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ABSTRACT

Weather forecastingis usually solved through numerical weather
prediction (NWP), which can sometimes lead to unsatisfactory per-
formance due to inappropriate setting of the initial states. In this
paper,wedesignadata-driven method augmented by an effective
information fusion mechanism to learn from historical data that
incorporates prior knowledge from NWP. We cast the weather fore-
casting problem as an end-to-end deep learning problem and solve
it by proposing a novel negative log-likelihood error (NLE) loss
function. Anotable advantage of our proposed methodisthatitsi-
multaneously implements single-value forecasting and uncertainty
quantification, which we refer to as deep uncertainty quantification
(DUQ). Efficient deep ensemble strategies are also explored to fur-
ther improve performance. This new approach was evaluated on
apublicdataset collected from weather stations in Beijing, China.
Experimental results demonstrate that the proposed NLE loss sig-
nificantly improves generalization compared to mean squared error
(MSE) loss and mean absolute error (MAE) loss. Compared with
NWP, this approach significantly improves accuracy by 47.76%,
which is a state-of-the-art result on this benchmark dataset. The
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preliminary version of the proposed method won 2nd placein an
online competition for daily weather forecasting .
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1 INTRODUCTION

Meteorological elements, such as temperature, wind and humidity,
profoundly affect many aspects of human livelihood [3, 11]. They
provide analytical support forissues related to urban computing
such as traffic flow prediction, air quality analysis, electric power
generation planning and so on [26]. The most common method
currently utilized in meteorology is the use of physical models to
simulate and predict meteorological dynamics known as numeri-
cal weather prediction, or NWP. The advantage of NWP is that it
is based on the numerical solution of atmospheric hydro thermo
dynamic equations and is able to obtain high prediction accuracy
ifthe initial solution isappropriately chosen. However, NWP may
notbereliable duetotheinstability ofthese differential equations
[20]. With the growing availability of meteorological big data, re-
searchershaverealized thatintroducingdata-drivenapproaches

LAl Challenger 2018 https://challenger.ai/competition/wf2018. For English speakers,
kindly click on the top right corner on the website.
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into meteorology can achieve considerable success. Several ma-
chinelearningmethods have been applied to weather forecasting
[4,5,17]. The merit of data-driven methods is that they can quickly
model patterns through learning to avoid solving complex differen-
tial equations. Nevertheless, learning from historical observations
alone requires big data and a tedious amount of feature engineering
to achieve satisfying performance, which presented us with the
following challenge. Could we combine the advantages of NWP and
machine learning to make a more efficientand effective solution?
At the same time, single-value (i.e. point estimation) forecasting
lacks credibility and flexibility for numerous types ofhuman deci-
sion. Could we provide more information to indicate the prediction
interval based on high-quality uncertainty quantification? This pa-
per aims to introduce a unified deep learning method to address
these problems through end-to-end learning. In particular, we will
predict multiple meteorological variables across different weather
stationsatmultiple future steps. The proposed approach has sev-
eral advantages: efficient data pre-processing, end-to-end learning,
high accuracy, uncertainty quantification and easy-to-deploy which
makes it have considerable practical significance. The contributions
of this work are summarized as follows:

(1) Itproposesaneffective deep modeland information fusion
mechanism to handle weather forecasting problems. To the
best of our knowledge, this is the first machine learning
method which combines historical observationsand NWP
for weather forecasting. Data and source codes will be re-
leased and can be used as a benchmark for researchers to
study machine learning in the meteorology field?.
Itestablishes effective assumptions and constructs anovel
negative log-likelihood error (NLE) loss function. Unlike
Bayesian deep learning (BDL), deep uncertainty quantifica-
tion (DUQ) canbe seamlessly integrated with currentdeep
learning frameworks such as Tensorflow and Pytorch. It
can be directly optimized via backpropagation (BP). Our ex-
periments show that compared with typical mean squared
error (MSE) and mean absolute error (MAE) loss, training by
NLE loss significantly improves the generalization of point
estimation. This phenomenon has never been reported in
previous researches.

(3) Besides precise point estimation, DUQ simultaneously in-

ferencesthe sequential prediction interval. This attractive
feature has not been studied well in previous deep learn-
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ingresearch for time seriesforecasting. Itcan be applied to
various time series regression scenarios.

(4) Itexplores efficient deep ensemble strategies. The experi-
mental results demonstrate thatthe ensemble solution sig-
nificantly improves accuracy.

