
λOpt: Learn to Regularize Recommender Models in Finer Levels
Yihong Chen∗

Dep. of Electr. Engin., Tsinghua Univ.
yihong-chen@outlook.com

Bei Chen
Microsoft Research, Beijing, China

beichen@microsoft.com

Xiangnan He
Univ. of Sci. and Technol. of China

xiangnanhe@gmail.com

Chen Gao
Dep. of Electr. Engin., Tsinghua Univ.

gc16@mails.tsinghua.edu.cn

Yong Li†
Dep. of Electr. Engin., Tsinghua Univ.

liyong07@tsinghua.edu.cn

Jian-Guang Lou
Microsoft Research, Beijing, China

jlou@microsoft.com

Yue Wang
Dep. of Electr. Engin., Tsinghua Univ.
wangyue@mail.tsinghua.edu.cn

ABSTRACT

Recommendation models mainly deal with categorical variables,
such as user/item ID and attributes. Besides the high-cardinality
issue, the interactions among such categorical variables are usually
long-tailed, with the head made up of highly frequent values and a
long tail of rare ones. This phenomenon results in the data sparsity
issue, making it essential to regularize the models to ensure general-
ization. The common practice is to employ grid search to manually
tune regularization hyperparameters based on the validation data.
However, it requires non-trivial efforts and large computation re-
sources to search the whole candidate space; even so, it may not
lead to the optimal choice, for which different parameters should
have different regularization strengths.

In this paper, we propose a hyperparameter optimizationmethod,
λOpt1, which automatically and adaptively enforces regularization
during training. Specifically, it updates the regularization coeffi-
cients based on the performance of validation data. With λOpt, the
notorious tuning of regularization hyperparameters can be avoided;
more importantly, it allows fine-grained regularization (i.e. each
parameter can have an individualized regularization coefficient),
leading to better generalized models. We show how to employ λOpt
on matrix factorization, a classical model that is representative of
a large family of recommender models. Extensive experiments on
two public benchmarks demonstrate the superiority of our method
in boosting the performance of top-K recommendation.
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1 INTRODUCTION

Recommender systems typically work with a large number of cate-
gorical variables, such as user/item ID, user demographics, and item
tags. Conventionally, these categorical variables are handled by the
techniques of one-hot encoding or embedding. One-hot encoding
converts a categorical variable into a set of binary variables, while
the embedding technique projects each categorical value into a
latent vector space. Since some categorical variables might have
high cardinality (like ID features), there may not be sufficient data
to learn the feature interactions. As such, recommender models
trained with either technique could be prone to overfitting [16].
Moreover, the interactions among the categorical features are usu-
ally long-tailed [10], with a head made up of highly frequent values
and a long tail of rare ones. For example, consider the interaction
between user ID and the buy-or-not variable, most (user ID, buy-
or-not) pairs appear less than 50 times and there are very few pairs
have more than 100 occurrences. The data sparsity issue caused by
high-cardinality features and non-uniform occurrences pose practi-
cal challenges to train recommender models, making appropriate
regularization essential [2]. In fact, the performance of many recom-
mender models, even the simple matrix factorization model, varies
widely depending on the regularization setting. As a result, manu-
ally tuning the regularization hyperparameters could be extremely
hard for practitioners with little experience, and even non-trivial
for experienced researchers in industry. Methods like grid search
might help but at the inevitable cost of large computation resources.
Figure 1 shows a motivating example.

Motivating Example. After rounds of interviews, Bob finally gets a
job as a machine learning engineer specialized on news recommenda-
tion. This week, he plans to experiment the matrix factorization model,
which is reported to outperform the production model in literature.
However, as experiments go on, he finds the models are large on the
company data, with millions of parameters. "Hmm, I need some regu-
larization!", he thinks. He then adds L2 regularizer on the embedding
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parameters, but wondering how to choose the regularization coeffi-
cient λ? "Whatever it is, let me have a try first!", Bob then randomly
chooses some values of λ. To his surprise, different choices of λ lead to
more than 30% fluctuation in model performance.

Bob

=

Model

𝑙 = ሚ𝑙 𝜃 + 𝜆 𝜃 2

Penalty

AUC

Epoch

0.85

0.60

𝜆 = 1 × 10−9

𝜆 = 1 × 10−12

𝜆 = 1 × 10−6

𝜆 = 1 × 10−3

Regularized Loss

Figure 1: Amotivating example of regularization tuning: the

model is highly sensitive to the choice of λ.

The observation of high sensitivity to λ motivates Bob to search
for more fine-grained λ, as he believes that good λ can substan-
tially boost the performance. Instead of applying a uniform λ on all
embedding parameters, he considers varying it by the embedding di-
mensions. However, he has other tasks unfinished so he can’t babysit
the tuning process. He decides to employ grid search with 10 candidate
values. As the embedding size K = 128, dimension-wise λ would take
about 10128 full training runs! So all Bob can do now is to buy new
machines or babysit the tuning process by himself...

