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Abstract

The ability to deal with complex geometries and to go to higher orders is the main

advantage of space-time finite element methods. Therefore, we want to develop a solid

background from which we can construct appropriate space-time methods. In this pa-

per, we will treat time as another space direction, which is the main idea of space-time

methods. First, we will briefly discuss how exactly the vectorial wave equation is derived

from Maxwell’s equations in a space-time structure, taking into account Ohm’s law. Then

we will derive a space-time variational formulation for the vectorial wave equation using

different trial and test spaces. This paper has two main goals. First, we prove unique

solvability for the resulting Galerkin–Petrov variational formulation. Second, we analyze

the discrete equivalent of the equation in a tensor product and show conditional stability,

i.e. a CFL condition.

Understanding the vectorial wave equation and the corresponding space-time finite ele-

ment methods is crucial for improving the existing theory of Maxwell’s equations and

paves the way to computations of more complicated electromagnetic problems.

1 Introduction

1.1 Derivation of the vectorial wave equation

Before we discuss the vectorial wave equation, let us derive the equation first. For that purpose,
we need to take a closer look at Maxwell’s equations which are used to model electromagnetic
problems and are the foundation of classical electromagnetism. Maxwell’s equations are given
by a system of partial differential equations, namely

curlx E = −∂tB, (1a)

curlx H = ∂tD + j, (1b)

divxB = 0, (1c)

divxD = ρ. (1d)

In equation (1), there are four unknowns: The electric field E, the magnetic field H, the
electric flux density D and the magnetic flux density B. The variable j is the given electric
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current density and ρ is the given charge density. Additionally to the Maxwell system (1) we
use constitutive relations, also named material laws, relating the electric flux density D with
the electric field E and the magnetic field H with the magnetic flux density B. In this paper,
we will consider the constitutive relations

D = εE, (2a)

H = µB, (2b)

where ε is the permittivity and µ the permeability, which we define in Assumption 1 in more
detail.

How to solve the Maxwell system (1) has been an active field of study in the last cen-
tury. One possible solution is going into the frequency domain. For that purpose, we assume
that the solutions of system (1) behave like waves in time. In the literature, we find sev-
eral introductions to Maxwell’s equations. We will not discuss the modeling background in
the frequency domain in this paper but simply refer to some of these works such as [33, 19]
or, from a mathematical and numerical point of view [6, 28]. A good introduction to the
computational theory of the frequency domain would be [6, 34]. In the last century, the
time-harmonic Maxwell’s equations were often applied to scattering problems, see e.g. [24].
Analytical solutions to scattering problems can be found in [18] and theory on inverse scatter-
ing and optimal control in scattering by Colton and Kress in 1983, [13]. For an introduction
to inverse scattering problems, we refer to [14].

Another possibility to solve Maxwell’s equations (1) is the time-stepping method which is
introduced in e.g. [1, Ch. 12.2] and references there. However, the time-stepping approach
exhibits instabilities. A possibility to deal with these complications is to stabilize the system
which is created by the time-stepping method. Examples can be found in, e.g., [2, 3, 29].
However, since the time-stepping method is a type of finite difference method, it cannot deal
with complex geometries.

The possibility to deal with complex geometries as well as going into higher order is the
main advantage of space-time finite element methods. In this paper, we will set the theoretical
background that is needed for such a method and explore the possibilities and restrictions of
the vectorial wave equation that is derived from Maxwell’s equations. We will also study
elements of second order in time when we apply the theory to a finite element method. The
goal of this paper is to derive a space-time variational formulation for the vectorial wave
equation, show its unique solvability and analyze its numerical properties.

First, we will start by deriving the vectorial wave equation from Maxwell’s equations. For
the modeling, we will assume that all functions in (1) are smooth and we consider a space-time
domain Q in R

4 which is star-like with respect to a ball Br and Lipschitz in space. The star-
like property implies that the convex hull of any x ∈ Q and Br is contained in Q. Let us not
treat time differently from space, but rewrite the equations such that the partial derivative in
time is simply a partial derivative of a space-time derivative and therefore rewrite Maxwell’s
equations into a 4D system of equations. For this purpose, we use the exterior calculus, which
allows for a metric-independent generalisation of Stokes’ and Gauss’ theorem. In the exterior
calculus, we consider the exterior derivative d, which extends the concept of the derivative of
a function to differential forms of higher degree. This allows us to rewrite Maxwell’s equations
as a wave equation and implies which function spaces are a natural choice for the test and
ansatz spaces of the variational formulation for this wave equation.
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Let us therefore formulate Maxwell’s equations using the exterior calculus. A detailed
introduction to the formalism can be found, for example, in [23, 7]. Here we only give the
most important considerations for deriving the vector wave equation. In this context, there
are two important differential forms, namely the Faraday 2-form F and the Maxwell 2-form
G. The Faraday 2-form F contains the electric field E and the magnetic flux density B, while
the Maxwell 2-form contains the electric flux density D and the magnetic field H. The source
term J appears on the right-hand side and includes the current density j and the charge
density ρ. On the other side, we want to include the material law (2). This is done by using
a weighted Hodge star operator ⋆ε,−µ

−1
, which maps the Faraday 2-form F to the Maxwell

2-form G using the material law (2).
If these definitions are inserted into Maxwell’s equations and a metric-independent repre-

sentation is used, the following equations are obtained

d F = 0,

d G = J , (3)

G = ⋆ε,−µ
−1
F.

For the derivation of the equations consider [9] or [8, p. 135]. The third equation represents
the material law (2) and includes the weighted Hodge star operator. As an example for R
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with the Euclidean metric ε is the weight in the direction ⋆(dx01,dx02,dx03)T and (−µ−1) in
the direction ⋆(dx23,dx31,dx12)T .

Let us take a closer look at the equations in (3). The second equation, d G = J , includes
the second, (1b), and fourth equation, (1d), of the system (1). The first equation, d F = 0,
includes the first, (1a), and third equation (1c) of the system (1). Moreover, the first
equation in (3) implies that the Faraday form F is closed and since the domain Q is starlike,
the Poincaré-Lemma, [7, Thm. 4.1], can be applied. The Poincaré-Lemma tells us that the
form F is closed and therefore exact, i.e. there exists a 1-form A such that dA = F.

If we insert F = dA into the second equation combined with the third equation of (3), we
derive the following wave-type equation

d ⋆ε,−µ
−1

dA = J . (4)

Additionally, we have the following two relations

E = −∂tA+∇xA0,

B = ∇×A,

where A0 is the time component and A := (A1, A2, A3)
T the spatial component of A, see

e.g. [23, p. 389]. Note that (4) will result in the scalar wave equation if we use a differential
form of order zero instead of order one for A, while the equation (4) as such will end up in
the vectorial wave equation. Hence, in terms of differential forms in 4D, the scalar and the
vectorial wave equation are closely related.

