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ABSTRACT
Secure aggregation is a cryptographic protocol that securely com-
putes the aggregation of its inputs. It is pivotal in keeping model
updates private in federated learning. Indeed, the use of secure
aggregation prevents the server from learning the value and the
source of the individual model updates provided by the users, ham-
pering inference and data attribution attacks.

In this work, we show that a malicious server can easily elude
secure aggregation as if the latter were not in place. We devise
two different attacks capable of inferring information on individual
private training datasets, independently of the number of users
participating in the secure aggregation. This makes them concrete
threats in large-scale, real-world federated learning applications.

The attacks are generic and equally effective regardless of the
secure aggregation protocol used. They exploit a vulnerability of
the federated learning protocol caused by incorrect usage of secure
aggregation and lack of parameter validation. Our work demon-
strates that current implementations of federated learning with
secure aggregation offer only a “false sense of security”.
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1 INTRODUCTION
Deep learning is evolving rapidly but often at the expense of privacy
and security. Neural networks may misbehave, hide backdoors, or
be reverse-engineered to reveal sensitive information about the
training datasets [5, 23, 54]. Data holders are thus reluctant to
provide and share their datasets unless some level of protection is
in place.

Cryptographic primitives, such asmulti-party computation (MPC)
and fully homomorphic encryption (FHE), offer only a partial solu-
tion to this problem: They enable learningwhile protecting sensitive
information but at the expense of efficiency and scalability. Even
state-of-the-art implementations of these primitives are highly in-
efficient and add a significant overhead to the learning process,
making them unusable and inapplicable in practice.

Accordingly, researchers have looked at alternative solutions
that rely on decentralization, where data remain local with the par-
ticipants while the neural network evolves during the distributed
learning process. Along this line of research, federated learning
(FL) [11, 35, 36], along with its main implementations federated
stochastic gradient descent (FedSGD) and federated averaging (Fe-
dAVG), has been proposed. At a high level, FL allows a set of users
∗In the proceedings of ACM Conference on Computer and Communications Security
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to train a shared neural network without outsourcing their local
datasets. To this end, they are only required to locally train the
neural network and send model updates (e.g., gradients, model
parameters) to a central server. The updates will be aggregated
by the server, completing a round of the training. The informal
security guarantee offered by FL is that sharing the (possibly scram-
bled [2]) updates does not leak any information about the actual
training instances used by the users. Unfortunately, it has been
shown that an adversary can invert an individual model update of
a target user in order to leak a large amount of information about
its dataset [30, 43, 46, 70].

For this reason, Bonawitz et al. [10] have proposed to combine se-
cure aggregation (SA) protocols with FL as a first step to increase
the security of FL, preventing the server from accessing individual
model updates. Informally, SA is a specialized MPC protocol that
allows a set of users to compute the sum of their private inputs
securely. The security guarantee is the same as standard MPC pro-
tocols, i.e., nothing is leaked about the inputs except what can be
inferred from the output (the sum of the values).

SA is believed to be one of the most robust defenses against
gradient inversion and related inference attacks [32]. In particular,
the application of SA in FL has two main objectives: (1) “Privacy
by aggregation”: Aggregating together a suitable number of model
updates smooths out the information carried out by individual con-
tributions. In turn, this makes it unfeasible to assert or recover
meaningful information on individual training instances that pro-
duced the aggregated value. (2) “Privacy by shuffling”: SA “hides”
the source of the aggregated information; even if sensitive data
is recovered from the aggregated model updates, this cannot be
attributed to the user (the individual model update) who provided
it. Thus, although the privacy of the set of users may be violated,
the privacy of individuals is preserved.

Our work shows that a motivated and malicious server can easily
violate both of these fundamental properties of current SA defenses.
This vulnerability emerges from the federated learning protocol,
not the SA protocol; it is caused by incorrect usage of the SA pro-
tocol. For example, even if we abstract the SA protocol with an
ideal aggregation functionality, the protocol is still exploitable. In
this case, the failure to validate SA inputs by the user is one of the
protocol’s weaknesses, and we are not targeting a specific imple-
mentation of SA. The main intuition is that model updates (i.e., the
inputs of SA) are under the indirect control of the malicious server
since model updates are computed starting from the parameters
sent by the server. A malicious server can leverage this control to
tamper with the updates (that are the inputs of SA) so that their
aggregation will leak information about the update of a target user.
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In order to achieve this, the server exploits a new attack vector
that we call model inconsistency. Here, the server distributes
different views of the same model to different users within the
same round. In this work, we show that model inconsistency can
introduce new vulnerabilities in FL algorithms. The intuition is that
a malicious server, providing different parameters to different users,
can exploit behavioral differences in the model updates provided by
the different models to infer information on users’ datasets, even
when those model updates are securely aggregated before reaching
the server.

To make this inherent vulnerability evident, we implement two
attacks that give a representative view of the threat induced by the
model inconsistency attack vector. Eventually, these attacks demon-
strate how a malicious server can nullify the security offered by
current SA-based defenses proposed for FL. That is: (1) individual
model updates can be perfectly recovered from the final aggre-
gated value, independently of the number of users participating in
the aggregation, and, (2) the source of the recovered data can be
attributed to individuals in the pool of active users.

Finally, we introduce multiple strategies for preventing the vul-
nerability that was brought up. The proposed solutions seamlessly
integrate with current state-of-the-art SA protocols without im-
pacting performance or utility.

1.1 Contributions
Our contributions can be summarized as follows:

Model inconsistency. We demonstrate that FL incorrectly lever-
ages SA [10], and as a result, it is as secure as the original FL protocol
(without SA). We prove this by introducing a new adversarial strat-
egy, named model inconsistency, that leverages the following
two observations: (𝑖) in each protocol round, the SA’s input of
user 𝑢𝑖 ∈ U is its model update ΔΘ

D𝑖
and, (𝑖𝑖) the value of ΔΘ

D𝑖

of each 𝑢𝑖 ∈ U depends on the parameters Θ sent by the server
𝑆 (i.e., different parameters produce different model updates). The
combination of the above two observations implies that 𝑆 could
act maliciously and craft different parameters for different users
in order to tamper with the inputs of SA. As our two attacks will
demonstrate, at a different scale, 𝑆 can exclude from the aggregation
the updates of some non-target usersU \ {𝑢trgt}, forcing the SA to
leak part of the model update ΔΘ

Dtrgt
of the target 𝑢trgt.

Gradient suppression attack. In Section 5, we present a first attack,
named gradient suppression. It shows that a malicious server
can force the local training of the deep model 𝑓Θ̃ executed by 𝑢𝑖 to

unconditionally produce a zeroed gradient ΔΘ̃
D𝑖

= [0]. By combining
both gradient suppression and model inconsistency, the server 𝑆
can send the honest parameters Θ to the target user 𝑢trgt and the
malicious parameters Θ̃ to the remaining non-target ones U \
{𝑢trgt}. In turn, this will leak the honest 𝑢trgt’s gradient ΔΘ

Dtrgt

even if SA is in place. This is because SA will sum up the zeroed
gradients ofU\{𝑢trgt} and the honest gradient of𝑢trgt. The output
will be equal to the gradient ΔΘ

Dtrgt
of the latter user 𝑢trgt. This is

the first practical attack that demonstrates that a malicious server
can completely nullify SA. More importantly, the attack does not

require auxiliary information on the targets, e.g., the distribution
of users’ datasets, or unrealistic architecture alterations.

Canary-gradient attack. We extend the first attack and devise
a second approach called canary-gradient. Here, we show that
a malicious server 𝑆 can modify the target’s model to induce spe-
cific behavior in the derivative of a tiny subset 𝜉 of its parameters
(e.g., two out of millions of parameters). In particular, 𝑆 can forge
malicious parameters that force the model to produce non-zero
gradients for 𝜉 only when a specific adversarially-chosen property
is present in the input batch used to compute the update. Then, the
server can preserve the target’s gradient for 𝜉 in the final aggregated
value by forcing the non-target users to unconditionally produce
zero gradients only for the parameters 𝜉 . This allows 𝑆 to recover
the target’s gradient for 𝜉 in “plaintext” and ascertain the presence
of the queried property in the user’s private data (e.g., membership
inference). Eventually, this demonstrates that a malicious server can
cast extremely effective property inference attacks on individual
users under SA, while ensuring the stealthiness of the attack.

The (in)correct usage of SA in FL. In cryptographic terms, SA pro-
tocols are specializedmulti-party computation (MPC) protocols that
implement the ideal functionality 𝑓 sa (𝑣1, . . . , 𝑣𝑛) =

∑
𝑢𝑖 ∈U 𝑣𝑖 = 𝑣 .

They are built assuming that the inputs of honest users are un-
tamperable, i.e., an adversary has no control over the input 𝑣𝑖 of
an honest user 𝑢𝑖 ∈ U. This holds in both the semi-honest and
malicious security models.

Unfortunately, the above assumption does not hold in FL. As
discussed earlier, a malicious server 𝑆 can tamper with the inputs
(𝑣1, . . . , 𝑣𝑛) of the honest users U. Unlike other attacks, ours is
the first that does not contradict the security of the underlying SA
protocol and does not require auxiliary information about user data.
Our attacks will succeed regardless of the number of FL protocol
users, which is additional evidence that SA and FL cannot protect
against adversarial servers.

Preventing model inconsistency. We discuss ways to help mitigate
model inconsistency by integrating consistency checks during the
FL protocol. In particular, we show that the two most influential SA
protocols of Bonawitz et al. [10] (CCS’17) and Bell et al. [8] (CCS’20)
can be modified to incorporate consistency checks without affecting
the efficiency of the original FL protocol. This is achieved by linking
SA’s masking values (generated by a particular user to hide its input)
to the parameters received from the server. By doing it this way,
when two or more users receive different parameters, their masks
will look random. As a result, the malicious server cannot tell whose
input is whose, reducing the attack efficacy.

Finally, we will discuss how DP techniques can be used in con-
junction with SA, which remains a suitable solution to prevent a
malicious server from breaching users’ privacy. We refer the reader
to Section 7 for more details.

To make our results reproducible, we made our code available.1

1https://github.com/pasquini-dario/EludingSecureAggregation.
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2 RELATEDWORK
2.1 Federated learning and secure aggregation
The distributed architecture of FL protocol [40, 53] provides a fertile
ground for attackers [20, 30, 43, 46]. This is because a malicious
party, mainly the server, has access to sensitive information such
as model updates that can be exploited to violate users’ privacy.
Accordingly, SA has been proposed by Bonawitz et al. [10] as a fun-
damental step to increase the security of FL without modifying the
original structure of the protocol. Subsequent works focus on the
development of new SA protocols for FL with reduced communica-
tion/computation overhead [8, 16, 26, 33, 56], multiple servers [7],
increased robustness against malicious updates [13, 49], or with
verifiable aggregation [26, 62].2

Separately, several other works focused on building new pro-
tocols (or propose significant modifications of FL, e.g., protocol,
architecture, etc.) to train a deep neural network without leaking
unnecessary information about the datasets of the users. We refer
the reader to Appendix A for more details.

2.2 Gradient Inversion
A core privacy concern in FL is the role of the server. In this direc-
tion, it has been shown that, without SA, even a semi-honest server
can invert users’ gradients (sent as a model update in a particular
round of FL) and compute a close-enough approximation of users’
local training datasets. In a nutshell, by leveraging 𝑓Θ (where Θ are
the parameters of the current round of FL) and the gradient locally
computed by the user𝑢 using a subsetD of its local data, the server
can recover D by searching a set of instances D̂ that generates the
gradient similar to the one sent by the user. Thanks to the inherent
smoothness of the neural network 𝑓Θ, this searching problem can
be defined as a second-order optimization, i.e.,

argminD̂ [𝑑 (∇
Θ
D̂
,∇ΘD ) · 𝛼𝑟 (D̂)] (1)

where D̂ is the candidate solution of the malicious server 𝑆 , 𝑑 is
a distance function to measure the discrepancy between the gra-
dient signals ∇Θ

D̂
and ∇ΘD , 𝑟 is a regularizer defined on the input

domain, and 𝛼 is the weight associated to the regularization term
in the optimization. In the work of Zhu et al. [70], 𝑑 is set to be
the Euclidean distance, and the L-BFGS solver is used to solve the
optimization problem. The follow-up work of Geiping et al. [25]
improves their approach/results by noting that the gradient signal
is scale-invariant and accounts for that in defining the optimization
objective in Equation (1). Their work improves the effectiveness
of the inversion attack, drastically increasing its applicability on
real-world architectures such as ResNets [29] and more realistic
batch sizes and a number of FedAVG local iterations. These results
have been further improved in the work of Yin et al. [65] by rely-
ing on additional regularization terms and tailored optimization
techniques.

