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Abstract

This paper is devoted to the study of Bingham flow with variable density. We propose a
local bi-viscosity regularization of the stress tensor based on a Huber smoothing step. Next,
our computational approach is based on a second-order, divergence-conforming discretization of
the Huber regularized Bingham constitutive equations, coupled with a discontinuous Galerkin
scheme for the mass density. We take advantage of the properties of the divergence conforming
and discontinuous Galerkin formulations to incorporate upwind discretizations to stabilize the
formulation. The stability of the continuous problem and the full-discrete scheme are analyzed.
Further, a semismooth Newton method is proposed for solving the obtained fully-discretized
system of equations at each time step. Finally, several numerical examples that illustrate the
main features of the problem and the properties of the numerical scheme are presented.
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1 Introduction

1.1 Scope

In this paper, we are interested in the analysis and numerical approximation of unsteady incom-
pressible Bingham flow with variable density. Let Ω ⊂ Rd , d = 2, 3, be a bounded connected
domain with Lipschitz-continuous boundary ∂Ω and let T be a real positive number. Then, this
kind of flows are governed by the following Navier-Stokes type system

∂tρ+ u · ∇ρ = 0, in Ω×]0, T [,

ρ∂t(u) + (ρu · ∇)u−Div τ +∇p = f , in Ω×]0, T [,

∇ · u = 0, in Ω×]0, T [,

(1)
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where, the sought quantities are the density ρ, the velocity of the fluid u and the pressure p. This
system has been proposed as the classical model for non-homogeneous flow or flow with variable
density of incompressible fluids (see [26, 27, 35, 37]). In this paper, we are concerned with Bingham
flow. Therefore, the fluid stress tensor τ is given by{

τ = 2ηDu + τs
Du
|Du| if Du 6= 0,

|τ | ≤ τs if Du = 0.

Here, Du stands for the symmetric part of the gradient, η is the viscosity and τs represents the
yield stress. Finally, the system is endowed with appropriate initial data

ρ(0) = ρ0,u(0) = u0 in Ω× {0},

and boundary conditions in the following manner

ρ(x, t) = ψ(x, t), (x, t) in ∂Ωin×]0, T [,

u(x, t) = g(x, t), (x, t) in ∂Ω×]0, T [,

where
∂Ωin = {x ∈ ∂Ω |g(x) · n∂Ω < 0}

with n∂Ω representing the outer unit normal vector at x ∈ ∂Ω. Furthermore, we assume that∫
∂Ω n∂Ω · g = 0, ∇ · u0 = 0, and that the compatibility condition n∂Ω · g(x, 0) = n∂Ω · u0|∂Ω holds.

Bingham is the seminal model for viscoplastic fluids, which are materials whose rheology is
defined by the existence of a yield stress, τs. This characteristic implies that the material hardens
in regions where the stress does not exceed the yield stress. Meanwhile, in the regions where the
stress overpasses τs, the material flows as a viscous fluid with plastic behaviour. Because of this
mechanical property, one particularity of Bingham fluids is the presence of rigid moving parts in the
interior of the flow. The size and location of these rigid zones depend on the yield stress, and can
even block the flow for high values of τs. This so-called blocking property makes the study of these
materials of interest in various fields and applications. For instance, when related to the flow of
biological fluids, such as blood or mucus, a blocking could be an indicator of health-compromising
phenomena (see [12]). Another of the main fields of applications is geophysical flows. In fact, the
analysis of lava and volcanic material flows is of particular interest. Further, the most interesting
and challenging applications in this area involve non-homogeneous and variable density flows, for
instance, in the analysis of landslides [29, 31].

As mentioned previously, our interest lies in studying incompressible fluids with viscoplastic
Bingham behavior. To satisfy mass conservation in such fluids, two conditions must be met: the
mass density of each fluid particle must remain constant during motion, and the velocity field must
satisfy the incompressibility constraint. However, our focus is also on flows with variable density
or non-homogeneity. We consider this non-homogeneity condition in the sense proposed by, e.g.
[43, 27], where a non-homogeneous fluid is understood as two (possible more) incompressible fluids
with different densities which mix. For a variable density flow model, we need to consider a coupled
system between a Navier-Stokes equation and a first-order transport equation for density, as shown
in (1). This makes the problem challenging from the PDEs theory perspective ([35, 40]). For
mathematical theory on the well-posedness of variable density or non-homogeneous Bingham flow,
we refer to [4, 8, 15]. In particular, [8], analyzes a variational formulation for non-homogeneous
Bingham flow using the classical variational inequality approach and proves the existence of weak
solutions for (1). Further, the author finds regularity conditions to obtain uniqueness of solutions.
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In this work, we mainly focus on the numerical simulation of this flow problem, considering that
the theoretical results hold.

The main challenge in simulating yield stress fluids, such as Bingham fluids, is to correctly rep-
resent the unyielded (rigid) and yielded (non-rigid) regions in the material. From the mathematical
perspective, this implies developing strategies to deal with the intrinsic discontinuity in the stress
tensor τ . Our approach in this work is based on a local regularization of the stress tensor in the
Bingham constitutive equations. The regularization approach has a well-known computational ad-
vantage: regularized systems can be solved by fast converging numerical algorithms, usually based
on generalized Newton methods (See [41]). On the other hand, performing a smoothing step on
the stress tensor modifies the expected modeled behavior. In our case, we seek a balance between
efficient and fast computational solutions and a regularization process that keeps the physics of
the flow as exact as possible. We have seen in previous contributions that this balance can be
achieved with a Huber-type regularization process ([16, 24, 25]). The main idea of this smoothing
process is that in order to model the yielded regions, we can consider the actual form of the stress
tensor, while for the approximation of the unyielded regions, we consider a smooth version of the
tensor. The intrinsic quality of this regularization lies in the fact that the regions in which the
stress is modified can be very small and easy to represent computationally, which guarantees a
reliable physical approximation of the flow.

For developing numerical approximations to the regularized problem, it seems natural to look
at the techniques established for the solution of homogeneous density incompressible Navier-Stokes
equations and try to exploit them as much as possible. It is the purpose of this paper to advance
a second-order divergence-conforming discretization for this problem. Specifically, we introduce
an H(div)-conforming method based on Brezzi-Douglas-Marini (BDM) spaces [10], coupled with a
discontinuous Galerkin discretization for density. Both equations are stabilized with upwind terms
as in [13, 18] and combined with an implicit, second-order backward differentiation formula (BDF2)
for time discretization.

Among the advantages of exactly divergence-free methods, we can mention the following: First,
they are pressure-robust, which means that it is possible to separate velocity and pressure com-
pletely in the error analysis. Also, using an H(div)-conforming FEM allows the usage of discon-
tinuous Galerkin Finite element method (dG-FEM) techniques in the formulation analysis and
treatment of the convective term. Moreover, the requirement for less stability implies that the
amount of numerical dissipation added is minimized. Finally, the conservation properties of the
exact equations of mass, energy, and momentum are naturally transferred to the discrete solution
[42].

1.2 Related Work

While there is a rich body of literature on the numerical approximation of the constant density
and viscosity Navier-Stokes equations, fewer results are available for the variable density case. The
numerical approximation of similar coupled flow systems has been studied using many different
numerical methods, including projection methods [39, 26], fractional-step methods [20, 27], and the
discontinuous Galerkin (dG) method [37]. Furthermore, the numerical simulation of the variable
density incompressible Navier-Stokes system was studied in [11], where the authors introduce a
hybrid scheme that combines a Finite Volume approach for treating the mass conservation equa-
tion and a Finite Element method to deal with the momentum equation and the divergence-free
constraint.

The H(div)-conforming approach for the Brinkman equation was numerically studied by [34],
while exactly divergence-free H(div)-conforming finite element methods for time-dependent incom-
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pressible viscous flow problems have been extensively studied in [42], with special emphasis on
pressure and Reynolds semi-robustness of the formulations.

In the case of variable density or density-dependent Bingham flow, mixing and interaction of
materials with different densities are a mainly interesting field for engineering and mathematical
communities. For instance, several contributions have discussed this model as a suitable back-
ground for landslides and, in general, for debris flows (see [29, 30, 31]). This assertion arises from
the fact that debris flows involve several substances, including mixtures and suspensions of gran-
ular particles in water, sand, and organic matter, among others. Depending on the physical and
mechanical conditions, these substances can create rigid zones that move within the flow, leading to
the expected behavior of a viscoplastic Bingham material. Further, the flow is not expected to be
homogeneous, as the density varies depending on the concentration of the component substances.