Moreover, we know that A is not unique. If we take a 0-form Ã and add dÃ to A then
F = dA = dA+ddÃ = d(A+dÃ). If we take a look at the corresponding L2 function spaces,
we see that this translates to adding the space-time gradient of any H1

0 (Q)-function to the
potential and getting another viable potential. Hence we need a gauge to fix the potential A.
There are many gauges, see e.g. a paper from 2001 on the history of gauge invariance [25].
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Depending on the gauge we can derive different equations from (4). To derive the vectorial
wave equation, we use the Weyl gauge, also named the temporal gauge, A0 = 0. Then we
consider (4) in euclidean space and arrive at

∂t(ε(∂tA)) + curlx
(
µ−1 curlxA

)
= j, (5a)

divx(ε(∂tA)) = −ρ. (5b)

Note that the equation (5a) is the vectorial wave equation. In addition to these two equations,
we assume that the charge is preserved and therefore the continuity equation

∂tρ+ divxj = 0 (6)

holds true. However, this implies assumptions on the regularity of A and j since we are inter-
ested in the second-order time derivative of A and the divergence of j. This will be discussed
further in the section on finite element solutions. The continuity equation is, however, already
included in the combination of both equations of (5). On the other hand, we can rewrite the
second equation (5b) into initial conditions for ∂tA. Indeed, if we assume enough regularity of
A, ρ, and j, we can take the spatial divergence of the first equation (5a) and use the continuity
equation to derive

∂t(divx(ε∂tA(t)) + ρ) = 0.

Hence divx(ε∂tA(t))(t)+ρ(t) = divx(ε∂tA(t))(0)+ρ(0), for all t ∈ (0, T ]. Therefore, if ∂tA(0)
satisfies

divx(ε∂tA(0)) = −ρ(0)

then we satisfy (5b) for all t > 0.

1.2 The vectorial wave equation under consideration of Ohm’s law

Now that we derived the vectorial wave equation, let us take a look at Ohm’s law. In the case
of a conducting material, the electromagnetic field itself induces currents and in the easiest
case this can be modeled by Ohm’s law. Hence, we want to include Ohm’s law into our
equation which is given by

j = σE + j
a
,

where σ is the conductivity and j
a

the applied current. The relationship between E and the
magnetic vector potential A is given by E = −∂tA. Therefore, in this paper, we consider the
following equation

ε∂ttA+ σ∂tA+ curlx(µ
−1 curlxA) = j

a
in Q = (0, T )× Ω, (7a)

∂tA(0, x) = ψ(x) in Ω, (7b)

A(0, x) = φ(x) in Ω, (7c)

γtA = 0 on Σ = {0, T} × ∂Ω, (7d)

where γt is the tangential trace of A on Ω.
Before we state the general assumption of this paper on the functions in (7), we have to

define a few function spaces that will be used throughout this paper. First, we define for
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Q ⊂ R
d, d ∈ N, the space L2(Q;Rd) as the usual Lebesgue space for vector-valued functions

v : Q → R
d with the inner product (v,w)L2(Ω) := (v,w)L2(Ω;Rd) :=

∫

Q(v(x), w(x))Rddx for

v,w ∈ L2(Q;Rd) and the induced norm ‖·‖L2(Q) := ‖·‖L2(Q;Rd) :=
√

(·, ·)L2(Q). Second, we

define L∞(Ω;R) := L∞(Ω) for Ω ⊂ R
d, d ∈ N, as the space of measurable functions bounded

almost everywhere and equipped with the usual norm ‖·‖L∞(Ω). Third, we define the space

L∞(Ω;Rd×d), d ∈ N, as the space of matrix-valued measurable functions bounded almost
everywhere with the norm

‖w‖L∞(Ω) := ‖w‖L∞(Ω;Rd×d) := ess sup
x∈Ω

sup
06=ξ∈Rd

ξ⊤w(x)ξ
ξ⊤ξ

.

Finally, we define space-time spaces L2(0, T ;X) with the inner product (v,w)L2(0,T ;X) :=
∫ T
0 (v(t), w(t))Xdt and L1(0, T ;L2(Ω;Rd)) with the norm ‖v‖2,1,Q := ‖v‖L1(0,T ;L2(Ω;Rd)) :=
∫ T
0 ‖v‖L2(Ω)dt in the same way as above. Additionally, we can define the space H1(0, T ;X)

as the Hilbert space H1(0, T ) over the Hilbert space X, see [21] for more details.
With these definitions we define the tangential trace operator γt for d = 3 as the contin-

uous mapping γt : H(curl; Ω) → H−1/2(∂Ω;R3). The tangential trace operator is the unique
extension of the vector-valued function γtv = v|∂Ω × nx for v ∈ H1(Ω)3 that is defined by
the Green’s identity for the curl operator. For d = 2 we define the tangential trace operator
γt : H(curl; Ω) → H−1/2(∂Ω) as the unique extension of the scalar function γtv = v|∂Ω · τx for

v ∈ H1(Ω)2, where τx is the unit tangent vector, i.e., τx · nx = 0. We define the usual trace
operator γ : H1(Ω,Rd) → H1/2(∂Ω;Rd) as γv := (v)|∂Ω for d ∈ N and H−1/2(∂Ω) is the dual

space of the Sobolev space H1/2(∂Ω). For more details on the tangential trace operator γt,
consider [15, 4, 6].

For detailed definitions of the spaces H0(curl; Ω) := {v ∈ H(curl; Ω) | γtv = 0} and
H(div; Ω), we reference [6]. However, we quickly note how the curl operator behaves dif-
ferently in two and three dimensions. For d = 2, we set the curl of a sufficiently smooth
vector-valued function v : Ω → R

2 with v = (v1, v2)
⊤ as the scalar-valued curl operator

curlx v = ∂x1v2 − ∂x2v1. Sometimes this curl operator is called rot. Additionally, for a
sufficiently smooth scalar function w : Ω → R, we define the vector-valued curl operator
curlxw = (∂x2w,−∂x1w)⊤. Note that the vector-valued curl operator is the adjoint operator
of the scalar-valued curl operator for d = 2.
In the case of d = 3, the curl of a sufficiently smooth vector-valued function v : Ω → R

3 with
v = (v1, v2, v3)

⊤ is given by the vector-valued function

curlx v = (∂x2v3 − ∂x3v2, ∂x3v1 − ∂x1v3, ∂x1v2 − ∂x2v1)
⊤ .

With these definitions, we can write the following assumptions that hold throughout the
paper.

Assumption 1. Let d = 2, 3 and the spatial domain Ω ⊂ R
d and supp(σ) ⊂ R

d, σ : Ω →
R
d×d, be given such that

• Ω and Ωσ := supp(σ) ⊂ Ω are Lipschitz domains,

• and Q = (0, T )× Ω is a star-like domain with respect to a ball B.

