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An Introduction to Aspect Oriented Music 
Representation 
 
Abstract 
The composition of music in many idioms involves the exploitation of recurrent, 
recombinant musical fragments. Any given fragment may, as a consequence, appear 
in arbitrarily many structures, in its original or transformed state. Such a fragment is 
said to crosscut the musical structure, in the sense that the modification of such a 
fragment implies that revisions should be made to related structures.  
 
Aspect-Oriented Music Representation (AOMR), is an approach to music 
representation that draws inspiration from Aspect-Oriented Programming techniques 
in computer software. In overview, AOMR enables fragments of music to be 
encapsulated and associated with user-defined areas of compositional interest. New 
fragments may be generated by specifying transformational and combinatorial 
relationships with other fragments, by reference to their area of interest. In this way, 
AOMR separates structure from content, and enables crosscutting fragments to be 
stated once, with any subsequent revisions to a fragment being automatically 
propagated to all related fragments. 
 
In order to remain recombinant, each fragment must be independent of its ultimate 
temporal location. AOMR provides an approach to the arrangement of fragments 
within a temporal framework, and enables the content of fragments to be conditionally 
modified, based on factors such as location, context and provenance.  
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Introduction 
 
Computer music systems serve diverse purposes. To this end, some draw on 
contrasting computing paradigms including procedural, object-oriented, data-flow, 
functional and logic programming. All such systems, provided they are sufficiently 
developed, are Turing complete, but different paradigms can help facilitate different 
kinds of approach to music computing and new kinds of music manipulation. 
 
In general purpose programming, aspect-oriented programming and related techniques 
are recent developments that have been claimed, broadly speaking, to offer new kinds 
of flexibility and ease of variation. The system presented here, AspectMusic, is the 
first substantial work we are aware of to adapt ideas from aspect oriented 
programming and related techniques and explore how they might be applied to 
facilitate new approaches to musical exploration and manipulation. AspectMusic is an 
implemented framework that applies ideas at the root of AOP to the manipulation of 
musical materials and structures. To introduce AspectMusic, and more generally, 
Aspect Oriented Music Representation (AOMR), we will start by reflecting on some 
various well-known features of current Computer Music systems.  
 
Interactive scoring systems effectively provide “musical word-processor”-style 
environments, enabling musical detail to be entered and edited on a note-by-note 
basis. Other approaches, such as JMusic and Common Music aim to provide 
generalized music programming environments, albeit with a prescribed musical 
ontology, embedded within general-purpose programming languages. Computer 
music environments such as Pope’s MODE system (Pope 1991) have evolved out of 
the requirement to support particular compositional needs, and therefore while 
multiple approaches are supported, ontological generality is not a prime concern.  
  
In these, and other ways, most music representations allow music to be represented 
and manipulated only within a prescribed range of preconceived musical ontologies. 
In contrast, AOMR has the distinctive aim of supporting whatever ontologies may be 
preferred by particular users. This is largely achieved by abstracting music constructs 
in terms of discrete areas of interest, or concerns, that may be composed together. In 
this way, AOMR aims to support any perspective as a first-class entity however its 
operations may crosscut, or be scattered across, existing organisational hierarchies. 
 
In this paper, in order to explain AOMR as clearly as possible, we have focused on 
familiar and relatively simple examples using western tonal music. For clarity, we 
proceed from the traditional dimensions of tonal music, and show how AOMR 
supports various operations and conceptions that cross-cut these boundaries. 
 
AOMR appears to be particularly relevant for those musical genres in which musical 
composition may be characterized in terms of a, typically limited, set of musical "raw 
materials" which are combined and reused in various ways, addressing different 
musical areas of interest within a particular piece of music.  Well known examples of 
such materials in Western tonal music include pitch sequences, rhythmic figures, and 
harmonic progressions which may appear in exact and transformed forms throughout 
a musical work. Similar transformational processes can occur at abstract levels in 
other genres, with materials such as sequences of parameters that form the inputs to 
generative processes.  Equally, AOMR is applicable to musical works and fragments 
based on structural prototypes that are formed through a finite set of combinatorial 
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operations. AOMR appears applicable wherever explicit support for maintaining 
coherence across representational or functional shifts is useful to a composer. 
 