One interesting and challenging benchmark problem is the so-called Rayleigh-Taylor instability
that occurs when two fluids with different densities interact. In [17, 19], the authors analyze this
phenomenon for two viscoplastic materials using a volume of fluid (VOF) method and a hydro-
dynamic simulation based on the Bingham model. Additionally, in [6], the authors perform an
experimental study of the behavior of viscoplastic drops moving in a given medium, usually with
different densities. In contrast to most of these contributions, this paper focuses on the computa-
tional simulation of these phenomena, based on the variational analysis of the constitutive PDEs
for non-homogeneous Bingham flow.

1.3 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we introduce the continuous
formulation of problem 1 and recall its main properties. We also propose and briefly analyze the
local Huber regularization for the problem. In Section 3, we describe the time semi-discretization,
and then the complete discrete scheme of this problem, briefly addressing stability properties. We
also discuss the semismooth Newton linearization of each time step. Finally, in Section 4, we
illustrate the properties of the problem and the scheme with numerical examples generated by the
method introduced. We close the paper with some remarks and discussions given in Section 5.

2 The continuous formulation

In this section, we introduce and analyze a transient formulation of the coupled problem. We
start by introducing some notation. We denote by Lp(Ω) and W r,p(Ω) the usual Lebesgue and
Sobolev spaces with respective norms ‖·‖Lp(Ω) and ‖·‖W r,p(Ω). If p = 2 we write Hr(Ω) and ‖·‖r,Ω
in place of W r,p(Ω) and ‖·‖W r,p(Ω). By L and L we denote the corresponding vectorial and tensorial
counterparts of the scalar functional space L, respectively. Further, we denote by (·, ·)Ω the usual
inner product in L2(Ω). Moreover, for any vector field v = (vi)i=1,d we set the gradient, symmetric
part of the gradient and divergence, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, Dv :=
1

2

(
∇v + (∇v)T

)
and ∇ · v :=

d∑
j=1

∂vj
∂xj

,

respectively. In what follows, we usually use the vector-valued Hilbert spaces

H(div; Ω) :=
{
w ∈ L2(Ω) : ∇ ·w ∈ L2(Ω)

}
,

H0(div; Ω) :=
{
w ∈ H(div; Ω) : w · n∂Ω = 0 on ∂Ω

}
,

H0(div0; Ω) :=
{
w ∈ H0(div; Ω) : ∇ ·w = 0 in Ω

}
,
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For a given tensor T , we let DivT be the divergence operator acting along the rows of T . We denote
by Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls-integrable functions from [0, T ] into Wm,p(Ω), with
norm

‖v‖Ls(0,T ;Wm,p(Ω)) =


(∫ T

0
‖v(t)‖sWm,p(Ω) dt

)1/s

if 1 ≤ s <∞,

ess supt∈[0,T ]‖v(t)‖Wm,p(Ω) if s =∞.

2.1 Huber regularization

The main characteristic of viscoplastic materials is the existence of a yield stress. These fluids
exhibit non-Newtonian behavior depending on this parameter: if the total stress is below the yield
stress, the fluid moves without continuous deformation, which means that the material is moving as
a rigid solid. This behavior is also expected in the so-called stagnation regions, where the material
is at rest. On the other hand, if the stress surpasses the yield stress, the fluid flows as a Newtonian
fluid in the particular case of the Bingham model.

The complex behavior of Bingham fluids is modeled by the following stress structure:{
τ = 2ηDu + τs

Du
|Du| , if Du 6= 0

|τ | ≤ τs, if Du = 0.
(2)

Note that in the so-called yielded regions, i.e., regions where Du 6= 0, the stress is given as a sum
of two terms: a viscous term associated with the viscosity η, and a plastic term associated with the
yield stress τs. Furthermore, in the unyielded regions where Du = 0, we only know that the stress
is bounded. This is the main issue regarding the mathematical modeling and numerical solution of
these materials: in general, we do not have a priori knowledge of the localization of the yielded or
unyielded regions in the flow. Because of this fact, we are dealing with an ill-posed problem.

One classical approach for the analysis and numerical solution of these materials is to regularize
the stress tensor. In this work, we propose a local regularization based on a Huber smoothing step,
which, when applied to (2), reads as follows:

τ γ := µ(|Du|γ)Du

µ(t) := 2η + τsγ
1

t
,

(3)

where |A|γ := max{τs, γ|A|}. Here γ � 0 is a given regularization parameter, such that γ → ∞.
This is a local regularization approach, which has proven to be efficient and reliable for the numerical
solution of several viscoplastic flow problems (see [16, 24, 25]).

Several smoothing steps have been proposed for the Bingham model. The best-known regular-
ization procedures are the Papanastasiou and the Bercovier-Engleman, which are built by using
smooth (at least twice differentiable) functions (see [21]). In contrast, the Huber regularization
(bi-viscosity) is based on a piecewise linear function that recovers the real structure of the stress
in the yielded regions while making the smoothed region around the unyielded regions as small as
possible. In Figure 1, left, we show a graphical comparison, in a 1D scheme, of the stress tensor
τ vs. the deformation tensor Du for the regularization steps mentioned before. In this picture, it
is possible to appreciate the qualitative advantage of Huber regularization. The regularized stress
τ γ is the actual material stress in the yielded regions, while the regularization of the unyielded
regions is performed in small neighbourhoods around the real rigid zones. This behaviour allows
us to obtain precise and reliable approximations of the actual stress, even when we approach the
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Figure 1: Comparison between classical regularization schemes and the Huber (bi-viscosity) regu-
larization (left). Huber regularization for several values of the smoothing parameter γ (right).

unyielded regions i.e. for small values of the deformation stress. This advantage can be also ap-
preciated in Figure 1, right, where it is shown that the Huber regularization approaches to the real
model very aggressively with moderate values for the smoothing parameter. In contrast with this
behaviour, the other smooth regularization procedures depend on smooth functions, which implies
that the approximation of the real Bingham behaviour is not precise, specially in regions close to
the unyielded regions (Du→ 0).

The Huber regularization is a local procedure designed to preserve qualitatively the structure
of the model in the entire geometry. Due to this fact, the smoothing approach allows us to directly
define regions that approximate the yielded and unyielded regions in the flow in the following
manner: the yielded regions are approximated by regions where |Du| ≥ τs

γ , while the unyielded
regions are approximated by regions where |Du| < τs

γ . One of the main characteristics of the
flow is the fact that the viscosity of the material is supposed to jump to infinity when crossing the
separating phase from the yielded to the unyielded regions (let us recall that the model understands
that the material moves like a rigid solid in the unyielded regions). Considering that the parameter
γ → ∞, the smoothing procedure sets a large viscosity in the unyielded regions and the actual
viscosity of the material in the yielded regions (see (3)). Because of this fact, the approach is also
known as bi-viscosity regularization ([7]).

Summarizing, the system of Huber regularized constitutive equations for the non-homogeneous
Bingham flow is given by

∂tρ+ u · ∇ρ = 0, in Ω×]0, T [,

ρ∂t(u) + (ρu · ∇)u−Div τ γ +∇p = f , in Ω×]0, T [,

∇ · u = 0, in Ω×]0, T [,

τ γ := µ(|Du|γ)Du, a.e. in Ω×]0, T [.

(4)
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2.2 Weak formulation

Let us define the following spaces

V := H1
0(Ω), Q := L2

0(Ω), W := H1
0 (Ω),

Vt :=
{
w ∈ L2(0, T ; V) : ∂tw ∈ L2(0, T ; L2(Ω))

}
,

Qt := L2(0, T ;Q),

Wt :=
{
s ∈ L2(0, T ;W) : ∂ts ∈ L2(0, T ;L2(Ω))

}
.

Testing each equation in problem (4) against suitable functions and integrating by parts when-
ever adequate, gives the following weak formulation: Find (ρ,u, p) ∈ Wt ×Vt × Qt such that for
all (ζ,v, q) ∈ W ×V ×Q and for a.e. t ∈ [0, T ], it holds that∫

Ω
∂tρζ dx+ c1(u, ρ, ζ) = 0,∫

Ω
σ∂t(σu) · v dx+ a2(u,v) + c2(ρu; u,v) + b(v, p) =

∫
Ω

f · v dx,

b(u, q) = 0.

(5)

where as in [26], we use an equivalent equation with σ =
√
ρ. The variational forms a2 : V×V→ R,

c2 : W ×V ×V → R, c1 : V ×W ×W → R and b : V × Q → R are defined as follows, for all
u,v,w ∈ V, q ∈ Q, ρ, ζ ∈ W:

a2(u,v) :=

∫
Ω

(
µ(|Du|γ)Du : Dv

)
dx,

c2(ρw; u,v) :=

∫
Ω

(ρw · ∇)u · v dx+
1

2

∫
Ω
∇ · (ρu)u · v dx,

c1(u; ρ, ζ) :=

∫
Ω

(u · ∇ρ)ζ dx,

b(u, q) = −
∫

Ω
q∇ · u dx.