Further, let σ, j, ε and µ be given functions, which fulfill:
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• The conductivity σ ∈ L∞(supp(σ);Rd×d), supp(σ) ⊂ Ω, is uniformly positive definite,
i.e.

σmin := ess inf
x∈supp(σ)

inf
06=ξ∈Rd

ξ⊤σ(x)ξ
ξ⊤ξ

> 0.

• The applied current density j
a
: Q→ R

d satisfies j
a
∈ L1(0, T ;L2(Ω;Rd)).

• The permittivity ε : Ω → R
d×d is symmetric, bounded, i.e. ε ∈ L∞(Ω;Rd×d), and

uniformly positive definite, i.e.,

εmin := ess inf
x∈Ω

inf
06=ξ∈Rd

ξ⊤ε(x)ξ
ξ⊤ξ

> 0

and εmax := ‖ε‖L∞(Ω).

• For d = 2, the permeability µ : Ω → R satisfies µ ∈ L∞(Ω;R), µmax := ‖µ‖L∞(Ω), and

µmin := ess inf
x∈Ω

µ(x) > 0.

For d = 3, the permeability µ : Ω → R
3×3 is symmetric, bounded, i.e. µ ∈ L∞(Ω;R3×3),

µmax := ‖µ‖L∞(Ω), and uniformly positive definite, i.e.,

µmin := ess inf
x∈Ω

inf
06=ξ∈R3

ξ⊤µ(x)ξ
ξ⊤ξ

> 0.

For the initial data φ and ψ we assume that:

• The initial data φ : Ω → R
d satisfies φ ∈ H0(curlx; Ω).

• The initial data ψ ∈ H(divx; Ω) satisfies divx(εψ) = −ρ(0) in Ω.

Now that the assumptions are stated and the vectorial wave equation is introduced, let
us take a look at the structure of the rest of the paper. In the remainder of this section,
we will introduce the function spaces that are needed to formulate the space-time variational
formulation of the vectorial wave equation. We will discuss that they are indeed Hilbert
spaces and go over possible basis representations. At the end of this section, we will derive
the variational formulation. The second section of this paper is dedicated to the proof of
unique solvability for the variational formulation and norm estimates of the solution. In this
proof, we will use a Galerkin method and use the previously developed basis representation.
In the third section of this paper, we will discuss the space-time finite element spaces and
discretization. We will derive a CFL condition and take a look at examples that illustrate this
CFL condition. In the end, we will sum up the conclusions and give an outlook.

1.3 The space-time Sobolev spaces

To derive a variational formulation, we need to consider the appropriate function space for
the potential A satisfying (4). In this section, we will derive them and show properties that
will be needed in this paper.
To derive the function spaces let us assume for a moment that d = 3, then Q ⊂ R

4. From
the derivation of the magnetic vector potential A we know that A is a 1-form in R

4. For
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1-forms the corresponding function space in the L2-Hilbert complex in R
4 is H(Curl, Q;R4),

see e.g. [36]. The space H(Curl, Q;R4) is defined by

H(Curl, Q;R4) := { u ∈ L2(Q;R4) | Curl u ∈ L2(Ω;K) },

[Curl u]ij :=
4∑

k,l=1

εijkl∂kul,

see e.g. [36], where K is the vector space of 4 × 4 skew symmetric matrices. Note, that
the operator Curl is an operator in both space and time. Additionally, we use the Weyl
gauge, the temporal gauge which implies A0 = 0, to make the potential A unique in the
derivation of the vectorial wave equation. Hence, we are interested in a function of the
type (0, A1, A2, A3)

T that is in H(Curl, Q;R4). Rewriting the operator Curl for A0 = 0 and
A = (A0, A)

T ∈ H(Curl, Q;R4) leads to the conditions

A ∈ L2(Q,R3), curlxA ∈ L2(Q,R3), and ∂tA ∈ L2(Q,R3). (8)

Before we define the appropriate function space, we take a quick look at the coefficients
in the vectorial wave equation (7). When we will formulate a variational formulation for the
equation (7), we will use the weighted L2(Ω;Rd)-inner products

(u, v)L2
ε(Ω) := (εu, v)L2(Ω) ,

(u, v)L2
µ(Ω) :=

(
µ−1u, v

)

L2(Ω)
,

for v, w ∈ L2(Ω;Rd) and the H0(curl; Ω)-inner product

(u, v)H0,ε,µ(curl;Ω) := (u, v)L2
ε(Ω) + (curlx v, curlxw)L2

µ(Ω),

for v, w ∈ H0(curl; Ω). Note, that due to the Assumption 1 the norms ‖·‖L2
ε(Ω) and ‖·‖H0,ε,µ(curl;Ω),

induced by (·, ·)L2
ε(Ω) and (·, ·)H0,ε,µ(curl;Ω), are equivalent to the standard norms ‖·‖L2(Ω) and

‖·‖H0(curl;Ω), respectively.
Now let us define the function spaces which we will be using from this point on. Combining

the conditions in (8) results in the following spaces

Hcurl;1
0;0, (Q) := { u ∈ L2(Q,Rd) | ∂tu ∈ L2

ε(Q), curlx u ∈ L2
µ(Q), u(0, x) = 0 for x ∈ Ω,

γtu = 0 on Σ = (0, T ) × ∂Ω } (9)

= L2(0, T ;H0(curl; Ω)) ∩H1
0,(0, T ;L

2(Q,Rd)),

Hcurl;1
0;,0 (Q) := { u ∈ L2(Q,Rd) | ∂tu ∈ L2

ε(Q), curlx u ∈ L2
µ(Q), u(T, x) = 0 for x ∈ Ω,

γtu = 0 on Σ } (10)

= L2(0, T ;H0(curl; Ω)) ∩H1
,0(0, T ;L

2(Q,Rd)).

The subscript ’0,’ and ’, 0’ stands for zero initial and zero end conditions. In Lemma 1.2 we
will see that they are well defined.

Since Hcurl;1
0; (Q) is the kernel of a bounded space-time trace it is quite natural to assume

that Hcurl;1
0; (Q) is a Hilbert space. We will quickly discuss whether this is indeed true and we

state in which concept C∞(Q)-functions are dense in our space. We end up looking at the
seminorm in this setting which is a good tool for numerical analysis.
So let us start with showing that Hcurl;1

0;0, (Q) and Hcurl;1
0;,0 (Q) are Hilbert spaces.
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Lemma 1.1. Let d = 2, 3. The space H1(0, T ;L2(Ω;Rd)) is isometric to the Hilbert tensor
product H1(0, T )⊗̂L2(Ω;Rd) and the space L2(0, T ;H(curl; Ω)) is isometric to the Hilbert ten-
sor product L2(0, T )⊗̂H(curl; Ω).
Addtionally the space C∞(0, T )⊗[C∞(Ω)]d is dense in

H1(0, T )⊗̂L2(Ω;Rd) and L2(0, T )⊗̂H(curl; Ω)

and C∞([0, T ])⊗[C∞
0 (Ω)]d is dense in L2(0, T )⊗̂H0(curl; Ω).