In traditional areas, such as those genres we focus on in this paper, it is generally 
argued (Schoenberg 1967) (Cook 1987) (Sloboda 1985) (Belkin 1995-1999) that the 
reuse of materials, such as those mentioned above, is the principal method by which a 
composer achieves musical coherence and stability, across different musical 
dimensions. Additionally, of course, composers may reuse materials inter-opus. In 
relevant genres, the general process of musical composition therefore typically 
requires that the composer merge together selected musical fragments to form new 
constructs. As a consequence, musical materials cannot generally be localized to any 
particular musical construct. To take an extremely simple example, not problematic 
using conventional systems, a single melodic figure might be merged with a number 
of rhythmic variants, forming different phrases. Musical materials therefore tend to be 
explicitly restated and transformational processes re-applied at each occurrence. 
Hierarchical structures are prominent in music, as indicated by the analytical work of 
theorists such as Schenker and Lerdahl and Jackendoff (Lerdahl and Jackendoff 
1983). But since the hierarchies formed in different dimensions do not necessarily 
align, musical compositions tend to contain tangled hierarchies and polyarchies. For 
example, consider a simple pitch sequence P1 consisting of two parts PA and PB, and 
a simple rhythmic sequence R1 consisting of three parts RA, RB and RC. A single 
melodic figure constructed from these sequences results in a tangled hierarchic 
relationship in which there is not necessarily any correspondence between any of the 
parts of P1 and those of R1. Polyarchic relationships occur when a node is shared 
between hierarchies. Consider, for example, another pitch sequence P2, that also uses 
PB. Tangled polyarchies occur when elements from polyarchies in different 
dimensions are combined. These two scenarios are shown graphically in figure 1. 
 

   
 

Figure 1 
  
In addition to deriving core musical materials, in composing and arranging a musical 
work, composers often make associations between musical context, and events 
occurring in orthogonal dimensions. Another simple and non-problematic example is 
the modification of dynamic at a particular point within a piece of music, either based 
upon metrical location, or musical content. More sophisticated examples include the 
derivation of parts from musical events occurring in one or more other parts, such as 
accentuating particular notes through doubling. A key point is that the potential 
complexity of hierarchical tangling that may arise from such derivations is, in 
principle, unlimited. Also, even simple hierarchical tanglings can lead to unlimited 
complexity when multiplied or iterated. An equally important related point is that, in a 
finished score, compositional intent is often lost, and again these derivation processes 
must be restated and reapplied wherever they recur.  Moreover, if musical fragments 
are to be specially treated, based upon features relating to their derivation, then this 
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too must be tracked by the composer since it may not be readily apparent from the 
resultant material itself (Crochemore, Iliopoulos, and Pinzon 2001).  
   
Yet further, while music is naturally experienced in a “left-to-right” fashion, it is not 
necessarily composed in this way. While it is true that some composers speak of a 
spontaneous vision of a work (Sloboda 1985), that “simply” requires transcription, 
others (Spiegel 1988) describe detailed, iterative, evolutionary processes, in which the 
composition develops from possibly incomplete sketches in different musical 
dimensions, and at different levels of abstraction. 
 
The representation of tangled, multi-dimensional, polyarchic relationships is difficult, 
and generally not explicitly represented in computer music systems. However, recent 
developments in computer software, collectively termed Aspect Oriented 
Programming (AOP), seek to address similar types of problem that exist in software. 
In particular, AOP approaches aim to help manage the separation, encapsulation and 
subsequent merging together, or weaving, of the implementations of separately 
specified areas of interest or concern. Modern object-oriented approaches to software 
design and implementation (Meyer 1997) (Rumbaugh et al. 1991) represent a natural 
evolution of the module paradigm suggested by Parnas (Parnas 1972),  enabling 
application domain and design concerns to be represented as classes which 
encapsulate both data and the operations that may be performed upon that data. Even 
so, certain areas of interest, or concerns, remain difficult or impossible to encapsulate 
as classes (Hürsch and Lopes 1995). From one perspective, the fields and methods 
defined within a class might be further grouped in terms of the concerns that they 
address and the implementation of a given concern might involve a number of 
methods and fields that extend across multiple, possibly unrelated, classes. Moreover, 
multiple concern implementations may incorporate common code fragments that 
themselves have no natural class association. Typical Object-Oriented approaches 
therefore impose a decomposition scheme that is not sufficiently general to enable 
separation of concerns. This has been dubbed “the tyranny of the dominant 
decomposition” (Tarr and Ossher 2000). At another level of abstraction, certain 
programming concerns relate to particular events that occur within the execution of a 
program. For example, a “tracing concern” which outputs diagnostics that trace entry 
into selected methods typically requires tracing implementation to be restated in every 
method of interest.  
  
