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ABSTRACT
Our ability to exploit low-cost wearable sensing modalities for criti-
cal human behaviour and activity monitoring applications in health
and wellness is reliant on supervised learning regimes; here, deep
learning paradigms have proven extremely successful in learning
activity representations from annotated data. However, the costly
work of gathering and annotating sensory activity datasets is la-
bor intensive, time consuming and not scalable to large volumes
of data. While existing unsupervised remedies of deep clustering
leverage network architectures and optimization objectives that are
tailored for static image datasets, deep architectures to uncover clus-
ter structures from raw sequence data captured by on-body sensors
remains largely unexplored. In this paper, we develop an unsuper-
vised end-to-end learning strategy for the fundamental problem of
human activity recognition (HAR) from wearables. Through exten-
sive experiments, including comparisons with existing methods, we
show the effectiveness of our approach to jointly learn unsupervised
representations for sensory data and generate cluster assignments
with strong semantic correspondence to distinct human activities.
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1 INTRODUCTION
Accurately and precisely understanding human activities is the
basis for applications ranging from assessing our cognitive decline,
physical andmental health to performance in sporting activities [10–
13, 17, 24, 27, 32]. Increasing plethora of wearables are providing
the opportunity to conveniently and at low-cost collect fine-grained
physiological information to understand human activities. However,
the premise for realizing the multitude of applications is our ability
to build accurate and, often personalized, models for recognizing
human activities from wearables.
Problem. Human activity recognition problems have relied pre-
dominantly on supervised learning regimes where deep learning
paradigms are extremely successful in learning activity represen-
tations from annotated data. While the process of collection and
annotation may be retrospective with vision based sensing modali-
ties where visual inspections of, for example, video frames provides
the basis for ground truth, the parallel task with wearables is nearly
impossible. Moreover, such methods cannot be easily scaled to
gather large datasets often necessary for deep neural networks
(DNNs). In comparison to other domains, generating labelled data

to benefit from supervised learning methods to build HAR applica-
tions in the absence of a reliable visualisation to establish ground
truth is a unique HAR problem with wearable sensors.
Our Motivation. Although unsupervised methods provide av-
enues for learning from unlabelled data, investigations of unsu-
pervised learning from wearable multi-channel time-series data
remains dominantly limited to pre-training [3, 36] or unsupervised
representation learning [6, 19]. Unsupervised alternatives without
requiring any labels, such as deep clustering, exist for image data,
however, these frameworks are tailored for still images and lack the
inherent capability to learn representations and clusters from raw
sequential data captured by wearables. Therefore, our motivation
is to investigate and develop a deep clustering architecture that:

• Leverages the inherently sequential nature of sensory data.
• Learns clustering friendly representations of activity features
in the multi-sensor and multi-channel input signals that offer
separability of activity classes in the feature space.

• Promotes the formation of highly discriminative clusters
with high semantic correspondence to human activities.

Our Contributions. In this study, we propose Deep Sensory Clus-
tering—a deep clustering architecture that learns highly discrimina-
tive representations using self-supervision with reconstruction and
future prediction tasks informed by feedback from a clustering objec-
tive to guide the network towards clustering-friendly representations.
The self-supervised tasks intend to incentivize the network to learn
salient activity features that offer semantic separation in the feature
space while simultaneously reducing the risk of collapsing clusters.
Further, we augment the optimization objective with a clustering-
oriented criterion to further refine the feature representations and
gradually promote clustering-friendliness in the feature space. We
validate our design concepts through extensive experiments; we
summarize our key contributions below:

(1) We develop an unsupervised deep learning network architec-
ture for clustering human activities from raw sequences of
wearable sensor data streams. Our approach, to the best of
knowledge, provides the first standalone, end-to-end, deep
clustering method for raw sequential data from wearables.