The rest of the paper is structured as follows. We discuss related
works in Section Il and introduce our method in Section III. In
Section IV, we discuss experiments and performance analysis . Last,
we conclude with a brief summary and shed light on valuable future
works in Section VL

2 Released codes: https://github.com/BruceBinBoxing/Deep_Learning Weather_Forecasting

2 RELATED WORKS

Weather Forecasting Weather forecasting has been well studied
for more than a century. Most contemporary weather forecasting
relies onthe use of NWP approaches to simulate weather systems
using numerical methods [9, 14, 20]. Some researchers have ad-
dressed weather forecasting as a purely data-driven task using
ARIMA [1], SVM [16], forward neural network [21], etc. These shal-
low models explore only a few variables, which may not capture
the spatio-temporal dynamics of diverse meteorological variables.
Deeplearninghas also shown promise in the field of weather pre-
diction. The study in [5] first adopted an auto-encoder to reduce
and capture non-linear relationships between variables, and then
trained a multi-layer perceptron for prediction. In [4], a deep hy-
brid model was proposed to jointly predict the statistics of a set of
weather-related variables. The study in [18] formulated precipita-
tion nowcasting as a spatio-temporal sequence forecasting problem
and proposed convolutional LSTM to handle it. However, these
purely data-driven models are limited in that: 1) they all ignore
important prior knowledge contained in NWP, which may not
capture the spatio-temporal dynamics of diverse meteorological
variables; 2) some need tedious feature engineering, such as extract-
ing seasonal features as inputs and kernel selection, which seems
contrary to the end-to-end philosophy of deep learning; 3) alllack
the flexibility of uncertainty quantification.

Deep Learning Although deep learning for regression has achieved

great success and benefits from the powerful capability of learning
representation, solutionslike [23,25,27] only focus on point esti-
mation and there is a substantial gap between deep learning and
uncertainty quantification.

Uncertainty Quantification For ease of explaining uncertainty in
regression scenario, let us only consider the equation: Y = f (¥ +e,
where statistically f{iy the mean estimation (predictable point
estimation) of the learned machine learning model and is also called
the epistemicpart.Its uncertainty comes from modelvariance de-
noted by 0,2,7; eistheirreducible noise, also named the aleatoric part.
The reason it exists is because there are unobtained explanatory
variables or unavoidable random factors, soitis called data variance.
Due to the difficulty of expressing e with a deterministic equation,
data variance is usually modeled by a Gaussian distribution with
zeromeanand avariance 05 (Central Limit Theorems). Ifo? does
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learning processis usually implemented by maximuma likelihood
estimation, which will learn the estimated 62

Uncertainty quantification can provide more reference informa-
tion for decision-making and has received increased attention from
researchersinrecentyears [6]. However,mostuncertainty quan-
tification methods are based on shallow models and do not take
advantages of deep learning. Deep models can automatically extract
desirable representations, which is very promising for high-quality
uncertainty quantification. To this end, Bayesian deep learning
(BDL), which learns a distribution over weights, is currently the
mostpopulartechnique [22]. Nevertheless, BDL has a prominent
drawback in that it requires significant modification, adopting vari-
ational inference (V1) instead of back-propagation (BP), to train



deep models. Consequently, BDL is often more difficult to imple-
ment and computationally slower. An alternative solution is to
incorporate uncertainty directly into the loss function and directly
optimize neural networks by BP [7, 12, 13]. This still suffers from
certainlimitations. 1) Regression is solved as a mapping problem
rather than curve fitting, hence this method cannot naturally be
applied to multi-step time series forecasting [13, 15]. 2) The output
only considerasingle dimension. Ifitis to be extended to multiple
dimensions or for multi-step time series forecasting, the method
must be based on effective and reasonable assumptions. 3) Only
ashallow forward neural network is used for illustration and the
superior performance of deep learning is not explored.

The proposed DUQ addresses these limitations by combining deep
learning and uncertainty quantification to forecast multi-step mete-
orological time series. It can quantify uncertainty, fuse multi-source
information, implement multi-out prediction, and can take advan-
tage of deep models. Meantime, it is optimized directly by BP.

