NON-DEFINABILITY OF RINGS OF INTEGERS IN MOST ALGEBRAIC FIELDS

PHILIP DITTMANN AND ARNO FEHM

ABSTRACT. We show that the set of algebraic extensions F of \mathbb{Q} in which \mathbb{Z} or the ring of integers \mathcal{O}_F are definable is meager in the set of all algebraic extensions.

It is proven in [EMSW20, Theorem 1.1, Corollary 5.7] that the set of subfields F of $\overline{\mathbb{Q}}$ in which one of \mathbb{Z} , $\mathbb{Q}\setminus\mathbb{Z}$, \mathcal{O}_F , $F\setminus\mathcal{O}_F$ is existentially definable is a meager subset of the space \mathcal{E} of all subfields E of $\overline{\mathbb{Q}}$, in the topology induced from $2^{\overline{\mathbb{Q}}}$. In this short note we explain how a stronger statement can be deduced from known results from field arithmetic (which in particular studies certain properties of algebraic extensions of \mathbb{Q}) and model theory (which studies definable subsets in structures with certain properties).

Recall that a field F is PAC if every geometrically irreducible F-variety has an Frational point, ω -free if every finite embedding problem for the absolute Galois group G_F is solvable, and *Hilbertian* if $\mathbb{A}^1(F)$ is not thin, i.e. for every finitely many absolutely irreducible $f_1, \ldots, f_n \in F[X, Y]$ monic of degree at least 2 in Y, and $0 \neq g \in F[X]$ there exists $x \in F$ such that $g(x) \neq 0$ and $f_1 \cdots f_n(x, Y)$ has no zero in F, see chapters 11, 27, 12 and section 13.5 of [FJ08].

Proposition 1. The set of subfields F of $\overline{\mathbb{Q}}$ which are ω -free and PAC is comeager in \mathcal{E} .

Proof. We claim that both the set \mathcal{P} of PAC fields in \mathcal{E} and the set \mathcal{H} of Hilbertian fields in \mathcal{E} are dense G_{δ} -sets and therefore comeager. Since the union of two meager sets is meager, and Hilbertian PAC fields are ω -free [Jar11, Theorem 5.10.3], this then implies the claim.

The set \mathcal{P} is dense in \mathcal{E} , since for any finite extensions $\mathbb{Q} \subseteq K \subseteq L$, Jarden's PAC Nullstellensatz [FJ08, Theorem 18.6.1] gives a PAC field $K \subseteq F \subseteq \overline{\mathbb{Q}}$ with $F \cap L = K$. Moreover, \mathcal{P} is the intersection of the countably many open sets

$$U_f = \{F \in \mathcal{E} : f \notin F[X, Y]\} \cup \bigcup_{x, y \in \overline{\mathbb{Q}}, f(x, y) = 0} \{F \in \mathcal{E} : x, y \in F\}$$

for $f \in \overline{\mathbb{Q}}[X, Y]$ irreducible, and hence a G_{δ} -set.

The set \mathcal{H} is dense in \mathcal{E} since every number field is Hilbertian (this is Hilbert's irreducibility theorem, see [Ser92, Theorem 3.4.1] or [FJ08, Theorem 13.3.5]). Moreover, \mathcal{H} is

Date: May 27, 2021.

the intersection of the countably many open sets

$$V_{f_1,\dots,f_n,g} = \mathcal{E} \setminus \{F \in \mathcal{E} : f_1,\dots,f_n, g \in F[X,Y]\}$$
$$\cup \bigcup_{x \in \overline{\mathbb{Q}}, g(x) \neq 0} \bigcap_{i=1}^n \bigcap_{y \in \overline{\mathbb{Q}}, f_i(x,y) = 0} \{F \in \mathcal{E} : x \in F, y \notin F\}$$

where $n > 0, f_1, \ldots, f_n \in \overline{\mathbb{Q}}[X, Y]$ monic of degree at least 2 in Y and irreducible, and $0 \neq g \in \overline{\mathbb{Q}}[X]$.

Remark 2. By [FJ08, Theorem 11.2.3], it would suffice to take U_f with $f \in \mathbb{Q}[X, Y]$. The fact that the set of Hilbertian PAC fields $F \subseteq \overline{\mathbb{Q}}$ is dense in \mathcal{E} could also be deduced directly by applying [Jar97, Theorem 2.7] instead of the PAC Nullstellensatz.

Proposition 3. In an ω -free PAC field F, every definable subring $R \subseteq F$ is a field.

Proof. An integral domain R is partially ordered by the relation

$$a \leq b \iff a = b \lor (a \mid b \land b \nmid a).$$

If R is not a field, the powers of a non-zero non-unit form an infinite chain with respect to \leq , which shows that R has the strict order property [She96, Definition 2.1], cf. the argument in [Poi01, Chapter 1.2 Lemma 1]. The strict order property implies the strong order property SOP [She96, Definition 2.2, Claim 2.3(1)], which in turn implies the 3-strong order property SOP₃ [She96, Definition 2.5, Claim 2.6]. However, ω -free PAC fields do not have SOP₃ by Chatzidakis's result [Cha19, Theorem 3.10], hence so has any structure definable in them.

- Remark 4. (1) The same conclusion holds if the PAC field F is 'bounded' (rather than ω -free), e.g. G_F is finitely generated, since then its theory is even *simple* [CP98, Corollary 4.8], in particular it does not have SOP₃ [She96, Claim 2.7].
 - (2) Moreover, a PAC field of characteristic zero also has no definable proper sub*fields* [JK10, Lemma 6.1 and Proposition 4.1].
 - (3) It is known that ω -free PAC fields satisfy not even the weaker property SOP₁ (rather than SOP₃), see [CR16, Corollary 6.8] and [KR20, Section 9.3].