A more recent line of research dispensed with optimization-
based approaches to focus on closed-form procedures to recover
2In FL with verifiable aggregations [26, 62], users are supposed to verify the integrity
of the aggregated model updates and compute the new parameters (if the parameters
are updated solely by the server, then the verifiability of aggregated gradients becomes
meaningless). This differs from the original FL protocol [40, 53] in which the server
updates the model for improved scalability.

data from gradients in deep neural networks [48, 69]. In this vein, a
recent work of Fowl et al. [22] (which is concurrent to our work) im-
proves over previous approaches by considering a malicious server
that modifies the FL architecture and crafts the network parameters
to artificially create a neural layer that retains information on the
input batch. In particular, this is a linear layer followed by a ReLU ac-
tivation whose parameters must be chosen considering the private
sets’ CDF for a given property, i.e., the attacker must have some
auxiliary information on users’ training datasets. Unfortunately,
this extra knowledge may not be acquired in realistic scenarios
(when users’ data distributions are unknown) and weakens the
applicability of the attack. In addition, the server needs to manipu-
late the model architecture and place a linear layer at the start of
the network to maximize the attack effectiveness. However, this
modification is unworkable for typical deep learning applications
(e.g., in computer vision).

Lam et al. [38] showed that, if SA is enabled, a malicious server
𝑆 can still try to reconstruct individual contributions by observing
multiple training rounds of FL. This disaggregation process can be
reduced to a matrix factorization problem. However, their attack is
effective only in a particular restricted setting in which the mali-
cious server 𝑆 (𝑖) alters the protocol execution by providing always
the same parameters Θ̃ at each round of FL (i.e., users compute
their gradient updates always on the same model 𝑓Θ̃), (𝑖𝑖) leverages
additional side-channel information about users’ participation in
the training rounds, and (𝑖𝑖𝑖) users are required to use the same
local training dataset at each round of FL. Their approach enables
the gradient inversion attack of [25, 65, 70] to scale and be effective
in more realistic scenarios where there is a significant number of
users participating in the protocol execution of FL. Nevertheless,
its feasibility still depends on the number of active users, network
parameters, and other factors such as the number of rounds that the
server monitors to recover individual gradients accurately. Addi-
tionally, while the authors showed that this approach could handle
noise, its applicability is inherently limited in FedSGD, where local
training is performed on randomly selected batches rather than
the entire, static, local dataset. Finally, this attack is not applicable
in large-scale, real-world deployments of FL [27, 64], where users
participate in the protocol only once with a high probability.

3 PRELIMINARIES
We use small letters (such as 𝑥) to denote concrete values, calli-
graphic letters (such as X) to denote sets. For a string 𝑥 ∈ {0, 1}∗,
we let |𝑥 | be its length; ifX is a set, |X| represents the cardinality of
X. In the setting of deep learning, we use the notation [·] to express
a tensor (i.e., vector) of arbitrary dimension. We write [𝑥] for a ten-
sor filled with the value 𝑥 . When a set is included between square
brackets (e.g., [R+]), the tensor is filled with arbitrary elements
from that set.

3.1 Neural networks
We abstract a neural layer with respect to some parametersΘ ∈ R𝑚
using the following notation:

ℓ (𝑥) = 𝜙 (𝑥 ⊗ 𝜃 + 𝑏), (2)

3



where the symbols 𝜃 ∈ Θ and 𝑏 ∈ Θ are arbitrarily shaped real
tensors3 that represent the learnable parameters of the layer ℓ . Here-
after, we refer to 𝜃 and 𝑏 as the kernel and the bias, respectively.
The operation ⊗ abstracts the application of the kernel on the input
tensor 𝑥 . As an example, ⊗ can be a matrix multiplication operator
(ℓ is a fully connected layer), a convolution operator (ℓ is a convolu-
tional layer), or a more complex parametric transformation such as
the multi-head attention mechanism used to build transformer net-
works [60]. This definition captures other core building blocks such
as normalization layers. The function 𝜙 , instead, is the activation
function of ℓ , which makes ℓ non-linear.

A deep neural network is a function 𝑓Θ : X → Y defined by
the composition of many layers, i.e., 𝑓Θ (𝑥)=ℓ𝑛−1 (. . . (ℓ1 (ℓ0 (𝑥))))
where ℓ𝑖 (𝑥)=𝜙 (𝑥 ⊗ 𝜃𝑖 + 𝑏𝑖 ) (as defined in Equation (2)), 𝜃𝑖 ∈ Θ,
𝑏𝑖 ∈ Θ, and 𝑥 ∈ X.

3.2 Federated learning
Federated learning (FL) allows a set of users U = {𝑢1, . . . , 𝑢𝑛},
where each 𝑢𝑖 holds a local training dataset D𝑖 , to train the deep
neural network 𝑓Θ : X → Y on a global dataset that is dis-
tributed among U. A centralized server 𝑆 coordinates the com-
munications between the users to train a deep neural network on
D =

⋃
𝑢𝑖 ∈U D𝑖 in such a way that each D𝑖 does not leave the

𝑢𝑖 ’s device. The learning phase of FL is an interactive process that
is divided into rounds. In the setting of FL, we denote with 𝑡 the
current round of FL and we use the superscript “(𝑡 ) ” (sometimes in
combination with the subscript “𝑖 ”) to denote values used or gener-
ated (such as batches, model updates, model parameters) during the
current round 𝑡 (by a particular user 𝑢𝑖 ). At each round 𝑡 ∈ N, the
server 𝑆 (holding the parameters Θ(𝑡 ) of the deep neural network
𝑓 ) sends to the subset of available usersU (𝑡 ) ⊆ U the parameters
Θ(𝑡 ) ∈ R𝑚 .

The set U (𝑡 ) is composed of the users entitled to participate
in the learning phase during the current round 𝑡 . Each 𝑢𝑖 samples
a random subset D (𝑡 )

𝑖
(known as batch) from its dataset D𝑖 and

locally trains 𝑓Θ(𝑡 ) on D𝑖 . The final result of the local training is a
model update ΔΘ(𝑡 )

D (𝑡 )
𝑖

) that is then forwarded to the server 𝑆 . The

latter will be responsible of computing the new configurationΘ(𝑡+1)
of the parameters with respect to average of the model updates
{ΔΘ(𝑡 )

D (𝑡 )
𝑖

}𝑢𝑖 ∈U received by the server 𝑆 . This process is iterated until

the parameters Θ converge.

FedSGD and FedAVG. The computation of the users’ model up-
dates ΔΘ(𝑡 )

D (𝑡 )
𝑖

and model parameters Θ(𝑡 ) vary according to the type

of FL that is in place. The two main approaches are known as fed-
erated stochastic gradient descent (FedSGD) and federated averaging
(FedAVG). In FedSGD, a single step of gradient descend is performed
per round 𝑡 ∈ N. In other words, the model update ΔΘ(𝑡 )

D (𝑡 )
𝑖

(computed

by a user 𝑢𝑖 ) corresponds to the gradients ∇Θ(𝑡 )
D (𝑡 )

𝑖

computed with

respect to the randomly chosen batch D (𝑡 )
𝑖
⊆ D𝑖 . This gradient

3The shape of these tensors depend on the operator ⊗.

∇Θ(𝑡 )
D (𝑡 )

𝑖

is set to be the model update ΔΘ(𝑡 )

D (𝑡 )
𝑖

of user 𝑢𝑖 . On the server

side, the single step of gradient descend is executed in order to com-
pute the new model parameter Θ(𝑡+1) from Θ(𝑡 ) and {ΔΘ(𝑡 )

D (𝑡 )
𝑖

}𝑢𝑖 ∈U .

More formally, the parameters are updated as follows:

Θ(𝑡+1) = Θ(𝑡 ) − 𝜂

∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖

|U (𝑡 ) |
(3)

where ΔΘ(𝑡 )

D (𝑡 )
𝑖

= ∇Θ(𝑡 )
D (𝑡 )

𝑖

and 𝜂 is the learning parameter.

On the other hand, in FedAVG, users locally perform 𝑘 ∈ N
iterations of stochastic gradient descent, producing new model
parameters at each round. More formally, let Θ(𝑡 ) = Θ

(𝑡,1)
𝑖

be
the parameters received by 𝑢𝑖 from the server at the beginning
of round 𝑡 . For every 𝑗 ∈ {1, . . . , 𝑘}, a user 𝑢𝑖 samples a random
batch D (𝑡, 𝑗)

𝑖
⊂ D𝑖 and computes a gradient ∇Θ(𝑡,𝑗 )

D (𝑡,𝑗 )
𝑖

. Then, it lo-

cally updates the model parameters as defined in Equation (3), i.e.,
Θ
(𝑡, 𝑗+1)
𝑖

= Θ
(𝑡, 𝑗)
𝑖
− 𝜂 · ∇Θ(𝑡,𝑗 )

D (𝑡,𝑗 )
𝑖

. Then, after 𝑘 iterations of gradient

descent, the final model parameters Θ(𝑡,𝑘)
𝑖

will be the model update
ΔΘ(𝑡 )

D (𝑡 )
𝑖

that user 𝑢𝑖 will send to the server. Finally, the server 𝑆 only

needs to compute the new parameters Θ(𝑡+1) that is the average of
the parameters received fromU (𝑡 ) :

Θ(𝑡+1) =

∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖∑

𝑢𝑖 ∈U (𝑡 ) 𝑏𝑖
=

∑
𝑢𝑖 ∈U (𝑡 ) Θ

(𝑡,𝑘)
𝑖∑

𝑢𝑖 ∈U (𝑡 ) 𝑏𝑖
, (4)

where 𝑏𝑖 =
∑𝑘

𝑗=1 |D
(𝑡, 𝑗)
𝑖
|.4

The complete description of the FL protocol (with FedSGD or Fe-
dAVG) is depicted in Figure 8 of the appendix.

3.3 Secure aggregation
A secure aggregation (SA) protocol is a specialized multi-party com-
putation (MPC) protocol that allows a set of users to compute the
summation (a.k.a. aggregation) of their inputs. LetU = {𝑢1, . . . , 𝑢𝑛}
be a set of users, each holding a secret input 𝑣𝑖 (e.g., integer, group
element, vector). A protocol Π is a secure SA protocol if it securely
implements the following ideal functionality:

𝑓 sa (𝑣1, . . . , 𝑣𝑛) = (𝑣, . . . , 𝑣) for 𝑣 =
∑︁

𝑢𝑖 ∈U
𝑣𝑖 , (5)

i.e., a trusted third party executes 𝑓 sa computes and returns to all
usersU the aggregation 𝑣 of the users’ inputs (𝑣1, . . . , 𝑣𝑛). Infor-
mally, a SA protocol Π is considered secure if it is at least as secure
as invoking the ideal functionality 𝑓 sa. This is formalized using
the standard ideal and real-world paradigm of MPC [18] (see Ap-
pendix B). The security of Π does not guarantee that nothing is
leaked about other users’ inputs. Instead, it implies that nothing is
leaked except what can be inferred from the final aggregation. The
information that can be inferred is highly correlated to the inputs
provided to 𝑓 sa (e.g., entropy).

4Observe that, in order to compute the new model parametersΘ(𝑡+1) , the server needs
to receive either 𝑏𝑖 =

∑𝑘
𝑗=1 |D

(𝑡,𝑗 )
𝑖
| from each user 𝑢𝑖 or the size of each D (𝑡,𝑗 )

𝑖

needs to be fixed.
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To increase the security of FL and mitigate attacks such as
gradient inversion (see Section 2), Bonawitz et al. [10] propose
a communication-efficient, dropout resilient SA for FL.5 When ap-
plied to FL, the protocol guarantees a secure aggregation of users’
model updates – sensitive values that carry important information
about the users’ datasets. Hence, an adversary (e.g., malicious user
or server) can not observe the individual model update ΔΘ(𝑡 )

D (𝑡 )
𝑖

of a

target user 𝑢𝑖 . This decreases the amount of information about the
local training datasetD𝑖 of the target user 𝑢𝑖 that an adversary can
leak (e.g., by performing gradient inversion attacks). We stress that
SA protocols [8, 10] have the property of being robust: The final
aggregation can always be computed when at most 𝛿 users drop out
during the execution of the SA protocol (i.e., more than 𝑛 − 𝛿 users
are online). When this condition is failed (i.e., the online users are
less than 𝑛−𝛿), the server cannot recover the final aggregated value.
Hence, SA also guarantees that the server can only see the final
aggregation when the latter contains at least 𝑛 − 𝛿 model updates
(ensuring the desired level of “privacy by aggregation”).