These complementary viewpoints identify that certain concerns tend to be scattered 
across multiple, possibly unrelated, classes and intertwined or tangled with other 
concern implementations. Since such concerns cannot be localized and encapsulated 
using the prevailing decomposition, they are said to be crosscutting. 
 
In this paper, we introduce an experimental object-oriented software system, called 
AspectMusic, which adapts ideas from AOP in order to realise an Aspect Oriented 
Music Representation (AOMR). AOMR aims to provide a general approach to the 
separation, organization and composition of musical concerns from both of the 
viewpoints outlined above. 
 
Symmetric and Asymmetric Composition of Concerns 
 
Approaches to AOP are diverse. Some, such as Aspectual Components (Lieberherr, 
Lorenz, and Mezini 1999) apply to specific programming concerns while others, such 
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as AspectJ (Xerox 1998-2002), Hyper/J (Tarr and Ossher 2000) and Caesar (Mezini 
and Ostermann 2003) aim to address more general separation of concerns issues. 
General-purpose approaches broadly adopt one of two paradigms, namely symmetric 
or asymmetric. The following paragraphs briefly outline these approaches. In each 
case, the reader is directed to the references for further detail. 
 
Asymmetric approaches, such as AspectJ (Xerox 1998-2002) and AspectS (Hirschfeld 
2002), consider the augmentation of a base decomposition, which is typically a 
standard  OO-decomposed program, with crosscutting concern implementations. In 
AspectJ, the best-known example of this approach, the base decomposition is a 
normal Java program. Crosscutting concern implementations, generically termed 
advice, are associated with well-defined points, termed joinpoints, in the static or 
dynamic structure of the base decomposition. Typically, joinpoints are at method calls 
and variable assignments. Particular joinpoints of interest are specified as pointcut 
expressions and advice may typically be run before, after or instead of (around) the 
joinpoint. In this way, asymmetric approaches, in general, enable standard programs 
to be non-invasively augmented with separately encapsulated crosscutting concern 
implementations. 
  
In contrast, symmetric approaches, such as Multi-dimensional Separation of Concerns 
(MDSoC) (Ossher and Tarr 1999) implemented by Hyper/J (Tarr and Ossher 2000), 
consider the construction of software systems from separately specified components, 
units, that each address just one concern. In MDSoC, these components are organised 
into a multidimensional structure called a hyperspace, in which each named unit is 
associated with a dimension name, and the name of a concern within that dimension 
that the unit relates to. Broadly speaking, using an MDSoC approach, software 
systems are composed by specifying those dimensions and concerns that the resultant 
system should contain.  
 
As noted in (Harrison, Ossher, and Tarr 2002), no single composition method is 
suitable for all requirements., therefore symmetric and asymmetric approaches should 
be regarded as complementary. 
 
AspectMusic Overview 
 
AspectMusic is an object-oriented, experimental implementation of an AOMR, 
written in VisualWorks Smalltalk (Goldberg and Robson 1989). The system consists 
of two interrelated components, HyperMusic and MusicSpace that respectively 
implement Symmetric and Asymmetric composition approaches. 
 
HyperMusic provides a framework for abstracting, organising and representing 
musical ideas. Using HyperMusic, the user defines musical materials and 
transformational processes, which are then organised according to user-defined 
criteria into a hyperspace. Declarative specifications are used to compose new 
material from the components in the hyperspace. These new components may 
themselves be added to the hyperspace and thus the hyperspace becomes an evolving 
repository of compositional ideas.  
 
MusicSpace allows components from HyperMusic to be arranged in time, in a similar 
manner to a MIDI sequencer. However, the key feature of MusicSpace is that it 
enables the music to be dynamically modified, based upon context, using an approach 
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that is similar to asymmetric AOP. In particular, modification strategy 
implementations may be modularized, and associated with particular dynamic musical 
conditions in terms of pointcut-like events that must be satisfied in order for the 
strategy to be applied. 
  
In order to link the two approaches, the construction of materials using HyperMusic is 
audited through a “Composition History” that is associated with each symmetrically 
composed element. This history is available to MusicSpace. Thus for any musical 
event in MusicSpace, it is possible to determine not only its current state, but also how 
it has been derived.  In the remainder of this paper, we describe the symmetric and 
asymmetric components of AspectMusic in greater detail. 
 