3 OUR METHOD
3.1 Problem Statement

Let us say we have historical meteorological observations from
achosen number of weather stations and a preliminary weather
forecast from NWP. For each weather station, we concern weather
forecasting to approximate ground truth in the future. We define
this formally below:

3.1.1 Notations. For a weather station s, we are given:

(1) Historical observed meteorological time series
E(t) = [e1(t), ex(t), ....en;(D)] € RN1, where the variable e;
is one type of meteorological element, fort = 1,..., TE.

(2) Another feature series consist of forecasting timesteps, sta-
tion ID and NWP forecasting, i.e.,

D(t) =[di(t),dLD, ..., dn{D] €RN2, where the variable
d; € )s one of N features, for t=Tg+ 1, ..., Tg+ Tp, and
Tp is the required number of forecasting steps.

(3) Ground truth of target meteorological variables denoted
asY() = pr1¢)y2¢€)...yns@)] € RM3 | where the vari-
abley(t)is one of N3 target variables, for t= T+ 1, TE+
2,...,Tg + Tp and its estimation denoted as Y@).

(4) Then we define:

Er:= [E(1), EQ2), ..., E(Tg)] € RTEXM

Dy, = [D(Tg + 1), D(Tg + 2), ..., D(Tg + Tp)] € RTp XNz
XTD = [ETE ; DTD]

Y1, = [Y(Tg+ 1), Y(Tg+ 2), ... Y(Tg + Tp)] € R0 %3,

3.1.2  Task Definition. Given X, the point estimation will predict
Y7, to approximate Y, as far as possible. The prediction interval

[Y%D , Y%D ] will ensure Yrp € [YLTD, YL%D] (element-wise) with the
predefined tolerance probability. The prediction interval will cover
the ground truth withatleastthe expected tolerance probability.
This research was driven by a real-world weather forecasting
competition. For feasible comparison, it focuses ona set time period,
i.e,, from 3:00 intraday to 15:00 (UTC) of the next day,hence Tp = 37.
The target variables include temperature at 2 meters (t2m), relative
humidity at 2 meters (rh2m) and wind at 10 meters (w10m), hence

N3 =3.The proposed method can be easily extended forany time
interval prediction and more target variables.

3.2 Information Fusion Methodology

Data exploration analysis provides insights for the motivation and
methodology of information fusion. Fig. 1 shows the variation of
three target meteorological variables over the pastthree years. It
can seen that only temperature reflects a strong seasonal variation,
while relative humidity and wind speed are subjected to much noise.
Based on this observation, methods that extract seasonal features
from historical data may not provide the best results, since weather
changes too dramatically [1, 4]. Frequent concept drift cause long-
term historical meteorological datalackvalue [8]. One conclusion
summarizes that "For many timeseries tasks only a few recent time
stepsarerequired"[2]. On the other hand, NWP is a relatively reliable
forecasting method, but inappropriate initial states can introduce
undesirable error bias. Toaddress this, we propose abalanced fusion
methodology:

. First, only recent observations, i.e., Er should be adopted
for modeling recent meteorological dynamics.

. Second, a wise NWP fusion strategy should incorporate
NWP forecasting at a counterpart forecasting timestep to
easily correcting bias in NWP. Conversely, an unwise fu-
sion strategy that is not carefully designed may absorb NWP
which is not conducive to capturing important NWP signals.
Hence we incorporate NWP forcasting into Dt rather than
into E7, or hidden coding (see Fig. 3).

Fig. 2 aggregates historical statistics of mean (solid line) and 90%
confidence interval (shade area) for 10 stations from 3:00 intraday
to 15:00 (UTC). Wefind that: 1) There exists obvious difference of
mean and variance statistics, e.g., the mean value of station-ID 7
follows a different trend compared with other stations. 2) Every
hour at every station has different meteorological characteristics of
mean and variance. To address this, we will introduce station ID
and time ID into D, .

3.3 Data Preprocessing

3.3.1  Missing values. There are two kind of missing values, i.e.
block missing (one-day data lost) and local missing (local non-
continuous time series), which vary in severity. For block missing
[24], we just delete the data of those days from the dataset. For local
missing data, we use linear interpolation to impute missing values.
Taking the training set as an example, we delete 40 days with block
missing values from a total of 1188 days, leaving the training data
from 1148 (1188-40) days.

332 Normadlization of Continuous Variables. Continuous variables
without normalization sometimes result in training failure for deep
leaning, so we use min-max normalization to normalize each con-
tinuous feature into [0, 1]. In the evaluation, we re-normalize the
predicted values back to the normal scale.