Both Bonawitz et al. [10] and Bell et al. [8] (themost influ-
ential SA protocols in the literature) demonstrate the secu-
rity of their protocols in both the semi-honest andmalicious
models (including collusion between server and users) [10, The-
orems 6.2 and 6.6] and [8, Theorems 3.6 and 4.9]. However, we
emphasize that the results in [8, 10] cover only the security of the
SA protocol. Nothing is claimed about the security of the overall
FL protocol with SA enabled.

4 THREAT MODEL
In this section we formalize the threat model in which our attacks
are defined (Section 5 and Section 6). We adopt the exact same
threat model for which the SA protocols of Bonawitz et al. [10,
Section 6.2] (CCS ’17) and Bell et al. [8, Section 4] (CCS ’20) have
been demonstrated to be secure: A malicious parameter server
(aggregator) that can corrupt at most a fixed number 𝑚 (out of
𝑛) of users.6 Observe that these SA protocols [8, 10] are the most
influential and practical-oriented solutions in the field.

More formally, in each round 𝑡 ∈ N, the active usersU (𝑡 ) do not
send their model updates {ΔΘ(𝑡 )

D (𝑡 )
𝑖

}𝑢𝑖 ∈U (𝑡 ) in the clear. Instead, they

execute the SA protocol Π to securely compute the aggregation
𝑣 =

∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖

(see Section 3.3) for at least 𝑞 users. Only the

final aggregation 𝑣 is revealed to the server 𝑆 . More importantly, we
do not target any specific implementation of SA. In fact, our attack
exploits a vulnerability caused by the incorrect usage of SA in the
FL protocol. In particular, the FL protocol does not validate the
inputs of SA (i.e., model updates). For this reason, to keep the attack
general, we replace the execution of the underlying SA protocol
with the invocation of its ideal functionality 𝑓 sa (Section 3.3).

We model an adversarial server 𝑆 whose objective is to learn
information about the local dataset Dtrgt of one (or more) target
user 𝑢trgt that participates in the execution of the protocol, outside

5In [10] the aggregation 𝑣 is obtained by the server 𝑆 only. This can be represented
as an ideal functionality 𝑓 sa (𝑣1, . . . , 𝑣𝑛,⊥) = (⊥, . . . ,⊥, 𝑣) where the (𝑛 + 1)-th
input/output is associated to the server 𝑆 and ⊥ represents the empty string.
6The number of corrupted users𝑚 depends on the implementation of the SA protocol.
For instance, this is ⌈𝑛3 ⌉ − 1 for Bonawitz et al. [10].

what can be learned from the aggregated model updates. 𝑆 can
deviates from a honest execution (e.g., it sends arbitrary messages)
as defined in [10, Section 6.2] and [8, Section 4]. Specifically, in our
attacks, the malicious server 𝑆 exploits the model inconsistency
attack vector; that is, 𝑆 provides arbitrary malicious parameters
to arbitrary users even within the same training round 𝑡 ∈ N.
Although the adversarial server 𝑆 is allowed to collude with at most
𝑚 users (as considered by [8, 10]), our attacks demonstrate that SA
is ineffective in FL even when𝑚=0, i.e., the server is malicious, but
it does not collude with any user.7 This ensures the effectiveness of
the proposed attacks also outside the cross-device FL setting, where
the parameter server does not perform user sub-sampling.

Lastly, we assume the standard, centralized, communication
topology of FL as in real-world applications [27, 64], where each
user is authenticated by a PKI and shares an encrypted channel
with the server 𝑆 . The SA protocols in [8, 10] are designed for this
communication topology. Moreover, note that a PKI is a necessary
assumption. Indeed, as described in [10, Section 6.2] and [8, Section
4.2], without a PKI, a server could break the privacy of users by
simply launching a sybil attack. Assuming the existence of a PKI is
enough to rule out such trivial sybil attacks [10, Section 6.2] and [8,
Section 4.2].

5 GRADIENT SUPPRESSION ATTACK
In this section, we present our first attack, dubbed gradient suppres-
sion, in which a malicious server exploits the model inconsistency
attack vector to bypass SA and leak the model update of a chosen
target user.

In a nutshell, the malicious server 𝑆 selects a target user 𝑢trgt
among the set of active usersU (𝑡 ) of the current round 𝑡 ∈ N. The
aim of 𝑆 is then to preserve the target’s model update during the SA
process by tampering with the parameters for the other non-target
users. Here, 𝑆 creates a set of malicious parameters Θ̃ that is sent
to the non-target users U (𝑡 ) \ {𝑢trgt} whereas 𝑢trgt receives the
real parameters vector Θ(𝑡 ) . The malicious Θ̃ is crafted in such a
way that the local application of gradient descent performed by a
non-target users produces a tampered model update ΔΘ̃

D (𝑡 )
𝑖

. The

tampered model updates, when aggregated through SA, have the
property of preserving the target’s model update ΔΘ(𝑡 )

D (𝑡 )trgt

, allowing

the server to recover it. Once that the target’s model update is on
the server-side, 𝑆 can leak sensitive information about the batch
D (𝑡 )trgt, used during the current round 𝑡 of FL by executing an arbi-
trary gradient inversion attack (see Section 2.2) or related inference
attacks.

Given the fact that the SA performs the sum among the users’
model updates, the simplest way to achieve the isolation of the
target’s signal is to force the tampered model updates to have
a negligible magnitude, or, more strictly, to be zero every-
where. In this section, we first study the extreme case ΔΘ̃

D (𝑡 )
𝑖

= [0].

That is, the aggregation of the model updates (i.e., gradients) is

7However, collusion with users improves the effectiveness of the attacks when addi-
tional mechanisms such as distributed differential privacy are in place.
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D (𝑡 )1

user 𝑢2
D (𝑡 )2
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target user 𝑢trgt
D (𝑡 )trgt

Θ̃ Θ̃ Θ̃ Θ(𝑡 )

Server 𝑆

𝑓 sa (ΔΘ̃

D (𝑡 )1
,ΔΘ̃

D (𝑡 )2
,ΔΘ̃

D (𝑡 )3
,ΔΘ(𝑡 )

D (𝑡 )trgt

) = ΔΘ(𝑡 )

D (𝑡 )trgt

+∑𝑢𝑖 ∈U (𝑡 ) \{𝑢trgt } [0] = ΔΘ(𝑡 )

D (𝑡 )trgt
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D (𝑡 )3 , Θ̃
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D (𝑡 )trgt,Θ

(𝑡 )

𝑖𝑛𝑣𝑒𝑟𝑡 (ΔΘ(𝑡 )

D (𝑡 )trgt

)

ΔΘ(𝑡 )

D (𝑡 )trgt

ΔΘ̃

D (𝑡 )1

ΔΘ̃
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Figure 1: Graphical representation of the gradient suppression attack (against FedSGD) withU (𝑡 ) ={𝑢1, 𝑢2, 𝑢3, 𝑢4=𝑢trgt}. The left
figure depicts the malicious parameters distribution (model inconsistency). The right figure depicts the secure aggregation of
model updates, the collection of the target’s model update, and the inversion. Themalicious parameters Θ̃ produce a tampered
model update ΔΘ̃

D (𝑡 )
𝑖

(i.e., gradient) equal to [0] for each non-target user 𝑢𝑖 ∈ U (𝑡 ) \ {𝑢trgt}. The function 𝑖𝑛𝑣𝑒𝑟𝑡 (·) denotes the

technique used by the server 𝑆 (e.g., gradient inversion) to extract sensitive information of the original dataset D (𝑡 )trgt from the

target gradient ΔΘ(𝑡 )

D (𝑡 )trgt

.

equal to 𝑢trgt’s model update, i.e.,

𝑓 sa (ΔΘ̃

D (𝑡 )1
, . . . ,ΔΘ̃

D (𝑡 )
𝑖−1

,ΔΘ(𝑡 )

D (𝑡 )trgt

,ΔΘ̃

D (𝑡 )
𝑖+1

, . . . ,ΔΘ̃

D (𝑡 )𝑛

)

= 𝑓 sa ( [0], . . . , [0],ΔΘ(𝑡 )

D (𝑡 )trgt

, [0], . . . , [0]) = ΔΘ(𝑡 )

D (𝑡 )trgt

allowing 𝑆 to exactly recover ΔΘ(𝑡 )

D (𝑡 )trgt

. Figure 1 depicts the gradient

suppression attack against FedSGD.We stress that the attack applies
to FedAVG as we will discuss in Section 5.2.

Next, we show how to compute the malicious parameters Θ̃
required to perform the gradient suppression attack. We focus on
the most widely adopted class of deep learning models—the one
based on the ReLU activation function.However, in Appendix C,
we show that our approach extends to arbitrarily composed
architectures.

5.1 Gradient suppression for ReLU layers: The
dead-layer trick

The Rectified Linear Unit (ReLU) activation function:

𝑅𝑒𝐿𝑈 (𝑥) =
{
𝑥 if 𝑥 > 0
0 if 𝑥 ≤ 0

(6)

is one of the core technical improvements that led to deep learn-
ing [45]. Nowadays, this function is ubiquitous in computer vision
architectures, representing the core building block of highly suc-
cessful and standardized models such as ResNet [29], DenseNet [31]
and many others. Outside the computer vision domain, the ReLU ac-
tivation function is currently finding its place in Natural Language
Processing (NLP) applications thanks to the success of transformer
networks [12, 50, 60].

The dying-ReLU problem [39] is a phenomenon that naturally
occurs during the training of deep neural networks that rely on the
ReLU activation function. When a layer ℓ “dies”, it enters a state
where it can only produce a constant output. More importantly,
the dead layer ℓ cannot produce any gradient during the gradient

descent iterations, i.e., the derivatives of its trainable parameters
are zero regardless of the given input and loss function.

Despite the dying-ReLU phenomenon can naturally occur, we
show that it can also be intentionally induced by a malicious server
to prevent a network from producing a gradient for one or more
sets of parameters. Next, we describe how this can be achieved and
exploited to perform our gradient suppression attack.

5.1.1 Triggering the Dying-ReLU phenomenon with malicious
parameters. The Dying-ReLU phenomenon is due to the piece-wise
non-differentiability of the ReLU activation function. Consider a
neural layer ℓ with a 𝑅𝑒𝐿𝑈 activation function, i.e., ℓ (𝑥)=𝑅𝑒𝐿𝑈 (𝑥 ⊗
𝜃+𝑏). From Equation (6), we can see that the ReLU function behaves
as a constant function 𝑅𝑒𝐿𝑈 (𝑥) = 0, whenever the input 𝑥 is equal
or less than zero. Since the derivative of a constant function is
always 0, we can easily conclude that, for any loss function L, then
we have 𝜕L

𝜕𝜃
= [0] and 𝜕L

𝜕𝑏
= [0] when 𝑥 ⊗ 𝜃 + 𝑏 ≤ 0. In other

words, the layer ℓ receives zero gradient for its trainable parameters
𝜃, 𝑏 ∈ Θ every time its pre-activation (i.e., 𝑥 ⊗ 𝜃 +𝑏) is less or equal
to zero.

A malicious server 𝑆 can exploit the above behavior of the ReLU
function to kill a layer ℓ of a neural network 𝑓 , i.e., by forcing the
pre-activation 𝑥 ⊗ 𝜃 + 𝑏 of ℓ to be less or equal to zero. This can
be accomplished (without control over the input 𝑥 of an user) by
computing some malicious trainable parameters 𝜃, 𝑏 ∈ Θ̃ of the
layer ℓ .