Examples similar to the above are not rare in industry. Practi-
tioners like Bob, who often expect a high salary and a fantastic job
with great intellectual challenges, would find their expectations
clashing with the reality, spending most of the time on the tedious
job of hyperparameter tuning. When it comes to recommender
systems, tuning the regularization has been a nightmare for many
practitioners whenever a new model is to be launched. Despite the
high value of regularization tuning, there is relatively little research
to conquer this issue. Methods like grid search could alleviate the
laborious tuning process, but at a very high cost, especially when
we want to tune λ in a finer granularity. Other automated hyperpa-
rameter selection methods are also computation-expensive, since
they typically require multiple full training runs [28, 30]. An auto-
matic method that can find appropriate λ on the fly with affordable
cost would be more than a blessing to practitioners.

Prior work on automatic regularization on recommender mod-
els is scarce. The most relevant method is SGDA[26], which is a
dimension-wise adaptive regularization method based on stochastic
gradient descent (SGD). However, SGDA is designed for the task
of rating prediction rather than personalized ranking, applying it
would result in weak top-N recommendation performance [8]. In
addition, we argue that more fine-grained λ, such as user-wise, is
more advantageous than dimension-wise since it can adapt the
regularization strength for users of different activity levels. Fur-
thermore, adaptive optimizers like Adam [18] and Adagrad [9], are
more effective and converge faster than SGD in optimizing recom-
mender models [14]. As such, we believe that there is an urgent
need to develop an adaptive regularization method for top-K rec-
ommendation, and more importantly, should support fine-grained
tuning with adaptive optimizers, instead of being merely applicable
to dimension-wise tuning and plain SGD.

Contributions. In this paper, we explore how to design an auto-
matic method to regularize recommender models. Focusing on the
personalized ranking task [27], we propose λOpt, a generic regular-
izer that learns the regularization coefficients during model training
based on validation data. The basic idea is to employ Bayesian Per-
sonalized Ranking (BPR) loss [27] on validation data as the objective
function, treating the regularization coefficients as the variable to
the function and optimizing it with gradient descent. We illustrate
our approach on matrix factorization, which is representative of
a large family of embedding-based recommender models [3]. We
highlight the elements that distinguish λOpt as follows:

• λOpt adaptively finds the appropriate λ. It enjoys substantially
lower computation cost compared to other automated meth-
ods [28, 30] that require multiple training runs.

• By virtue of automatic differentiation, λOpt obviates the complex
derivations of gradients. Hence it can be conveniently generalized
to a diverse set of recommender models.

• By permitting advanced optimizers with adaptive learning rates,
λOpt overcomes the issue of limited optimizer choice in [26],
making it more practitioner-friendly.

• Last but not least, our design of λOpt facilitates regularization in
any granularity. λ can be dimension-wise, user-wise, item-wise or
any combinations among them. Such fine-grained regularization
brings considerable benefits to recommendation performance.

We conduct extensive experiments on λOpt to justify its effec-
tiveness in regularizing recommender models. We find that models
trained with λOpt significantly outperform grid search (fixed λ)
and SGDA [26], demonstrating high utility of λOpt. To sum up,
λOpt is a simple yet effective training tool, which not only lowers
the barrier for practitioners to launch their recommender models
but also boosts the performance with fine-grained regularization.

2 PRELIMINARIES

2.1 Matrix Factorization

Matrix Factorization (MF) [19] plays a dominant role in recom-
mender systems. The basic principle behind MF is that we could
project users or items into a latent space so that users’ preferences
can be reflected using their proximity to the items. In spite of their
prevalence, previous work on such matrix factorization models
observes that the choice of the regularization coefficients λ has sig-
nificant influence on the trained models. Actually, this phenomenon
stems from the inherent structure of matrix factorization models, —
the number of parameters is often much larger than the number
of samples, and the characteristics of recommendation datasets,
– activity levels of users/items can be extremely diverse. Small λ
leads to overfitting while large λ might cause underfitting. For this
reason, it is no surprising that the problem of tuning regularization
coefficients has been of extreme importance in practice.

2.2 Bayesian Personalized Ranking

Top-K item recommendation from implicit feedback is a prevalent
task in real-world recommender systems [6, 32, 33]. With Bayesian
Personalized Ranking (BPR) [27] as the optimization objective, we
study the adaptive regularization for factorization models. Target-
ing at learning from implicit feedback, BPR assumes that the user
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𝜆：Outer Level Decision Space

Θ：Inner Level Decision Space

Parameter for Θ Optimization

Outer Level Decision Vector

Loss Function

(a) Fixed approach

𝜆：Outer Level Decision Space

Θ：Inner Level Decision Space

Parameter for Θ Optimization

Outer Level Decision Vector

Loss Function

(b) Adaptive approach

Figure 2: Λ-trajectory for fixed regularization approach and adaptive regularization approach.

u prefers the observed items over all the other unobserved ones.
Formally, it aims to minimize the objective function:

lST (Θ|λ) = l̃ST (Θ) + Ω(Θ|λ) (1)

= −
∑

(u,i, j)∈ST
ln(σ (ŷui (Θ) − ŷuj (Θ))) + Ω(Θ|λ), (2)

where Θ denotes the model parameters, λ denotes the regular-
ization coefficients, and σ (·) denotes the sigmoid function. ST =
{(u, i, j)|i ∈ Iu ∧ j ∈ I\Iu } denotes the dataset of training triplets,
where Iu represents the set of the observed items that user u has
interacted with in the past, and I denotes the set of all items. ŷui
scores (u, i) and can be parameterized using factorization models.
Ω(Θ|λ) is the penalty term indicating regularization on the model.
Usually, the objective function is optimized by stochastic gradient
descent (SGD). In addition to standard SGD optimizer, advanced op-
timizers that adapt their learning rate during training, for example,
Adam [18], can be used to accelerate the training process.

