over all days. 
To demonstrate the improvement over the classic NWP method, 
we employ the following evaluation using the associated skill score 
(SS, the higher the better): 

 RMSEobj_ml  
SSobj = − 

RMSEobj _nwp 

where RMSEobj _nwp is the RMSEobj calculated by the NWP method 
and RMSEobj _ml is calculated from the prediction made of machine 
learning models. 

DUQ50 is one layer GRU-based seq2seq with 50 hidden nodes. 
The loss function is NLE. 

DUQ50 50 is two layers GRU-based seq2seq with 50 hidden 
nodes of each layer. The loss function is NLE. 

DUQ200 is one layer GRU-based seq2seq with 200 hidden nodes. 
The loss function is NLE. 

DUQ300 300 is two layers GRU-based seq2seq with 300 hidden 
nodes of each layer. The loss function is NLE. 

DUQnoNW P is the same as DUQ300 300 except that NWP fore- 
casting (i.e. NWP of DTD , refer to Fig. 3 ) is masked by zero values. 

DUQnoOBS is the same as DUQ300 300 except that the observa- 
tion features (i.e. ETE ) are masked by zero values. 

Seq2SeqMSE is the same as DUQ300 300 except that the loss 
function is MSE. 

Seq2SeqMAE is the same as DUQ300 300 except that the loss 
function is MAE. 

 SS + SS  + SS DUQEsb3 ensembles three DUQ models (i.e., DUQ300−300, DUQ200−200, 
SSday  =

    t 2m rh2m w 10m 
N3 

SSday is the ultimate SS criterion in experimental reports for 
every day. SSavд is the average SSday over all days, which is also 
the ultimate rank score in the online competition. 

3.8.2 Prediction Interval Measurement. To evaluate the prediction 
interval, we introduce the metric called prediction interval coverage 
probability (PICP). First, an indicator tensor 
B RS ×TD ×N3 is defined. Each Boolean variable bs,t,o 0, 1 
represents whether the objective variable o at the predicted time 
step t at the station s has been captured by the estimated prediction 
interval. 

DUQ100 100) for online evaluation. This method achieved 2nd place 
in the online competition. 

DUQEsb10 ensembles 10 DUQ models with different architec- 
ture to explore the effectiveness of the ensemble. It ensembles 
DUQ300 300, DUQ310 310, ..., DUQ390 390 (increasing at 10-neuron 
intervals). 

Model1st achieves the best SSavд during online comparison. Ac- 
cording to the on-site report, the author also adopted a complicated 
stacking and ensemble learning strategy. 

4.2 Experimental Environments 
The experiments were implemented on a GPU server with Quadro 
P4000 GPU and Keras programming environment (Tensorflow back- 

bs,t,o = 1, if 
0, else. 

L 
s,o (t ) ≤ ys,o (t ) ≤ ŷ U (t ) end). 

4.3 Parameter Settings for Reproducibility 
The total number of captured data points for the objective vari- 

able is defined as Cobj , 
The batch size is set to 512. The embedding dimension of each embed- 
ding layer is set to 2. Since we adopted an early-stopping strategy, 

S 
Cobj = 

TE +TD  
bs,t,o 

it was not necessary to set the epoch parameter. Instead, we set the 
number of maximum iterations to a relatively large number of 10000 

s =1 t =TE +1 to take sufficient batch iterations into consideration. The validation 

RMSEobj = 
SVR Support vector regression is a non-linear support vector 

ŷ 



× 
− 

− 
− 

− 

− 

DUQ300− 2900 (58*50)300 

− 

− 

− 

interval (vi) is set to 50 meaning that for every 50 iterations, we 
will test our model on validation set and calculate the validation 
loss. We set the early-stopping tolerance (est) to 10, meaning that if 
the validation loss over 10 continuous iterations did not decrease, 
training would be stopped early. We defined the validation times 
(vt) when early-stopping was triggered, hence the total iterations 
(ti) can be calculated by ti=vt vi. For the prediction interval, z was 
set to 0.1, 1 z = 0.9 thus λ is set to 1.65 according to the z-score 
of Gaussian distribution. 