Note that

σ∂t(σu) = ρ∂t(u) +
1

2
u∂tρ = ρ∂t(u)− 1

2
∇ · (ρu)u

Hence σ∂t(σu) + (ρu · ∇)u + 1
2∇ · (ρu)u − Div τ + ∇p = f , is mathematically equivalent to the

original system (1). This alternative form of the momentum equation will preserve exactly the
kinetic energy balance at the discrete level (see for instance [26]).

2.3 Stability of the continuous problem

For the sake of simplicity, we will use homogeneous Dirichlet boundary conditions for velocity in our
analysis. Note that more general boundary conditions can still be handled using similar techniques
(see, e.g., [26]). It is also worth noticing that, for a homogeneous Dirichlet condition on the normal
component of the velocity on the entire ∂Ω, no boundary condition needs to be specified for the
density.

Before presenting our stability results, we will make some preparatory observations.
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Lemma 2.1. Let θ, ϑ ∈ Lp(Ω). Then, the following estimate holds

|θ(x)|γ − |ϑ(x)|γ ≤ γ|θ(x)− ϑ(x)|, a.e. in Ω. (6)

Proof. Let us start defining the following sets, related with the approximations for the yielded and
unyielded regions

Aγ(θ) := {x ∈ Ω : γ|θ(x)| ≥ τs} and Iγ(θ) := {x ∈ Ω : γ|θ(x)| < τs}. (7)

Next, we analyze the behaviour of (6) in the following sets Aγ(θ) ∩ Aγ(ϑ), Aγ(θ) ∩ Iγ(ϑ),
Iγ(θ) ∩ Aγ(ϑ) and Iγ(θ) ∩ Iγ(ϑ).

On Aγ(θ) ∩ Aγ(ϑ): Here, we have that

|θ(x)|γ − |ϑ(x)|γ = γ(|θ(x)| − |ϑ(x)|) ≤ γ|θ(x)− ϑ(x)|.

On Aγ(θ) ∩ Iγ(ϑ),: Here, it holds that

|θ(x)|γ − |ϑ(x)|γ = γ|θ(x)| − τs < γ|θ(x)| − γ|ϑ(x)| ≤ γ|θ(x)− ϑ(x)|.

On Iγ(θ) ∩ Aγ(ϑ): Here, we know that

|θ(x)|γ − |ϑ(x)|γ = τs − γ|ϑ(x)| ≤ τs − τs = 0 ≤ γ|θ(x)− ϑ(x)|.

On Iγ(θ) ∩ Iγ(ϑ): Here, we obtain the following

|θ(x)|γ − |ϑ(x)|γ = τs − τs = 0 ≤ γ|θ(x)− ϑ|.

Thus, since the considered sets provide a disjoint partitioning of Ω, the four estimates above imply
(6).

Lemma 2.2. Let θ, ϑ ∈ Lp(Ω). Then function µ satisfies the following properties:

|µ(|θ|γ)θ − µ(|ϑ|γ)ϑ| ≤ C1|θ − ϑ|, (8)

C2|θ − ϑ|2 ≤ (µ(|θ|γ)θ − µ(|ϑ|γ)ϑ) : (θ − ϑ)

a.e. in Ω

Proof. For the first result, from (3) we have:

|µ(|θ|γ)θ − µ(|ϑ|γ)ϑ| =
∣∣∣∣2η(θ − ϑ) + τsγ

(
1

|θ|γ
θ − 1

|ϑ|γ
ϑ

)∣∣∣∣
≤ 2η|θ − ϑ|+ τsγ

∣∣∣∣ θ|θ|γ − ϑ

|ϑ|γ

∣∣∣∣ (9)

Following the same lines of the proof of Lemma 6, we analyze the behaviour of the second term
on the right hand side of (9) in the following sets Aγ(θ) ∩ Aγ(ϑ), Aγ(θ) ∩ Iγ(ϑ), Iγ(θ) ∩ Aγ(ϑ)
and Iγ(θ) ∩ Iγ(ϑ).
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On Aγ(θ) ∩ Aγ(ϑ): Here, we deduce that

τsγ

∣∣∣∣ θ|θ|γ − ϑ

|ϑ|γ

∣∣∣∣ = τsγ

∣∣∣∣( 1

|θ|γ
− 1

|ϑ|γ

)
ϑ+

1

|θ|γ
(θ − ϑ)

∣∣∣∣
≤ τsγ

(
γ|ϑ− θ|
γ|θ|

|ϑ|
γ|ϑ|

+
1

γ|θ|
|θ − ϑ|

)
≤ τsγ

2

γ|θ|
|θ − ϑ| ≤ τsγ

2

τs
|θ − ϑ|

On Aγ(θ) ∩ Iγ(ϑ), (also Iγ(θ) ∩ Aγ(ϑ)): Here, it follows that

τsγ

∣∣∣∣ θ|θ|γ − ϑ

|ϑ|γ

∣∣∣∣ = τsγ

∣∣∣∣( 1

|θ|γ
− 1

|ϑ|γ

)
ϑ+

1

|θ|γ
(θ − ϑ)

∣∣∣∣
≤ τsγ

(
τs − γ|θ|
γ|θ|

|ϑ|
τs

+
1

γ|θ|
|θ − ϑ|

)
≤ τsγ

(
|ϑ− θ|
γ|θ|

τs
τs

+
1

γ|θ|
|θ − ϑ|

)
≤ τsγ

2

γ|θ|
|θ − ϑ| ≤ τsγ

2

τs
|θ − ϑ|

On Iγ(θ) ∩ Iγ(ϑ): Here, we obtain

τsγ

∣∣∣∣ θ|θ|γ − ϑ

|ϑ|γ

∣∣∣∣ = τsγ

∣∣∣∣( θτs − ϑτs
)∣∣∣∣

≤ γ|θ − ϑ|

The four cases and (9) imply (8). For the second result, we have

(µ(|θ|γ)θ − µ(|ϑ|γ)ϑ) : (θ − ϑ) =

(
2η(θ − ϑ) + τsγ

(
1

|θ|γ
θ − 1

|ϑ|γ
ϑ

))
: (θ − ϑ)

= 2η|θ − ϑ|2 + τsγ

(
θ

|θ|γ
− ϑ

|ϑ|γ

)
: (θ − ϑ) (10)

Note that the second term in (10) can be rewritten as

γτs

[(
1
|θ|γ −

1
|ψ|γ

)
ϑ+ 1

|θ|γ (θ − ϑ)
]

: (θ − ϑ)

= γτs

[
1
|θ|γ (θ − ϑ) +

(
|ϑ|γ−|θ|γ
|ϑ|γ |θ|γ

)
ϑ
]

: (θ − ϑ)

= γτs
1
|θ|γ

[
|θ − ϑ|2 −

(
|θ|γ−|ϑ|γ
|ψ|γ

)
ϑ : (θ − ϑ)

]
.

Then, thanks to Lemma 2.1, the Cauchy-Schwarz inequality, and since
∣∣∣ ϑ(x)
|ϑ(x)|γ

∣∣∣ ≤ 1
γ a.e. in Ω, we

conclude that

γτs

[(
1
|θ|γ −

1
|ϑ|γ

)
ϑ+ 1

|θ|γ (θ − ϑ)
]

: (θ − ϑ)

≥ γτs 1
|θ|γ

[
|θ − ϑ|2 − γ|θ − ϑ|2

∣∣∣ ϑ(x)
|ϑ(x)|γ

∣∣∣] ≥ 0,
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Now, recall that the Sobolev embedding Theorem (for instance as in [1]) establishes the contin-
uous injection ir : Hr(Ω)→ L2p(Ω), where

2p =

{
1

1−r if d = 2,
6

3−2r if d = 3,

and there holds,

‖v‖L2p(Ω) ≤ Cr‖v‖r,Ω for all v ∈ Hr(Ω). (11)

Now we apply the Cauchy-Schwarz and Hölder inequalities, and (11) to prove that the varia-
tional forms defined above are continuous for all u,v,w ∈ V, q ∈ Q, and ρ, ζ ∈ W:∣∣a2(u,v)

∣∣ ≤ Ca‖u‖1,Ω‖v‖1,Ω,∣∣b(v, q)∣∣ ≤ Cb‖v‖1,Ω‖q‖0,Ω,∣∣c2(ρw; u,v)
∣∣ ≤ Cc‖ρ‖1,Ω‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω,∣∣c1(u; ρ, ζ)
∣∣ ≤ Ĉc‖u‖1,Ω‖ρ‖1,Ω‖ζ‖1,Ω.