3.3.3 Category Variables. There are two category variables, i.e.
TimestepsID and Station ID. Rather than hard-coding, suchas one-
hot or sin-cosine coding, we code them by embedding, which has
achieved better performance than hard-coding [10].



(a) t2m

(b) rh2m

(c) wl0m

Figure 1: Three historical target variable series from 03/01/2015-05/31/2018. They show a strong seasonal variation of t{2m, a
weak seasonal variation of 2-meter rh2m , and almost no seasonal variation of w10m.

(a) t2m

(b) rh2m

(c) wl0m

Figure 2: The variation of mean (solid line) and 90% confidence interval (shaded area) for 10 stations during the target forecast-
ing time zone (3:00 intraday to 15:00 of the next day) from 03/01/2015-05/31/2018. Values of Y-axis are following normalization.
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Figure 3: DUQ for sequential point estimation and prediction interval.

3.3.4  Input/Output Tensors. Lastly, we load data from all stations
and dates and reshape it to three tensors asfollows:

« (I,Tg,S,N1),,Tp,S, N2) (i.e., input tensors).
- (I,Tp,S, N3) (i.e., ground truth tensor).

Note that/isthe dateindexand Sis the station index. When draw-
ing training samples, we first draw integer date i € I and station
c S. W th d t t d

iam[oneter%‘"i‘r?m%‘?%é{‘an%%’ b2 [%p*“ﬁhefgnﬂ‘i?ﬁs SPESAROR
o Te Tp To forbrev1ty. The advantage oforganizing
data in this four-tuple style is that we can conveniently index the
data via the specific dimension for hindsight inspection and con-
sideration of scalability. For example, we can index specific dates
and stations for later transfer learning research. Readers can refer

to the instantiated example Parameter Settings for Reproducibility
in Section V for deeper understanding.

3.4 Model Architecture

Theproposed DUQisbased onsequence-to-sequence (seq2seq, also

a.k.a Encoder-Decoder). Its detailed formula is not discussed here.
Readers canreferto [19] for more detail. There are already many
high-performance variants for different tasks, but most of them
focus on making improvements from the structural perspective
to make point estimation more precise. We first incorporate se-

ntlaluncertaln ntl cat rweath rf recastln intqthe
grghltecture pres tll’ lfnftge enco 1rst extrdcts latent

representations c from the observed feature series Et:
E

¢ = Enc(Erg; 07)

where c captures the current meteorological dynamics and is then
transferred to form the initial state of the decoder. Based on the
memory of ¢, the decoder absorbs D, including station identity



(StalD),forecastingtime identity (TimelD),and NWP forecasting.

Two embedding layers will be introduced for StalD and TimelID
respectively to automatically learn the embedding representations.
This architecture will genérate sequential point estimation u

usedas Y to predictY aswellasthe variance "2 To
To To or, utilized to

estimate [Y%D , YI%D 1:
62 Y. =
Tp> tIp =Dec(c, Drp, ;63)
where 67 and 0; are learnable parameters. We use f(:) to represent

the combination of Encoder-Decoder and use Xt = E7; Dj
which can then be regarded as:

67, Yrp = f(X1p)

3.5 Learning Phase

DUQ predicts two values at each timestep corresponding to the
predicted mean and variance to parameterize the Gaussian distribu-
tions 3. The NLE is calculated for the Gaussian distributions, which
mustbebased onreasonable hypotheses. Three mild but experimen-
tally effective assumptions are proposed (degree of effectiveness
can be seen in the experimental results in Table 5):

(1) Each day and each station are independent. This assumption
ensuresitisreasonable thatthe numberofall training sam-
ples can be regard as kS. Based on this, we can minimize
the negative log-likelihood error loss:

I S
NLE = - po (Yrp X1p)
i=1s=1
(2) Eachtargetvariable and eachtimestep at one specific station
are conditionally independent given Xt,,. Based on this, we

can further decompose py( Y7 | X7 ) by the product rule
and transform it via log operation as:

N3 Te+Ip

pe (Y1 [X1p) = P o ®)1X;)

o t

N3 Te+Tp

100 po (Y1p (X1p) =, 100 pg(yo()IX;)

(3) The target variables satisfy multivariate independent Gauss-
ian distribution and o is a function of the input features,

e, Y - Nu X Yo . .
Tp 0 Tp) gXrp)).Basedonthisassumption,

the final loss is:

I s N3 Te+Tp

NLE= = 109 pg (o (6) X}*)
i s o t
I S N3 Te+Tp 1000.2. (Xi’s) N Xi,s 2
= 0,0 VM +(yo() uo;o ( { ) +C
2 20 ‘
i s o0 t

3;8 (Xi,s )
3We enforce the positivity constraint on the variance by passing the second output
through the sof tplus function lod(1 + exp()) and add a minimum variance (e.g.