3 METHODOLOGY

In conventional regularization tuning, the goal is to find the optimal
Λ to train a regularized model, which achieves best performance on
the validation set2. Essentially, this can be formulated as a nested
optimization problem [27] or bi-level optimization problem [29]:

min
Λ

∑
(u′,i′, j′)∈SV

l(u ′, i ′, j ′ | arg min
Θ

∑
(u,i, j)∈ST

l(u, i, j |Θ,Λ)), (3)

where the inner level attempts to minimize training loss with re-
spect to Θ while the outer level addresses the minimization of
validation loss with respect to Λ on validation set SV . A naive solu-
tion would be exhaustive search, training a regularized model for
every possible Λ and then choosing the one with the best validation
performance. In practice, due to time and resources constraints,
people resort to methods like grid-search, sampling Λ from a small
but reasonable interval. However, as model sizes and dataset vol-
umes increase, grid search might also be unaffordable, particularly
for large-scale applications, such as real-world recommendation.

In order to efficientize the search, previous work proposed to
alternate the optimization of Λ and Θ, between consecutive full
training runs [5, 20], or on the fly [22, 26]. Compared to grid-search,
where Λ is fixed during a full training run, the on-the-fly adaptive
methods in [22, 26] adjusts Λ according to performance on vali-
dation sets every training step. Nevertheless, we show here that
2As we focus on fine-grained regularization, in the following paper, Λ and λ can be
either a vector or matrix.

both approaches can be interpreted as attempting to find a plausi-
ble trajectory in the Λ space to regularize the model well, and we
introduce our proposed method later.

3.1 Λ-Trajectory
Definition 3.1. A Λ-trajectory is the sequence of regularization

coefficients for a full training run:Λ = {Λ1, ...ΛT }, whereT denotes
the total steps in the training run.

Figure 2 visualizes Λ-trajectories for fixed approach and adaptive
approach. In the nested optimization problem, there is an outer
level decision space (Λ space in our case) and an inner level decision
space (Θ space in our case) [29]. Once Λ is selected, it becomes a
fixed parameter in the loss function for Θ optimization, indicated
by the curve between the inner level decision space and outer level
decision space in the figure. Λ-trajectories are represented using
arrow lines in Λ space with arrows indicating the update directions
of Λ at each training step.

3.1.1 Fixed Λ Approach. In fixed Λ approach, such as grid-search,
we have the same regularization coefficients for all training steps,
which are manually set at the beginning of training: Λ1 = Λ2 =
... = ΛT . Generally, grid-search goes as follows. We first select a
few candidates from Λ space. Then, we accordingly train multiple
models and compare their performances on the validation set to
choose the best Λ. The process can be regarded as trying out multi-
ple Λ-trajectories while all of them are restricted – going around
in circles as indicated in Figure 2(a). Due to the constraint on each
Λ-trajectory, we usually need to search over a good number of Λ
candidates before Λ space is explored sufficiently and appropri-
ate regularization is achieved. The search either takes expensive
computation or requires prior knowledge about picking suitable Λ
candidates. Even worse, if we consider regularization in finer levels,
the computation of searching over all the selected Λ would make
grid-search barely feasible.

3.1.2 Adaptive Λ Approach. As shown in Figure 2(b), the adaptive
approach in [22, 26], instead, employs different regularization coef-
ficients at each training step, allowing faster exploration in Λ space.
We justify intuitions behind the adaptive approach here, which
motivate us to adopt the adaptive paradigm when we design λOpt.
• At different training stages, the strength of regularization should
be different. For instance, there should be little regularization at
the early stages of training since the model has not learned much
from the data while strong regularization might be necessary for
the late stage after the model sees the data a great many times.
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Figure 3: MF-BPR with Fine-grained Regularization.

• Assuming we have sufficient validation data, adjusting Λ based
on the validation performancewould cause no obvious overfitting
to the validation set.

• Although the resultedΛ-trajectory might not be optimal, it would
be a competent one with substantially lower computation.

3.2 λOpt: Efficient Exploration over Λ Space

In order to generate Λ-trajectories that steer efficient exploration
over Λ space, λOpt takes into account the two aspects – Λ in
finer levels and its adaptive update. As we have just explained in
Section 3.1, adaptive update of Λ accelerates the exploration over
Λ space due to its flexibility in changing Λ in a single training run.
In this subsection, we show how fine-grained Λ contributes to the
exploration and present λOpt formally.