In more detail, the operator ⊗ (see Section 3.1) is generally based
on a multiplication-like operation between the input 𝑥 and the
kernel 𝜃 . Therefore, we can easily force the pre-activation to be
[0] for any input 𝑥 by just choosing 𝜃 = [0] and 𝑏 = [R≤0]. Alter-
natively, having some knowledge on the input 𝑥 , we can rely on
different setups for 𝜃 and 𝑏. For instance, if 𝑥 is strictly positive
(e.g., because 𝑥 is the output produced by a previous ReLU-layer or
because of the adopted input normalization process), it is enough
to produce a malicious 𝜃 with negative numbers. Instead, if a bound
on 𝑥 is known (e.g., 𝑥 ∈ [−1, 1]), we can just set the malicious
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(a) MNIST

(b) CIFAR-10

Figure 2: Examples of reconstruction (red panels) obtained
via gradient inversion attacks using [25] for two datasets.

bias vector 𝑏 to a large enough negative number (e.g., fix 𝜃 and set
𝑏 = −𝑚𝑎𝑥 (𝜃

⊗
𝑥)).

Now, an attacker can exploit the dead-layer trick to force a ReLU-
based network to produce zero gradient for every layer. In this
direction, it is important to note that, for plain, ReLU-based feedfor-
ward architectures, the server 𝑆 can just kill the kernels in the very
first layer to suppress the gradient flow for the rest of the network.8
Hence, killing all the kernels {𝜃𝑖 } in the original parameters Θ is
very often not necessary. Similarly, in modern architectures, neural
layers tend to be arranged in the form:

neural layer→ normalization layer→ activation.

Therefore, to suppress the gradient for the network, it is enough to
zero only the parameters of the normalization layers as these are
often defined as𝛾𝑥+𝛽 , where 𝑥 is the normalized input. For instance,
in the case of batch normalization, the attacker can kill the neural
layer by setting the vectors 𝛾 and 𝛽 of the batch normalization to
[0]. Nevertheless, the strategy would work for every architectural
configuration.

Moreover, even if ReLU is the most common activation function
in deep learning, a server 𝑆 can always maliciously choose a neural
network architecture 𝑓 that presents a ReLU activation function
in the “right spots” of the model without requiring unrealistic ar-
chitecture modifications. The only gradient signal that cannot be
recovered by the server using the dead-ReLU trick is the one of
the bias term of the last layer (details are given in Appendix C).
This follows from the fact that the terminal layer of a network only
rarely exhibits a ReLU activation function. A trivial solution for the
malicious server is to avoid the bias term of the last layer when
defining the architecture of the model. Alternatively, the malicious
server can ignore the gradient of the bias term during the gradient
inversion. Indeed, this represents only a tiny portion of the total
number of trainable parameters of the network. For instance, in
the case of a ResNet50 trained on ImageNet [29], the bias vector
in the final layer counts for only 4 · 10−5% of the total number of
parameters. In Section 5.2.2, we show that gradient inversion is
unaffected from this missing gradient.

8However, if present, all the bias terms of the network should be set to values ≤ 0.

5.2 Attack execution
Turning back to the attack described at the beginning of this section,
we have now an effective and efficient approach to isolate the model
update ΔΘ(𝑡 )

D (𝑡 )trgt

of the target user 𝑢trgt. The malicious server 𝑆 can

just exploit the techniques discussed in Section 5.1 and Appendix C
to generate the malicious parameters Θ̃ and suppress the model up-
dates of non-target users, completely nullifying their contributions
in the aggregated signal produced by SA. As previously described
(Figure 1), the attack is composed of two phases.

5.2.1 Distribution of the (malicious) parameters. In the first
phase of the attack, 𝑆 creates the malicious parameters Θ̃ for the
non-target users. Right after the choice of Θ̃, 𝑆 must choose the
target user 𝑢trgt for the current round 𝑡 ∈ N of FL. 𝑆 can either
select the target at random (a trawling attack) fromU (𝑡 ) or target
a specific (e.g., exploiting the IP address used to query the model by
the user, if available). Then, 𝑆 can enforce the model inconsistency
by distributing the parameters (Figure 1). In more detail, upon re-
ceiving a request for the parameters from a user 𝑢𝑖 , the parameter
server answers by sending Θ(𝑡 )

𝑖
defined as follows:

Θ
(𝑡 )
𝑖

=

{
Θ(𝑡 ) if 𝑖 = trgt

Θ̃ otherwise
, (7)

where Θ(𝑡 ) are the honest parameters of the current round 𝑡 ∈ N.
Optionally, 𝑆 can send a maliciously crafted model to the target user
to increase the information recovered from the inversion attack [22,
25].

5.2.2 Aggregation, collection, and inversion. After the distribu-
tion of the parameters, the malicious server 𝑆 waits until it re-
ceives the output 𝑣 of 𝑓 sa, i.e., 𝑓 sa (ΔΘ̃

D (𝑡 )1
, . . . ,ΔΘ(𝑡 )

D (𝑡 )trgt

, . . . ,ΔΘ̃

D (𝑡 )𝑛

) = 𝑣

where

𝑣 = ΔΘ(𝑡 )

D (𝑡 )trgt

+
∑︁

𝑢𝑖 ∈U (𝑡 ) \{𝑢trgt }
ΔΘ̃

D (𝑡 )
𝑖

. (8)

Then, it proceeds differently according to which algorithm (between
FedSGD or FedAVG) is active.

In FedSGD, the output 𝑣 of 𝑓 sa is the𝑢trgt’s gradient, i.e., 𝑣=ΔΘ(𝑡 )

D (𝑡 )trgt

=∇Θ(𝑡 )
D (𝑡 )trgt

. This is because, as discussed earlier, the malicious pa-

rameters Θ̃ produces ΔΘ̃

D (𝑡 )
𝑖

= [0] for each non-target user 𝑢𝑖 ∈

U (𝑡 ) \ {𝑢trgt} (Section 5.1 and Appendix C). After recovering the
plaintext gradient, the server can reconstruct the target input by
performing standard inversion attacks (Section 2.2) as done in the
protocol without SA. Figure 2 reports examples of gradient in-
version on the federated system with gradient recovered via the
gradient suppression attack. In the examples, we keep the bias term
of the last layer in the architecture and ignore it during the opti-
mization [25]. Note that the attack is independent of the number
of users participating in the aggregation, and this can be arbitrar-
ily large. Similarly, the server can perform previously proposed
inference attacks [43, 46] on the individual user.

On the other hand, in FedAVG, a model update is composed of the
parameters of the local model rather than a gradient (see Section 3.2).
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More formally,

Δ
Θ(𝑡 )
𝑖

D (𝑡 )
𝑖

= Θ
(𝑡,𝑘)
𝑖

for 𝑢𝑖 ∈ U (𝑡 ) , (9)

where the local model Θ(𝑡,𝑘)
𝑖

of 𝑢𝑖 is obtained by applying 𝑘 itera-
tions of SGD using the local dataset D𝑖 and Θ

(𝑡 )
𝑖

(as defined Equa-
tion (7)) sent by server (recall that Θ(𝑡 )

𝑖
=Θ̃ forU (𝑡 ) \ {𝑢trgt}). Now,

when a non-target user performs the local training procedure using
the malicious parameters Θ(𝑡 )

𝑖
=Θ̃, we have that

Θ
(𝑡, 𝑗+1)
𝑖

= Θ
(𝑡, 𝑗)
𝑖
− 𝜂 · ∇Θ

(𝑡,𝑗 )

D (𝑡,𝑗 )
𝑖

(10)

where Θ(𝑡,1) =Θ̃, D (𝑡, 𝑗)
𝑖

⊆ D𝑖 , and 𝑗 ∈ {1, . . . , 𝑘}. As in the case
of FedSGD, we have that ∇Θ(𝑡,𝑗 )

D (𝑡,𝑗 )
𝑖

= [0] for every non-target user

𝑢𝑖 ∈ U (𝑡 ) \ {𝑢trgt} and we conclude that Θ(𝑡, 𝑗)
𝑖

= Θ̃.
By combining Equations (8) to (10), we obtain the equality 𝑣 =

(𝑛 − 1) · Θ̃ + Θ(𝑡,𝑘)trgt . This equation can be solved with respect to

the indeterminant Θ(𝑡,𝑘)trgt . Once the malicious server 𝑆 recovered

the updated local model Θ(𝑡,𝑘)trgt of the target 𝑢trgt, it can determine
the (pseudo) gradient signal by removing the honest parameters
Θ(𝑡 ) from Θ

(𝑡,𝑘)
trgt and proceed with the gradient inversion/inference

attack.

5.3 Impact
Current FL+SA implementations do not prevent the gradient sup-
pression attack, making users actively susceptible to this simple
yet powerful exploit. To a certain extent, this attack can be inter-
preted as an invalid input validation vulnerability present in
the users’ FL client software. Here, the latter permits users to per-
form computation on “semantically malformed inputs” sent by a
non-trusted party, i.e., the server. This allows the server to control
SA’s inputs of users and eventually affect the aggregation. Fur-
thermore, in contrast to most of the previous attacks introduced
in FL, the disclosed vulnerability has the practical advantage of
being completely independent of the number of users par-
ticipating in the current round. Therefore, this procedure scales
to millions of active users, making it applicable to real-world sce-
narios such as cross-device FL, which is currently being deployed
in-the-wild [27, 64]. In the same direction, its effectiveness is in-
dependent of the size of the model or other nuisance factors such
as the stillness of users’ training datasets during the attack [38].
Additionally, unlike [22], this attack neither hinges on auxiliary
information on the users’ private sets nor requires unrealistic mod-
ifications of the model architecture; indeed, it can be applied to
arbitrary architectures and loss functions. It is important to note
that the gradient suppression attack can be iterated several times
and arbitrarily alternated with honest training iterations. If the
server wants to recover information on all the users, it has to iter-
ate the attack several times by targeting a user at a time. Assuming
no dropouts among users participating at the FL protocol, recov-
ering the gradient of all users requires 𝑛 iterations where 𝑛 is the
number of active users.

We stress that the gradient suppression attack shows the incor-
rect application of SA in FL, yielding a “false sense of security”.
As discussed in Section 1.1, the core motivation is that SA guaran-
tees that nothing is leaked about the model updates of the users
except what can be inferred from their aggregation. This claim
assumes that the inputs (i.e., model updates) of SA are fixed
and are not under the control of an adversary. However, this
does not hold in FL since, in this case, the value of inputs
that needs to be aggregated depends on the parameters Θ
distributed by the server. Hence, a malicious server that exe-
cutes the gradient suppression attack can indirectly tamper with
the SA’s inputs to maximize the information leaked (e.g., leak the
model update of a target user).

Although the gradient suppression attack is highly effective, it
can be easily detected by non-target users (we delve into this topic
in Section 7). Nevertheless, in the next Section 6 we introduce an
extension of the gradient suppression attack that adds stealthiness
and it is harder to detect. More generally, one can always trade effec-
tiveness for stealthiness also in the gradient suppression framework.
For instance, if recovering noisy model updates is acceptable, the
server can send highly optimized models (e.g., obtained after some
rounds of honest execution) to non-targets and an unoptimized
model to the target. Intuitively, the gradient from the unoptimized
model should dominate the aggregation given the low magnitude
and sparsity of the one produced by the optimized models (see
Figure 4).

6 CANARY-GRADIENT ATTACK FOR
PROPERTY INFERENCE

Section 5 demonstrates that a malicious server 𝑆 can force non-
target users to produce a zero gradient during a round of FL. This
allows 𝑆 to bypass SA and, at the same time, maximize the leakage
regarding the dataset of a target user. While the gradient suppres-
sion attack can be seen as the most extreme exploitation of the
model inconsistency attack vector, more stealthy attacks can be
created harnessing the same underlying intuition.

This section shows a general procedure that allows a malicious
server to perform highly accurate property inference attacks on in-
dividual users, even if SA is enabled. The idea behind this approach
is that the server can maliciously modify the parameters of the
model in order to inject specific detectors in one or more subsets
of the network. These detectors are specifically crafted to react to
attacker-chosen trigger conditions that can be present in the users’
training instances. Whether the detector is triggered during the
local training procedure, the network produces a clear footprint
in the model update. Then, upon receiving the latter from a user,
the server can determine if the trigger condition has been met by
looking for the footprint in the model update. This allows the server
to infer information on the content of the user’s training set; that
is, the presence or absence of data with the specific property. For
instance, using this approach, the server can perform an extremely
accurate membership inference on a chosen target user. Hereafter,
we refer to this general procedure as the canary-gradient attack.
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As for the gradient suppression, the canary-gradient attack does
not target any specific SA protocol but instead leverages a vulnera-
bility of FL caused by its incorrect usage of SA. For this reason, we
abstract the SA protocol with its ideal functionality 𝑓 sa.