1076 for numericalstability.

where Cisaconstantwhich canbe omitted during training.yg 3 is
the ground truth ofa target variableo attimestep t of the counter-
g i 55 aﬂ%(bl‘e ) an Etxp*t )

part'station s on the day i, % du,g are respectively
o~ ;

the variance and mean of a Gaussian distribution parameterized
by DUQ. The aim of the entire learning phase is to minimize NLE.
Optimizing by deep models can easily lead to overfitting on the
training set, therefore it is necessary to implement early-stopping
on the validation set. Algorithm 1 outlines the procedure for the
learning phase.

Algorithm 1: Algorithm for learning

Input : NpoNed¥gof & (11T, S, Nv), (I, Tp, S, No);
Output tensor:(I, T, S, N3);
Maximum iterations;
Tolerance iterations for early-stopping;
Output : Learned DUQ model
// Learning phase
1Initialize all learnable parameters 6 in DUQ

2repeat
3 B—0¢
4 while each training datumn (1 < n < BatchSize) do
// Format training data samples
5 Draw a randomintegeri ~ uni form0,}
6 Draw a randomintegers ~uni form( 0,5
7 Indexbyi,sfrominputand outputtensorsand getone
training sample (Xt,,Y7,)
8 Put this sample intog
9 end
10 Update 6 via BP by minimizing the NLE loss ong

11 until stopping criteria are met;

gf?e - tInf(erence Pha

S T .
raining, we can 1mpﬁement statistical inference for an input

XT by:
° ug (X1p), 0% (Xrp) = f (X1p)

where UH(XTD ) is statistically the mean estimation i.e., YTD given

Xrtp , which will be adopted for forecasting and 0,27, ) is sta-

tistically the variance estimation, i.e., 07, given Xrp,. Recall our

assumption that Yr, satisfies Gaussian distribution, so upper bound
Yu anLd lower bound Y"

p © ~ ~ Tp
and Y7, = Y, — A07,, where 07y, is the standard deviation and,

A should be determined according to the pre-defined 1 — z. In this
research, 1 — z= 0.9 thus A is set to 1.65 according to the z-score of

Gaussian distribution. Algorithm 2 gives the inference procedure.

can be inferenced as Y = Yr +Aor
~ Tp D D

3.7 Ensemble Methodology

We adopt a simple but efficient principle for ensemble: each single
model is a DUQ-based model initialized with specified nodes. The

ensemble pointestimation is the averaged pointestimation of all
DUQ-based models, whichis scalable and easilyimplementable.

3.8 Evaluation Metrics

3.8.1 Point Estimation Measurement. We first calculate the root
mean squared error (RMSE) for each objective variable from S=10



Algorithm 2: Algorithm for inference
Input: Xr,, z;
A ~U A .
Output:YTD ’YTD Y75 ,07p;
// Inference phase

1 Yr(,07) = f X
// determineAbyzfromz-score of Gaussiandistribution

L g A
2 AYTD = ¥TD - A07p
3 Tp = YTD +AUTD

. L U .
4 de-normalize Y7, Y7, YT, for real-world evaluation.

stations for daily evaluation.

S N
o1 LR —y5()2

RMSE ;=
ST
where y; (t) and y5(t) are respectively the ground truth and the

predicted value of the objective variable obj (i.e., t2m,rh2morw10m
in this paper) of the station s at time ¢.

RMSEday — Mﬂ_m%r]]\lfm Mw 10m
3

RMSE 4, is the ultimate RMSE criterion in the experimental re-
ports for each day. RMSE gy is the average RMSE,, over all days.
To demonstrate the improvement over the classic NWP method,
we employ the following evaluation using the associated skill score
(SS, the higher the better):

RMSE 5p; i

SS, pi= T
0% RMSEObj _nwp

where RMSE ;. 1s the RMSE y; calculated by the NWP method
and RMSE yp; ,is calculated from the prediction made of machine
learning models.
SS  +SS + SS

t2m rh2m w10m

N3

SS4ay is the ultimate SS criterion in experimental reports for
every day. SSyis the average SSqy OVeEr all days, which is also
the ultimate rank score in the online competition.