3.2.1 Recommender Models with Fine-grained Regularization. As
shown in Figure 3, traditional matrix factorization with BPR (MF-
BPR) consists of a non-regularized block and a regularized block.
Distinguished from common regularization strategies, setting a
global λ or dimension-wise λ, we consider regularization in finer
levels – the regularized part in our method is user-/item-aware
instead of being only dimension-wise. Given the fact that recom-
mender systems interact with heterogeneous users and items, in-
corporating user-/item-aware regularization into λOpt can be vital.
Besides, from the perspective of Λ-trajectories, entailing the same
regularization for each user/item, dimension-wise λ or global λ
equivalently forbids exploration in directions related to users/items,
thus preventing the discovery of better regularization strategies to
train recommender models.

3.2.2 Regularizer Endowed with Adaptive Regularization in Finer
Levels. In this subsection, we show how we derive the adaptive
update of Λ in our method. We choose to implement λOpt as neural
networks with Λ as weights. Such design is more practitioner-
friendly compared to SGDA, since it saves them from complex
derivations of the gradients and makes λOpt easy to generalize
across various models, loss functions and model optimizers.

The nested optimization problem in Equation 3 is hard to solve
directly. Alternating optimization [26] reduces it into two simpler
ones. To be exact, we perform the following two steps iteratively
• ΘUpdate at Step t. We fixΛt whileΘ is optimized using triplets
(u, i, j) sampled from train set ST . Notice that we employ Λ in
finer levels to compute the regularized training loss.

• ΛUpdate at Step t. We fixΘt whileΛ is computed by optimizing
the expected validation loss with triplets (u, i, j) sampled from
validation set SV .
Since our goal is to find Λ which would achieve the smallest

validation loss, we need to figure out the relationship between Λ
and the validation loss. As pointed out in [26], while the validation
loss for current model lSV (Θt ) has nothing to do with Λt , the
expected validation loss lSV (Θt+1) instead depends on Λt if Θt+1
is obtained using Λt . This suggests that we can first obtain the
assumed next-step model parameters Θ̄t+1 and then compute the
validation loss with Θ̄t+1 and its gradients with respect toΛ. We use
the word "assumed" because this update is never really performed
on the model we finally want. We only use it to obtain the direction
to update Λ i.e. to move a step in Λ-trajectory. We use symbols in
the format of ·̄ to distinguish "assumed" ones from ordinary ones.

Obtain Assumed Next-Step Model Parameters Θ̄t+1. The key
to obtain Θ̄t+1 is to compute the gradients of assumed regularized
training loss with respect to Θt . λOpt tackles this via splitting the
gradients into two terms, one for non-regularized loss and the other
for the penalty term:

∂lST
∂Θt

= h(
∂l̃ST
∂Θt
,Θt ) =

∂l̃ST
∂Θt

+
∂Ω

Θt
. (4)

We denote as h the function composing non-regularized gradi-
ents and regularized gradients. In fine-grained L2 regularization,
Ω(Θ|Λ) = Λ| |Θ| |22 , Equation 4 would be

∂lST
∂Θt

= h(
∂l̃ST
∂Θt
,Θt ) =

∂l̃ST
∂Θt

+ 2ΛΘt . (5)

As we don’t want assumed gradients to mess around with the ones
in MF-BPR, λOpt performs a separate forward & backward compu-

tation on ST to obtain ∂l̃ST
∂Θt

as illustrated in Part II of Figure 4. After
composition of assumed regularized gradients using h, the assumed

next-step model parameters are given by Θ̄t+1 = f (Θt ,
∂lST
∂Θt

)
where f is the update function of Θ, generally determined by the
optimizer Θ update used.

Minimize the Validation Loss. Up to now, we have obtained
assumed next-step model parameters Θ̄t+1 and the only remaining
job is to find the Λ which minimizes validation loss lSV (Θ̄t+1).
Note that this is a constrained minimization though treated as
unconstrained in SGDA [26]. Mathematically, we want to solve

arg min
Λ

−
∑

(u,i, j)∈SV
ln(σ (ŷui (Θ̄t+1) − ŷuj (Θ̄t+1)),

subject to Λ ≥ 0.
(6)

Karush-Kuhn-Tucker (KKT) conditions for constrained minimiza-
tion with non-convex objectives give feasible regions in Λ space,
which make the search more efficient and stable. The gradients of
validation loss with respect to Λ are denoted as G

G = ∇Λ −
∑

(u,i, j)∈SV
ln(σ (ŷui (Θ̄t+1) − ŷuj (Θ̄t+1)). (7)

Then KKT gives
ΛG = 0,G ≥ 0,Λ ≥ 0. (8)
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Figure 4: Regularizer Endowed with Adaptive Regularization in Finer Levels.

From Equations 8, we can see that feasible solutions of Λ require
both G and Λ to be non-negative with one of them equals to zero.
A slack version could be encouraging G to be small and Λ to be
non-negative.

Part III of Figure 4 shows the computation flow of minimizing
validation loss in λOpt. We term the entire block in green colour
as Λ-Net because the parameters here are Λ rather than Θ. After
forward & backward passes overΛ-Net, we add the slack constraints
given by Equation 8: clip the gradientsG to a small value and smooth
the negative entries in Λ as zero. The updated parameters of Λ-Net
serve as the regularization coefficients Λt+1 for MF-BPR in next
iteration.