We set N1 = 9, N2 = 31, N3 = 3, TE = 28, TD = 37 to preprocess 
the original dataset. After preprocessing, the final dataset shape 
was as shown below. 

For the training set: 

• Encoder inputs: (1148, 28, 10, 9) 
• Decoder inputs: (1148, 37, 10, 31) 
• Decoder outputs: (1148, 37, 10, 3) 

For the validation set: 

• Encoder inputs: (87, 28, 10, 9) 
• Decoder inputs: (87, 37, 10, 31) 
• Decoder outputs: (87, 37, 10, 3) 

For the test set on each day: 

• Encoder inputs: (1, 28, 10, 9) 
• Decoder inputs: (1, 37, 10, 31) 
• Decoder outputs: (1, 37, 10, 3) 

The meaning of each number is explained as follows: we acquired 
data from 1148 days for the training set and data from 87 days for 
the validation set. Because our evaluation is based on online daily 
forecasting, the test day index is 1. Number 28 is a hyperparameter, 
meaning that the previous 28 hours of observations were used to 
model recent meteorological dynamics. Number 37 was set accord- 
ing to the specified forecasting steps for the next 37 hours. Number 
9 is the dimension of observed meteorological variables. Number 31 
(dimension of decoder inputs) consists of concatenating Timesteps 
ID and Station ID into 29-dimension of NWP forecasting (2+29=31). 
Number 3 is the ground truth number for 3 target variables. The 
size of the final training set is 1148*10=11480. The size of validation 
set is 87*10=870, which is used for early-stopping. The size of test 
set on each day is 1*10=10. 

4.4 Performance analysis 
Table 3 presents the evaluation by SS score based on rolling fore- 
casting, with incremental data releasd on a daily basis for nine days 
to mimic real-world forecasting processes. 

good enough, and that comprehensive information fusion is a bet- 
ter solution, which is a valuable reference for the meteorological 
industry. 

4.4.2 Effect of deep learning. On average, the deep learning-based 
models (DUQ and Seq2Seq) perform better than the non-deep 
learning models (SARIMA, SVR, GBRT). Comparing DUQ50 and 
DUQ50 50 validates the influence of deeper layers. Comparing 
DUQ50, DUQ200, and DUQ300 300 validates the effectiveness of 
nodes under the same number of layers. 

4.4.3 Effect of loss function. A notable result is that DUQ300 300 
trained by NLE loss performs much better than Seq2SeqMSE (MSE 
loss) and Seq2SeqMAE (MAE loss). In order to empirically under- 
stand the reasons for better generalization when trained by NLE, 
we calculated the ti when early-stopping was triggered, as shown in 
Table 1. It can be seen that DUQ300 300 requires more iterations to 
converge. A reasonable interpretation is that NLE loss jointly imple- 
ments two tasks i.e., mean optimization and variance optimization, 
which need more iterations to converge. This joint optimization 
may to some extent play a regularization role and help each other 
out of the local minimum. It may therefore require more iterations 
to converge and may have better generalization. We believe that 
this phenomenon deserves the attention of researchers, and that it 
should be proved by theory in follow-up work. 

 
Table 1: Iterations when early-stopping triggered 

      Methods ti (vt× vi) 

Seq2SeqMSE  2100 (42*50) 
DUQnoNW P    1950 (39*50) 
Seq2SeqMAE   1850 (37*50) 

   DUQnoOBS     1450 (29*50)  

 

4.4.4 Effect of ensemble. The ensemble model DUQEsb3 was used 
in the online competition 4. DUQEsb10 achieved the best SSavд , 
which indicates that ensemble with more DUQ models would pro- 
vide a better solution. 