(2) Through a systematic experimental regime conducted on
three diverse HAR benchmark datasets (UCI HAR, Skoda,
MHEALTH), we demonstrate the effectiveness of our proposed
approach. Further, we compare our method with closely
related approaches, including traditional clustering methods.
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2 RELATEDWORKS
HAR with Wearable Sensors. The superior performance of super-

vised deep neural networks in classification tasks has led to a shift
towards the adoption of deep learning paradigms for recognizing
human activities from raw wearable data [2, 20, 23, 30]. Researchers
have explored CNNs [8, 33, 39–41], RNNs [15, 18], and a combina-
tion of convolutional and recurrent layers [1, 29, 31] to effectively
model the temporal dependencies inherent in sequences captured
with sensors. However, acquisition of labeled sensory data is labor-
intensive and time-consuming. But, in the sequential sensor data
domain, unsupervised learning has merely been investigated as a
means for weight initialization [3, 19], unsupervised feature learn-
ing prior to supervised fine tuning with labels [6, 36] or clustering
of handcrafted features [22], rather than a standalone end-to-end
approach for exploiting cheaply accessible raw unlabelled data.

Clustering with Deep Neural Networks. Recently, representation
learning power of DNNs has been leveraged to achieve clustering-
friendly representations and cluster assignments simultaneously for
still image data; a shift towards Deep Clustering paradigms [28]. In
this regard, the feature space for representing images are initialized
using deep autoencoders and iteratively refined to obtain cluster
assignments [25, 37]. Following similar ideas, Chen et al. [9] propose
a locality preserving criteria to learn structure preserving image
representations, and Dizaji et al. [14] encourage balanced cluster
assignments during training. In another study, a CNN is trained
with agglomerative clustering objective in a recurrent process [38].
Although these methods achieve impressive results for computer
vision applications, existing deep clustering frameworks are tailored
for still image datasets and suffer from their inability to exploit
the sequential nature of wearable sensor data streams to learn
representations and generate clusters of activities as substantiated
in Section 4.1.

3 THE PROPOSED FRAMEWORK
We consider the problem of clustering a set of n unlabelled seg-
ments of sensory readings {xi }ni=1 into k clusters, each representing
a semantic human activity category. These segments are obtained
by applying a sliding window of fixed temporal duration δt over d
sensor channels of recorded datastreams. We propose our unsuper-
vised two-staged Deep Sensory Clustering framework illustrated in
Fig. 1 for the problem and detail our approach in what follows.

3.1 Stage I: Pretraining a Multi-Task
Autoencoder

In order to facilitate learning clustering-friendly representations,
we initialize the feature space by pretraining a recurrent autoen-
coder to accomplish auxiliary tasks in an unsupervised fashion. In
accomplishing the delegated tasks, the network is forced to extract
enriched representations from the multi-channel sensor sequences.

Recurrent Encoder (Encθ ). The encoder component of our net-
work consumes a windowed excerpt of a rawmulti-channel sensory
sequence and learns a compact fixed length representation as a holis-
tic summary of the input. In particular, we adopt a bi-directional
GRU that reads through the partitioned sensory sequence x in both
forward and backward directions and updates its internal hidden

state in each time step according to the received input. The final
hidden state obtained after scanning the entire input sequence is
reduced in dimensionality through a fully connected layer. The
resulting low-dimensional embedded feature, denoted by z ∈ Rz,
encodes contextual activity information by modeling the temporal
dependencies present in the input sequence of sensory measure-
ments x. We summarize the parameterized operations associated
with encoding the input sequence xi as zi = Encθ (xi ).

Conditional Recurrent Decoders (Decϕ ). The decoder modules of
the framework are structured symmetrically to the encoder compo-
nent. First, a context vector is achieved by back projecting the em-
bedded representation from the encoder into a higher-dimensional
space such that it can be used to initialize the hidden states for the
decoders. Two recurrent decoders then jointly exploit the generated
context vector to accomplish different self-supervised tasks without
requiring any manual supervision. Inspired by [34], we share the en-
coder network between decoders with two different expertise; one
decoder is specialized to reconstruct the temporally inversed input
sequence, while the other one learns to anticipate the future sensory
measurements that should follow after, conditioned on the encoded
input representation. Hence, the network has to not only learn a
representation enriched with sufficient information to reproduce
the input sequence, but also features that allow extrapolating future
measurements. We summarize the parameterized decoding process
as (ŷreci , ŷ

fut
i ) = Decθ (zi ), where ŷreci and ŷfuti respectively denote

the reconstructed and the anticipated sequences generated from
the input xi to satisfy the tasks.