6.1 The Conditional Dead-Layer trick
The main building block to construct the attack is a conditioned
version of the dead-layer trick of Section 5.1. Informally, we want
to “kill” a layer only if the instance 𝑥 ∈ D (𝑡 )trgt of the target 𝑢trgt
satisfies a particular condition. In other words, we would like a
programmed death through the backdooring of the layer. For the
sake of presentation, we introduce the conditional dead-layer trick
assuming that SA is disabled. Then, in Section 6.2 we extend the
discussion to the case of SA enabled.

Formally, given a layer ℓ , we want to find some malicious param-
eters Θ̃ to enforce the following behavior

𝜕L(D (𝑡 )trgt, Θ̃)
𝜕𝜉

≠ 0⇐⇒ ∃𝑥 ∈ D (𝑡 )trgt : 𝑃 (𝑥)=True, (11)

where D (𝑡 )trgt is the batch (of the current round 𝑡 ) used by the target
user 𝑢trgt, 𝜉 ∈ Θ̃ is a subset parameters of the network, and 𝑃 is a
predicate that defines the property the malicious server 𝑆 wants to
detect in the batch D (𝑡 )trgt of 𝑢trgt. In particular, 𝜉 can be composed
of the parameters of any logic partition in the neural network, such
as a specific filter in a convolution layer or an element in the scale
and shift vectors in a normalization layer.

As discussed in Section 5, suppressing the gradient for a set of
parameters in a ReLU-based layer is about controlling the value of
its pre-activation. Therefore, given a neural layer ℓ with ReLU acti-
vation, we can substitute Equation (11) with:

ℓ𝜉 = (𝑥𝜉 ⊗ 𝜃𝜉 + 𝑏𝜉 ) > 0⇐⇒ ∃𝑥 ∈ D (𝑡 )trgt : 𝑃 (𝑥)=True, (12)

where 𝜉 = {𝜃𝜉 , 𝑏𝜉 }, and 𝑥𝜉 is the subset of the input of ℓ that
interacts with the parameters 𝜉 and ℓ𝜉 refers to the subset of the
output of the layer ℓ computed using the parameters 𝜉 .

The simplest and most natural way to find 𝜉 that correctly in-
duce Equation (12) is to explicitly train the layers preceding ℓ and
the parameters 𝜉 to force ℓ𝜉 to produce a positive value only when
the input of the network satisfies 𝑃 . In other words, we train part of
the network in a classification task, using the output ℓ𝜉 such as the
output layer, where the classification threshold is centered in zero.
Observe that, if the behavior of Equation (12) is correctly embedded
in the network 𝑓Θ̃, a malicious server 𝑆 will able to determine the
event ∃𝑥 ∈ D (𝑡 )trgt : 𝑃 (𝑥)=true by only collecting gradient ∇𝜉

D (𝑡 )trgt

of

𝑢trgt and check that the derivatives of 𝜉 are different from zero. In
Section 6.3 we show how this can be done in practice.

6.2 Targeted property inference attacks via
model inconsistency

To perform the membership inference attack discussed in the pre-
vious section, the malicious server 𝑆 needs to have access to the
gradient ∇𝜉

D (𝑡 )trgt

of𝑢trgt. This is possible when SA is disabled. On the

other hand, when SA is enabled, the 𝑆 can inject the canary-gradient

Figure 3: Graphical representation of the SA exeuctionwhen
the canary-gradient is applied. On the left, each square rep-
resents a gradient update produced by a different user. The
green square represents the target’s gradient and the inner
small blue square represents the gradient for 𝜉 . On the other
hand, each red square represents the gradient produced by
non-target users, with zero gradient for 𝜉 . The square on the
right represents the aggregation where the target’s gradient
∇𝜉
D (𝑡 )trgt

for 𝜉 is preserved.

Figure 4: Comparison between the test-set accuracy of a
ResNet model trained on CIFAR10 and the sparsity of its
gradient (i.e., percentage of parameters that receive zero gra-
dient) during the training.

functionality in the network and then perform the inference attack
on the whole pool of active users. In this scenario, 𝑆 would be able
to infer that one of the users triggered the canary-gradient by ob-
serving that 𝑓 sa

𝜉
(∇𝜉
D (𝑡 )1

, . . . ,∇𝜉
D (𝑡 )𝑛

) = ∑
𝑢𝑖 ∈U (𝑡 ) ∇

𝜉

D (𝑡 )
𝑖

≠ [0] where

𝑓 sa
𝜉

denotes the inner idealized functionality of 𝑓 sa that performs
the aggregation of the gradients of 𝜉 . However, in this case, the
privacy of users would be partially preserved as 𝑆 would not be
able to attribute the result of the inference attack to a specific user
(“privacy by shuffling”).

Still, we show that model inconsistency can be exploited even in
this case, allowing themalicious server 𝑆 to bypass SA and target the
specific target 𝑢trgt. Analogously to the gradient suppression attack
(Section 5), 𝑆 needs to tamper with the honest parameters Θ(𝑡 ) in
order to produce two different malicious Θ̃1 and Θ̃2. The target user
𝑢trgt will receive Θ̃1 that is the original model Θ(𝑡 ) injected with
a canary-gradient for the parameters 𝜉 as discussed in Section 6.1.
On the other hand, the non-target usersU (𝑡 ) \ {𝑢trgt} will receive
Θ̃2 that is a slight perturbation of the original model Θ(𝑡 ) that has
the additional property of unconditionally produce zero-gradient
only for the parameters 𝜉 , i.e., ∇𝜉

D (𝑡 )
𝑖

= [0]. This can be achieved by

exploiting the dead-layer trick in a localized way. Instead of killing
the gradient for the whole layer, it intentionally inhibits only the
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gradient produced by the parameters 𝜉 ; for instance, for just one
filter in a convolution layer.

Now, when the target and non-target gradients are aggregated,
the target’s gradient ∇𝜉

D (𝑡 )trgt

for 𝜉 will be preserved, allowing the

server to state the activation or non-activation of the canary-gradient,
and so, with high probability, the presence of the property 𝑃 in the
batch D (𝑡 )trgt of 𝑢trgt. This intuition is captured by Figure 3.

Finally, given that the number of parameters in 𝜉 can be arbitrar-
ily small, the attack will leave only a minimal footprint, making
the detection non-trivial (in our experiments, we show that two
parameters are enough). This is also supported by the fact that
the gradient becomes more sparse as the training proceeds (see
Figure 4), making it difficult to distinguish between natural “holes”
and artificial ones in the gradient vector.

While we gave an abstract view on the attack strategy, next, we
show how the attack can be carried out on a realistic architecture
such as ResNet in a membership inference attack scenario.

6.3 Injecting canary-gradient for membership
inference

We show a practical example of how to model a membership attack
on the training dataset of a specific user. Specifically, we target
training instance 𝑥𝑡 , and we want to infer if 𝑥𝑡 is contained in the
batchD (𝑡 )trgt used by the target user𝑢trgt to compute the gradient up-
date in the current round 𝑡 ∈ N of FL. Following previous notation,
we want to infer the following property:

𝑃𝑥𝑡 (𝑥) = True⇐⇒ 𝑥 = 𝑥𝑡 .

We start by considering the case of FedSGD and carry out the
attack on a ResNet20 network. However, for this network, we do
not consider the batch normalization layers as those would make
the attack trivial. Indeed, if batch normalization is used, we could
detect the activation of ℓ𝜉 by checking the average computed and
sent to the server to update the running mean. For this reason, we
keep the attack general by substituting every batch normalization
with layer normalization [6] that does not present this issue and
has an overlapping role. We then extend the attack to FedAVG in
Appendix D.

In our experiment, we inject the canary gradient in the last
residual block of the network. This is because the terminal layers
are usually the ones that receive the sparsest gradient during the
training. Since the normalization layer precedes the ReLU activation
function, we chose a subset of the parameters of the latter as our 𝜉 . In
particular, we can pick any pair (𝛾𝑖 , 𝛽𝑖 ) in the scale and shift vectors
𝛾 and 𝛽 . Thus, in this case, 𝜉 is composed of only two parameters,
that is about 7 · 10−4% of the total number of parameters in the
network. Hereafter, we always choose 𝑖 = 0; however, choosing a
different channel would not affect the attack.

To inject the canary gradient, we use a learning-based approach.
In this direction, we assume that the adversary (i.e., malicious
server) knows a shadow dataset D𝑠 defined in the same domain of
the target point 𝑥𝑡 . For instance, if 𝑥𝑡 is a face image, D𝑠 contains
face images aswell.We stress that, as wewill show later, the distribu-
tion ofD𝑠 and one of the users’ datasets can be different. Intuitively,
the role ofD𝑠 is providing negative samples while training ℓ𝜉 to fire

xt0

 = 0

Figure 5: Graphical representation of the feature-space (𝑥-
axis and 𝑦-axis) for the pre-activation ℓ𝜖 (𝑧-axis). The gray
plane represents 𝑧 = 0, i.e., the threshold for the activation
of the ReLU function.
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Figure 6: Average accuracy of the canary-gradient attacks
for six different setups with increasing batch size for a
ResNet20.

on 𝑥𝑡 . It is important to note that the canary-gradient attack
is agnostic, and the simple training procedure discussed can
be substituted with other techniques. For instance, approaches
such as [22] and learning-based approaches that do not require neg-
ative samples (i.e., one-class classification) may be used to reach the
same result. In this direction, our main contribution is introducing
the idea that the server can manipulate the derivative of the current
model to encode arbitrary messages (and that these messages can
be retrieved under SA).

We can now inject the canary gradient by reducing the mali-
cious injection to a classification problem. We train the split of the
network up to 𝜉 in producing positive ℓ𝜉 when the network’s input
contains 𝑥𝑡 . In our case, with 𝜉 = {𝛾𝑖 , 𝛽𝑖 }, we have ℓ𝜉 = 𝛾𝑖𝑥𝑖 + 𝛽𝑖 ,
where 𝑥 is the normalized input of the layer. Our loss function L
for a batch of size 𝑛 is simply defined as the binary cross entropy:

− 1
𝑛

𝑛∑︁
𝑖=1

{
𝛼1 · log(sigmoid(ℓ𝜉 )) if 𝑥 = 𝑥𝑡

𝛼0 · log(1 − sigmoid(ℓ𝜉 )) otherwise
, (13)

where instances different from 𝑥𝑡 are sampled from 𝐷𝑠 , and 𝛼1 and
𝛼0 weight the loss for the two events. In other words, we want to
“overfit” the network to produce positive ℓ𝜉 only for the point 𝑥𝑡 ,
while squashing under 0 the feature-space around it. This intuition
is depicted in Figure 5. We stop the training when we reach a
training loss lower than a given threshold.

Finally, the gradient for 𝜉 in the non-target users is uncondi-
tionally suppressed by just setting both 𝛾𝑖 = 𝛽𝑖 = 0, but other
configurations are possible.

10



Figure 7: Four different examples of false positive for the
canary-gradient-based MIA. The first element in each se-
quence is the target, whereas the four following images are
false triggers.

6.3.1 Results. We evaluated the effectiveness of our attack. We
test three different image datasets, namely, CIFAR10, CIFAR100 [37],
and TinyImagenet [17]. We use all the possible permutations of
those datasets to represent the private and shadow distribution for
the canary-gradient attack, obtaining 6 different configurations.

To run the experiments, we pick 𝑥𝑡 (i.e., the target of the mem-
bership inference) at random from the validation set of the pri-
vate dataset. Then, we trained the model by injecting the canary-
gradient in the channel 0 of the last normalization layer in the
last residual block. After the injection, we evaluated the canary’s
effectiveness by testing that the canary-gradient is non-zero when
𝑥𝑡 is in the training batch and zero otherwise. To this end, we it-
erate over all the training data of the private dataset by selecting
a batch X of size 𝑛 at a time. Given X, we compute the gradient
according to the original loss function and test that 𝜉 has gradient
zero (precision). Then, we insert 𝑥𝑡 in X, and we test if the gradient
of 𝜉 is different from zero (recall). We perform the test on the three
private datasets with different batch sizes and repeat the test for 50
different 𝑥𝑡 for every case.We report our results in Figure 6, where
we use the notation “private-dataset←shadow-dataset”.