4.4.5 Significance of T-test. Because real-world forecasting only 
covers nine days, we implemented a one-tail paired T-test with 
significance level siд = 0.25 to ensure that our results were sta- 
tistically significant. The column P-value between DUQEsb10 and 
others shows that each T-test has been passed which means that 
our method DUQEsb10 is significantly better than any other base- 
line under the specified significance level. For the single model, we 
also implemented a T-test between DUQ300 300 and other baselines 
including DUQnoOBS , DUQnoNW P , Seq2SeqMSE , Seq2SeqMAE 

4.4.1 Effect of information fusion. Comparing DUQ300 
DUQ 

−300 with 
to ensure that DUQ300 300 had significant effectiveness, which is 
shown in Table. 2. 

noNW P validates the effectiveness of fusing NWP forecasting. 
Comparing DUQ300 300 with DUQnoOBS validates the effective- 
ness of modeling recent meteorological dynamics. Comparing pure 
NWP with DUQnoOBS illustrates the performance of NWP alone 
can be further improved by deep learning method. A more note- 
worthy observation is that DUQnoNW P without NWP information 
still performs better than pure NWP, which exhibits the superior- 
ity of DUQ for modeling meteorological data. These comparisons 
are powerful proof that modeling with NWP or OBS alone is not 

4.4.6 Evaluation by RMSE. We also evaluated all methods by RMSEavд 
as shown in Table 4. Since RMSEavд and SSavд do not have a fully 
linear relationship, the counterpart assessment does not reach the 

 
 

4 Readers can refer to https://challenger.ai/competition/wf2018 to check our online 
scores which are consistent with DUQEsb 3 during Day 3-Day 9. During Day 1 and 
Day 2 of the online competition, DUQEsb 3 had not been developed. In this paper we 
re-evaluate DUQEsb 3 offline on Day 1 and Day 2. This is also why DUQEsb 3 with 
SSavд =0.4673 is better than the Model1st (0.4671) but was only awarded 2nd place 
online. 
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Table 2: T-test among single models for DUQ300−300 
 

  P-value on RMSEavд P-value on SSavд  
DUQ300 300 - - 
DUQnoNW P 0.00 0.00 
DUQnoOBS 0.00 0.00 

Seq2SeqMSE 0.00 0.00 
  Seq2SeqMAE 0.03 0.08  

 
 

optimum at the same time while DUQEsb10 still achieves the best 
RMSEavд . The related P-value also indicates that DUQEsb10 is sig- 
nificantly better than other baselines under siд = 0.25. Because 
online evaluation does not release the RMSE ranking, the RMSE of 
Model1st place is not shown in Table 4. 

4.4.7 Discuss instability of weather forecasting. Due to meteoro- 
logical instability and variability, no single model can achieve the 
best scores every day - not even the ensemble method. Sometimes a 
single model can achieve the highest SSday score, such as DUQ200 
on Day 2 and DUQ50 50 on Day 7. Overall, however, the ensem- 
ble method DUQEsb10 achieves the greatest score benefit from the 
stability of ensemble learning. The instability of meteorological 
elements also reflects the need for a prediction interval. 

4.4.8 Quantity of prediction interval. An effective prediction in- 
terval should satisfy that PICPobj is equal to or greater than the 
pre-defined 1   z  = 90%. Table 5 shows the results. In particu- 
lar, the PICPrh2m on Day 3 seems far below expectations. The 
main reason is that forecasting of rh2m is not accurate on that day. 
The online competition scores of all contestants were particular 
low on that day. Generally, our approach meets the requirement 
PICPavд ≥ 1 − z = 90%. 