Symmetric Composition of Musical Concerns using 
AspectMusic 
 
The Symmetric Composition (HyperMusic) component of AspectMusic provides an 
extensible framework that supports the definition, organisation and combination of 
musical fragments. HyperMusic is heavily influenced by the notion of Hyperspaces 
(Ossher and Tarr 1999) and the Hyper/JTM (Tarr and Ossher 2000) implementation of 
hyperspaces for the Java programming language. The principal class structure of 
HyperMusic is shown in Figure 2. 
 

 
 

Figure 2. HyperMusic Class Structure 
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Structuring in HyperMusic 
Fundamental to HyperMusic is its ability to support the separation and combination of 
musical ideas from discrete musical dimensions. In this context, a musical idea is 
generalized as an indexed collection of events relating to the same musical dimension, 
where each event may contain multiple elements organised into discrete voices. For 
example, a monphonic rhythmic idea might be expressed as a sequence of events 
where each event contains a single object representing relative onset time and 
duration. A sequence of chords, on the other hand, might be expressed as a sequence 
of events, in which each event contains pitch value representations distributed across 
multiple voices.  
  
In HyperMusic, MusicUnits (MUs) represent discrete musical ideas in a single 
musical dimension, organized as an ordered collection. Each element of the ordered 
collection within a MU contains an ordered collection (a 
MusicUnitItemCollection) of MusicUnitItem objects that wrap user-
defined objects representing musical information. The index  value of a 
MusicUnitItemCollection relates to a discrete voice. Conceptually, the 
wrapped objects each pertain to the same musical type, such as pitch, rhythm, or 
dynamic information. However, HyperMusic does not prescribe the types that may be 
represented, neither does HyperMusic mandate that all wrapped objects within a MU 
are of the same class. For example, a pitch MU might contain MusicUnitItems 
that wrap a mixture of object types that represent pitch as, say, MIDI pitch values (0-
127), symbolic values such as ‘C#4’, or frequency values. 
 
Complete musical ideas are typically formed from multiple musical dimensions. A 
melody, for example, may be viewed as being formed from pitch and rhythm. In 
HyperMusic, MUs of different types are aggregated into Composed Music Units 
(CMUs), represented by the class ComposedMusicUnit, in which each component 
MU is identified by the name of the type it represents.  
 
To illustrate the structure of CMUs, a simple musical fragment and a schematic 
representation of the HyperMusic objects involved in a CMU representation of the 
fragment are shown, respectively, in Figures 3 and 4.  
 

 
Figure 3. A simple music fragment 
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Figure 4. Schematic of a CMU representing the fragment shown in Figure 2. 
 
 
Combining CMUs 
CMUs are designed to be combined together, in various ways, to form new CMUs 
that represent new musical material. We adopt the AOP term weaving to describe 
these combination processes. HyperMusic supports the, musically fundamental, 
notions of sequential and parallel weaving. However, it is easy to extend the system to 
support other kinds of weaving corresponding to any method through which two 
CMUs can be combined, for example, to weave appoggiatura or acciaccatura (Honing 
1993) configurations. It is important to note that CMUs are not constrained to be 
“complete”; While clearly, for final realization, CMUs must contain all required 
musical elements in all required dimensions, at any intermediate stage, a CMU may 
be incomplete in terms of the types that it contains (vertically), and the number of 
elements in each type (horizontally).  Since there is no implied correspondence 
between arbitrary groupings within each type, CMUs are able to support tangled inter-
dimensional relationships. 
 
Sequential Weaving. 
When two CMUs are woven in sequence, notated as the binary operator ‘+’, those 
MUs with identical type names are concatenated. If an MU type appears in only one 
of the woven CMUs, then it is concatenated with an empty MU. Thus, the set of MU 
types contained in the resultant CMU is the union of the set of MU types of both the 
combined CMUs.  Usefully, this means that if, say, a CMU containing only a pitch 
dimension is sequentially woven with a CMU containing only rhythm, then the 
resultant CMU contains the pitch sequence in parallel with the rhythm sequence.  
 
Parallel Weaving 
When two CMUs are woven in parallel, notated as the binary operator ‘|’, the 
MusicUnitItemCollections that exist at the same index in MUs of the same 
type name are merged together, allowing, for example, the formation of chords. Like 
sequential weaving, the resultant CMU contains the union of the set of MU types of 
both combined CMUs.  
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Transformations 
In the foregoing sections we have described the representation of musical data within 
the CMU model. However, musical composition often involves the algorithmic 
transformation  or generation of musical material. The CMU model supports these 
requirements by enabling transformational or generative code, generically termed 
transformations, to be placed in the special CMU type #Transform. Like other 
types, the #Transform type is represented by a MusicUnit structure, enabling 
ordering to be represented. A common use-case might be to construct CMUs that 
contain just one or more transformations. However, as we will demonstrate later in 
this paper, the open-ended nature of the CMU structure means that the approach also 
naturally supports CMUs that contain both transformational code and other musical 
information. 
  