Computation Cost. λOpt adjusts Λ on the fly, which obviates
multiple full training runs as grid-search like methods. Since one
iteration takes 3 forward passes and backpropagations, the compu-
tation cost for a single training run is only 3 times the one for the
fixed approach. For practitioners, this is cost-effective because they
do not have to search over a great many of Λ candidates.

4 APPLICATIONS

In this section, we show how to apply λOpt with various model
optimizers and fine-grained regularization.We start from the simple
matrix factorization model. Generally, the model parameters, user
embedding ΘU and item embedding ΘI , should be matrices of
|U | × K and |I | × K respectively, where K stands for number of
dimensions. As stated above, we only need to specify the forward
pass for the model and optimizer update. For MF, the forward pass
to compute non-reg BPR loss is

l̃(u, i, j,Θ|Λ) = −ln(σ (ΘUu · ΘI
i − ΘUu · ΘI

j )). (9)

The model parameters are Θ = {ΘU ,ΘI }. Correspondingly, the
regularization coefficients are Λ = {ΛU ,ΛI }.

4.1 Optimizer Choices

When training recommender models, various optimizers can be
used. Model parameters update of these optimizers are often dif-
ferent. Unlike SGDA [26] and [22], λOpt can cope with various
optimizers as long as the model parameter update function f is

derivable with respect to Λ. For example, if we use a SGD optimizer,

Θ̄t+1 = f (Θt ,
∂lST
∂Θt

) = Θt − ηh(
∂lST
∂Θt
,Θt ). (10)

Substituting Equation 4 and Equation 5 into the above equation,
we can obtain

Θ̄t+1 = f (Θt ,
∂lST
∂Θt

) = Θt − η
∂l̃ST
∂Θt

− 2ηΛΘt . (11)

In order to obtain the validation loss’s gradient with respect to
Λ, we need to compute ∂f

∂Λ . For the simple SGD optimizer, this
would be easy: −2ηΘt . However, it is not the case for complex
optimizer like Adam, which is among the off-the-shelf choices
when practitioners start to train their factorization models — they
would have to derive the gradients themselves! Luckily, in λOpt,
this step of obtaining gradients would be handled by Automatic
Differentiation framework such as TensorFlow3 [1] and PyTorch4.
Hence, we don’t need to worried about the complex derivation of
∂f
∂Λ . For Adam optimizer, we only need to specify f as follows:

Θ̄t+1 = Θt − η

√
1 − βt2√
1 − βt1

st√
rt + ϵ

, (12)

st = β1st−1 + (1 − β1)
∂lST
∂Θt
, (13)

rt = β1rt−1 + (1 − β1)
∂lST
∂Θt

⊙
∂lST
∂Θt
. (14)

4.2 Fine-grained Regularization

To our knowledge, no previous work has explored regularization in
finer levels, like user-/item-aware regularization. Grid-search fails
due to unaffordable computation cost of searching over extremely
high-dimensional Λ spaces. And SGDA is also not applicable since
its derivation only considers dimension-aware regularization but
does not adapt with users and items. As stated in Section 3.2.1, our
design of λOpt naturally lends itself to user/item-aware Λ. Fine-
grained regularization, for example user-wise regularization, could
3https://www.tensorflow.org/
4https://pytorch.org/
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be done by expanding the penalty term and obtaining the gradients
as following:

Ω(ΘU ,ΘI |ΛU , λI ) =
|U |∑
u=1

ΛUu

K∑
k=1

(ΘUu,k )
2 + λI | |ΘI | |22 , (15)

∂Ω

∂ΘUu,k

= 2ΛUu ΘUu,k ,
∂Ω

∂ΘI = 2λIΘI , (16)

where ΛU is a |U | ×1 vector specifying the user-wise regularization
for the user embedding matrix and ΛI is a scalar specifying the
regularization for item embedding matrix. Similarly, we can use
more fine-grained regularization Λ that combines dimension-wise,
user-wise and item-wise.

Ω(ΘU ,ΘI |ΛU ,ΛI )=
|U |∑
u=1

K∑
k=1

ΛUu,k (Θ
U
u,k )

2+
|I |∑
i=1

K∑
k=1

ΛIi,k (Θ
I
i,k )

2, (17)

∂Ω

∂ΘUu,k

= 2ΛUu,kΘ
U
u,k ,

∂Ω

∂ΘI
i,k

= 2ΛIi,kΘ
I
i,k , (18)

where ΛU and ΛI are |U | × K and |I | × K matrices respectively.

5 EMPIRICAL STUDY

In this section, we empirically evaluate our methods with the aim
of answering the following research questions:
RQ.1 What is the performance of MF models trained using λOpt?

The adaptive method can save practitioners a lot time. But
does it come at a cost of worse performance compared to
other regularization strategies?

RQ.2 With λOpt, practitioners can add fine-grained regularization
over MF models conveniently, which is infeasible in grid-
search like methods. Will such fine-grained regularization
be effective in addressing heterogeneous users and items?