We also recall (from [23, Chapter I, Lemma 3.1], for instance) the following Poincaré-Friedrichs
inequality:

‖ϕ‖0,Ω ≤ Cp|ϕ|1,Ω, for all ϕ ∈ H1
0 (Ω). (13)

Next, we consider the bilinear form a2(·, ·). Note that, for v ∈ H1
0(Ω), we have that

a2(v,v) = 2η
∫

Ω|Dv|2 dx+ γτs
∫

Ω
|Dv|2
|Dv|γ dx

≥ C‖Dv‖20,Ω dx.

Hence, Korn’s inequality and inequality (13) readily gives the coercivity of a2, i.e., there exists a
positive constant αa such that

a2(v,v) ≥ αa‖v‖21,Ω, for all v ∈ H1
0(Ω). (14a)

Using the definition and characterisation of the kernel of the bilinear form b(·, ·), we can write

K :=
{
v ∈ H1

0(Ω) : b(v, q) = 0, ∀q ∈ L2
0(Ω)

}
=
{
v ∈ H1

0(Ω) : ∇ · v = 0 in Ω
}
,

and applying integration by parts, we can readily observe that (see [36, Section 2.2], [26, Lemma
1], also [39])

c2(ρw; v,v) = 0 and c1(w; ρ, ρ) = 0, for all w ∈ K,v ∈ H1(Ω), ρ ∈ H1(Ω). (15)

Finally, it is well known that the bilinear form b(·, ·) satisfies the inf-sup condition (see, e.g.,
[44]):

sup
v∈H1

0(Ω)\{0}

b(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω, for all q ∈ L2

0(Ω).

Lemma 2.3 (Stability). If f ∈ L∞(0, T ; L2(Ω)), u0 ∈ L2(Ω) and ρ0 ∈ L2(Ω), then, for any solution
(u, ρ) of (5) and for t ∈ (0, T ], there exists a constant C > 0 such that

‖σu‖L2(0,t;H1(Ω)) + ‖ρ‖L2(0,t;H1(Ω)) ≤ C
(
‖√ρ0u0‖0,Ω + ‖ρ0‖0,Ω + ‖f‖L∞(0,T ;L2(Ω))

)
,
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Proof. First taking ζ = ρ, in the first equation of (5) and using (15), we obtain the following
identity:

1

2

d

dt
‖ρ‖20,Ω = 0

Integrating this equation between 0 and t yields, in particular, that

‖ρ(·, t)‖0,Ω ≤ ‖ρ0‖0,Ω. (16)

For the momentum equation, we first deduce∫
Ω
ρu · ∂tu dx =

1

2

∫
Ω
ρ
∂|u|2

∂t
dx =

1

2

∫
Ω

(
∂(ρ|u|2)

∂t
+ (u · ∇ρ+

ρ

2
∇ · u)|u|2

)
dx∫

Ω
ρu · ∇u · u dx =

1

2

∫
Ω
ρu · ∇|u|2 dx =

1

2

∫
Ω

(
∇ · (ρu|u|2)− (u · ∇ρ+ ρ∇ · u)|u|2

)
dx

which in turn, implies,

u ·
[
ρ∂tu + ρu · ∇u

]
=

1

2

[
(ρ|u|2)

∂t
+∇ · (ρu|u|2)

]
(17)

Now, we can take u on K and due to the inf-sup condition we can solve an equivalent reduced
problem, where b(·, ·) is removed from the variational form (5). Setting v = u, using the incom-
pressibility condition, (15), (14a) and (17), we have

1

2

d

dt
‖σu‖20,Ω + αa‖u‖21,Ω ≤ ‖f‖0,Ω‖u‖0,Ω.

Now we use Young’s inequality with ε = αa/4 to get

1

2

d

dt
‖σu‖20,Ω +

αa
2
‖u‖21,Ω ≤ C‖f‖20,Ω.

Analogously, after integrating from 0 to t we find that

‖σu(·, t)‖0,Ω + αa

∫ t

0
‖u(·, z)‖21,Ω dz ≤ ‖√ρ0u0‖0,Ω + C

∫ t

0
‖f‖0,Ω dz. (18)

Finally, we derive the sought result from (16) and (18).

3 The discrete formulation

In this section we introduce the Galerkin scheme associated with problem (5).

3.1 The time semi-discrete problem

In order to describe the time discretization of equation (1), we introduce a partition of the interval
[0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < · · · < tN = T . We use the
implicit BDF2 scheme, where all first-order time derivatives are approximated using the centered
operator

∂tu(tn+1) ≈ 1

∆t

(
3

2
un+1 − 2un +

1

2
un−1

)
, (19)
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(similarly for ∂tρ), and for the first time step a first-order backward Euler method is used from t0

to t1, starting from the interpolates u0 and ρ0 of the initial data.
In what follows, we define the difference operator

Dyn+1 := 3yn+1 − 4yn + yn−1,

for any quantity indexed by the time step n. For instance, (19) can be written as ∂tu(tn+1) ≈
1

2∆tDun+1.
In the following sections, we discuss a dG-H(div)-FEM discretization for the space variables,

and present the fully discretized system to be solved by a semismooth Newton iteration.

3.2 A Divergence-conforming-dG FEM coupled scheme

Let {T h}h>0 be a regular family of triangulations of Ω by simplices K (triangles in R2 and tetrahe-
dra in R3 respectively), and set h := max{hK : K ∈ T h}, where hk is the diameter of the element
K. We label by K− and K+ the two elements adjacent to a facet e (an edge in 2D or a face in
3D). Let Eh denote the set of all facets and Eh = E ih ∪E∂h where E ih and E∂h are the subset of interior
facets and boundary facets, respectively. If v and w are a smooth vector and a scalar field defined
on {T h}, then (v±, w±) denote the traces of (v, w) on e that are the extensions from the interior
of K+ and K−, respectively. Let n+

e , n−e be the outward unit normal vectors on the boundaries of
two neighboring elements sharing the facet e, K+ and K−, respectively. We also use the notation
(we · ne)|e = (w+ · n+

e )|e. The average {{·}} and jump J·K operators on e ∈ E ih are defined as

{{v}} := (v− + v+)/2, {{w}} := (w− + w+)/2, JvK := (v− − v+), JwK := (w− − w+),

whereas, for jumps and averages on e ∈ E∂h , for notational convenience, we adopt the conventions
{{v}} = JvK = v, and {{w}} = JwK = w. Moreover, Dh will denote the broken analogous of operator
D.

For k ≥ 1, consider the following finite element subspaces:

Vh :=
{
vh ∈ H(Div ; Ω) : vh|K ∈ [Pk(K)]d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th
}
,

Wh :=
{
sh ∈ L2(Ω) : lh|K ∈ Pk−1(K) ∀K ∈ Th

}
.

Associated with these finite-dimensional spaces, we state the following semi-discrete Galerkin
formulation: Find (ρh,uh, ph) ∈ Wh ×Vh ×Qh, such that, for all (ζh,vh, qh) ∈ Wh ×Vh ×Qh, it
holds that

(∂tρh, ζh)Ω + ch1(uh, ρh, ζh) = 0,

(σh∂t(σhuh),vh)Ω + ah2(uh,vh) + ch2(ρhuh; uh,vh) + b(ph,vh) = (f ,vh)Ω,

b(qh,uh) = 0.

Here σh =
√
ρh. Moreover, the discrete versions of the forms ah2(·, ·), ch2(·, ·; ·, ·) and ch1(·; ·, ·) are

defined by using a symmetric interior penalty approach in the first case and upwind approach for
the two convective terms:

ah2(uh,vh) :=

∫
Ω

(
µ(|Dhuh|γ)Dhuh : Dhvh

)
dx

+
∑
e∈Eh

∫
e

(
−{{µ(|Dhuh|γ)Dh(uh)ne}} · JvhK

− {{µ(|JDhuhK|γ)Dh(vh)ne}} · JuhK +
a0

he
JuhK : JvhK

)
ds,

(20)
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ch1(uh; ρh, ζh) :=

∫
Ω

(uh · ∇ρh)ζh dx−
∑
e∈Eh

∫
e
(uh · ne)JρhK{{ζh}}ds

+
∑
e∈Eh

∫
e

1

2
|uh · ne|JρhK · JζhK ds,

ch2(ρhwh; uh,vh) := c2(ρhwh; uh,vh)

−
∑
e∈Eh

∫
e
(ρhwh · ne)JuhK · {{vh}}ds+

∑
e∈Eh

∫
e

1

2
|ρhwh · ne|JuhK · JvhK ds,

where a0 > 0 is a jump penalization parameter.