Combining and Executing Transformations 
While, like other types, the #Transform type is a MU, the semantics of non-
sequential weaving are not defined. Consequently, #Transform is always woven 
sequentially. However, simply weaving transformations into a CMU does not cause 
the transformations to be applied. Rather, transformations are executed by evaluating 
the CMU.  This approach enables sequences of transformations to be constructed, and 
allows the user to specify when these transformations should be applied. Evaluation, 
notated as the unary operator @, causes all transformations in a CMU's #Transform 
MU to be executed, in index order, and for a resultant CMU to be produced that 
contains no #Transform type. A CMU without a #Transform type is said to be 
final, and the result of evaluating a final CMU is the CMU itself. 
   
Organising and Combining CMUs 
CMUs represent musical raw data, and transformational processes. However, CMUs 
are of limited value in themselves. Rather we want to be able to organise CMUs 
according to our own ontology, and by combination, to construct new CMUs by 
reference to this organisation. The organizational structure of HyperMusic, like that of 
MDSoC, is the hyperspace.  
 
Dimensions and Concerns 
In the hyperspace model presented in (Ossher and Tarr 1999), units are organised 
according to the dimension and concern to which they relate. In this context, 
dimension and concern are arbitrary textual names whose purpose is to represent an 
organisational structure that transcends the explicit structure of the software itself. In 
object-oriented software, for example, while a class may represent a prototypical 
object that exists within some universe of discourse, the field contained within the 
class, and the operations that may be performed on instances of that class, may 
conceptually pertain to different functions or concerns of the system. Moreover, the 
operations that pertain to a given concern may exist in multiple classes. Thus, because 
the dominant, class-based, decomposition of object-orientation does not support such 
a partitioning, it is not easily possible to identify and reason about only those parts of 
the class graph that relate to a particular concern.  
 
There are many established musical representations, each with their own musical 
ontology and consequently there is no clear analogue of a "dominant decomposition" 
in music. Nonetheless, music can be considered in terms of independent perceptual 
dimensions (Loy and Abbott 1985) pitch, rhythm, dynamic and timbre. We may also 
consider music in terms of aggregates of a single dimension, such as melodic themes, 
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cells, tone rows, harmonic progressions, rhythmic motifs, or more abstractly, arbitrary 
parameters, and their evolution through generative, transformational and 
combinatorial processes throughout a given musical work. We argue, therefore, that 
from many purposes it is useful to consider each newly generated musical structure as 
serving some identifiable compositional purpose that can be attributed to some 
dimension and concern within the work. For example, different melodic fragments 
might be used in an antecedent / consequent relationship, themes might be associated 
with extra-musical events in similar ways to Wagner’s use of the Leitmotiv and so 
forth. 
 
Hyperspace and Hyperslices 
In HyperMusic, a hyperspace is a data structure that maps between co-ordinates, 
consisting of the triplet of dimension name, concern name and unit name, and CMUs. 
Thus the hyperspace, represented by the Hyperspace class is an organised 
repository of musical and transformational fragments represented as CMUs. 
 
A hyperslice is an abstract slice through a hyperspace, defined by a partial 
specification of the co-ordinates of CMUs of interest. For example, we might be 
interested in any CMU in the “Themes” dimension, or any CMU in a concern whose 
name begins with “Ostinato”.  
 
Combining CMUs 
The purpose of organising CMUs into a hyperspace is to facilitate their subsequent 
composition into new CMUs. The specification of such a composition, represented by 
an object of the HypermoduleSpecification class, contains three key 
attributes, namely one or more hyperslice specifications, a composition expression 
and a composition relationship specification. 
 
Composition Expressions 
A composition expression specifies the hyperspace coordinates of those CMUs that 
are to be woven, and the weaving operations that are to be performed on these CMUs 
in order to generate a new CMU. Typical weaving operations, as described 
previously, are sequence (+) and parallel (|). Additionally, the composition 
expression may cause the evaluation of CMUs, using the unary operator ‘@’. Within 
the composition expression, CMU coordinates are specified In the form 
dimension;concern;unit, where dimension, concern and unit are 
regular expressions. 
 