SSiay =

3.8.2 Prediction Interval Measurement. To evaluate the prediction
interval, weintroduce the metriccalled predictioninterval coverage
probability (PICP). First, an indicator tensor

B € R® %10 XN3 js defined. Each Booleanvariable b*%° e [0,1]
represents whether the objective variable o atthe predicted time
step t at the station s has been captured by the estimated prediction
interval.

|
pSho = 1, if
0, else.

350 <yso® <yY ()

The total number of captured data points for the objective vari-
able is defined as Cyp;,

S Te+Ip
Cobj = psito

s=1t=Tg+1

Then PICP,; for the objective variable is defined as:
Cobj
S-Tp

Ideally, PICP,; should be equal to or greater than the pre-

PICP; =

9801 VR it dur &ipeliinaitgre 1 the significant level

4 EXPERIMENTS AND PERFORMANCE
ANALYSIS

4.1 Baselines

SARIMA Seasonal autoregressive integrated moving average is a
benchmark model for univariate time series, where parameters are
chosen using AIC (Akaike information criterion).

SVR Support vector regression is anon-linear supportvector

machine for regression estimation.

GBRT Gradient booatin&/rggfessioal tree is an ensemble method
for regression tasks and 1s Widgly used in practice.

DUQs5s( is one layer GRU-based seq2seq with 50 hidden nodes.
The loss function is NLE.

DUQsg 50 is two layers GRU-based seq2seq with 50 hidden
nodes of each layer. The loss function is NLE.

DUQ30¢ is one layer GRU-based seq2seq with 200 hidden nodes.
The loss function is NLE.

DUQ306 300 is two layers GRU-based seq2seq with 300 hidden
nodes of each layer. The loss function is NLE.

DUQ,,,nwp isthe sameas DUQ300-300 exceptthat NWP fore-
casting (i.e. NWP of D7, refer to Fig. 3) is masked by zero values.

DUQ,,,0BsisthesameasDUQ300300exceptthatthe observa-
tion features (i.e. E7. ) are masked by zero values.

Seq2Seqysk is the same as DUQ300-300 except that theloss
function is MSE.

Seq2Seqpak is the same as DUQ300-300 except that the loss
function is MAE.

DUQg,,3 ensemblesthree DUQmodels (i.e., DUQ300-300,DUQ200-200
DUQ100-100) for online evaluation. This method achieved 2nd place
in the online competition.

DUQ¢E,,1 0 ensembles 10 DUQ models with differentarchitec-
ture to explore the effectiveness of the ensemble. It ensembles
DUQ300300, DUQ310310, --» DUQ390 390 (increasing at 10-neuron
intervals).

Model, i achieves the best SS9 during online comparison. Ac-
cording to the on-site report, the author also adopted a complicated
stacking and ensemble learning strategy.

4.2 Experimental Environments

The experiments were implemented on a GPU server with Quadro
P4000 GPUandKerasprogrammingenvironment (Tensorflowback-
end).

4.3 Parameter Settings for Reproducibility

The batchsizeissetto512. The embedding dimension of each embed-
dinglayerissetto 2.Since we adopted an early-stopping strategy,
it was not necessary to set the epoch parameter. Instead, we set the
number of maximumiterationsto arelativelylargenumberof 10000
to take sufficient batch iterations into consideration. The validation



interval (vi) is set to 50 meaning that for every 50 iterations, we
will test our model on validation set and calculate the validation
loss. We set the early-stopping tolerance (est) to 10, meaning that if
the validation loss over 10 continuous iterations did not decrease,
training would be stopped early. We defined the validation times
(vt)when early-stopping was triggered, hence the total iterations
(ti) can be calculated by ti=vtyvi. For the prediction interval,z was
set to 0.1, 1-z = 0.9 thus A is set to 1.65 according to the z-score
of Gaussian distribution.

We set N1 =9,Np, =31,N3=3,Tr=28,Tp=37to preprocess
the original dataset. After preprocessing, the final dataset shape
was as shown below.