3.3 Complete discrete scheme

We now define the approximate sequences {ρnh}n=0,...N , {unh}n=0,...N and {pnh}n=0,...N as follows:
For 1 ≤ n ≤ N − 1, solve:

1

2∆t

(
Dρn+1

h , ζh
)

Ω
+ ch1(un+1

h , ρn+1
h , ζh) = 0,

1

2∆t

(
σn+1
h D(σn+1

h un+1
h

)
,vh)Ω + ah2(un+1

h ,vh)

+ch2(ρn+1
h un+1

h ; un+1
h ,vh) + b(pn+1

h ,vh) = (fn+1,vh)Ω,

b(qh,u
n+1
h ) = 0.

(21)

for all ζh ∈ Wh, vh ∈ Vh and qh ∈ Qh. Note that non-homogeneous Dirichlet boundary conditions
for the velocity field can be imposed as part of this formulation by using Nitsche’s method.

3.4 Stability analysis of the discrete scheme

For the subsequent analysis, we introduce, for r ≥ 0, the broken Hr space as follows.

Hr(Th) :=
{
v ∈ L2(Ω) : v|K ∈ Hr(K), K ∈ Th

}
,

as well as the mesh-dependent broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖Dh(v)‖20,K +
∑
e∈Eh

1

he
‖JvK‖20,e,

‖v‖21,Th := ‖v‖20,Ω + ‖v‖2∗,Th for all v ∈ H1(Th),

We also define the discrete kernel of the bilinear form b(·, ·) as

Kh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh} = {vh ∈ Vh : ∇ · vh = 0 in Ω}.

Finally, adapting the argument used in [33, Proposition 4.5], we have the discrete Sobolev embed-
ding: for r = 2, 4 there exists a constant Cemb > 0 such that

‖v‖Lr(Ω) ≤ Cemb‖v‖1,Th , for all v ∈ H1(Th).

With these norms, we can establish continuity of the bilinear forms constituting the variational
formulation. The proof follows from [3, Section 4] and [32, Lemma 2.2].
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Lemma 3.1. The following properties hold:∣∣ah2(u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th , for all u,v ∈ Vh,∣∣b(v, q)∣∣ ≤ C̃b‖v‖1,Th‖q‖0,Ω, for all v ∈ H1(Th), q ∈ L2(Ω).

Furthermore the following property holds (using Lemma 2.2 and following arguments analogous
to those in [32, Lemma 2.3], see also [14, Theorem 2.4])

ah2(v,v) ≥ α̃a‖v‖21,Th for all v ∈ Vh, (22)

provided that the stabilization parameter a0 > 0 in (20) is sufficiently large and independent of the
mesh size.

Let w ∈ H0(Div 0; Ω) and let us introduce the following vector and scalar jump seminorms

|uh|w,upw :=
∑
e∈Eih

∫
e

1

2
|we · ne||JuhK|2 ds,

|ρh|w,upw :=
∑
e∈Eih

∫
e

1

2
|we · ne||JρhK|2 ds.

Then, due to the skew-symmetric form of the operators ch1 and ch2 , and the positivity of the non-
linear upwind terms (see i.e [39] and [18, Section 2.3.1]), we can write

ch1(w;ψh, ψh) = |ψh|2w,upw ≥ 0 for all ψh ∈ Wh, (23a)

ch2(ρw; u,u) = |u|2ρw,upw ≥ 0 for all u ∈ Vh. (23b)

Finally, we recall from [34] the following discrete inf-sup condition for b(·, ·), where β̃ is independent
of h:

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω, for all qh ∈ Qh.

Theorem 3.2. Let (ρn+1
h ,un+1

h , pn+1
h ) ∈ Wh ×Vh ×Qh be a solution of problem (21), with initial

data (ρ1
h,u

1
h) and (ρ0

h,u
0
h). Then the following bounds are satisfied, where C1 and C2 are constants

that are independent of h and ∆t:

‖ρn+1
h ‖20,Ω + ‖2ρn+1

h − ρnh‖20,Ω +
∑n

j=1‖Λρ
j
h‖

2
0,Ω +

∑n
j=1 ∆t|ρj+1

h |2
ujh,upw

≤ C1

(
‖ρ1

h‖20,Ω + ‖2ρ1
h − ρ0

h‖20,Ω
)
,

‖σn+1
h un+1

h ‖20,Ω + ‖2σn+1
h un+1

h − σnhunh‖20,Ω +
∑n

j=1‖Λujh‖
2
0,Ω +

∑n
j=1 ∆t‖uj+1

h ‖21,Th
+
∑n

j=1 ∆t|ujh|
2
ujh,upw

≤ C2

(
‖f‖2L∞(0,T,L2(Ω)) + ‖σ1

hu
1
h‖20,Ω + ‖2σ1

hu
1
h − σ0

hu
0
h‖20,Ω

)
.

(24)

Proof. We will require the following algebraic relation: for any real positive numbers an+1, an, an−1

and defining Λan := an+1 − 2an + an−1, we have

2(3an+1 − 4an + an−1, an+1) = |an+1|2 + |2an+1 − an|2 + |Λan|2 − |an|2 − |2an − an−1|2. (25)

First we take ζh = 4ρn+1
h in the first equation of (21), multiply by ∆t and apply (25) and (23a) to

deduce the estimate

‖ρn+1
h ‖20,Ω + ‖2ρn+1

h − ρnh‖20,Ω + ‖Λρnh‖20,Ω + 4∆t|ρn+1
h |2

un+1
h ,upw

≤ ‖ρnh‖20,Ω + ‖2ρnh − ρn−1
h ‖20,Ω.

14



Summing over n we can assert that

‖ρn+1
h ‖20,Ω + ‖2ρn+1

h − ρnh‖20,Ω +
n∑
j=1

‖Λρjh‖
2
0,Ω +

n∑
j=1

∆t|ρj+1
h |2

uj+1
h ,upw

≤ ‖ρ1
h‖20,Ω + ‖2ρ1

h − ρ0
h‖20,Ω.

Similarly in the second and third equation of (21), we take vh = 4un+1
h and qh = 4pn+1

h ,
respectively, multiply by ∆t and apply (25), (22) and (23b) to deduce the estimate

‖σn+1
h un+1

h ‖20,Ω + ‖2σn+1
h un+1

h − σnhunh‖20,Ω + ‖Λσnhunh‖20,Ω + 4∆tα̃a‖un+1
h ‖21,Th + 4∆t|un+1

h |2
un+1
h ,upw

≤ 4∆t‖fn+1‖0,Ω‖un+1
h ‖0,Ω + ‖unh‖20,Ω + ‖2unh − un−1

h ‖20,Ω.

Using Young’s inequality with ε = α̃a/2 and summing over n we can assert that

‖σn+1
h un+1

h ‖20,Ω + ‖2σn+1
h un+1

h − σnhunh‖20,Ω +
n∑
j=1

‖Λσjhu
j
h‖

2
0,Ω

+ 2α̃a

n∑
j=1

∆t‖uj+1
h ‖21,Th +

n∑
j=1

4∆t|uj+1
h |2

ρn+1
h uj+1

h ,upw

≤ C‖f‖L∞(0,T,L2(Ω)) + ‖σ1
hu

1
h‖20,Ω + ‖2σ1

hu
1
h − σ0

hu
0
h‖20,Ω.

Theorem 3.3 (Existence of discrete solutions). Problem (21) with initial data (ρ1
h,u

1
h) and (ρ0

h,u
0
h)

admits at least one solution

(ρn+1
h ,un+1

h , pn+1
h ) ∈ Wh ×Vh ×Qh.

The proof of Theorem 3.3 makes use of Brouwer’s fixed-point theorem in the following form
(given by [22, Corollary 1.1, Chapter IV]):

Theorem 3.4 (Brouwer’s fixed-point theorem). Let H be a finite-dimensional Hilbert space with
scalar product (·, ·)H and corresponding norm ‖·‖H . Let Φ: H → H be a continuous mapping for
which there exists ϑ > 0 such that (Φ(u), u)H ≥ 0 for all u ∈ H with ‖u‖H = ϑ. Then there exists
u ∈ H such that Φ(u) = 0 and ‖u‖H ≤ ϑ.

Proof of Theorem 3.3. To simplify the proof we introduce the constants

Cρ := C1

(
‖ρ1

h‖20,Ω + ‖2ρ1
h − ρ0

h‖20,Ω
)
,

Cu := C2

(
‖f‖2L∞(0,T,L2(Ω)) + ‖σ1

hu
1
h‖20,Ω + ‖2σ1

hu
1
h − σ0

hu
0
h‖20,Ω

)
.