The canary gradient has perfect recall (i.e., if 𝑥𝑡 is in the
batch, the canary is always triggered), but it can be subject to false-
positive errors with low probability. The global accuracy of the
method is about 99% for a batch size up to 128. The precision of
the attacks slowly decreases when the batch size becomes larger.
This follows from the fact that larger batches have more probabil-
ity of including at least one “false trigger example” that causes a
false positive. Intuitively, false positives are instances that induce
a feature representation that is similar to the target one; a few ex-
amples are given in Figure 7. Therefore, while false triggers reduce
the accuracy of the attack, these can still inform the attacker that
instances similar to 𝑥𝑡 are present in the victim’s local training
set. The attacker can intentionally tune the definition of similarity
by introducing the desired inductive bias in the canary injection
process.9 Regardless of the presence of false triggers, the attack is
appreciably precise; the accuracy remains higher than 96% even
in the worst configuration. The canary-gradient attack also ap-
plies to FedAVG by just requiring minimal effort to the malicious
parameter server. In Appendix D, we empirically demonstrate the
effectiveness of this approach.

9For instance, the server can train the canary to intentionally react only to “red cars”,
by training it accordingly.

6.4 Impact
Although we presented the canary-gradient attack to execute a
membership inference, the same approach can be applied to any
type of property inference. Ideally, it is sufficient to define a differ-
ent trigger condition and train the network accordingly. Moreover,
the server can inject multiple canary-gradient with different trig-
gers in the same network and infer non-binary properties. In the
same direction, the server can simultaneously perform inference
on multiple users without losing accuracy by carefully managing
the allocation of conditional and unconditional dead-layers.

More importantly, the canary-gradient attackmaintains the same
practical properties as the gradient-suppression attack; mainly, it
requires only a training round to perform, its effectiveness is inde-
pendent of the number of users participating in the round, and it
is loss agnostic (i.e., it works for any learning task). However, un-
like the gradient suppression approach, this leaves only a minimal
footprint in the model updates. Note that the canary gradient can
be injected while training the model on the original task, and so
minimizing the utility loss of the target model. On the other hand,
suppressing a limited number of parameters in the non-target mod-
els (e.g., two in our example) has only a negligible impact on the
utility.10

This attack demonstrates that a malicious server can perform
highly accurate property inference attacks on individual users even
if SA is adopted from the latter. Again, the introduced training-based
approach is just an example, and more sophisticated techniques
may be devised to reach the same (or better) results by relying on
the same general construction.

For completeness, we emphasize that, even in the case of canary-
gradient attacks, the discussion about the insecurity of the com-
bination of SA and FL applies (discussed in Sections 1.1 and 5.3).
As for the case of gradient suppression, the canary-gradient works
if the SA protocol is perfectly secure (i.e., it behaves as the ideal
functionality 𝑓 sa).

7 MITIGATIONS
Next, we will discuss and introduce some mitigation approaches.

The first part focuses on heuristic approaches that strive to pre-
vent model inconsistency and attack vectors similar to those seen in
this work. While they do not stop all possible attacks, their practical
relevance is still significant.

Then, we analyze how combining DP with SA can lead to a more
general mitigation strategy.

7.1 Heuristic mitigations against model
inconsistency

SA dropout. Although the gradient suppression attack (Section 5)
is effective, it can be detected easily by non-target users. Indeed,
non-target users can quickly discover an ongoing attack as their
models would have zero gradients throughout.11 However, the
target (who is the victim of the attack) cannot detect or prevent the

10This is equivalent to perform dropout [57] on a single channel on a single layer in
the network.
11A phenomenon that is very unlikely to be observed in reality, excluding numerical
errors or pathologic overfitting.
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attack without communicating with non-target users.12 Therefore,
a solution could be instructing users not to execute the SA protocol
when they detect a null gradient after a local training iteration.
In this case, only the attack victims would participate in the SA
protocol, which is enough to prevent the server from recovering the
target’s model update. Indeed, the server would not receive enough
information to unmask the target model’s update and complete
the execution of SA. This is because the dropout threshold 𝛿 of the
underlying SA protocol (i.e., the number of user dropout that the SA
protocol can handle) must be set to 𝛿 < 𝑛−1 where 𝑛 is the number
of users participating in the aggregation (otherwise, if 𝛿 = 𝑛 − 1, a
malicious user can unmask the gradients of other users). See [10]
for more details. Nevertheless, this detection strategy does not work
in the case of the canary-gradient attack (Section 6). The “negligible”
footprint of the model update does not allow for a reliable detection
since sparse model updates are common in an honest execution of
FL (see Figure 4).

Parameter validation using signatures. Another approach consists
of checking that all users have received the same parameters Θ(𝑡 )

in the current round 𝑡 ∈ N of FL. For example, each 𝑢𝑖 ∈ U (𝑡 )

sends the parameters Θ(𝑡 )
𝑖

(or its hash) sent by 𝑆 to all other users.
Then, each 𝑢𝑖 ∈ U (𝑡 ) checks that

Θ
(𝑡 )
𝑖

= Θ
(𝑡 )
𝑗

for every 𝑢𝑖 , 𝑢 𝑗 ∈ U (𝑡 ) . (14)

If the check fails, the user aborts. It is easy to see that this strategy
does not allow 𝑆 to execute model inconsistency attacks (note that
it can still send a malicious parameters Θ̃ to all). Unfortunately, in
the standard communication topology of FL (see Section 4), users
do not have a direct communication channel. Each message needs
to go through the server that, in turn, will forward the message to
the intended receiver. Hence, a malicious server can perform a man-
in-the-middle attack and substitute each Θ

(𝑡 )
𝑖

sent by 𝑢𝑖 with an
arbitrary honest-looking parameters Θ. If we want to preserve the
communication topology of FL, digital signatures must be involved.
For example, assuming that each 𝑢𝑖 holds a key pair (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ) then
𝑢𝑖 needs to (𝑖) sign its message before sending it to the server
𝑆 and, (𝑖𝑖) verify the signature (using the public key 𝑝𝑘 𝑗 of the
signee) of each message received. If the security of the signature
holds, then the server can not change the messages of users. As a
consequence, users are guaranteed that the message is honest, and
they can perform the check defined in Equation (14). We stress that
this approach works under the assumption that usersU can trust
and know (in advance) the public keys of all other users (e.g., there
is a trusted certification authority). Note that this assumption is
at the root of the SA protocols of Bonawitz et al. [10] and Bell et
al. [8].

This approach would add one round of communication without
modifying the implementation of the underlying SA protocol. How-
ever, this round could be merged with the ones of SA, e.g., the third
round of the SA protocol of Bonawitz et al. [10, Figure 2]. Regarding
the communication complexity, exchanging the signatures of the
received parameters increases communication by 𝑛 · ℓ where 𝑛 is
the number of active users and ℓ is the size of one signature (e.g.,
256 bits).

12Note that the standard implementation of FL does not allow users to communicate.

Conditional secure aggregation. Another mitigation consists of
building a modified SA version for FL that performs the aggregation
only if a particular condition 𝐶 is satisfied. Otherwise, it outputs a
random value (or fixed value ⊥ denoting that the aggregation did
not occur). Intuitively, by setting the condition 𝐶 to Equation (14),
the FL protocol executes the aggregation (and continue its execu-
tion) only if all the users have received the same parameters Θ(𝑡 )
in the current round 𝑡 ∈ N. This would hinder a malicious server 𝑆
from exploiting the model inconsistency attack vector. Naturally,
such a protocol can be built leveraging general MPC techniques.
However, this would yield an inefficient aggregation that will not
be deployed in practice. A candidate practical implementation of
this SA for the specialized condition of Equation (14) can be easily
obtained by modifying the SA protocol of Bonawitz et al. [10]. Still,
we stress that this approach can also be applied to the SA protocol
of Bell et al. [8]. In a nutshell, in [10] (and [8]) there is an ordering
over the usersU and each pair (𝑢𝑖 , 𝑢 𝑗 ) such that 𝑢𝑖 ≠ 𝑢 𝑗 share a
random secret 𝑠𝑖, 𝑗 . During the aggregation, each user 𝑢𝑖 masks its
input 𝑣𝑖 in the following way:

𝑦𝑖 = 𝑣𝑖 +
∑︁

𝑢 𝑗 ∈U:𝑢𝑖<𝑢 𝑗

𝐺 (𝑠𝑖, 𝑗 ) −
∑︁

𝑢 𝑗 ∈U:𝑢𝑖>𝑢 𝑗

𝐺 (𝑠 𝑗,𝑖 )

where 𝐺 (·) is a secure pseudorandom generator (PRG). Assum-
ing no dropouts, the server can compute the aggregation as 𝑣 =∑
𝑢𝑖 ∈U 𝑣𝑖 =

∑
𝑢𝑖 ∈U 𝑦𝑖 . To enforce the condition 𝐶 of Equation (14),

we can simply substitute the PRG 𝐺 (·) with the evaluation of a
pseudorandom function (PRF) 𝐹 (𝑠𝑖, 𝑗 ,Θ(𝑡 )𝑖

) where Θ(𝑡 )
𝑖

are the pa-
rameters received by𝑢𝑖 from 𝑆 . It is easy to see that the aggregation
remains hidden if two (or more) honest users receive two different
parameters. Hence, the server 𝑆 can not execute a model inconsis-
tency attack. We stress that the presented solution (as discussed
in [10]) is not resilient to dropouts. Still, the same technique can be
applied seamlessly to both SA protocols (of Bonawitz et al. [10] and
Bell et al. [8]) that handle users dropouts. This second approach
does not need any additional round of communication. Moreover,
unlike the previous approach (i.e., parameter validation using sig-
natures), it preserves the communication complexity of the original
SA protocols [8, 10] since we do not need to exchange signatures
between active users.

Note that SA protocols such as [8, 10] (secure in the malicious
setting) already require a PKI. Hence, the proposed solutions (pa-
rameter validation using signatures and conditional secure aggre-
gation) can be implemented by using the existing PKI of the SA
protocol. Nevertheless, patching model inconsistency becomes con-
sistently harder for variations of the vanilla FL protocol such as
Asynchronous Federated Learning [47, 61] which is gaining sub-
stantial interest thanks to its practical advantages. For instance,
in the asynchronous SA protocol proposed in [55], solving model
inconsistency would be a difficult task as aggregating model up-
dates produced by different models is allowed by design. In these
directions, solving model inconsistency efficiently remains an open
problem.
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7.2 Differential privacy and Secure
Aggregation

One way to protect against the proposed attacks would be to mix
SA with Differential Private-SGD algorithms [2]. However, unlike
previous solutions (Section 7.1), differential privacy (DP) comes
with a high utility cost, especially in the context of FL [66]. Re-
gardless, standard central-DP approaches [42, 51] are ineffective
when the parameter server is malicious. Here, the DP-noise is ap-
plied only after the model updates have been aggregated by the
server. Trivially, if the server is malicious, it can just skip this step
and obtain the target’s gradient in clear. Therefore, the proposed
attacks remain unaffected. Peculiarly, pure central-DP is the ap-
proach used in state-of-the-art implementations [1] and employed
in real-world deployments of FL [41, 51]. Nonetheless, user-level
differential privacy can still be efficiently obtained in the presence
of a dishonest parameter server by relying on the distributed-DP
model [3, 14, 15, 34] that combines (partial) local noise application
and SA to securely simulate central-DP.13 More generally, as previ-
ous works have exhaustively shown it [9, 22, 32, 70], the application
of local noise (i.e., local / distributed-DP) is sufficient to prevent
gradient inversion and inference attacks on users’ model updates,
and, therefore, the introduced attacks. In Appendix E, we offer a
more detailed analysis of the privacy provided by the combination
of SA and local-DP against the proposed attacks.

Nevertheless, the combination of SA and DP [3, 14, 15, 34, 58] is
still partially susceptible to model inconsistency attacks since the
adversary can isolate the gradient/parameters of the target user in
the aggregation. That is, the server can still force the final aggre-
gated value to be a function of the sole target’s training set. Thus,
while a suitable amount of local noise still ensures the “privacy by
aggregation” property of SA14, the “privacy by shuffling” property
remains violated. Indeed, the information leaked from the aggre-
gated model updates can still be traced back to the target—which is
known to be the only source of information in the final aggregated
value.

8 CONCLUSION
Our research found that federated learning implementations are
susceptible to a critical vulnerability caused by incorrect usage of
secure aggregation. As a result, the latter does not provide any
additional security to users against a malicious server (even if a
trusted PKI is assumed). The primary reason for the security issue
is the lack of parameter validation, which would have prevented the
server from providing inconsistent views of the global parameters
to users.