For the training set:

+ Encoder inputs: (1148, 28, 10, 9)
+ Decoderinputs: (1148,37,10,31)
+ Decoderoutputs: (1148,37,10,3)

For the validation set:

+ Encoder inputs: (87, 28, 10, 9)
+ Decoderinputs: (87,37,10,31)
+ Decoder outputs: (87,37,10, 3)

For the test set on each day:

- Encoder inputs: (1, 28, 10, 9)
+ Decoderinputs: (1,37,10,31)
+ Decoder outputs: (1,37,10, 3)

The meaning of each number is explained as follows: we acquired
datafrom 1148 days for the training setand data from 87 days for
the validation set. Because our evaluation is based on online daily
forecasting, the test day index is 1. Number 28 is a hyperparameter,
meaning thatthe previous 28 hours of observations were used to
model recent meteorological dynamics. Number 37 was set accord-
ing to the specified forecasting steps for the next 37 hours. Number
9isthe dimension of observed meteorological variables. Number 31
(dimension of decoder inputs) consists of concatenating Timesteps
ID and Station ID into 29-dimension of NWP forecasting (2+29=31).
Number 3 is the ground truth number for 3 target variables. The
size of the final training setis 1148*10=11480. The size of validation
setis87*10=870, whichisused for early-stopping. The size of test
set on each day is 1*10=10.

4.4 Performance analysis

Table 3 presents the evaluation by SS score based on rolling fore-
casting, with incremental data releasd on a daily basis for nine days
to mimic real-world forecasting processes.

4.4.1 Effect of information fusion. Comparing DUQ3¢g -300 with

QnONWp validatesthe effectivenessoffusing NWP forecasting.
Comparing DUQ300 300 with DUQ,,,0Bs validates the effective-
ness of modeling recent meteorological dynamics. Comparing pure
NWP with DUQ,,,0ps illustrates the performance of NWP alone
can be further improved by deep learning method. A more note-
worthy observation is that DUQ,,,nyvp without NWP information
still performs better than pure NWP, which exhibits the superior-
ity of DUQ for modeling meteorological data. These comparisons
are powerful proof that modeling with NWP or OBS alone is not

good enough, and thatcomprehensive information fusionisabet-
ter solution, which is a valuable reference for the meteorological
industry.

44.2 Effect of deep learning. On average, the deep learning-based
models (DUQ and Seq2Seq) perform better than the non-deep
learning models (SARIMA, SVR, GBRT). Comparing DUQsq and
DUQso_50 validates the influence of deeper layers. Comparing
DUQs50, DUQ200, and DUQ300.300 validates the effectiveness of
nodes under the same number of layers.

443 Effect of loss function. A notable result is that DUQ300.300
trained by NLE loss performs much better than Seq2Seqyssg (MSE
loss) and Seq2Seqpiar (MAE loss). In order to empirically under-
stand the reasons for better generalization when trained by NLE,
we calculated the ti when early-stopping was triggered, as shown in
Table 1. It can be seen that DUQ30q. 300 requires more iterations to
converge. Areasonable interpretation is that NLE loss jointly imple-
ments two tasks i.e., mean optimization and variance optimization,
which need more iterations to converge. This joint optimization
may to some extent play a regularization role and help each other
out of the local minimum. It may therefore require more iterations
to converge and may have better generalization. We believe that
this phenomenon deserves the attention of researchers, and that it
should be proved by theory in follow-up work.

Table 1: Iterations when early-stopping triggered

Methods i (vtX vi
DUQ300- 2900 (585030

Seq2Seqpmse 2100 (42*50)
DUQuoNw P 1950 (39%50)
Seq2Seqpar 1850(37%50)
DUQue0Bs 1450 (29*50)

444 Effect of ensemble. The ensemble model DUQg;,3 was used

in the online competition . DUQp;1 ¢ achieved the best $S,5,
whichindicates thatensemble with more DUQ modelswould pro-
vide a better solution.

4.4.5 Significance of T-test. Because real-world forecasting only
covers nine days, we implemented a one-tail paired T-test with
significance level sid = 0.25 to ensure that our results were sta-
tistically significant. The column P-value between DUQE,;1 o and
others shows that each T-test has been passed which means that
our method DUQg1 g is significantly better than any other base-
line under the specified significance level. For the single model, we
also implemented a T-test between DUQ30q 300 and other baselines
including DUQy,008s , DUQuonwv P, Seq2Sequmse , Seq2Sequmak

to ensure that DUQ300-300 had significanteffectiveness, which s
shown in Table. 2.