We proceed by induction on n ≥ 2. We define the mapping

Φ :Wh ×Vh ×Qh →Wh ×Vh ×Qh, (26)

using the relation (
Φ(ρn+1

h ,un+1
h , pn+1

h ), (ζh,vh, qh)
)

Ω

=
1

2∆t

(
Dρn+1

h , ζh
)

Ω
+ ch1(un+1

h , ρn+1
h , ζh)+

1

2∆t

(
σn+1
h Dh(σn+1

h un+1
h

)
,vh)Ω + ah2(un+1

h ,vh)

+ ch2(ρn+1
h un+1

h ; un+1
h ,vh) + b(pn+1

h ,vh)− (fn+1,vh)Ω

− b(qh,un+1
h ).
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Note that this map is well-defined and continuous onWh×Vh×Qh. On the other hand, if we take

(ζh,vh, qh) =
(
ρn+1
h ,un+1

h , pn+1
h

)
,

and employ (23a), (23b), and (22), we obtain(
Φ(ρn+1

h ,un+1
h , pn+1

h ), (ρn+1
h ,un+1

h , pn+1
h )

)
Ω

≥ 3

2∆t
‖ρn+1

h ‖20,Ω −
1

2∆t
(4ρnh − ρn−1

h , ρn+1
h )Ω + |ρn+1

h |un+1
h ,upw

+
3

2∆t
‖un+1

h ‖20,Ω −
1

2∆t
(4unh − un−1

h ,un+1
h )Ω + α̃a‖un+1

h ‖21,Th
+ |un+1

h |2
un+1
h ,upw

− (fn+1,un+1
h )Ω.

Next, using (24) and Cauchy-Schwarz inequality, we deduce that(
Φ(ρn+1

h ,un+1
h , pn+1

h ), (ρn+1
h ,un+1

h , pn+1
h )

)
Ω

≥ 3

2∆t
‖ρn+1

h ‖20,Ω −
5

2∆t
Cρ‖ρn+1

h ‖0,Ω

α̃a‖un+1
h ‖20,Ω − ‖fn+1‖0,Ω‖un+1

h ‖0,Ω.

Then, setting

CR = min

{
3

2∆t
, α̃a

}
and Cr =

√
2 max

{
5

2∆t
Cρ, ‖f‖L∞(0,T,L2(Ω))

}
,

we may apply the inequality a+ b ≤
√

2(a2 + b2)1/2, valid for all a, b ∈ R, to obtain(
Φ(ρn+1

h ,un+1
h , pn+1

h ), (ρn+1
h ,un+1

h , pn+1
h )

)
Ω

≥ CR
(
‖ρn+1

h ‖20,Ω + ‖un+1
h ‖20,Ω

)
− Cr

(
‖ρn+1

h ‖20,Ω + ‖un+1
h ‖20,Ω

)1/2
.

Hence, the right-hand side is nonnegative on a sphere of radius r := Cr/CR. Consequently, by
Theorem 3.4, there exists a solution to the fixed-point problem Φ(ρn+1

h ,un+1
h , pn+1

h ) = 0, where the
fixed-point map (26) is the solution operator for the fully discrete problem (21).

Note that, even when uniqueness of the discrete scheme remains an open problem, our non-
exhaustive selection of numerical examples did not present any difficulties in this regard.

3.5 Semismooth Newton Linearization and multiplier approach

At each time iteration, we are left with a nonlinear system, which involves the non-differentiable
function associated with the Huber regularization | · |γ . This fact prevents us from proposing a
Newton iteration to solve such a system. Despite this drawback, our goal remains to have a fast-
converging method to solve this system. Thus, we propose a semismooth Newton (SSN) iteration,
which uses either Newton or slantly differentiation. For the sake of readability of the paper, we
provide the definition of slantly differentiation.

Definition 3.5. Let X and Y be two Banach spaces, and let D ⊂ X be an open domain. A
function F : D ⊂ X → Y is said to be slantly differentiable at x ∈ D if there exists a mapping
GF : D → L(X,Y ) such that the family {GF (x + h)} of bounded linear operators is uniformly
bounded in the operator norm for h sufficiently small and

lim
h→0

F (x+ h)− F (x)−GF (x+ h)h

‖h‖
= 0.
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The use of this differentiation concept is justified since it is well known that both the max
function and the Frobenius norm are slantly differentiable in finite-dimensional spaces (see [16, 24,
25] and references therein). Furthermore, the SSN approach has been shown to be efficient and
provides a linearization scheme that exhibits superlinear convergence when applied to discretized
viscoplastic models, as discussed in the aforementioned literature.

We also introduce a multiplier approach with an auxiliary tensor z such that |Du|γz = γτsDu.
The strategy is a particularly efficient numerical technique for solving viscoplastic flow problems in
which the nonlinearity is related to the unknown velocity gradient. Moreover, the new formulation
is equivalent to the original problem in the continuous case (this can be proven using the same
techniques as in [25, Proposition 3.7]). In the discrete case, we take zh ∈Wh, where

Wh :=
{

w ∈ L2(Ω) : w|K ∈ [Pk−1(K)]d×d, ∀K ∈ Th
}
,

and add the following equation:

(γτsDhu
n+1
h ,wh)Ω − (|Dhu

n+1
h |γzn+1

h ,wh)Ω = 0. (27)

Note that if we take wh =
Dhu

n+1
h

|Dhu
n+1
h |γ

(which is possible in the case k = 1 that we use for

our numerical tests, since un+1
h ∈ H(Div ; Ω) and Dhu

n+1
h |K ∈ [P0(K)]d×d), we can deduce the

inequality,

0 ≤ τsγ
∫

Ω

|Dhu
n+1
h |2

|Dhu
n+1
h |γ

dx = (zn+1
h ,Dhu

n+1
h )Ω.

which in turn allow us to maintain our stability and existence results. The additional tensor is
particular useful to improve the SSN convergence for large Reynolds number simulations.

Given the discussion above, the semismooth Newton linearization for system (21), including
(27), about (ρn+1

h ,un+1
h , pn+1

h , zn+1
h ), gives the following problem: find δρ ∈ Wh, δu ∈ Vh, δp ∈ Qh,

δz ∈Wh, such that, for all ζh ∈ Wh, vh ∈ Vh, qh ∈ Qh and wh ∈Wh, it holds that

3
2∆t

∫
Ω δρζh dx+ ch1,δ(u

n+1
h , δu, ρ

n+1
h , δρ, ζh) = − 1

2∆t

∫
Ω

(
Dρn+1

h ζh
)

dx− ch1(un+1
h , ρn+1

h , ζh) (28a)

3
2∆t

∫
Ω

(
(ρn+1
h δu + δρu

n+1
h

)
· vh) dx+ ãh2(δz; δu,vh) + b(δp,vh)

−
∫

Ω

τsχAγ
|JDhu

n+1
h K|3

(
JDhu

n+1
h K : JDhδuK

)
({{Dhvh}}ne : JDhuhK) dx

+ch2,δ(ρ
n+1
h , δρ,un+1

h , δu; un+1
h , δu,vh) = − 1

2∆t

∫
Ω

(
σn+1
h D(σn+1

h un+1
h

)
· vh) dx

−ãh2(zn+1
h ; un+1

h ,vh)− ch2(ρn+1
h un+1

h ; un+1
h ,vh)

−b(pn+1
h ,vh) +

∫
Ω fn+1 · vh dx,

(28b)

b(qh, δu) = −b(qh,un+1
h ), (28c)

γτs
∫

Ω Dhδu : wh dx− γ
∫

Ω

χAγ
|Dhu

n+1
h |

(
Dhu

n+1
h : Dhδu

)
(zn+1
h : wh) dx

−
∫

Ω |Dhu
n+1
h |γ δz : wh dx = −γτs

∫
Ω Dhu

n+1
h : wh dx+

∫
Ω|Dhu

n+1
h |γzn+1

h : wh dx,
(28d)
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where

ãh2(zh; uh,vh) :=

∫
Ω

(
νDhuh + zh : Dhvh

)
dx

+
∑
e∈Eh

∫
e

(
−{{(νDh(uh) + zh)ne}} · JvhK

− {{µ(|JDhuhK|γ)Dh(vh)ne}} · JuhK +
a0

he
JuhK : JvhK

)
ds.

(29)

Let us discuss the equation (28d), associated with the Huber term | · |γ . Here, we have that

χAγ :=

{
1, if |Dhuh| ≥ τs

γ

0, otherwise.