For example, consider the following various weavings of two CMUs, A and B, which 
exist in the C concern of dimension D. Assume that A and B each contain some 
musical information in the #pitch dimension, and that A also contains a 
transformation T that transposes pitch up by one semitone.  
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CMU A   CMU B  

MU Type Content  MU Type Content 

#pitch 

 

 #pitch 

 

#Transform T    

 
The composition expression D;C;A + D;C;B causes A and B to be sequentially 
woven, resulting in a CMU whose content is the pitch component of A followed by 
the pitch component of B, and that also contains the transformation T. 
 
MU Type Content 
#pitch 

 
#Transform T 
 
The expression @D;C;A results in a CMU that contains the pitch component of A that 
has been transposed up by one semitone, due to the evaluation (@) of T. The 
evaluation also causes T to be removed from the resultant CMU. 
 
MU Type Content 
#pitch 

 
  
The expression @(D;C;A) + D;C;B results in a CMU containing the pitches of A 
transposed up by one semitone, followed by the (untransposed) pitches of B. 
 
MU Type Content 
#pitch 

 
 
While specifying CMUs in terms of absolute hyperspace coordinates is clearly useful, 
greater expressive power is achieved from partial specifications using regular 
expressions. By default, CMUs are woven in sequence. So, for example, the 
composition expression Intro;BassGuitar;Fragment.* represents the 
sequential weaving of all CMUs whose name begins with Fragment and that exist 
in the BassGuitar concern of the Intro dimension, subject to the hyperslice 
constraints described below.  
Hyperslice Specifications  
 
In order to select CMUs for weaving, the CMU coordinates specified by a 
composition expression must be matched against CMUs that exist in the hyperspace. 
Hyperslice specifications within a hypermodule specification cause the search space 
to be refined by restricting matched names to those existing in the specified 
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hyperslices rather than the entire hyperspace. Hyperslice specifications may be 
expressed as regular expressions. 
 
For example, given the following Hyperspace 
 

 Themes;Theme1;Opening1 
 Themes;Theme1;Closing1 
 Rhythms;Theme1;Original 
 Rhythms;Theme2;Original 
 Rhythms;Theme1;1stVariation 

 
We can slice the hyperspace using hyperslice definitions such as 
 

Hyperslice Specification Slice Content 
Themes;.*   Themes;Theme1;Opening1 
 Themes;Theme1;Closing1 
  
  
.*;Theme1 Themes;Theme1;Opening1 
 Themes;Theme1;Closing1 
 Rhythms;Theme1;Original 
 Rhythms;Theme1;1stVariation 
  
Rhythms;Theme1 Rhythms;Theme1;Original 
 Rhythms;Theme1;1stVariation 

 
Composition Relationships 
Since composition expressions may specify CMU coordinates as regular expressions, 
it is possible for multiple CMUs to match the specification. A composition 
relationship specifies how this situation is managed.  
 
There are two predefined composition relationships within HyperMusic, though it is 
possible to add new relationships as required. In the event of multiple matches for a 
CMU, the overrideByName relationship causes the last match found to be used.  
Conversely, the mergeByName relationship causes all matching CMUs to be woven 
in sequence. The results of the matching process are always returned in ascending 
ASCII order.  Thus, in a hyperspace containing the following CMUs 

 
Dim.Concern.Unit1 
Dim.Concern.Unit2 
Dim.Concern.Unit3 
 

The regular expression Dim;Concern;Unit.* would be matched by all three 
CMUs. If the overrideByName relationship were used, then 
Dim.Concern.Unit3 would be returned. If the mergeByName relationship were 
used, then a CMU formed by the sequential composition of Dim.Concern.Unit1  
+ Dim.Concern.Unit2 + Dim.Concern.Unit3 would be returned. 
 
Composition History 
An important feature of music is that musical ideas evolve both inter- and intra-opus. 
The HyperMusic approach enables evolution to be defined declaratively as 
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hypermodule specifications that define the weaving or transformation of existing 
CMUs to form new CMUs. As part of the composition of CMUs, each 
MusicUnitItem is annotated with a “composition history” that provides an "audit 
trail" of the various weavings and transformations that have been performed and have 
caused the item to be in its present location.  
 
Refactoring 
Musical composition is obviously a creative and generally iterative process. As such, 
decisions that are made at some point in the process might be modified at a later point. 
For example, a CMU might be constructed as a single rhythmic figure R. At some 
later point, it might be decided that R can be usefully considered as two components, 
R1 and R2, and that, R1, say, can be reused within the composition. We term this 
kind of adjustment as refactoring.  
 