See Aubin [11], Thm. 12.7.1 and Thm. 12.6.1. . The second result follows with [27, Ch
1.6.]. Here, ⊗ denotes the tensor product and ⊗̂ the tensor product of Hilbert spaces, where
the resulting space is a Hilbert space itself. Hence we get that C∞(0, T ;C∞(Ω)d) is dense in
both spaces H1(0, T ;L2(Ω;Rd)) and L2(0, T ;H(curl; Ω)) and therefore is dense in the inter-

sections Hcurl;1
0;0, (Q) and Hcurl;1

0;,0 (Q).

Lemma 1.2. The spaces Hcurl;1
0;0, (Q) and Hcurl;1

0;,0 (Q) are Hilbert spaces equipped with the inner
product

(u, v)Hcurl;1(Q) := (u, v)L2(Q) + (∂tu, ∂tv)L2
ε(Q) + (curlx u, curlx v)L2

µ(Q) (11)

for all u, v ∈ Hcurl;1
0; (Q). Additionally the initial and end conditions are well defined in

Hcurl;1
0; (Q)

Proof. Since the embedding H1(0, T ;L2(Ω;Rd)) ⊂ C([0, T ], L2(Ω;Rd)) is continuous, see [21,
Prop 23.23], we get that H1(0, T ;L2(Ω;Rd)) ⊂ L2(Q;Rd) is continuously embedded, see
[21, Prop 23.2], and since H0(curl; Ω) ⊂ L2(Q;Rd) that L2(0, T ;H0(curl; Ω)) ⊂ L2(Q;Rd)
is continuously embedded, see [21, Prop 23.2]. We know that L2(Q;Rd) is continuously
embedded in the Hausdorff space M0, see [22, Thm. I.1.4], where space M0 consists of
all Lebesgue measurable functions defined on Q that are finite a.e.. Therefore the pair
(H1(0, T ;L2(Ω;Rd)), L2(0, T ;H0(curl; Ω))) is a compatible couple, while a compatible pair
consists of two linear subspaces of a larger vector space. In that case the intersection of both
spaces is again a linear subspace of the larger space and a Banach space with the maximum of
both norms, i.e. H1(0, T ;L2(Ω;Rd)) ∩ L2(0, T ;H0(curl; Ω)) is a Banach space with the norm

‖u‖H1(0,T ;L2(Ω;Rd))∩L2(0,T ;H0(curl;Ω)) = max{‖u‖H1(0,T ;L2(Ω;Rd)), ‖u‖L2(0,T ;H0(curl;Ω))},

see [22, Thm. III.1.3]. Now, (11) defines a norm that is induced by the inner product and it

is equivalent to the above norm. Hence Hcurl;1
0; (Q) is a Hilbert space.

Because the embedding H1(0, T ;L2(Ω;Rd)) ⊂ C([0, T ], L2(Ω;Rd)) is continuous we get well

defined and continuous traces to the boundaries {t = 0} ×Ω and {t = T} ×Ω for Hcurl;1
0; (Q).

Since the spaces Hcurl;1
0;0, (Q) and Hcurl;1

0;,0 (Q) are the kernels of these traces, we derive that they

are closed subsets of the Hilbert space Hcurl;1
0; (Q).

Lemma 1.3. For the spaces Hcurl;1
0;0, (Q) and Hcurl;1

0;,0 (Q) there exists cf > 0 such that

‖u‖L2(Q) ≤ cf‖∂tu‖L2(Q)
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for all u ∈ Hcurl;1
0;0, (Q) or u ∈ Hcurl;1

0;,0 (Q), d = 2, 3. Therefore the seminorm

|u|2Hcurl;1(Q) := ‖∂tu‖2L2
ε(Q) + ‖ curlx u‖2L2

µ(Q),

is an equivalent norm in Hcurl;1
0;0, (Q) and Hcurl;1

0;,0 (Q).

This can be proved simply by using the Poincaré-inequality in H1(0, T ) and the structure
of the norm ‖.‖H1(0,T ;X), see e.g. [16, Sec. 4.1] for more details.

1.3.1 Basis representations

To derive a basis representation in Hcurl;1
0; (Q) we first have to state how we decompose

H0(curl; Ω). The basis representation of Hcurl;1
0; (Q) will be used in the proof of the main

theorem on uniqueness and solvability. To understand the proof better, we will quickly derive
the decomposition. Let us define the subspace

H(div ǫ0;Ω) :=
{

f ∈ L2(Ω;Rd) : divx(ǫf) = 0
}

⊂ L2(Ω;Rd)

endowed with the weighted inner product (·, ·)L2
ǫ (Ω), whereas the subspace

X0,ǫ(Ω) := H0(curl; Ω) ∩H(div ǫ0;Ω) ⊂ H0(curl; Ω)

is equipped with the inner product (·, ·)H0,ǫ,µ(curl;Ω). With this notation, we recall a crucial
decomposition result, the Helmholtz-Weyl decomposition (12) of H0(curl; Ω).

Lemma 1.4. Let Assumption 1 be satisfied. Then, the the orthogonal decomposition

H0(curl; Ω) = ∇xH
1
0 (Ω)⊕X0,ǫ(Ω) (12)

is true, where the orthogonality holds true with respect to (·, ·)H0,ǫ,µ(curl;Ω), (·, ·)H0,µ(curl;Ω) and
(·, ·)L2

ǫ (Ω).

Proof. For d = 3, the result is stated in [15, Proposition 7.4.3]. Additionally, for d ∈ {2, 3},
the decompositions follow from properties of the corresponding de Rham complexes, see e.g.
[17, Section 2.3], [10, Lemma 2.7, Lemma 3.6, Theorem 5.5].

Lemma 1.5. The space H0(curl; Ω) has a fundamental system {ϕ
k
}k∈Z which is orthonormal

in the L2
ε(Ω)-product. Additionally {ϕ

k
}k∈Z is constructed in such a way that for every k ∈ N0

there exists a λk > 0 such that

(curlx ϕk, curlx v)L2
µ(Ω) = λk(ϕk, v)L2

ε(Ω)

for all v ∈ X0,ε(Ω) and for k ∈ Z\N0 there exists a λk > 0 and φk ∈ H1
0 (Ω) such that

ϕ
k
= ∇xφk and

(∇xφk,∇xv)L2
ε(Ω) = λk(φk, v)L2

ε(Ω).

for all v ∈ H1
0 (Ω).
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Proof. For ∇H1
0 (Ω) we get an orthonormal basis from the Laplace eigenvalue problem:

Find (λk, φk) ∈ (R,H1
0 (Ω)), k ∈ Z\N0, such that for all v ∈ H1

0 (Ω)

(∇xφk,∇xv)L2
ε(Ω) = λk(φk, v)L2

ε(Ω) and ‖∇xφk‖L2
ε(Ω) = 1.