Corollary 5. The set of subfields F of $\overline{\mathbb{Q}}$ in which \mathbb{Z} or \mathcal{O}_F are definable is meager in \mathcal{E} .

Remark 6. The same arguments go through for separable algebraic extensions of $\mathbb{F}_p(t)$ instead of \mathbb{Q} . If one is interested only in \mathbb{Z} not being *existentially* definable, one could apply the much more elementary [Feh10, Theorem 2] and [Ans19, Theorem 1], which work more generally for *large* fields, instead of Proposition 3.

Remark 7. By combining Proposition 1 and Remark 4(2) we also obtain a strengthening of [EMSW20, Corollary 5.8]: For every number field K, the set of fields $F \subseteq \overline{\mathbb{Q}}$ containing K in which K is definable is meager in \mathcal{E} .

Remark 8. Similarly, we obtain a strengthening of [EMSW20, Corollary 5.14]: If \mathcal{E} denotes the space \mathcal{E} modulo isomorphism of fields, the set of isomorphism classes of fields $F \subseteq \overline{\mathbb{Q}}$

in which \mathbb{Z} , \mathcal{O}_F , or some some fixed number field K are definable is meager in $\overline{\mathcal{E}}$. Indeed, as the sets \mathcal{P} and \mathcal{H} (notation from the proof of Proposition 1) are dense G_{δ} -sets invariant under isomorphism, and the quotient map $\mathcal{E} \to \overline{\mathcal{E}}$ is continuous and closed, also the images of \mathcal{P} and \mathcal{H} are dense G_{δ} -sets, and therefore comeager in $\overline{\mathcal{E}}$.

Remark 9. We sketch how a strengthening of [EMSW20, Theorem 5.11] can also be obtained: The set of computable and decidable fields $F \subseteq \overline{\mathbb{Q}}$ in which neither \mathbb{Z} nor \mathcal{O}_F are definable is dense in \mathcal{E} . Indeed, given finite extensions $\mathbb{Q} \subseteq K \subseteq L$, let e be the minimal number of generators of the Galois group of the Galois closure \hat{L} of L/K. By slightly adapting the proof of [JS17, Proposition 2.5] one finds a computable and decidable PAC field $K \subseteq F \subseteq \overline{\mathbb{Q}}$ with absolute Galois group free profinite on e generators and $F \cap \hat{L} = K$, and Remark 4(1) applies to F.

Acknowledgements. The authors would like to thank Itay Kaplan and Yatir Halevi for help with references. Special thanks go to forkinganddividing.com. This work was done while P. D. was a postdoctoral fellow of the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2020 semester, and as such supported by the US National Science Foundation under Grant No. DMS-1928930. A. F. was funded by the Deutsche Forschungsgemeinschaft (DFG) - 404427454.

References

- [Ans19] Sylvy Anscombe. Existentially generated subfields of large fields. *Journal of Algebra* 517:78–94, 2019.
- [Cha19] Zoé Chatzidakis. Amalgamation of types in pseudo-algebraically closed fields and applications. Journal of Mathematical Logic 19(2), 2019.
- [CP98] Zoé Chatzidakis and Anand Pillay. Generic structures and simple theories. Annals of Pure and Applied Logic 95:71–92, 1998.
- [CR16] Artem Chernikov and Nicholas Ramsey. On model-theoretic tree properties. *Journal of Mathematical Logic* 16(2), 2016.
- [EMSW20] Kirsten Eisentraeger, Russell Miller, Caleb Springer, and Linda Westrick. A topological approach to undefinability in algebraic extensions of Q. arXiv:2010.09551v1 [math.NT]
- [Feh10] Arno Fehm. Subfields of ample fields. Rational maps and definability. *Journal of Algebra* 323(5):1738–1744, 2010.
- [FJ08] Michael D. Fried and Moshe Jarden. *Field Arithmetic*. Third Edition. Springer, 2008.
- [Jar97] Moshe Jarden. Large normal extension of Hilbertian fields. *Mathematische Zeitschrift* 224(4):555–565, 1997.
- [Jar11] Moshe Jarden. Algebraic Patching. Springer, 2011.
- [JS17] Moshe Jarden and Alexandra Shlapentokh. Decidable algebraic fields. Journal of Symbolic Logic 82(2):474–488, 2017.
- [JK10] Markus Junker and Jochen Koenigsmann. Schlanke Körper (Slim Fields). Journal of Symbolic Logic 75(2):481–500, 2010.
- [KR20] Itay Kaplan and Nicholas Ramsey. On Kim-independence. Journal of the European Mathematical Society 22(5):1423–1474, 2020.
- [Poi01] Bruno Poizat. *Stable Groups*. American Mathematical Society, 2001.
- [Ser92] Jean-Pierre Serre. Topics in Galois Theory. Taylor & Francis, 1992.
- [She96] Saharon Shelah. Toward classifying unstable theories. Annals of Pure and Applied Logic 80(3):229–255, 1996.

PHILIP DITTMANN AND ARNO FEHM

Technische Universität Dresden, Fakultät Mathematik, Institut für Algebra, 01062 Dresden, Germany

Email address: philip.dittmann@tu-dresden.de

Email address: arno.fehm@tu-dresden.de