Pre-training Objective. We pre-train the entire recurrent autoen-
coder with a joint objective function,

L(i)
AE = L(i)

rec + L(i)
fut = ∥yreci − ŷreci ∥2︸           ︷︷           ︸

reconstruction loss

+ ∥yfuti − ŷfuti ∥2︸          ︷︷          ︸
future prediction loss

, (1)

where Lrec and Lfut denote the mean square error between each
decoder’s generated output sequence (i.e., ŷrec and ŷfut) and the
expected ground-truth target sequences (i.e., yrec and yfut). Once
the training is complete and the discrepancy between the generated
outputs and their corresponding target sequences is minimized, the
optimal network parameters, i.e., (θ∗,ϕ∗) = minθ,ϕ 1

n
∑n
i=1 L

(i)
AE,

serve as an initialization point for the second stage.

3.2 Stage II: Representation Refinement with a
Clustering Criterion

Once the autoencoder becomes proficient in accomplishing the
auxiliary tasks, we expect the feature space to find a semantic
orientation.We further, extend our frameworkwith a parameterized
clustering network fω (.) capable of estimating cluster assignment
distributions and iteratively optimize a clustering objective LC to
refine the feature space and guide the network towards yielding
clustering-friendly representations. In this paper, we incorporate
Cluster Assignment Hardening [37] as a representative centroid-
based approach for further refinement of the established feature
space. During the refinement stage, both the clustering loss LC
and the autoencoding objectives LAE are jointly incorporated to
be optimized. Hence, the aggregated optimization criterion, for
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Figure 1: An Overview of Deep Sensory Clustering pipeline.

instance i , is formulated as

L(i) = γL(i)
C + L(i)

AE, (2)

where the coefficient γ ∈ [0, 1] controls contribution of the cluster-
ing objective. Notably, we chose not to discard the decoding tasks
during the refinement step to preserve the local data structure and
allow a smoother manipulation of the feature space without distort-
ing the previously established one. Once the network parameters
are optimized with respect to the global criterion, (θ∗,ϕ∗,ω∗) =
minθ,ϕ,ω 1

n
∑n
i=1 L(i), the clustering network of our framework

directly delivers cluster assignments without requiring a separate
clustering algorithm to be run on the representations in a decoupled
process. We describe the clustering criterion utilized next.

Cluster Assignment Hardening (CAH). This clustering objective
leverages the similarities between the data representations and
the cluster centroids as a kernel to compute soft cluster assign-
ments. Placing emphasis on the high confidence assignments, it
then purifies the clusters and forces the assignments to have stricter
probabilities. To incorporate this method, our clustering network
fω comprises a single layer which maintains the cluster centroids
(ωj ∈ Rz)kj=1 as tunable network parameters and generates as-
signment distributions Qi = fω (zi ) for each instance i . This layer
follows the Student’s t-distribution to measure the similarity of em-
bedded sequence representation zi ∈ Rz to the k cluster centroids
and therefore, obtains the normalized similarities Qi = (qi j )kj=1,

qi j =
(1 + ∥zi − ωj ∥2)−1∑k
j′=1(1 + ∥zi − ω ′

j ∥2)−1
. (3)

Through squaring this distribution and then normalizing it, an
auxiliary target distribution Pi = (pi j )kj=1 that leverages high con-
fidence assignments is then defined to point the learning process
towards stricter cluster assignments.

pi j =
q2i j/

∑n
i=1 qi j∑k

j′=1(q
2
i j′/

∑n
i=1 qi j′)

. (4)

Table 1: A summary of the datasets explored in this work.

Dataset UCI HAR Skoda MHEALTH

Sensor Sampling Rate 50Hz 33Hz 50Hz
Sliding Window Duration (δ t ) 2.56s 1s 2.56s
Number of Sensor Channels (d ) 9 60 23
Number of Activity Categories (k ) 6 10 12
Number of Training Segments 7352 5448 4088
Number of Testing Segments 2947 718 1022

Subsequently, the soft assignment distribution Qi is iteratively pu-
rified through minimizing the Kullback-Leilbler (KL) divergence
between the soft labels and the auxiliary target distribution via train-
ing the network parameters, L(i)

C = KL(Pi | |Qi ) =
∑k
j=1 pi j log

pi j
qi j .