RQ.3 What are the Λ trajectories of λOpt like? Does λOpt find
better trajectories to regularize the model? TheΛ trajectories
can explain the performance difference across users and
items with varied frequency, telling us why λOpt performs
better or worse than the fixed approaches.

5.1 Experimental Settings

5.1.1 Datasets. We experiment with two public datasets: Amazon
Food and MovieLens 10M. Table 1 summarizes the statistics of
datasets after pre-processing.

-Amazon FoodReview
5. It contains reviews of fine foods from

amazon, spanning a period of more than 10 years. We filter the
dataset and only keep the users and itemswithmore than 20 records.
We omit the exact scores and treat every entry in the dataset as a
positive sample.

-MovieLens 10M
6. It is a widely used benchmark dataset and

contains timestamped user-movie ratings ranging from 1 to 5. We
use the “10M” version, which contains approximately 10 million
ratings drawn from 69,878 users. Each user has at least 20 ratings.
We use it as an implicit feedback dataset, where the exact ratings
are omitted and each entry is regarded as a positive sample.

5https://www.kaggle.com/snap/amazon-fine-food-reviews
6https://grouplens.org/datasets/movielens/10m/

Table 1: Statistics of datasets.

Dataset # User # Item # Interaction Density
Amazon Food 1, 238 3, 806 38, 919 0.825%
MovieLens 10M 69, 878 10, 677 10, 000, 054 1.340%

5.1.2 Performance Measures. For both Amazon Food Review and
MovieLens 10M, we divide the data according to the time stamp
information. Specially, for each user, all the records are divided
into training, validation and testing set based on the proportion
60%, 20% and 20%. To evaluate the performance of our methods, for
each (user, item) pair in the test set, we make recommendations
by ranking all the items that are not interacted by the user in the
training and validation set. Three metrics are evaluated:

- AUC. Area under the Receiver Operating Characteristic or
ROC curve (AUC) means the probability to rank a randomly chosen
positive item higher than a randomly chosen negative item.

- HR. Hit Ratio (HR) is based on recall. It intuitively measures
whether the test item is in the top-K list. We set K, the truncation
length of the ranking list, to be 50 (HR@50) and 100 (HR@100).

- NDCG. Normalized Discounted Cumulative Gain (NDCG) con-
siders positions of hits in the top-K list, where hits at higher posi-
tions get higher scores. K is as stated above.

For HR and NDCG, we report the average score of all the users.
The score for each user is averaged over all his/her test items. For
all the metrics, higher score is better.

5.1.3 Baselines. We compare our methods with the following state-
of-the-art methods:

-MF-λFix. For the fixed regularization methods, we use a global
λ for all latent dimensions, users and items due to limited computa-
tion resources. To simulate how the practitioner would select the
best λ, we searched for the best λ among {10, 1, 10−1, 10−2, 10−3, 10−4,
10−5, 0}. For each λ, we ran a full training of the model and checked
its performance on the validation set. The best one is selected for
comparison with the model trained by our λOpt regularizer.

- SGDA [26]. As mentioned in Section 1, SGDA is an adaptive
regularization method based on dimension-wise regularization and
SGD, derived for rating prediction task. For top-K recommendation,
we have to re-derive it by hand. Luckily, it can be roughly seen as
λOptwith dimension-wise Λ and SGD for MF updates. We find that
the implanted SGDA can be very hard to tune due to its limitation
in optimizer choices. As SGD doesn’t adjust the learning rate during
training, the initial learning rate is crucial to the final performance.
Meanwhile, it is pretty hard to tune the learning rate for SGD as
small learning rate leads to slow convergence and large learning
rate might contribute to bad performance. Here we follow the same
tuning flow as we tune the models for our approach. We first find
an appropriate learning rate for the fixed SGD MF. And then we
add the SGDA regularizer to the SGD MF with this learning rate
and tune the hyperparameters for the SGDA regularizer.

- AMF [15]. Adversarial Matrix Factorization (AMF) is a state-
of-the-art model for recommendation. It employs Adversarial Per-
sonalized Ranking (APR) method, which enhances vanilla MF by
performing adversarial training. In our experiments, we start ad-
versarial training when the loss of MF-λFix converges and tune the
learning rate and L2 regularizer, as described in the paper.
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Table 2: Recommendation Performance on Amazon Food Review and MovieLens 10M.