The solution to the eigenvalue problem is a non-decreasing sequence of related eigenvalues
λk > 0, satisfying λk → ∞ as k → −∞, see [35, Section 4 in Chapter 4].

Next, we investigate the eigenvalue problem:
Find (λk, ϕk) ∈ (R,X0,ε(Ω)), k ∈ N0, such that for all v ∈ X0,ε(Ω)

(ϕ
k
, v)H0,ε,µ(curl;Ω) = (1 + λk)(ϕk, v)L2

ε(Ω) and
∥
∥
∥ϕ

k

∥
∥
∥
L2
ε(Ω)

= 1. (13)

The set of eigenfunctions {ϕ
k
∈ X0,ε(Ω) : k ∈ N0} form an orthonormal basis of H(div ε0;Ω)

with respect to (·, ·)L2
ε(Ω). Additionally the nondecreasing sequence of related eigenvalues

(1 + λk), satisfying λk → ∞ as k → ∞, see [15, Theorem 8.2.4]. Note that λk > 0, k ∈ N0.
This can be shown by estimating

0 < cP (ϕk, ϕk)L2
ε(Ω) ≤ (curlx ϕk, curlx ϕk)L2

µ(Ω) = (ϕ
k
, ϕ

k
)H0,ε,µ(curl;Ω) − (ϕ

k
, ϕ

k
)L2

ε(Ω) = λk

using the Poincaré-Steklov inequality, see e.g. [5, Lem. 44.4], and the variational formula-
tion (13) for v = ϕ

k
to get the desired result.

Moreover, the set {(1+λk)
−1/2ϕ

k
∈ X0,ε(Ω) : k ∈ N0} is an orthonormal basis of X0,ε(Ω)

with respect to (·, ·)H0,ε,µ(curl;Ω) by construction, see (13), and since X0,ε(Ω) ⊂ H(div ε0;Ω).
Additionally, we see that the set {ej ∈ X0,ε(Ω) : j ∈ N0} is also orthogonal with respect to
(curlx ·, curlx ·)L2

µ(Ω) since it is an equivalent norm in X0,ε(Ω) because of the Poincaré-Steklov

inequality, see [5, Lem. 44.4].
Then, by using Lem. 1.4 we arrive at the desired orthonormal basis of H0(curl; Ω) with the set
{∇φk}k∈Z\N0

∪{(1+λk)−1/2ϕ
k
}k∈N0 , which is orthogonal with respect to (·, ·)H0,ε,µ(curl;Ω).

Now that we know the fundamental system of H0(curl; Ω) we can write w ∈ H0(curl; Ω)
as

w(x) =
∞∑

k=−∞
wkϕk(x), x ∈ Ω,

with the coefficients wk = (w,ϕ
k
)L2

ε(Ω), k ∈ Z. This basis representation converges inH0(curl; Ω).
Then the seminorm |·|H0,µ(curl;Ω) and the norm ‖·‖H0,ε,µ(curl;Ω) admit the representations

|w|2H0,µ(curl;Ω) =

∞∑

k=0

λk
︸︷︷︸

>0

|wk|2 , ‖w‖2H0,ε,µ(curl;Ω) =

∞∑

k=0

(1 + λk) |wk|2 +
∞∑

k=1

|w−k|2 . (14)

Let v ∈ Hcurl;1
0; (Q). Then we learn from [21, Prop. 23.23] that v coincides on [0, T ] with a

continuous mapping v : [0, T ] → H0(curl; Ω) up to a subset of measure zero. Hence we can
write for t ∈ [0, T ]

v(t) =

∞∑

k=−∞
vk(t)ϕk, (15)

for some coefficient functions vk : [0, T ] → R.
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1.4 The variational formulation

To derive a suitable variational formulation for (7) we multiply the partial differential equation
with a test function. By using partial integration both in time and space we end up with the
following variational formulation:
Find A ∈ Hcurl;1

0; (Q) with A(0, .) = φ, such that

− (ε∂tA, ∂tv)L2(Q) + (σ∂tA, v)L2(Q)+
(
µ−1 curlxA, curlx v

)

L2(Q)
(16)

=
(

j
a
, v
)

L2(Q)
−
(
εψ, v(0, ·)

)

L2(Ω)

for all v ∈ Hcurl;1
0;.,0 (Q).

Note, that the initial condition ∂tA(0) = ψ is incorporated into the variational formulation in
a weak sense while the other conditions A(0) = φ and γtA = 0 are in the ansatz spaces and
therefore are satisfied in a strong sense. In (16) we see the main problem of the equation, the
different signs in front of the first term and the spatial differential operator. Hence, the bilinear
form (17) defined by the left-hand side of the variational formulation (16) is not equivalent to
any inner product. However, if σ is large it acts as a stabilization to the equation. We see
this phenomenon in the numerical analysis as well.

In this paper, we will take a look at the bilinear form

aQ(A, v) := −(ε∂tA, ∂tv)L2(Q) + (σ∂tA, v)L2(Q) + (µ−1 curlxA, curlx v)L2(Q), (17)

for A ∈ Hcurl;1
0; (Q) and φ ∈ Hcurl;1

0;.,0 (Q). Additionally, we write the right-hand side of (16) as
the linear form

F (v) :=
(

j
a
, v
)

L2(Q)
−
(
εψ, v(0, ·)

)

L2(Ω)
. (18)

2 Existence and uniqueness

Let us now state the main existence and uniqueness result for the variational formulation (16).

Theorem 2.1. Let the Assumption 1 hold true. Then there exists a unique solution of the
variational formulation:
Find A ∈ Hcurl;1

0; (Q) with A(0, .) = φ, such that

− (ε∂tA, ∂tv)L2(Q) + (σ∂tA, v)L2(Q) +
(
µ−1 curlxA, curlx v

)

L2(Q)
=
(

j
a
, v
)

L2(Q)
−
(
εψ, v(0, ·)

)

L2(Ω)

for all v ∈ Hcurl;1
0;.,0 (Q).

If additionally j
a
∈ L2(Q;Rd) then there exist positive constants cφ, c

c
φ, cψ, and cf such that

|A|2Hcurl;1(Q) ≤ cφ‖φ‖2L2
ε(Ω) + ccφT‖ curlx φ‖2L2

µ(Ω) + cψT‖ψ‖2L2
ε(Ω) + cf max{T, T 2}‖j

a
‖2L2

ε(Q).