This centroid-based approach requires the cluster centers to be
initialized once at the beginning of the refinement stage. The initial
centers are obtained by applying classical clustering algorithms on
the acquired representations from the optimal pretrained parame-
ters; i.e., {zi = Encθ ∗ (xi )}ni=1.

4 EXPERIMENTS
We ground our study by evaluating on three diverse HAR bench-
mark datasets: UCI HAR [4]; Skoda [35]; and MHEALTH [7] em-
ploying standard train and holdout test splits (as summarized in
Table 1). Datastreams are initially rescaled using per-channel nor-
malization. After adopting the sliding window segmentation tech-
nique to partition the continuous data-streams, we consider the
first 50% of sensory measurements in each segment to constitute
the input sequences to our framework. Accordingly, the temporally
inversed version of the input is used as the target sequence for the
reconstruction task while the remaining sensory measurements are
considered as the target sequence for the future prediction task.

Network Architecture. We leverage a 2-layer bi-directional GRU
with 256 hidden units for the encoder. The decoders have an identi-
cal structure but utilize uni-directional connections. Considering
the lower input dimension for UCI HAR compared with Skoda and
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Table 2: A quantitative comparison of clustering performance on three HAR benchmark datasets in accuracy (ACC) and NMI.

UCI HAR Dataset Skoda Dataset MHEALTH Dataset
Train Split Test Split Train Split Test Split Train Split Test Split

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
Traditional Clustering on Input Data Space

k -means 44.28% 48.25% 42.28% 42.14% 43.41% 41.01% 46.01% 40.67% 49.71% 39.55% 48.37% 42.37%
AC-Average 1.38% 19.16% 1.93% 18.29% 4.61% 14.34% 30.98% 26.04% 4.44% 9.21% 7.55% 9.31%
AC-Complete 3.97% 19.56% 20.04% 31.69% 30.85% 27.48% 39.01% 37.47% 16.42% 11.82% 17.84% 11.15%
AC-Ward 41.07% 42.26% 48.21% 43.26% 46.55% 44.68% 46.92% 41.78% 54.06% 45.16% 56.99% 45.99%
Traditional Clustering on Autoencoding Space

k -means 51.93% 60.19% 45.49% 55.62% 53.75% 47.56% 50.64% 42.62% 54.86% 43.96% 55.75% 48.24%
AC-Average 45.18% 37.57% 46.41% 34.61% 18.88% 16.96% 38.59% 30.22% 34.54% 20.47% 47.01% 29.26%
AC-Complete 40.66% 40.03% 40.81% 43.67% 32.55% 32.47% 41.57% 35.93% 42.23% 35.05% 44.42% 36.51%
AC-Ward 75.27% 74.78% 52.83% 60.33% 55.81% 51.51% 54.41% 45.96% 61.07% 48.91% 57.04% 46.28%
End-to-End Deep Clustering

DEC [37] 52.85% 50.45% 53.00% 49.85% 45.32% 40.46% 47.06% 40.25% 51.86% 43.64% 52.38% 44.91%
IDEC [16] 54.86% 51.14% 50.47% 50.15% 49.54% 47.41% 47.47% 45.96% 50.89% 42.49% 53.44% 44.72%
(Ours) Deep Sensory Clustering (k -means Init.) 64.75% 64.54% 61.58% 61.28% 56.91% 50.97% 57.01% 50.28% 62.65% 57.19% 63.06% 56.85%
(Ours) Deep Sensory Clustering (Ward Init.) 76.43% 78.79% 71.25% 75.41% 56.97% 52.9% 59.06% 53.48% 59.42% 51.57% 60.91% 53.33%

Walking Walking-Upstairs Walking-DownstairsSitting Standing Laying

Data Space Autoencoding Space Clustering-oriented Space

Stage (I) Stage (II)

DEC [Xie et al., 2016] IDEC [Guo et al., 2017a]

(a) Ours (b) Deep Clustering Baselines

Section 3.1 Section 3.2

Figure 2: t-SNE visualizations of data representations for UCI HAR dataset achieved with (a) our proposed framework and, (b)
deep clustering baselines. Sequence representations are color-coded with their corresponding ground-truth activity labels.