We emphasize that the proposed attacks are just representative
examples of threats induced by model inconsistency, and that other
attacks may be devised by exploiting the same general intuition. In
order to protect users’ privacy from current and future attacks, we
argue that federated learning implementations must account for
model inconsistency and prevent it at its source.

13Note that the server can still exploit the𝑚 compromised users allowed by the threat
model and force them to participate in SA with zero gradient without applying the
required noise. In the distributed DP model, this lets the server weaken the privacy
guarantee for the target model update proportionally to𝑚.
14To be precise, it implies a consistently stronger form of privacy than “privacy by
aggregation” alone as the model update is now also differentially private.
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A ALTERNATIVES TO FEDERATED
LEARNING

Aono et al. [4] leverage a homomorphic encryption scheme to
permit users to share encrypted model updates (e.g., gradients)
with the server. The latter will compute the new model parameters
in an encrypted fashion, using the additive homomorphic properties
of the underlying encryption scheme. The new parameters remain
encrypted on the server-side.

Truex et al. [59] use a similar approach by leveraging the ho-
momorphic properties of Pailler’s cryptosystem. Here, the Pailler
encryption scheme is necessary to allow the server to aggregate
the model updates in an encrypted form. In contrast to [4], the
aggregation will be decrypted by the users and made public to the
server.

An analogous approach is used by EastFly [19] and BatchCrypt [67]
with the main difference of keeping the aggregated updates secret
to the server: The aggregation is locally decrypted by the users that
will also compute the new model parameters (this differs from the
original FL protocol [40, 53] in which the parameters are stored
and updated by the server). In addition, [67] proposes a batching
encoding scheme (that preserves the homomorphic properties of
the underlying homomorphic encryption schemes) to reduce the
number of encryption operations and speed up the efficiency of the
protocol.

HybridAlpha [63] uses amulti-input functional encryption scheme
to compute the aggregation. Informally, each user 𝑢𝑖 computes
the encryption 𝐸𝑛𝑐𝑝𝑘𝑖 (ΔΘ

D𝑖
) of its update ΔΘ

D𝑖
. Once the server

has received all the ciphertexts, it computes the aggregation by
decrypting them using the decryption key 𝑠𝑘𝑓 for the function-
ality 𝑓 (ΔΘ

D1
, . . . ,ΔΘ

D𝑛
) = ∑𝑛

𝑖=1 Δ
Θ
D𝑖

. Analogously, SAFElearn [21]

leverages either multi-party computation or fully homomorphic
encryption to protect the individual’s updates of users.

Poseidon [52] significantly deviates from the original FL archi-
tecture. In such a system, users are organized according to a tree
hierarchy, and a multi-key fully homomorphic encryption scheme
is used to protect users’ updates and the parameters of the neu-
ral network. At each round of the training phase, the root user
sends the encrypted parameters to all users that, in turn, compute
their updates according to their local training data. Then, each en-
crypted user’s update is sent to the parent that will then aggregate
all children’s updates. At the end of this recursive process, the root
receives the encrypted aggregation (that contains the updates of
all users) and will update the parameters. The entire computation
of the training process is executed inside the multi-key fully homo-
morphic encryption scheme. This permits them to keep the updates
and the parameters encrypted. The latter remains encrypted even
after the training process, and the model evaluation requires further
computation inside the multi-key fully homomorphic encryption
scheme. Note that Poseidon [52] is an extension of SPINDLE [24].
The former handles complex machine learning models (such as
neural networks), while the latter supports only generalized linear
models.

Lastly, we mention Cerebro [68] that proposes a compiler to
automatically transform Python-like domain-specific language into
an optimized MPC protocol for collaborative learning allowing
users to keep their plaintext data secret. We stress that Cerebro [68]
does not relate in anywaywith FL [40, 53] and it must be interpreted
as an alternative to FL.

Attack applicability. As discussed in Section 4, our attacks are
general and equally effective independently from the SA protocol
used. This because they exploit a vulnerability of FL caused by the
incorrect usage of SA. More precisely, our main attack applies to all
the FL/SA protocols that do not prevent the parameter server from
deviating from the honest execution. This class also includes most
of the schemes that rely on fully homomorphic encryption (FHE)
e.g., [21]. The reason is that FHE would still allow the server to
multiply the individual encrypted parameters by the constant 0 and
produce 0 gradient everywhere when used by the non-target users
(see Appendix C). The only requirement is that server is required
to collude with a least one user in order to access the result of
the attack (the target model update) once decrypted by the pool
(e.g.,𝑚 > 0).

Protocols based on Trusted Execution Environment (TEE) can
stop the server from executing malicious code [28, 44]. Thus, a
properly deployed TEE environment with ideal/perfect hardware
and secure and authenticated communication would prevent all the
active attacks currently in the literature [9, 22, 38], including ours.
However, the reality is that trusted hardware is vulnerable to side-
channel attacks, and there is significant performance degradation
when extending side-channel protections to arbitrary computations.
Therefore, it remains unclear whether side-channel attacks can be
entirely eliminated.
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Federated Learning
Inputs. For every 𝑢𝑖 ∈ U, user 𝑢𝑖 holds a local training dataset D𝑖 = {(𝑥 𝑗 , 𝑦 𝑗 ) } 𝑗∈{1,...,ℓ } . The server 𝑆 fixes the architecture 𝑓 of the deep neural network, the
learning parameter 𝜂 ∈ [0, 1], and the initial parameters Θ(1) .
Goal. The server 𝑆 obtains the final model parameters Θ of the deep neural network 𝑓 .

The protocol:

• For 𝑡 ∈ N, until Θ(𝑡 ) converges.
(1) 𝑆 samples a random subset of users U (𝑡 ) ⊆ U that will participate in training of 𝑓 in the current round 𝑡 . 𝑆 sends the parameters Θ(𝑡 ) to each

𝑢𝑖 ∈ U (𝑡 ) .
(2) Each user 𝑢𝑖 ∈ U (𝑡 ) receives Θ(𝑡 ) and proceeds as follows:

(a) If FedSGD. 𝑢𝑖 samples a random training batch D (𝑡 )
𝑖
⊆ D𝑖 and computes the gradient ∇Θ(𝑡 )

D (𝑡 )
𝑖

. Finally, it sets its model update

ΔΘ(𝑡 )

D (𝑡 )
𝑖

= ∇Θ(𝑡 )
D (𝑡 )
𝑖

.

(b) If FedAVG. Let Θ(𝑡,1)
𝑖

= Θ(𝑡 ) For 𝑗 ∈ {1, . . . , 𝑘 }, 𝑢𝑖 samples a random training batch D (𝑡,𝑗 )
𝑖

⊆ D𝑖 and computes the gradient ∇Θ(𝑡,𝑗 )
D (𝑡,𝑗 )
𝑖

.

Then, it updates the model parameters by computingΘ(𝑡,𝑗+1)
𝑖

= Θ(𝑡,𝑗 )
𝑖
−𝜂 · ∇Θ(𝑡,𝑗 )

D (𝑡,𝑗 )
𝑖

. Finally, it sets ΔΘ(𝑡 )

D (𝑡 )
𝑖

= Θ(𝑡,𝑘 )
𝑖

and𝑏𝑖 =
∑𝑘

𝑗=1 |D
(𝑡,𝑗 )
𝑖
|.

(3) Each user 𝑢𝑖 ∈ U (𝑡 ) sends its model update as follows:
(a) If SA disabled. It sends ΔΘ(𝑡 )

D (𝑡 )
𝑖

to 𝑆 . In addition, if FedAVG, 𝑢𝑖 sends 𝑏𝑖 to 𝑆 .

(b) If SA enabled. It provides the input ΔΘ(𝑡 )

D (𝑡 )
𝑖

to 𝑓 sa. In addition, if FedAVG, 𝑢𝑖 sends 𝑏𝑖 to 𝑆 .

(4) 𝑆 computes the new model parameters Θ(𝑡+1) in the following way:
(a) If SA disabled.

(i) If FedSGD. 𝑆 receives {ΔΘ(𝑡 )

D (𝑡 )
𝑖

}𝑢𝑖 ∈U from users and computes Θ(𝑡+1) = Θ(𝑡 ) −𝜂 · 𝑣/𝑏 where 𝑣 =
∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖

and 𝑏 = |U (𝑡 ) |.

(ii) If FedAVG. 𝑆 receives {(ΔΘ(𝑡 )

D (𝑡 )
𝑖

, 𝑏𝑖 ) }𝑢𝑖 ∈U from users and computes Θ(𝑡+1) = 𝑣/𝑏 where 𝑣 =
∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖

and 𝑏 =∑
𝑢𝑖 ∈U (𝑡 ) 𝑏𝑖 =

∑
𝑢𝑖 ∈U (𝑡 )

∑𝑘
𝑗=1 |D

(𝑡,𝑗 )
𝑖
|.

(b) If SA enabled. 𝑆 receives 𝑣 =
∑
𝑢𝑖 ∈U (𝑡 ) Δ

Θ(𝑡 )

D (𝑡 )
𝑖

from 𝑓 sa. Then, it proceeds as follows:

(i) If FedSGD. 𝑆 computes Θ(𝑡+1) as in Item 4(a)i using 𝑣 outputted by 𝑓 sa.
(ii) If FedAVG. 𝑆 receives {𝑏𝑖 }𝑢𝑖 ∈U from users and computes Θ(𝑡+1) as in Item 4(a)ii using 𝑣 outputted by 𝑓 sa.

Figure 8: Description of FedSGD-based and FedAVG-based FL with SA either enabled or disabled. The execution of SA is rep-
resented by the ideal functionality 𝑓 sa.

B SECURITY OF SECURE AGGREGATION
Additional notation. We model cryptographic algorithms (e.g.,

adversary) as (possibly interactive) Turing machines. If 𝐴 is a deter-
ministic (resp. randomized) algorithm, we write 𝑦 = 𝐴(𝑥) to denote
a run of𝐴 on input 𝑥 and output𝑦; if𝐴 is randomized,𝑦 is a random
variable. An algorithm 𝐴 is probabilistic polynomial-time (PPT) if
𝐴 is randomized and for any input 𝑥 ∈ {0, 1}∗ the computation of
𝐴(𝑥) terminates in a polynomial number of steps (in the input size).
We denote by 𝜆 ∈ N the security parameter of cryptographic primi-
tives, and we implicitly assume that every algorithm takes as input
the security parameter (written in unary). A function 𝜈 : N→ [0, 1]
is called negligible in the security parameter 𝜆 if it vanishes faster
than the inverse of any polynomial in 𝜆, i.e. 𝜈 (𝜆) ∈ 𝑂 (1/𝑝 (𝜆)) for
all positive polynomials 𝑝 (𝜆). We write negl(𝜆) to denote an un-
specified negligible function in the security parameter. Similarly, we
write poly(𝜆) to denote all possible polynomials 𝑝 (𝜆). Let 𝑋 and 𝑌
be two random variables. We say that 𝑋 and 𝑌 are computationally
indistinguishable, denoted 𝑋 ≈𝑐 𝑌 , if for all PPT distinguishers 𝐷

we have���Pr
[
𝐷 (1𝜆, 𝑋 ) = 1

]
− Pr

[
𝐷 (1𝜆, 𝑌 ) = 1

] ��� ≤ negl(𝜆).

We now describe the ideal and real-world paradigm of MPC [18]
that defines the security of MPC protocols (including SA).

Real world. The real world refers to the scenario in which the real
protocol 𝜋 is executed between the usersU. During its execution
the parties U exchange messages between themself in order to
compute the 𝑓 (𝑥1, . . . , 𝑥𝑛) = (𝑦1, . . . , 𝑦𝑛). In this setting, we assume
the presence of an adversary 𝐴 that can be either semi-honest or
malicious. A semi-honest 𝐴 can take control of a subset of users
Ũ ⊂ U. This will allow 𝐴 to have access to their inputs {𝑥𝑖 }𝑢𝑖 ∈Ũ ,
the messages received, and the final output 𝑓𝑖 (𝑥1, . . . , 𝑥𝑛) = 𝑦𝑖 . In
addition, if 𝐴 is malicious, then it can also program a corrupted
user 𝑢𝑖 ∈ Ũ to deviate from the original protocol specification (e.g.,
send malicious messages). We use the notation 𝑉 𝜋

𝑖
(𝑥∗) to denote

the view of the 𝑖-th party, i.e.,

𝑉 𝜋
𝑖 (𝑥

∗) = (𝑥𝑖 , 𝑟𝑖 ,𝑚1, . . . ,𝑚𝑘 )
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where 𝑥∗ = (𝑥1, . . . , 𝑥𝑛), 𝑟𝑖 are the (private) random coins of𝑢𝑖 , and
𝑚 𝑗 is the 𝑗-th message received by 𝑢𝑖 .