To prove this theorem we will use a Galerkin method and split the proof into three different
steps. First, we prove the existence in Proposition 1. Then, we show the uniqueness in
Proposition 2. In the end, we derive the norm estimates in Proposition 3 and discuss the
dependencies of the coefficients cφ, c

c
φ, cψ, and cf .
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2.1 Existence

We will start with proving the existence of the variational formulation (16). For that purpose,
we have to state two small results that we will be using in the existence proof in Prop. 1.

Lemma 2.2. Let the Assumption 1 hold true and u ∈ H2(0, T ;L2(Ω;Rd))∩L2(0, T ;H0(curl; Ω)),
d = 2, 3, with u|t=0 = φ and ∂tu|t=0 = ψ be the solution of

(ε∂ttu(t), ∂tu(t))L2(Ω) +
(
µ−1 curlx u(t), curlx ∂tu(t)

)

L2(Ω)
≤
(
j(t), ∂tu(t)

)

L2(Ω)
, (19)

for each t ∈ (0, T ) and j ∈ L1(0, T ;L2(Ω;Rd)). Then

z1/2(t) :=





∫

Ω

(

|u|2 + |∂tu|2 + |curlx u|2
)

(t, x) dx





1/2

≤ c2(T )z
1/2(0) + c3(T )‖j‖2,1,Q,

holds true for all t ∈ [0, T ]. The constants c2 and c3 depend on T, εmin, (µ
max)−1, εmax and

(µmin)
−1.

Proof. Following the ideas of [35, Ch. 4.2] we can transfer the results from the scalar to the
vectorial wave equation. First we integrate (19) over the interval (0, t) and use the Fubini the-
orem and the fundamental theorem of calculus. Then we can estimate by use of Assumption 1
to get
∫

Ω

[
εmin(∂tu)

2(t, x) + (µmax)−1(curlxu)
2(t, x)

]
dx ≤

∫

Ω

[
εmax(∂tu)

2(0, x) + (µmin)
−1(curlxu)

2(0, x)
]
dx

+ 2

t∫

0

∫

Ω

j(s, x)∂tu(s, x) dx ds.

Using (a+ b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz leads for s > 0 to

‖u(s, .)‖2L2(Ω) =

∥
∥
∥
∥
∥
∥

u(0, .) +

s∫

0

1 · ∂tu(t, .) dt

∥
∥
∥
∥
∥
∥

2

L2(Ω)

≤ 2‖u(0, .)‖2L2(Ω) + 2s‖u‖2L2((0,s)×Ω) + ‖∂tu‖2L2((0,s)×Ω) + ‖curlxu‖2L2((0,s)×Ω).

By adding both equations together we get for z(t) = ‖u(t, .)‖2L2(Ω)+‖∂tu(t, .)‖2L2(Ω)+‖curlxu(t, .)‖2L2(Ω)

the inequality

min(1, εmin, (µ
max)−1)z(t) ≤ max(2, εmax, (µmin)

−1)z(0) + 2

t∫

0

‖j‖L2(Ω)z
1/2(s) ds+ 2t

t∫

0

z(s) ds.

for all t ∈ [0, T ]. Then we write

a := max(2, εmax, (µmin)
−1), b := min(1, εmin, (µ

max)−1)
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and define ẑ(t) = max
0≤ξ≤t

z(ξ) to get

bẑ(t) ≤ az(0) + 2‖j‖L2,1(Q)ẑ
1/2(t) + 2t2ẑ(t). (20)

After solving this inequality while keeping in mind that ẑ1/2(t) ≥ 0 we derive

ẑ1/2(t) ≤
2‖j‖L2,1(Q) +

√

4‖j‖2
L2,1(Q)

+ 4(b− 2t2)az(0)

2(b− 2t2)
.

By using
√
a2 + b2 ≤ (a+ b), for a, b ≥ 0, and considering t ≤ min(

√
b
4 , T ) we get that

ẑ1/2(t) ≤ 2 + 2

b
‖j‖L2,1(Q) +

√

2

b

√
az1/2(0)

since 2(b − 2t2) ≥ b. If
√

b
4 < T , then we are done. Otherwise we choose as initial value

t1 =
√

b
4 , instead of t = 0 and repeat the computations from above to get the desired

result.

Corollary 2.3. Let the Assumption 1 hold true. Let A ∈ H2(0, T ;H(curl; Ω)) with A|t=0 = φ
and ∂tA|t=0 = ψ be the solution of

(ε∂ttA(t), ∂tA(t))L2(Ω) + (σ∂tA(t), ∂tA(t))L2(Ω) + (µ−1 curlxA(t), curlx ∂tA(t))L2(Ω) = (j
a
(t), ∂tA(t))L2(Ω)

for each t ∈ (0, T ) and j
a
∈ L1(0, T ;L2(Ω;Rd)). Then we derive that

z1/2(t) :=





∫

Ω

(

|A|2 + |∂tA|2 + |curlxA|2
)

(t, x) dx





1/2

≤ c2(t)z
1/2(0) + c3(t)‖ja‖2,1,Q,

for all t ∈ [0, T ]. The constants c2 and c3 depend on εmin, (µ
max)−1, εmax, (µmin)

−1 as well as
T .

Proof. Using the positive semi-definiteness of σ we compute

(ε∂ttA(t), ∂tA(t))L2(Ω) + (µ−1 curlxA(t), curlx ∂tA(t))L2(Ω) ≤ (j
a
(t), ∂tA(t))L2(Ω).

for each t ∈ (0, T ). Therefore we can use Lem. 2.2 to prove the desired estimate.

Now, we are ready to prove the existence of the solution of the variational formulation
(16).

Proposition 1 (Existence). Let Assumption 1 hold true. Then there exists a solution of the
variational formulation (16).

Proof. Let us consider Ωσ := Ω∩ supp(σ) which is a Lipschitz domain by Assumption 1. The
main idea of this proof is to split the differential equation into two equations over different
domains, namely one domain is the support Ωσ of the conductivity σ and the other Ω\Ωσ.
Then we add the solutions together to show existence. The produced solution is the solution
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to an interface problem with zero tangential traces on the interface ∂Ωσ\∂Ω. Hence, let us
take a look at the resulting equations on the domain Ωσ.
1. On the domain Ωσ we now use a Galerkin method. Let us define the bilinear form

aΩσ(A(t), φ) := (ε∂ttA(t), φ)L2(Ωσ) + (σ∂tA(t), φ)L2(Ωσ) + (µ−1 curlxA(t), curlx φ)L2(Ωσ),

(21)

for φ ∈ H(curl; Ωσ), t ∈ (0, T ). We consider {ϕ
k
}k∈Z, the fundamental system of H0(curl; Ωσ)

of Lem. 1.5 for Ω = Ωσ. Let N ∈ N. Using the basis representation (15) we then search for a

AN (t) =
N∑

k=−N
aNk (t)ϕk(x) (22)

which solves

aΩσ(A
N (t), ϕ

l
) = (j

a
(t), ϕ

l
)L2(Ωσ),

d

dt
aNk (t) = (ψ,ϕ

k
)L2(Ωσ), (23)

aNk (0) = αNk ,

for all l, k ∈ ZN := {z ∈ Z : |z| ≤ N}, where αNk are the coefficients of

φN (x) =
N∑

k=−N
αNk ϕk(x),

and φN → φ in H0(curl; Ωσ) for N → ∞. We have AN (0, x) = φN (x) and define fk :=
(j
a
, ϕ

k
)L2(Ωσ).