MHEALTH datasets, we impose a bottleneck embedding dimension
of 64 for the former and 256 for the latter in our autoencoders. The
clustering network fω (.) for integrating CAH uses a single layer
that generates soft cluster assignments according to Eq. (3).

Optimization Settings. In mini-batches of size 256, the network
parameters are updated using the ADAM optimizer with the initial
learning rate set to 10−3 and decayed by a factor of 10 after 70
epochs. The network is pretrained for 100 epochs, and fine-tuned
with the clustering objective until the cluster assignment changes
between two consecutive epochs is less than 0.1%. The weighting
coefficient γ is set to 0.1. All above parameters are held constant
across all datasets to refrain from unrealistic parameter tuning.

4.1 Clustering
We base our evaluations for clustering on the two widely adopted
metrics of unsupervised clustering accuracy (ACC) and Normalized
Mutual Information (NMI ) [28]. Our approach is compared against
popular centroid-based k-means clustering [5] as well as represen-
tative hierarchical algorithms including agglomerative clustering
with average linkage (AC-Average) [21], agglomerative clustering
with complete linkage (AC-Complete) andWard agglomerative clus-
tering (AC-Ward). Further, we compare against end-to-end deep
clustering methods proposed in [16, 37] for still images and show
their inability to cater for the sequential nature of time-series data.

Clustering Performance. In Table 2, we evaluate the clustering
performance of the traditional baselines on both the: i) data space
using raw input representations; ii) autoencoding space using the
embedded features {zi = Encθ ∗ (xi )}ni=1 attained by optimizing
LAE in the pretraining stage; and iii) compare with the end-to-
end cluster assignments generated by deep clustering baselines and
our proposed Deep Sensory Clustering. As required by the CAH
objective, we report results over two different strategies to initialize
the cluster centers only once before commencing the refinement
stage: i) we run k-means clustering on the embedded features to
obtain k centroids; and ii) we perform Ward clustering and use the
mean representation of the obtained clusters as initial centers.

Our results demonstrate that our end-to-end approach not only
outperforms traditional clustering algorithms applied on both input
data and auto-encoding spaces, but also offers a large performance
margin over representative deep clustering baselines proposed for
image data. Without any manual supervision, our proposed unsu-
pervised approach can directly deliver cluster assignments with
high correspondence to activities of interest in the explored datasets;
we can observe accuracy (ACC) performance of 78.79%, 52.9% and
57.19%, respectively onUCIHAR, Skoda andMHEALTHdatasets. In
addition, the consistent improvement of unsupervised metrics across
all three HAR datasets using our proposed framework demonstrates
its generalizability to different HAR problems.
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Space Visualization. In Fig. 2, we illustrate: i) the evolution of the
feature space towards the ultimate clustering-oriented embedding
space achieved with our framework; and ii) the deep clustering
baselines by visualizing the data representation for the sequences
in UCI HAR using t-SNE [26]. For our framework, we show the
original dataset (data space), the dataset embedded by the encoder
after the pretraining stage (autoencoding space) and the final repre-
sentations after optimizing for the aggregated objective function
L in Eq. 2 (clustering-oriented space) with Ward initialization. We
can observe that our framework discovers well-defined and clearly
separated clusters of activity segments with strong correspondence to
the ground-truth labels without manual supervision. In contrast, the
feature spaces achieved by the baseline deep clustering methods
fail to correctly discover activity clusters; e.g. static activities of
sitting and standing are recognized as a single cluster, and different
walking variations are completely intermingled. These visualiza-
tions highlight: i) necessity to leverage recurrent structures within
the network; and ii) effectiveness of incorporating self-supervised
tasks when dealing with time-series data from wearables.

5 CONCLUSIONS
This study tackles the hitherto unexplored problem of end-to-end
clustering of human actions from raw unlabelled multi-channel
time-series data captured by wearables using a deep learning par-
adigm. To the best of knowledge, ours is the first to investigate
and develop a novel deep clustering architecture for HAR problems
with raw sensor data. Our systematic experiments demonstrate: i)
the effectiveness; and ii) generalizability of our proposed approach
for clustering of human activities across three diverse HAR bench-
mark datasets. We believe our study creates new opportunities for
recognition of human activities from unlabelled raw data that can
be conveniently and cheaply collected from wearables.
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