Method Amazon Food Review MovieLens 10M
AUC HR@50 HR@100 NDCG@50 NDCG@100 AUC HR@50 HR@100 NDCG@50 NDCG@100

SGDA [26] 0.8130 0.1786 0.3857 0.1002 0.1413 0.9497 0.2401 0.3706 0.0715 0.0934
AMF [15] 0.8197 0.3541 0.4200 0.2646 0.2552 0.9495 0.2625 0.3847 0.0787 0.0985
NeuMF [16] 0.8103 0.3537 0.4127 0.2481 0.2218 0.9435 0.2524 0.3507 0.0760 0.0865
MF-λFix 0.8052 0.3482 0.4163 0.2251 0.2217 0.9497 0.2487 0.3779 0.0727 0.0943
MF-λOpt -D 0.8109 0.2134 0.3910 0.1292 0.1543 0.9501 0.2365 0.3556 0.0715 0.0909

-DU 0.8200 0.3694 0.4814 0.2049 0.2570 0.9554 0.2743 0.4109 0.0809 0.1031
-DI 0.8501 0.2966 0.4476 0.1642 0.2039 0.9516 0.2648 0.3952 0.0804 0.1013
-DUI 0.8743 0.4470 0.5251 0.2946 0.2920 0.9575 0.3027 0.4367 0.0942 0.1158

- NeuMF [16]. Neural Matrix Factorization (NeuMF) is a state-
of-the-art neural model for item recommendation, combining MF
and Multi-Layer Perceptrons (MLP) to learn user-item interaction.
Following [16], we first pretrain the model with MF-λFix, and then
tune the depth of MLP, learning rate, and L2 regularization.

As for our method, we adopt Adam as the optimizer for MF up-
date. The reason is that, in our experiments, we find the training
of recommender models with adaptive regularizers is much more
sensitive to the step sizes compared to training with the fixed regu-
larizer. Practitioners of such methods could be eager for optimizers
that adapt their learning rates during the training procedure of
recommender models. Since SGDA only gives λ-update solutions to
the models optimized by vanilla SGD, our method is more generic
in terms of endowing the practitioners more freedom in optimizer
choices. For fair comparison, we use the same MF model configura-
tions for MF-λFix, SGDA, AMF and λOpt as we want to justify the
effect of various regularization strategies.

5.2 Performance of λOpt (RQ.1)

Table 2 shows the results. Our methods are named as "MF-λOpt-
[regularization granularity]", with “D”, “U”, “I” and “DUI” standing
for dimension-wise, user-wise, item-wise and the three respectively.
On both datasets, MF-λOpt-DUI outperforms the other methods by
a large margin – about 10%-20% in HR and NDCG. The variants of
λOptwith different regularization granularity also show promising
performance, which indicates that λOpt lowers down the compu-
tation barrier and prerequisite for practitioners without hurting
model performance. In fact, it even boosts the recommendation
performance if combined with suitable fine-grained regularization.

5.3 Sparseness and Activeness (RQ.2)

Section 5.2 demonstrates λOpt’s superiority over others. But where
does λOpt gain its performance improvements? Do they come
from handling the sparse users better than the fixed λ approach?
Or do they come from addressing active users better? In order
to validate λOpt’s, to be exact, MF-λOpt-DUI’s effectiveness in
addressing heterogeneous users/items, we check its performance
improvements across users/items with varied frequencies. Due to
limited space, we only present figures on Amazon Food Review
Dataset. The results on MovieLens 10M are similar.

Figure 5 shows the distributions of user and item frequencies on
Amazon Food Review. We can observe that they are all long-tailed.
This poses a great challenge to the recommender model, as it needs

(a) Users on Amazon Food Review (b) Items on Amazon Food Review

Figure 5: Distributions of user and item frequencies.

to be flexible enough to take care of both the head users/items
(sparse) and tail users/items (active). Regularization strategies that
set a global λ or dimension-wise λ for all users/items might not
work well as they cannot address both types of users. Choosing
an appropriate λ via grid-search, in essence, seeks compromise
between sparse and active users/items. In contrast, regularization
in finer levels, e.g. user-/item-aware regularization, obviates the
need to compromise between users/items with diverse frequencies.

MF-λOpt-DUI specifies an individual level of regularization
strength for each user, item and dimension. We investigate its im-
pact on users/items with varied numbers of interactions. Figure 6
shows its performance improvements (HR@100 and NDCG@100)
over the fixed approach on Amazon Food Review. The HR and
NDCG for users are defined as stated in the experimental settings.
For an item, as it is not convenient to compute item-wise measures
in BPR setting, we compute its "HR" and "NDCG" as follows: In the
test set, we find the users that interact with the item and take the
average of their HRs as the "HR" for the item; we find the users
that interact with the item and take the average of their NDCGs
as the "NDCG" for the item. Such measures are useful in making
comparisons across different methods.

As we can observe from Figure 6, except <15 item group, MF-
λOpt-DUI lifts performances by about 10% across users/items in
varied frequency groups, conforming to our design that λOpt can
handle both sparseness and activeness better.

5.4 Analysis of Λ-trajectories (RQ.3)
How does λOpt adjust λ to gain such surprising improvement
across heterogeneous users and items? In other words, does λOpt
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(a) HR@100 for users (b) NDCG@100 for users (c) HR@100 for items (d) NDCG@100 for items

Figure 6: Performance improvements of users/items in varied frequency groups on Amazon Food Review.

(a) For users on Amazon Food Review (b) For items on Amazon Food Review

Figure 7: Λ-trajectories generated by MF-λOpt-DUI.

(a) For users on Amazon Food Review (b) For items on Amazon Food Review

Figure 8: Relationship between frequencies and average λ by
MF-λOpt-DUI, evolving as training epoch increases. Color

indicates the magnitude of average λ.

find special Λ-trajectories for them? We dive into this research
question by analyzing the Λ-trajectories.