This function stands for the slantly derivative of the max term in |·|γ , and gives us a good esti-
mator of the approximated yielded and unyielded regions in the material, respectively [16]. The
regions in which χAγ = 1 are the active sets in the smoothing step and corresponds to the Huber
approximations of the yielded regions. Respectively, the regions where χAγ = 0, are the inactive
sets and correspond to the Huber approximations of the unyielded regions.

Next, let us focus on the convective forms ch1(uh, ρh, ζh) and ch2(ρhwh,uh,vh). These forms are
well posed due to the dG formulation and the analysis done in Section 3.4. In consequence, they
are differentiable with derivatives given by ch1,δ(uh, ρh, ζh) and ch2,δ(ρhwh,uh,vh)

ch1,δ(uh, δu; ρh, δρ, ζh) :=
∫

Ω(uh · ∇δρ + δu · ∇ρh)ζh dx

−
∑

e∈Eh
∫
e((δu · ne)JρhK + (uh · ne)JδρK){{ζh}}ds

+
∑

e∈Eh
∫
e

1
2

uh·ne
|uh·ne|(δu · ne)JρhK · JζhK ds

+
∑

e∈Eh
∫
e

1
2 |uh · ne|JδρK · JζhK ds

and

ch2,δ(ρh, δρ,wh, δw; uh, δu,vh) :=
∫

Ω((ρhδw + δρwh) · ∇h)uh · vh dx+
∫

Ω(ρhwh · ∇h)δu · vh dx

+1
2

∫
Ω(∇ · (δρwh + ρhδw)uh +∇ · (ρhwh)δu) · vh dx

−
∑

e∈Eh
∫
e((δρwh + ρhδw) · ne)JuhK + (ρhwh · ne)JδuK) · {{vh}}ds

+
∑

e∈Eh
∫
e

(
1
2 |ρhwh · ne|JδuK + 1

2
ρhwh·ne
|ρhwh·ne|(δρwh + ρhδw) · neJuhK

)
· JvhK ds.

Summarizing, we can conclude that system (28) is well-posed (see [25] for further details).
Moreover, by following a similar analysis as the one in [16], we can state that the SSN iteration
converges superlinearly locally. This assertion will be computationally confirmed in the numerical
experiments carried out in the next section.

4 Numerical results

In this section, we test the performance of the numerical method on a set of quasi-uniform trian-
gulations of the respective domain. The implementation of the H(div)-conforming finite element
scheme is carried out using the open source finite element library FEniCS [2] and polynomial degree
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Figure 2: lid-driven cavity: Velocity vector field stream lines/inactive sets (Iγ , dark gray) and
constant density for τs = 0.0 (left) and τs = 2.5 (right), at time t = 0.5. Parameters: Re = 100

k = 1. The linear systems encountered at each Semismooth Newton step are solved with the mul-
tifrontal massively parallel sparse direct solver MUMPS. The Newton iterations terminate when
either the absolute or the relative residuals (measured in the `2-norm) fall below a fixed tolerance
of 1× 10−5.

4.1 Constant Density

We start by testing a standard two-dimensional lid-driven cavity with constant density at Re=100,
to verify that our method does not introduce spurious variations in density. As shown in Figure
2, using a 100 × 100 mesh, the method preserves constant density, and the velocity streamlines,
as well as the active/inactive zones, are in good agreement with similar examples computed using
other numerical schemes (see i.e [9], [25], [16], [38]).

Usually, there are two main criteria for approximating the yielding and unyielding zones numer-
ically. One is to compute a threshold in terms of the norm of the deviatoric part of the stress tensor
(σd), known as the von Mises criterion. The other is to define the threshold in terms of the magni-
tude of the shear rate (Du), as proposed in [41]. As depicted in Figure 3, the two criteria are highly
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Figure 3: lid-driven cavity: Fraction of cells corresponding to the active zone at different times,
computed with different criteria for the threshold. Parameters: τs = 2.5, γ = 1× 103, Re = 100.

Figure 4: lid-driven cavity: Fraction of cells corresponding to the active zone computed with
different γ values. Parameters: τs = 2.5, Re = 100.

consistent in our scheme, with only a small difference in the first Euler time iteration. Therefore,
we define the active/inactive zones based on the magnitude of the shear rate and calculated using
the approximation shown in equation (7) for the remainder of this section.

We also test the impact of the regularization parameter γ on the size of the active/inactive zone.
In Figure 4, we present the fraction of cells corresponding to the active zone at different times and
using different values for γ. Note that the zone size largely changes for values below 1× 102.
Theoretically, the approximation improves as γ → ∞. However, the condition of the resultant
matrix deteriorates as γ increases. From now on, we fix γ = 1× 103 as a trade-off between these
competing criteria.
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h eu rate ep rate ‖divuh‖∞,Ω

0.5 1.0142 — 8.5903 — 2.7756e-17

0.25 0.4797 1.0802 3.9553 1.1189 8.3267e-17

0.125 0.0979 2.2929 0.9309 2.0871 2.2205e-16

0.0625 0.0285 1.7800 0.2588 1.8466 5.5511e-16

0.03125 0.0071 1.9972 0.0909 1.5099 8.8818e-16

Table 1: Experimental errors and convergence rates for the approximate solutions uh, ph, where
the polynomial degree k = 1 is used. The `∞-norm of the vector formed by the divergence of the
discrete velocity computed for each discretization is shown in the last column.

4.2 Analytical Solution

Only a few analytical solutions are available for viscoplastic fluid problems. One such solution is
reported for the stationary Bingham fluid problem with constant density and velocity field u =
(u1, 0). In two dimensions is given by

u1 =


1
8 [(1− 2τ2

s )− (1− 2τs − 2y)2], if 0 ≤ y < 1
2 − τs

1
8(1− 2τs)

2, if 1
2 − τs ≤ y ≤

1
2 + τs

1
8 [(1− 2τs)

2 − (2y − 2τs − 1)2], if 1
2 + τs < y ≤ 1

(30)

which corresponds to the flow between two parallel plates.
We use this simplified setting to test the ability to recover analytical solutions and check the

convergence rates of the H(div)-conforming discretization for the Bingham fluid problem. We
consider Ω =]0, 1[×]0, 1[, η = 1.0, f = 0, and Dirichlet boundary conditions are imposed on the
domain according to (30). Table 1 shows the numerical error in the discrete norms

‖u‖0,Th :=

(
N∑
n=1

‖unh‖21,Th

)1/2

, and ‖p‖0,k :=

(
N∑
n=1

‖pnh‖2k,Ω

)1/2

.

The corresponding individual errors and convergence rates are computed as

eu = ‖u− uh‖0,Th , ep = ‖p− ph‖0,0,
rate = log(e(·)/ẽ(·))[log(h/h̃)]−1, (31)

where e, ẽ denote errors generated on two consecutive pairs of mesh size h, and h̃, respectively.
Notice that the convergence rates are higher than what is theoretically expected for Navier-

Stokes type problems (see, e.g., [28, 34]), but they are close to the expected rates (O(hk+1)) for the
Darcy equation (as reported in [34]). Furthermore, we observe that the total error is dominated by
the pressure approximation and that the discrete velocities are indeed divergence-free.

4.3 Viscous Rayleigh-Taylor Instability

As a test case, we consider the physically interesting problem of the development of Rayleigh-Taylor
instability in the viscous regime. This problem has been studied in previous works such as [20, 11],
which build upon the work by Tryggvason [45]. We consider a domain Ω =] − l/2, l/2[×] − 2l, 2l[
filled with two layers of fluid with varying density, initially at rest and subject to gravity. Note
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that, to allow for comparison with previous studies on the Navier-Stokes setting, we only consider
differences in the fluids’ density, and no other property. Thus, the yield stress is assumed to be the
same for both fluids. As proposed in [45], the interface at time t = 0, is given as follows:

ρ0(x, y) =
ρm + ρM

2
+
ρm − ρM

2
tanh

(
y − ω cos(2πx/l)

0.01l

)
,

where ρM > ρm > 0 and ω > 0 is the amplitude of the initial perturbation.
Set in l the representative column length; we define dimensionless variables as

ρ̃ =
ρ

ρm
, x̃ =

x

l
, t̃ =

t

l1/2g−1/2
, ũ =

u

l1/2g1/2
,

and we also define the following dimensionless numbers: The density ratio is measured by the
Atwood number,

At =
ρM − ρm
ρM + ρm

,

and the the Reynolds number is defined as

Re =
ρml

3/2g1/2

η
,

where η > 0 is the dynamic viscosity of the fluid and g is the gravitational acceleration (when τs > 0,
the maximum Reynolds number is reported). We take f = ρg, with g = (0,−g). Furthermore,
when presenting our numerical results for this example, we will use the time scale of Tryggvason
(we have tTry = t̃

√
At).