Since σ is uniformly positive definite and bounded over Ωσ, the induced weighted scalar
product (σ., .)L2(Ωσ) is equivalent to (ε., .)L2(Ωσ). Hence, there exists a βk ∈ R+ such that

(σϕ
k
, ϕ

l
)L2(Ωσ) = βkδkl

for k, l ∈ ZN . These βk are bounded from below by σmin.
Next, we combine everything to arrive for t ∈ (0, T ) and k = 0, . . . , N at

a′′Nk (t) + βka
′N
k (t) + λka

N
k (t) = fk(t),

a′Nk (0) = (ψ,ϕ
k
)L2(Ωσ), (24)

aNk (0) = αNk

where ϕ
k

is an eigenfunction of curlx µ−1 curlx in Ωσ, and for k = −N, . . . ,−1

a′′Nk (t) + βka
′N
k (t) = fk(t),

a′Nk (0) = (ψ,ϕ
k
)L2(Ωσ), (25)

aNk (0) = αNk

where ϕ
k

is part of the kernel of curlx µ−1 curlx. The solutions can be computed using standard
techniques for ordinary differential equations such as [32, L. 20, L. 21]. The solutions are
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well defined for fk ∈ L1(0, T ). Therefore, there exists for j
a
∈ L1(0, T ;L2(Ωσ)) a solution

AN ∈ C2(0, T ;H(curl; Ωσ)). If we multiply (23) with c′Nl (t) and sum up over l = −N, . . . ,N ,
we compute using (21)

aΩσ(A(t), ∂tA(t)) = (j
a
(t), ∂tA

N (t))L2(Ωσ),

for t ∈ [0, T ]. This satisfies the conditions to apply Cor. 2.3 with which we arrive at





∫

Ωσ

∣
∣AN (t)

∣
∣
2
+
∣
∣∂tA

N (t)
∣
∣
2
+
∣
∣curlxA

N (t)
∣
∣
2
dx





1/2

≤ c2(t)(z
N )1/2(0) + c3(t)‖ja‖L1(0,T ;L2(Ωσ))

for every t ∈ (0, T ). By construction c2 and c3 are monotonically increasing and therefore
bounded by c2(T ) respectively c3(T ). Additionally we get with Bessel’s inequality , [11, Thm.
1.7.1], in H(curl; Ωσ) and L2(Ωσ)

zN (0) =

∫

Ωσ

∣
∣φN

∣
∣
2
+
∣
∣ψN

∣
∣
2
+
∣
∣curlx φ

N
∣
∣
2
dx ≤ c‖φ‖2H(curl;Ωσ)

+ c‖ψ‖2L2(Ωσ)

We define Qσ := [0, T ]× Ωσ. Therefore

‖AN‖Hcurl;1(Qσ) ≤ c‖φ‖2H(curl;Ωσ)
+ c̃‖ψ‖2L2(Ωσ)

+ ĉ‖ja‖L1(0,T ;L2(Ωσ)) < C,

where C is independent of N .
Now, we want to transfer the existence to the space-time variational formulation (16). We

split AN (t, x) = AN0 (t, x) + φN (x). Since ‖φN‖H(curl;Ωσ) is bounded by ‖φ‖H(curl;Ωσ) because

of Bessel’s inequality, the sequence (AN0 )N∈N is bounded as well. The space

Hcurl;1
0; (Qσ) = H1(0, T ;L2(Ωσ))

⋂

L2(0, T ;H0(curl; Ωσ))

is a Hilbert space, see Lem. 1.2. Hence there exists a weakly convergent subsequence of
(AN0 )N∈N. We write this subsequence as {AN0 }N for convenience. Then there exists a A0 ∈
Hcurl;1

0;0, (Qσ) with

AN0 ⇀ A0 in L2(Qσ),

∂tA
N
0 ⇀ ∂tA0 in L2(Qσ),

curlxA
N
0 ⇀ curlxA0 in L2(Qσ).

We constructed AN0 such that

aΩσ(A
N
0 (t), ϕ

l
) = (j

a
(t), ϕ

l
)L2(Ωσ) − (µ−1 curlx φ

N , curlx ϕl)L2(Ωσ)

for all l = −N, ..,N , t ∈ (0, T ). Let M ∈ N. Choose N > M and dl ∈ H1(0, T ) where
dl(T ) = 0, l = −M, . . . ,M . Multiply the equation with dl and sum up over l = −M, . . . ,M .

Moreover, we get for η(t, x) :=
M∑

l=−M
dl(t)ϕl(x) and t ∈ (0, T ) the equation

aΩσ(A
N
0 (t), η) = (j

a
(t), η)L2(Ωσ) − (µ−1 curlx φ

N , curlx η)L2(Ωσ).
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By integration over (0, T ) and using integration by parts for the first term we get to the
bilinear form (17) and

aQσ(A
N
0 , η) = (j

a
, η)L2(Qσ) − (ε∂tA

N |t=0, η|t=0)L2(Ωσ) − (µ−1 curlx φ
N , curlx η)L2(Qσ).

Next, we take the limit N → ∞. Since η, ∂tη and curlx η are in L2(Qσ;R
d) we get with the

weak convergence that

aQσ(A0, η) = (j
a
, η)L2(Qσ) − (εψ, η(0, .))L2(Ωσ) − (µ−1 curlx φ, curlx η)L2(Qσ).

This equation holds for all η with the representation
M∑

l=−M
dl(t)ϕl(x). Let MM be the space

of such functions. For every M ∈ N we can repeat this argumentation. The space
∞⋃

M=1

MM is

dense in L2(0, T ;H0(curl; Ωσ)) because we can approximate every element with such a sum,

see [21, Prop. 23.2d]. Hence the equation above holds true for every η ∈ Hcurl;1
0;,0 (Qσ) and

therefore A is the weak solution of our differential equation in Hcurl;1
0;0, (Qσ).