Figure 7 shows the Λ-trajectories. Different colors indicate dif-
ferent groups of users and items divided according to numbers of
interactions. For every user and item, we aggregate the Λ over all
the latent dimensions. We then take the average of all users or items
within the same group. The variance within a group is indicated by
the shades in the figure. Figure 8 shows the relationship between
λ and the frequency for users/items, evolving as training epoch
increases. Color implies the magnitudes of λ.

As we could see, most λs tend to increase as the training pro-
cedure goes on. This conforms to the intuition that regularization
is necessary after the model encounters the data multiple times.
Difference among groups can also be observed. Interestingly, the
active users receive stronger regularization after epochs of training
although the initial Λ is zero for all users. A possible explanation
would be the active users have more data and the model learns

from the data so quickly that it might get overfitting to them, mak-
ing strong regularization necessary. Under these circumstances, a
global strong regularization level would satisfy the active users but
at the risk of failing the sparse users. In contrast, λOpt finds a spe-
cial Λ-trajectory for every user, being capable to please both sparse
users and active users. As shown in Figure 7, sparse users receive
a relatively weak regularization so that recommendation to them
could rely more on the data. The findings on the item Λ-trajectories
are similar. We could conclude here that λOpt owns most of its
improvements to finding "personalized" Λ-trajectories for a diverse
set of users and items. We believe this property is valuable to most
large-scale web applications where long-tailed phenomenons are
common and data sparsity remains a severe challenge.

So far, we have justified that λOpt not only lowers down the
computation cost needed to search for a good regularization level
but also has the potential to boost the recommendation performance
by fine-grained regularization.We also reveal its secret in improving
the recommendation performance by analyzing the Λ-trajectories.

6 RELATEDWORK

AdaptiveRegularization forRatingPrediction. The closework
is SGDA [26], where adaptive regularization for rating prediction is
achieved by alternating optimization for model parameters Θ and
regularization coefficients λ. Similar validation set based alternat-
ing optimization method has also been proposed in [22]. Both work
focused on the reduced computation complexity while ignoring the
potential performance boost.As far as we know, we are the first

to reveal the important insight that, adaptive regularization

in finer levels can bring additional performance benefits for

recommender systems. [26] only considers dimension-wise λ,
which might be the reason why the algorithm does not outperform
the best fixed λ algorithm in the reported experimental results.
Instead, our work shows the effectiveness of incorporating fine-
grained regularization. Besides, ourmethod is more generic in terms
of endowing the practitioners more freedom in optimizer choices
while SGDA[26] applies only to SGD optimizers.

Hyperparameters Optimization. Finding good regularization
coefficients can be part of the overall hyperparameters optimization
(HO). Typically, grid-search-like methods are used where people
monitor performance on the validation set and choose the best set
of hyperparameters from a bunch of candidates. These methods are
simple and generic, capable of being applied to any task and any
model, ranging from SVM [17] to decision trees. Random search
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could be very time-consuming. Previous work [11, 21, 28, 30, 31]
have dedicated to lower down the nontrivial search cost, along
with developing some enhanced toolboxes [4, 7, 23]. However, most
of them require multiple full training runs instead of learning to
regularize on the fly. Recently, [12] explored bilevel programming
to unify gradient based HO and meta-learning. The above hyper-
parameters optimization methods do not specialize on rec-

ommender systems. Applying them to tuning the regularization
coefficients for recommendation might not work well due to some
characteristics, i.e., data sparsity issue, in recommender systems.
In contrast, our algorithms are tailored to recommendation, where
users/items are highly heterogeneous.

Regularization of Embeddings. Embedding technique is widely
used to project categorical values into a latent vector space [13].
In natural language processing, training large embeddings usually
requires suitable regularization [25]. Training recommender mod-
els also involves regularizing large embedding matrices, such as
the user/item embedding matrix. Although the tasks are different,
the basic regularization strategies and their analysis might be simi-
lar. A cross-sectional study across them would be interesting and
meaningful in terms of deriving a generic regularization method
for embeddings. Since parameters initialization can be regarded as
a special regularization, embedding initialization methods like [24]
are also worth exploring.

7 CONCLUSION AND FUTUREWORK

Tuning regularization hyperparameters for recommender models
has been a tedious even miserable job for practitioners. We propose
a generic method, λOpt, to address this problem. λOpt adjusts the
regularization hyperparameters on the fly based on validation data.
Our experiments based on two benchmarks demonstrate that λOpt
can be a simple yet effective training tool in terms of lower compu-
tation cost and better performance with fine-grained regularization.

In future, we are interested in extending ourmethod tomore com-
plexmodels, such as FM and NeuMF. Since λOpt relies on validation
data to update the regularization coefficients, it requires sufficient
data to ensure the generalization [26, 31] when the number of hy-
perparameters is large. It would be worthwhile to investigate the
influence of validation data size. Moreover, we would like to dive
into the theoretical foundation for such adaptive hyperparameter
optimization methods, which is significant for further applications.
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