In its present form, HyperMusic does not contain any support for automatic 
refactoring operations. However, if we image the composition of CMUs being 
described as a sequence of weaving operations, then it is a simple matter to adjust this 
sequence such that R is described as being constructed from R1 and R2, thus making 
R1 and R2 available within the hyperspace, but leaving all existing references to R 
intact. 
 
Asymmetric Composition of Musical Concerns using 
AspectMusic 
 
The HyperMusic approach to AOMR seeks to enable musical material, encapsulated 
as CMUs, to be represented, organised and woven together to form new material 
through declarative specifications. While it is possible to realise CMUs as, for 
example, MIDI sequences, the range of musical compositions that can be represented 
in this way is, naturally, limited.  
 
MusicSpace provides an environment in which the events contained within CMUs 
may be arranged in time. In this respect MusicSpace resembles a typical MIDI 
sequencer. However the distinguishing feature of MusicSpace is its ability to enable 
music to be modified in relation to context through an approach that mirrors 
asymmetric aspects in software. The chief advantages of this approach are firstly that 
modification processes that occur at multiple locations, and are therefore crosscutting, 
can be modularized, requiring them to be stated only once. Secondly, aspects are non-
invasive; there is no requirement to make any particular a priori arrangements within a 
CMU for aspects to be applied to the content of that CMU.  
 
The MusicSpace approach enables compositional intent to be explicitly and 
declaratively expressed. For example, consider Beethoven’s Sonata in C Minor (No 8 
Op 13) “Pathetique”.  At bars 5-7 there is a fragment in which the theme is played pp 
and interspersed with ff interludes. We might suggest that Beethoven’s structural plan 
was to have pp sections followed by ff sections, irrespective of what musical content 
these sections ended up containing. Alternatively, Beethoven might have considered 
that the ff markings were to be associated with the musical content of the interludes, 
irrespective of where they ended up. Perhaps, Beethoven wanted to accentuate those 
sections that were played in the lower registers, and so ff should be applied to any 
section in which all parts fell below middle C. From an analytical perspective this is 
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pure speculation, with some explanations being more plausible than others. Clearly, 
whatever the motivation, the resultant score would look the same, and the composer’s 
intent has therefore been lost.  
 
An example from a more contemporary genre might be to consider a section of a 
musical work containing pitch clusters that have been generated using a 
transformation based upon, for example, three parameters; mode, cluster size, and 
root. As part of this work, the composer wishes to reinforce  particular pitches through 
doubling on another instrument, depending, say, upon the mode of the cluster in 
which they appear.  
 
Using MusicSpace the special treatment of events, such as alteration of dynamic, or 
replication to a different instrumental part, may be separately, and reusably, 
encapsulated. Moreover, the compositional intent which associates such additional 
behaviours with specific conditions, which may include not only features of specific 
event, but also features of their derivation,  may be declaratively specified.  
 
MusicSpace Structure 
A MusicSpace can be considered as a container for one or more named 
MusicSpaceParts. A MusicSpacePart is analogous to a part on an instrumental 
score, or a track within a MIDI sequencer, and contains CMUs arranged in time, with 
the restriction that CMUs may not overlap within a MusicSpacePart. The following 
diagram shows the basic structure of a MusicSpace that has been populated with two 
MusicSpaceParts, “Melody” and “Bass”. The CMUs within a part may not overlap, 
however, CMUs may overlap between parallel parts. Note also that CMUs are not 
constrained to be contiguous within a part. 
 