4.4.9 Quality of prediction interval. We take the model DUQ300 300 
to visualize the quality of the prediction interval. Fig. 4 illustrates a 
forecasting instance at one station on a competition day. In each 
sub-figure, the left green line is the observed meteorological value 
during the previous 28 hours, the right green line is the ground 
truth, the blue line is the NWP prediction, the red line is DUQ300 300 
prediction and the red shaded area is the 90% prediction interval. 
A noticeable observation is that the prediction interval does not 
become wider over time, instead, it presents that the width of the 
middle part is narrower than both ends particularly for t2m and 
rh2m (deep learning with point estimation alone will not reveal 
these insights for operators.). A reasonable explanation is that mete- 
orological elements largely change during the daytime and become 
more stable during night time. Having this prediction interval would 
provide more information for travel/production planning than only 
point prediction. Another noteworthy point is that because w10m 
fluctuates sharply, it is more difficult to forecast point estimate 
precisely, and the prediction interval tends to be wider than t2m 
and rh2m. 

5 CONCLUSIONS AND FUTURE WORKS 
This paper addresses the real-world problem in weather forecasting 
which has a profound impact on our daily life, by introducing a new 
deep uncertainty quantification (DUQ) method. A novel loss func- 
tion called negative log-likelihood error (NLE) was designed to train 
the prediction model, which is capable of simultaneously inferring 
sequential point estimation and prediction interval. A noteworthy 

 

 
(a) t2m 

 

 
(b) rh2m 

 

 
(c) w10m 

 
Figure 4: A test sample at one station is chosen to visualize 
the forecasting of 3 target variables in the future 37 hours. 
We can see that all predicted points fall into the prediction 
interval given by 1 − z = 90%. 

 
experimental phenomenon reported in this paper is that training by 
NLE loss significantly improves the generalization of point estima- 
tion. This may provide practitioners with new insights to develop 
and deploy learning algorithms for related problems such as time se- 
ries regression. Based on the proposed method and an efficient deep 
ensemble strategy, state-of-the-art performance on a real-world 
benchmark dataset of weather forecasting was achieved. The over- 
all method was developed in Keras and was flexible enough to be 
deployed in the production environment. The data and source codes 
will be released and can be used as a benchmark for researchers 
and practitioners to investigate weather forecasting. Future works 
will be directed towards architecture improvement (e.g., attention 
mechanism), automatic hyperparameter-tuning, and theoretical 
comparison between NLE and MSE/MAE. 
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Table 3: The SS performance of different methods on 9 days. The column P-value compare the best performing method 
DUQEsb10 with other methods, using one-tail paired T-test. 

 
Method SSday1   SSday2   SSday3   SSday4   SSday5   SSday6   SSday7   SSday8   SSday9    SSavд   P-value   

SARIMA 0.1249     -1.4632    -0.2417    -0.4421    -0.2631    -0.2301     0.0630     0.2015   -0.4579   -0.3010 0.00 
SVR -0.7291    -0.6342    -0.1999    -0.5918    -1.1230    -0.8568    -0.6154    -0.5123   -0.5807   -0.6492 0.00 

GBRT 0.0221     0.1318     -0.0086    -0.0396    -0.0960     0.0067     0.0772     0.0859     0.0000     0.0199 0.00 
DUQ50 0.4813     0.4833     0.2781     0.3053     0.4277     0.4853     0.4609     0.4987     0.2647     0.4095 0.00 

DUQ50 50 0.4847      0.4969      0.3088      0.4012      0.4302      0.5051     0.5656     0.5502   0.3239     0.4518 0.00 
DUQ200 0.5278     0.5088     0.2890      0.3797      0.4479      0.5358      0.4961      0.5235   0.3478     0.4507 0.02 

DUQ300 300    0.5220     0.5002     0.3352     0.4067     0.4474     0.5289     0.5324     0.5463     0.3047     0.4582 0.00 
DUQnoNW P      0.2348      0.2992      0.0081      0.2440      0.1630      0.3125      0.2660      0.3003 -0.1599    0.1853 0.00 
DUQnoOBS 0.4694     0.4744     0.2624     0.3447     0.3925     0.4588     0.4756     0.4901     0.3150     0.4092 0.00 