Ideal world. In the ideal world, the protocol execution is replaced
by a trusted third party that honestly computes 𝑓 . In more detail,
each user𝑢𝑖 sends its input 𝑥𝑖 to the third party. The latter computes
𝑓 (𝑥1, . . . , 𝑥𝑛) = (𝑦1, . . . , 𝑦𝑛) and returns 𝑦𝑖 to each user 𝑥𝑖 . Even in
this setting, the (either semi-honest or malicious) adversary 𝐴 can
corrupt a set of parties Ũ and, in turn, obtains their private inputs
{𝑥𝑖 }𝑢𝑖 ∈Ũ and outputs {𝑦𝑖 }𝑢𝑖 ∈Ũ .

Security. At a high level, the security of 𝜋 is defined by comparing
the ideal and real world. In particular, 𝜋 is secure if there exists
a simulator 𝑆 that simulates the view of a real-world adversary 𝐴
by leveraging the interactions performed in the ideal world. This
implies that any attack in the real world “corresponds” to an attack
in the ideal world that, in turn, provides the maximum security
guarantees that can be achieved. In other words, a secure protocol
𝜋 provides at least the same level of security as if we had an honest,
trusted party computing 𝑓 without exposing to an adversary the
inputs of uncorrupted users.

Definition B.1. Let 𝜋 andU = {𝑢1, . . . , 𝑢𝑛} be a 𝑛-party protocol
that correctly computes an 𝑛-inputs 𝑛-outputs function 𝑓 and the
set of users that participate in the protocol execution, respectively.
Let 𝑥𝑖 be the input of user𝑢𝑖 ∈ U and let 𝑥∗ = (𝑥1, . . . , 𝑥𝑛). For Ũ =

{𝑢𝑖1 , . . . , 𝑢𝑖𝑘 } ⊂ U, we let𝑉 𝜋

Ũ
(𝑥∗) = (Ũ,𝑉 𝜋

𝑖1
(𝑥∗), . . . ,𝑉 𝜋

𝑖𝑘
(𝑥∗)) and

𝑓Ũ (𝑥
∗) = (𝑦𝑖1 , . . . , 𝑦𝑖𝑘 ). We say that 𝜋 securely computes 𝑓 if there

exists a PPT simulator 𝑆 such that, for every Ũ ⊂ U, for every
input 𝑥∗ = (𝑥1, . . . , 𝑥𝑛), we have:

{𝑆 (Ũ, 𝑥, 𝑓Ũ (𝑥
∗))}𝑥∗∈{0,1}∗ ≈𝑐 {𝑉 𝜋

Ũ
(𝑥∗)}𝑥∗∈{0,1}∗

where 𝑥 = (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) for 𝑢𝑖 𝑗 ∈ Ũ.

C GRADIENT SUPPRESSION FOR
ARBITRARY ARCHITECTURES

In Section 5 we focused on ReLU-based layers as these are instru-
mental for our second attack (Section 6). Nevertheless, gradient
suppression can be achieved for networks composed of arbitrary
activation functions at the cost of flexibility and granularity. Intu-
itively, we can force any differentiable function to unconditionally
produce a zero gradient by constraining it to become constant with
respect to the differentiated terms. In the context of neural net-
works, this means making the loss function constant with respect
to the trainable parameters of the network. Formally, given a neu-
ral network 𝑓Θ(𝑡 ) and a loss function L, this can be achieved by
bringing Θ(𝑡 ) in a state such that:

∀𝑥,𝑦, L(𝑦, 𝑓Θ(𝑡+1) (𝑥)) = 𝑐, (15)

where 𝑐 is an arbitrary constant and Θ(𝑡+1) represents any possible
alteration of the parameters of the network achievable starting from
Θ(𝑡 ) . Intuitively, when in this state, the parameters of the network
have zero gradient since their alteration does not affect the loss
function.

Bringing an arbitrary architecture in the state described in Equa-
tion (15) is trivial, and, for standard feedforward networks, this
requires to act only on the kernels of the last and penultimate layer.

Hereafter, we refer to the composition of these last two layers as
𝜙𝑙 (𝜙𝑝 (𝑎 ⊗ 𝜃𝑝 +𝑏𝑝 ) ⊗ 𝜃𝑙 +𝑏𝑙 ) where 𝜙𝑙 and 𝜙𝑝 are the two arbitrary
activation functions for the last and penultimate layer respectively
and 𝑎 represents the intermediate state of the network up to the
penultimate layer.

To suppress the gradient for most of the network, the kernel of
the last layer 𝜃𝑙 must be set to [0]. In this way, all transformations
applied to the network’s input by the layers up to the last layer are
nullified. Intuitively, this cuts off all parameters of the layers up to
the last one from the loss computation, making their derivative 0
for every input. However, in this state, the kernel 𝜃𝑙 still receives
the gradient since its alteration still affects the network’s output
(and so, the loss function.)

Now, to suppress the gradient for the kernel 𝜃𝑙 of the last layer,
the attacker needs to act on its input; that is, the output of the
penultimate layer. In particular, in order to cut off the contribute
of the kernel 𝜃𝑙 from the loss computation, the attacker needs the
output of the penultimate layer to be [0], i.e., ∀𝑎, 𝜙𝑝 (𝑎 ⊗ 𝜃𝑝 +𝑏𝑝 ) =
[0]. Indeed, given the multiplicative nature of the operation ⊗
between the kernel 𝜃𝑙 and the 𝜙𝑝 (𝑎 ⊗ 𝜃𝑝 + 𝑏𝑝 ), the assignment
𝜙𝑝 (𝑎 ⊗ 𝜃𝑝 + 𝑏𝑝 ) = [0] completely nullifies the contribute of 𝜃𝑙 in
the layer output, making its derivative zero.

This can be achieved by choosing appropriate values for the 𝜃𝑝
and 𝑏𝑝 in the penultimate layer. In particular, the attacker can
set 𝜃𝑝 = [0] and play with the bias term𝑏𝑝 to force the activation𝜙𝑝
to output zero. Indeed, when 𝜃𝑝 = [0], we have that 𝜙𝑝 (𝑥 ⊗ 𝜃𝑝 +
𝑏𝑝 ) = 𝜙𝑝 (𝑏𝑝 ) and the attacker just needs to set 𝑏𝑝 in such a way
that 𝜙𝑝 (𝑏𝑝 ) = [0]. This is possible for almost every activation
function. In practice, this is even possible for the Sigmoid function
that is zero only when its input is −∞.15

After having nullified the contribution of all kernels in the net-
work, the model is now the constant function 𝑓Θ (𝑥) = 𝜙𝑙 (𝑏𝑙 ). There-
fore, the bias term 𝑏𝑙 (if any) can still receive a non-zero gradient
during the application of SGD. Also in this case, the server can
either remove the last bias term from the architecture or ignore it
during the attack phase (e.g., gradient inversion).

D CANARY-GRADIENT ON FEDAVG
At least theoretically, extending the canary-gradient attack pre-
sented in Section 6 to the FedAVG protocol can be problematic. In
FedAVG, a user locally applies multiple iterations of SGD, modi-
fying the parameters of the model. Thus, there is the possibility
that the user overwrites the canary functionality during the pro-
cess. However, this can be easily prevented by the server. Indeed,
given the stateless nature of users in FL, the parameter server must
distribute the hyper-parameters needed for the training process. In
this direction, the server takes care of the learning rate. Therefore,
the server can simply select a low learning rate to preserve the
canary’s functionality. The rationale here is that the perturbation
of the local parameters induced by the local training steps is propor-
tional to the learning rate. A low learning rate ensures to the server
a bounded modification of the local parameters and, so, a limited
perturbation of the hidden canary functionality originally injected
in the model. Instead, the partial dead-kernel in the non-target’s

15It is sufficient to set 𝑏𝑝 to a large negative number.
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(a) 𝑙𝑟 =0.001
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(b) 𝑙𝑟 =0.0005

Figure 9: Average accuracy of canary-gradient attacks for
six different setups with increasing number of FedAVG lo-
cal training steps for a ResNet20.

model cannot be revived regardless of the number of iterations and
the given learning rate.

In practice, even setting a standard learning rate such as 0.001
(which is quite common, especially towards the end of the training)
seems enough to preserve the canary functionality during the local
learning iterations. This is shown in Figure 9a, where the canary
functionality is tested after an increasing number of local training
steps. We rely on the same setup of Section 6.3.1, and we use a batch
size of 64. As it can be observed, the accuracy of the attack does
naturally decrease with the increase in the number of iterations.
However, this performance loss is limited, and the accuracy always
remains in the 97%-range even in the worst case. Nevertheless, there
is a trade-off between effectiveness and stealthiness of the attack,
and such a performance loss can be further reduced by considering
a lower learning rate. This is shown in Figure 9b, for a learning rate
of 0.0005. In this case, we do not need model inconsistency, and the
server can send the same hyper-parameters (learning rate) to all
the users in the pool without distinction.

Once computed the output of the secure aggregation, the server
can state if the canary has been triggered by cheeking if 𝜉𝑡 ≠ 𝜉𝑡+1.
Intuitively, the parameters 𝜉 are modified if and only if the target
user produced a non-zero gradient for 𝜉 during the training at least
once (i.e., the trigger condition has been met).

E A NOTE ON THE COMBINATION OF SA
WITH LOCAL DIFFERENTIAL PRIVACY AS
A DEFENSE

When SA is combined with local-DP, the amount of noise applied
to the model update recovered by our attacks is proportional to the
number of users participating in the round.

In the local-DP setting without SA, the model update of the user
𝑢trgt accessible by the parameter server is:
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Figure 10: Noise amplification effect on the target’s model
update when SA is combined with local-DP.

Δ̂Θ(𝑡 )

D (𝑡 )trgt

+𝔑𝜖 ,

where 𝔑𝜖 is the local noise applied by 𝑢trgt to make the model
updated (𝜖)-differentially-private and Δ̂Θ(𝑡 )

D (𝑡 )trgt

is the clipped version

of the model update. However, the situation is different when SA is
combined with local-DP. In this case, assuming that all the active
usersU (𝑡 ) apply an equal amount of noise, then the attacks recover
a model update defined as:

Δ̂Θ(𝑡 )

D (𝑡 )trgt

+𝔑𝜖 + (|U (𝑡 ) | − 1) · 𝔑𝜖 . (16)

As the target model update inherits the input noise added by
non-target users, the amount of noise and, therefore, the degree of
protection increases with the number of active users.

In practice, considering DP-SGD based on the Gaussian mech-
anism [2] and assuming an ideal functionality of SA working on
real vectors16, we can rewrite Equation (16) as:

Δ̂Θ(𝑡 )

D (𝑡 )trgt

+ N(0, |U (𝑡 ) | · 𝜎2
(𝜖,𝛿) ),

where 𝜎2
(𝜖,𝛿) is the variance of the Gaussian distribution required

to achieve (𝜖, 𝛿)-differential-privacy. Figure 10 shows the “privacy
amplification effect” of the combination of SA and local-DP with
respect to an increase in active users for three different settings of
local-DP: (𝜖=4.58, 𝛿), (𝜖=2.88, 𝛿), and (𝜖=1.63, 𝛿) with 𝛿=5 · 10−5.
The y-axis reports the final privacy budget of the model update
recovered by the server after the application of SA. In the plot, we
consider FedSGDwith a batch size of 64 and a local training set of 64
instances per user. Noise multipliers are 1, 1.5, and 2.5 respectively,
with ℓ2-norm-clip of 1. The privacy budget is computed with [2]
via its tensorflow-privacy implementation.

To summarize, when local-DP is combined with SA, it is possible
to obtain a privacy amplification effect that is proportional to the
number of non-target users. Compared to having no SA, users need
to add less noise in the local-DP+SA regime to achieve the same
level of protection when using a suitable trust-model.17

16Current SA protocols work in the discrete domain. However, the sum of discrete
(independent) Gaussians is not a discrete Gaussian (see [34] for details).
17Other users must be honest and add the expected amount of noise.
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