4.4.6 Evaluation by RMSE. Wealso evaluated all methods by RMSE ;5

as shown in Table 4. Since RMSE ;;,9 and SS9 do not have a fully
linear relationship, the counterpart assessment does not reach the

4Readers can refer to https://challenger.ai/competition/wf2018 to check our online
scores which are consistent with DUQggp 3 during Day 3-Day 9. During Day 1 and
Day 2 of the online competition, DUQgsp 3 had not been developed. In this paper we
re-evaluate DUQggp 3 offline on Day 1 and Day 2. This is also why DUQgsp3 with
SSavg=0.4673isbetter thanthe Model; st (0.4671) butwas onlyawarded 2nd place
online.



Table 2: T-test among single models for DUQ300-300

P-val RMSE 5 P-value on SSz0
DUQ300 300 - -
DUQoNw P 0.00 0.00
DUQu008S 0.00 0.00
Seq2Seqpse 0.00 0.00
Seq2Seqpmar 0.03 0.08

optimum at the same time while DUQg;,1 ¢ still achieves the best
RMSE ;,5. The related P-value also indicates that DUQggp1 ¢ is sig-

nificantly better than other baselines under sid = 0.25. Because
online evaluation doesnotrelease the RMSE ranking, the RMSE of

Modelj 4 place is not shown in Table 4.

4.4.7 Discuss instability of weather forecasting. Due to meteoro-
logical instability and variability, no single model can achieve the
best scores every day - not even the ensemble method. Sometimes a
single model can achieve the highest SSdgy score,suchas DUQ2q0
on Day 2 and DUQsq.50 on Day 7. Overall, however, the ensem-
ble method DUQggy1 o achieves the greatest score benefit from the
stability of ensemble learning. The instability of meteorological
elements also reflects the need for a prediction interval.

448 Quantity of prediction interval. An effective prediction in-
terval should satisfy that PICP,p; is equal to or greater thanthe
pre-defined 1- z = 90%. Table 5 shows the results. In particu-
lar, the PICP,;5,, on Day 3 seems far below expectations. The

mainreasonisthatforecastingofrh2misnotaccurate on thatday.
The online competition scores of all contestants were particular

low on that day. Generally, our approach meets the requirement
PICPy,5= 1 — z=90%.

4.4.9 Quality of predictioninterval. We take the model DUQ300_300
to visualize the quality of the prediction interval. Fig. 4 illustrates a
forecasting instance at one station on a competition day. In each
sub-figure, the left green line is the observed meteorological value
during the previous 28 hours, the right green line is the ground
truth, the blue line is the NWP prediction, the red line is DUQ300_300
predictionand thered shadedareaisthe 90% predictioninterval.
A noticeable observation is that the prediction interval does not
become wider over time, instead, it presents that the width of the
middle part is narrower than both ends particularly for t2m and
rh2m (deep learning with point estimation alone will not reveal
these insights for operators.). Areasonable explanation is that mete-
orological elements largely change during the daytime and become
more stable during night time. Having this prediction interval would
provide more information for travel /production planning than only
point prediction. Another noteworthy point is that because w10m
fluctuates sharply, it is more difficult to forecast point estimate
precisely, and the prediction interval tends to be wider than t2m
and rh2m.

5 CONCLUSIONS AND FUTURE WORKS

This paper addresses the real-world problem in weather forecasting
which has a profound impact on our daily life, by introducing a new
deep uncertainty quantification (DUQ) method. Anovelloss func-
tion called negative log-likelihood error (NLE) was designed to train
the prediction model, which is capable of simultaneously inferring
sequential point estimation and prediction interval. A noteworthy

(c) wl0m

Figure 4: A test sample at one station is chosen to visualize
the forecasting of 3 target variables in the future 37 hours.
We can see that all predicted points fall into the prediction

interval given by 1 — z = 90%.

experimental phenomenon reported in this paper is that training by
NLE loss significantly improves the generalization of point estima-
tion. This may provide practitioners with new insights to develop
and deploylearning algorithms for related problems such as time se-
riesregression. Based on the proposed method and an efficient deep
ensemble strategy, state-of-the-art performance on a real-world
benchmark dataset of weather forecasting was achieved. The over-
all method was developed in Keras and was flexible enough to be
deployed in the production environment. The data and source codes
will be released and can be used as a benchmark for researchers
and practitioners to investigate weather forecasting. Future works
will be directed towards architecture improvement (e.g., attention
mechanism), automatic hyperparameter-tuning, and theoretical
comparison between NLE and MSE/MAE.
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