Making abuse of notation, in what follows, we will write it simply ρ, x, t and u, instead of ρ̃, x̃, t̃
and ũ, respectively, when no confusion can arise.

We compute the solution on the domain (−l/2, l/2) × (−2l, 2l) with the following boundary
conditions for the velocity field: u = 0 on the horizontal boundaries, and u = (0, v) with ∇u ·n = 0
on the vertical boundaries.

As a sanity check, we start by analyzing the case with a zero plasticity threshold, in order to
compare our qualitative results with previous works on Navier-Stokes variable density incompress-
ible flows. We set At = 0.5 (i.e., ρM = 3, ρm = 1) and an initial condition of ω = 0.1. We simulate
a low Reynolds case with Re = 1000 using a 100×100 cell mesh. Comparing our qualitative results
displayed for different time snapshots in Figure 5 with those presented in [5, Figure 4], [11, Figure
11], and [20, Figure 1], there is good agreement of the density profile in the early stages, with only
some differences observed at large times. As noted in [20], these differences can be expected since
an accurate and detailed prediction of the flow is usually difficult for t ≥ 1.5.

In Figure 6, we also test the same setting with different mesh sizes: 100 × 100 (40 000 cells),
200× 200 (160 000 cells), and 400× 400 (640 000 cells). The solutions largely agree between them,
and the main features of the solution are still present in the coarse mesh. However, the details of
counter-rotating swirls continue to improve with each refinement.

The influence of the yield stress τs is displayed in Figure 7, where ascending counter-rotating
vortices develop more slowly as the yield stress increases. As expected, the active set (Aγ) also
decreases. In fact, for the final test with a value of τs = 1.0, there is no vortex development at time
t = 1.75, with an almost imperceptible change in density interfaces.

The relative error for each SSN iteration is displayed in Figure 8 for the At = 0.5 setting,
τs = 0, 0.1, 0.5, and 1.0 for the first two time iterations. As can be seen, convergence is slower
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Figure 5: Rayleigh-Taylor instability. Top: Evolution of the density interface. Bottom: Velocity
vector field stream lines and inactive set (dark gray). Times: 0.1, 1.0, 1.5 and 2.0 (from left to
right). Parameters: τs = 0.0, Re = 1000, ω = 0.1
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Figure 6: Rayleigh-Taylor instability. Velocity stream lines and density interface at time t = 1.5
for 40 000, 160 000 and 640 000 cells. Parameters: τs = 0.0, Re = 1000, ω = 0.1

when τs is close to 0.1. In all cases, the second iteration converges faster. In general, fewer Newton
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Figure 7: Rayleigh-Taylor instability. Velocity stream lines and inactive set (Iγ , dark gray); and
density interface at time t = 1.75 for τs = 0.0, τs = 1× 10−1 and τs = 1.0. Parameters: Re = 1000,
ω = 0.1

iterations are required as the initial approximation improves across time iterations.
Now, we compare simulations employing two different Reynolds numbers: Re = 1000 and

Re = 3000. The results displayed in Figure 9 show similar behavior to what was described for
simulations of Newtonian fluids, in that viscosity plays no role in the velocity of the downward
motion of the heavy fluid (see [11, 20]). We observe that as the Reynolds number increases, the
velocity streamlines remain almost the same. However, note that rotating vortices are less developed
in our simulation than what has been reported for the Newtonian counterpart, due to the influence
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Figure 8: Rayleigh-Taylor instability: Relative Error vs SSN iterations for the first two time
iterations, with τs = 0.0, 0.1, 0.5 and 1.0. Parameters: ω = 0.1, ∆t = 0.1

of the plasticity threshold on the fluid dynamics. Additionally, the active zone (displayed in light
gray) slightly decreases as the Reynolds number increases.

4.4 Falling droplet

Now we investigate a droplet falling through a light fluid. The domain is Ω =]0, 0[×]l, 1.5l[, with
l = 2. At time t = 0 the fluid is at rest with initial density given by

ρ(x, y) =

{
15.0 if 0 ≤

√
(x− 1.0)2 + (y − 2.75)2 ≤ 0.1

1.0 elsewhere

The equations are made dimensionless by using the same reference quantities as in the previous
example. In our test, we use nonslip boundary conditions on all walls and a mesh of 40×60 cells. We
set Re = 1000 and test two cases: zero plasticity threshold (τs = 0) and τs = 1.0. The qualitative
results are displayed in Figures 10 and 11. As we increase the value of τs, the recirculation patterns
around the downward droplet’s path appear earlier, causing the droplet to split in half. While in
the zero threshold case, the split occurs once the droplet reaches the domain bottom, in the τs = 1.0
case, the split starts as early as the t = 2.0 snapshot. A closer look at the τs = 1.0 case shows how
the active zone moves following the droplet.

Finally, a direct extension of this experiment was performed using a three-dimensional domain
Ω =]0, 0, 0[×]l, 1.5l, l[ with l = 2, and a tetrahedral grid with 95832 cells. We set

ρ(x, y) =

{
20.0 if 0 ≤

√
(x− 1.0)2 + (y − 2.7)2 + (z − 1.0)2 ≤ 0.2

1.0 elsewhere,

Re = 1000 and plasticity threshold (τs = 0.5). As shown in Figure 12, it takes more time for the
droplet to cover the same vertical distance in the three-dimensional domain. It is also noticeable
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Figure 9: Rayleigh-Taylor instability. Velocity stream lines and inactive set (Iγ , dark gray); and
density interface at times t = 1.0 and 1.5 for Re=1000 (top) and Re=3000 (bottom). Parameters:
τs = 0.1, ω = 0.1

from the bottom image in Figure 12 how the active zone (in light grey) is smaller in this three-
dimensional case but grows as the droplet gains speed while following the path towards the bottom
of the cell.

Relative error for each SSN iteration is displayed in Figure 14. As in the previous tests, con-
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Figure 10: Falling Droplet: Density interface at times t = 0.1, 2.0 and 4.0 for τs = 0.0 (top) and
τs = 1.0 (bottom). Parameters: Re = 1000

vergence is slower for the first-time iterations (including the backward Euler step), and then it
becomes faster as the initial approximation for the SSN iterations improves.

5 Conclusions

In this work, we present a second-order divergence-conforming dG method for the case of Huber-
regularized Bingham flows with variable density. We introduce the Huber regularization and show
its qualitative advantages when used in this kind of model. The numerical scheme is based on a
discontinuous Galerkin formulation for the mass density equation, stabilized with an upwind term,
coupled with a divergence-conforming approximation of a Huber-type regularization of the Bingham
flow equation, and uses a BDF2 scheme for the time integration of the mass conservation and
momentum equations. In each time step, we solve the resulting system of the space discretization
using a Semismooth Newton Iteration, which is suitable due to the Huber regularization step. We
prove the stability of the continuous problem and the stability of the full-discrete scheme. To
verify the correctness of the method, we compare our qualitative results with test cases previously
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Figure 11: Falling Droplet. Velocity vector field stream lines and inactive set (Iγ , dark gray); at
times t = 1.0, 2.0 and 3.0. Parameters: τs = 1.0, Re = 1000

considered in the literature. For instance, when simulating the evolution of the Rayleigh-Taylor
instability of the interface between fluids of different densities, the results of the method with
a low yield stress threshold agree with the variable density Navier-Stokes computations in [11,
20], especially in the early stages of vortex formation and roll-up. Furthermore, simulations with
different mesh refinements show that we can still capture the main features of the density front
even with rather coarse meshes, while finer details improve with mesh refinement. The spatial
convergence analysis conducted for the stationary Bingham test problem indicates that the H(div)-
conforming method is accurate enough to consider the computed solutions for the homogeneous
Bingham case as a reliable base for model extensions, such as the variable density case studied
here. We leave open for future studies the more complex case where the variation in density also
affects the rheological model, for instance, through a change in the yield stress. Nevertheless, we
consider our results to support the general conclusion that the scheme is worthy of attention for
the numerical approximation of complex fluids with yield.
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[11] C. Calgaro, E. Creusé and T. Goudon. An hybrid finite volume-finite element method
for variable density incompressible flows. J. Comput. Phys. 227, 9 (2008), 4671–4696.

[12] R. Chatelin and P. Poncet. A parametric study of mucociliary transport by numerical
simulations of 3D non-homogeneous mucus. Journal of Biomechanics, 49(2016), 1772–1780.

31
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