Seq2SeqMSE     0.4978     0.3934     0.2860     0.3960     0.3965     0.4842     0.4820     0.5138     0.3192     0.4188 0.00 
Seq2SeqMAE     0.5314     0.4346     0.2671     0.3980     0.4610     0.5391     0.4711     0.5565     0.2999     0.4399 0.00 

DUQEsb3 0.5216      0.4951      0.3358      0.4050      0.4627      0.5359      0.5350      0.5664  0.3479    0.4673 0.04 
DUQEsb10 0.5339     0.4940      0.3516     0.4355      0.4600      0.5575      0.5581      0.5776     0.3298     0.4776 - 
Model1st 0.4307      0.4847      0.3088      0.4572     0.5019     0.5753     0.5345      0.5726    0.3384      0.4671 0.24 

Table 4: The RMSE performance of different methods on 9 days. Since RMSE and SS are not fully linear relationship, the 
counterpart assessment does not reach the optimal at the same time. 

 
Method RMSEday1   RMSEday2   RMSEday3   RMSEday4    RMSEday5    RMSEday6    RMSEday7    RMSEday8    RMSEday9    RMSEavд   P-value    

NWP  7.5923 9.7276 5.1079 5.7335 6.1542 7.5239 6.3647 7.0457 5.8819 6.7924 0.00 
SARIMA 7.3017 16.5954 7.2964 8.9968 8.0726 8.1440 7.1722 5.8466 8.1795 8.6228 0.00 

SVR 8.1788 10.0436 5.9310 7.1662 7.7576 8.4064 7.9094 8.4749 7.5431 7.9346 0.00 
GBRT 6.5551 8.0321 5.6892 6.1422 6.1083 6.5687 5.9449 6.7122 5.9573 6.4122 0.00 
DUQ50 3.0432 4.5256 4.1858 4.5445 3.0069 3.4912 3.8087 3.2299 4.5545 3.8211 0.00 

DUQ50 50 2.9013 4.2442 4.0203 3.6641 3.2275 3.2062 2.6428 2.8175 4.3089 3.4481 0.00 
DUQ200 2.8128 4.0400 4.1624 4.0732 2.8580 2.8086 3.2870 3.1963 4.3326 3.5079 0.03 

DUQ300 300 2.7168 4.0615 3.8866 3.7977 2.8083 2.9211 2.8012 2.9784 4.3308 3.3669 0.16 
DUQnoNW P 5.0371 5.5370 5.0529 4.6819 4.1385 4.4716 5.7058 5.8346 7.6805 5.3489 0.00 
DUQnoOBS 3.2170 4.8604 4.4150 4.1303 3.5896 3.8239 3.4992 3.2031 4.3008 3.8933 0.00 

Seq2SeqMSE 3.1328 5.0769 4.1400 3.8426 3.2040 3.3142 3.3027 3.1785 4.6426 3.7594 0.00 
Seq2SeqMAE 2.7272 5.0933 4.2837 4.0184 2.7888 3.0029 3.7165 2.7935 4.6509 3.6750 0.00 

DUQEsb3 2.8000 4.4338 3.7054 3.7886 2.8566 2.7890 2.7979 2.8011 4.3310 3.3670 0.05 
DUQEsb10 2.7027 4.3341 3.7999 3.5743 2.7627 2.6874 2.7799 2.7402 4.3949 3.3085 - 

 
Table 5: PICP on every day 

 
PICPobj Day 1      Day 2      Day 3      Day 4      Day 5      Day 6      Day 7      Day 8      Day 9     PICPavд 
PICPt 2m 0.9513    0.9351    0.8918    0.8891    0.9594    0.9648    0.9027 0.8945   0.9351 0.9249 

PICPrh2m    0.9945    0.8702    0.7648    0.8729    0.9621    0.9621    0.9243  0.9243   0.9135 0.9099 
  PICPw 10m    0.9567    0.9567    0.9081    0.9594    0.9675    0.9621    0.9378 0.9648   0.9540 0.9519  
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