Melody CMU1 CMU2  CMU3 CMU4  
Bass CMUA CMUB CMUC  

 
Joinpoints 
As in software, some of types of crosscutting concern, termed code-level crosscuts 
(Bockisch et al. 2004), can be directly mapped to loci in the base decomposition. For 
example, referring to the logging example outlined earlier, it would be a relatively 
simple matter to automatically modify a program’s source code by inserting logging 
calls into the methods of interest. This type of crosscut could be easily implemented, 
albeit the potential loss of traceability and intent, as a “search & replace”-style 
function operating on MusicSpacePart objects, for example, modifying duration 
to achieve articulation effects. However, dynamic crosscuts (Bockisch et al. 2004), 
whose loci can only be determined at run-time, present a potentially more useful class 
of crosscutting concern. In the case of logging, for example, we might be interested in 
logging a method A but only if it has been called by method B.  Similarly, we might 
be interested in making particular notes in a given CMU staccato, but only when they 
are played at the same time as another CMU. In order to support dynamic 
crosscutting, the aspect model used in MusicSpace is event-based, conceptually 
resembling Axon (Aussmann and Haupt 2003) and the Event-Condition-Action 
(ECA) type “triggers” that are common in database applications. In order to generate 
joinpoint events, and process aspects, the MusicSpace is compiled against an 
AspectManager object, with which all required aspect objects have been 
registered. 
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When a MusicSpace is compiled, ‘tick’ events are generated and propagated to all 
MusicSpaceParts. These ticks, which by default are generated at a rate of 480 
times per beat giving good resolution of n-tuplets, simulate the ticks of a clock source, 
such as a MIDI clock. However, it should be noted that, in the current 
implementation, ticks are not generated in real-time and therefore MusicSpace is not a 
live performance environment 
 
MusicSpace Aspects 
MusicSpace Aspects are implemented as standard Smalltalk classes that define 
crosscutting behaviour (advice), along with a representation of the conditions under 
which this behaviour is to be executed (pointcuts). An instance of each such class is 
registered with the AspectManager against which the MusicSpace is to be 
compiled. 
 
At each clock tick, the contents of all  MusicSpaceParts within the MusicSpace 
are queried to build a context that describes all the events that commence at the 
current tick value. This context includes all of the composition history that is 
associated with each event. The advice associated with a MusicSpace aspect is 
invoked if the current context, including temporal location, satisfies the pointcut 
expressions associated with the aspect. In general, an AspectMusic aspect may modify 
the content of the current temporal location by manipulating the events contained 
within the context. The advice may also modify future (or prior) events within the 
MusicSpace itself. Both before and after advice types are supported. Before advice is 
executed before the MusicSpace events contained by the current context is rendered 
into the resultant MusicSpace, enabling the advice to veto or modify the rendering of 
any component event of the context. After advice executes once this process has been 
completed, and therefore cannot modify the current event.  
 
One of the perceived benefits, particularly of asymmetric Aspect Oriented 
Programming, is that pointcuts are defined declaratively. As MusicSpace is an object-
oriented (Smalltalk) system, determining whether a pointcut is satisfied or not often 
requires procedural code that navigates and queries the object structures of the 
joinpoint context. These kinds of query may be arbitrarily complex and are, therefore, 
difficult to generalize in an object-oriented system. This kind of problem is, largely, 
more easily solved using logic programming languages, such as PROLOG. To support 
declarative pointcut queries, MusicSpace enables joinpoint contexts, including 
composition history, to be exposed as a set of AspectMusic logic predicates expressed 
in the PROLOG-like Smalltalk Open Unification Language (SOUL) (Gybels 2001). 
The symbiosis that exists between Smalltalk and SOUL enables expressions in either 
language to be evaluated from the other. 
 
 
Rendering 
 
The current implementation of AspectMusic enables MusicSpace instances to be 
rendered as MIDI sequences, by transforming information relating to pitch, rhythm 
and dynamic into MIDI events. This provides a convenient method of auditioning and 
visualising generated musical compositions using external MIDI tools. However, it 
should be noted that AOMR and AspectMusic systematically avoid any design bias or 
limitation towards particular rendering means such as MIDI. 
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Conclusions 
 
In this paper we have proposed an approach to music representation which is 
particularly applicable to genres of music in which musical ideas across various 
musical and non-musical dimensions are merged together to form new musical 
elements resulting in tangled polyarchic relationships. We have described Aspect-
Oriented Music Representation (AOMR), that draws from Aspect Oriented 
Programming in computer software, as a means to explicitly and declaratively support 
the organization and combination of musical and procedural elements separately from 
the musical material itself. AOMR supports the symmetric composition of musical 
materials, in which no one musical dimension is dominant, using a musical 
hyperspace as a dynamic repository of musical ideas. Moreover, AOMR does not 
limit the kinds of musical information that may be represented. AOMR also features 
an asymmetric, context-dependent, joinpoint interception model through which the 
selective modification of these materials is possible. Since the implementation of our 
AOMR system is open, the full expressive power of a general purpose programming 
language, in this case Smalltalk, is available within AOMR. 
 
An AspectMusic tutorial is available in the Open University Department of 
Computing Technical Report TR2006/12, available at http://computing-
reports.open.ac.uk/index.php/2006/200612.  
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