2. Let us now consider the spatial domain Ω0 := Ω\Ωσ and space-time domain Q0 := (0, T )×
Ω0 where σ is zero. Again we consider the ansatz (22) and the equation

(ε∂ttA
N (t), ϕ

l
)L2(Ω0) + (µ−1 curlxA

N (t), curlx ϕl)L2(Ω0) = (j
a
(t), ϕ

l
)L2(Ω0),

d

dt
aNk (t) = (ψ,ϕ

k
)L2(Ωσ), (26)

aNk (0) = αNk

for l, k ∈ ZN . Then we follow the same steps as before and we consider instead of the equations
(24) and (25) the equations

a′′Nk (t) + λka
N
k (t) = fk(t),

a′Nk (0) = (ψ,ϕ
k
)L2(Ω0), (27)

aNk (0) = αNk

for t ∈ (0, T ) and λk > 0 for k = 0, . . . , N , i.e. ϕ
k

is an eigenfunction of curlx µ−1 curlx in Ω0,

and λk = 0 for k = −N, . . . ,−1 where ϕ
k

is part of the kernel of curlx µ−1 curlx in Ω0. The

ordinary equation (27) is uniquely solvable for fk ∈ L1(0, T ) and can be solved using standard
techniques such as [32, L. 20, L. 21]. By multiplying (26) with c′Nl (t) and summing up over
l = −N, . . . ,N , we compute using (21)

(ε∂ttA
N (t), AN (t))L2(Ω0) + (µ−1 curlxA

N (t), curlxA
N (t))L2(Ω0) = (j

a
(t), AN (t))L2(Ω0).

This satisfies the conditions to apply Lem. 2.2 with which we arrive at





∫

Ω0

∣
∣AN (t)

∣
∣
2
+
∣
∣∂tA

N (t)
∣
∣
2
+
∣
∣curlxA

N (t)
∣
∣
2
dx





1/2

≤ c2(t)(z
N )1/2(0) + c3(t)‖ja‖L1(0,T ;L2(Ω0))

for every t ∈ (0, T ) and zN (0) = ‖φN‖2L2(Ω0)
+
∥
∥ψN

∥
∥
2

L2(Ω0)
+
∥
∥curlx φ

N
∥
∥
2

L2(Ω0)
≤ c‖φ‖2H(curl;Ω0)

+

c‖ψ‖2L2(Ω0)
. Therefore we have weak convergence of (AN )N , (curlxA

N )N and (∂tA
N )N in

16



L2(Q). By going through the same argumentation as above, we see that the limit A ∈
Hcurl;1

0;0, (Q0) indeed is the weak solution of

−(ε∂tA, ∂tv)L2(Q0) + (µ−1 curlxA
N , curlx v)L2(Q0) = (j

a
(t), v)L2(Q0) −

(
εψ, v(0, ·)

)

L2(Ω0)
,

with A(0, .) = φ. Adding both solutions on the domains Q0 and Qσ yields existence.

2.2 Uniqueness

Next, we take a look at the uniqueness of the solution to the variational formulation (16) with
the bilinear form (17) and right-hand side (18).

Proposition 2 (Uniqueness). Let Assumption 1 hold true. Then there exists a unique solution
for the variational formulation (16).

Proof. In Proposition 1 we have already shown existence. What is left to be proven is the
uniqueness. Assume that there are two solutions A′ and A′′, then w := A′ − A′′ satisfies the
variational formulation

−(ε∂tw, ∂tv)L2(Q) + (σ∂tw, v)L2(Q) + (µ−1 curlxw, curlx v)L2(Q) = 0

for all v ∈ Hcurl;1
0;,0 (Q). Additionally w(0, x) = 0 holds true for x ∈ Ω. Choose b ∈ [0, T ]

arbitrary and consider

η(t, x) :=







t∫

b

w(τ, x) dτ, for 0 ≤ t ≤ b,

0, for b ≤ t ≤ T.

Then η ∈ Hcurl;1
0;,0 (Q) with η(t, x) = 0 for t ≥ b and we get for v = η:

−(ε∂tw, ∂tη)L2(Q(0,b))
+ (σ∂tw, η)L2(Q(0,b))

+ (µ−1 curlxw, curlx η)L2(Q(0,b))
= 0,

where Q(0,b) is the intersection of Q with the half space t < b. Since ∂tη(t, x) = w(t, x) for
(t, x) ∈ Q(0,b), we compute

(ε∂ttη, ∂tη)L2(Q(0,b))
− (σ∂ttη, η)L2(Q(0,b))

− (µ−1 curlx ∂tη, curlx η)L2(Q(0,b))
= 0.

Through integration by parts we get

−(σ∂ttη, η)L2(Q(0,b))
= (σ∂tη, ∂tη)L2(Q(0,b))

≥ 0,

because ∂tη(0, x) = w(0, x) = 0 for x ∈ Ω, η(b, x) = 0 by definition and σ is positive semi-
definite. Therefore

(ε∂ttη, ∂tη)L2(Q(0,b))
− (µ−1 curlx ∂tη, curlx η)L2(Q(0,b))

≤ 0

17



holds true. Hence

1

2

∫

Q(0,b)

∂t(ε∂tη · ∂tη) dxdt−
1

2

∫

Q(0,b)

∂t(µ
−1 curlx η · curlx η) dxdt ≤ 0.

holds true because ε and µ−1 are symmetric. From the definition of η we compute η(b, x) = 0
and therefore (curlx η)(b, x) = 0 for x ∈ Ω. Additionally, ∂tη(0, x) = w(0, x) = 0 for x ∈ Ω
and therefore we arrive at

∫

Ω

(ε∂tη · ∂tη)(b, x) dx+

∫

Ω

(µ−1 curlx η · curlx η)(0, x) dx ≤ 0.

From this we derive by ∂tη(b, x) = w(b, x) that

∫

Ω

w2(b, x) dx = 0 and

∫

Ω

(∫ b

0
curlxw

)2

(x) dx = 0

holds true for any b ∈ (0, T ), since ∂tη(t, x) = w(t, x). With this, we can deduce that w(t, x)
vanishes almost everywhere.

2.3 Norm estimate

Now that we know that the variational formulation (16) is uniquely solvable, we take a look at
the norm estimate. In this part of the section, we consider j

a
∈ L2(Q;Rd). We will derive the

norm estimate of Theorem 2.1 and take a closer look at the dependencies of the coefficients
cφ, c

c
φ, cψ, and cf .

Lemma 2.4. Let Assumption 1 hold, j
a
∈ L2((0, T )×Ωσ;R

d), {λk, ϕk}k∈N0 the pair of non-

zero eigenvalues and eigenfunctions of the curlx µ
−1 curlx-operator in Ωσ from Lemma 1.5,

αk ∈ R and βk := (σϕ
k
, ϕ

k
)L2(Ωσ) > 0 for k ∈ N0. Additionally, let ak be the solution of the

ordinary differential equation

ak
′′(t) + βkak

′(t) + λkak(t) = fk(t),

ak(0) = αk, (28)

ak
′(0) = (ψ,ϕ

k
)L2(Ωσ)

for t ∈ (0, T ), and fk(t) := (j
a
(t), ϕ

k
)L2(Ωσ). Then there exist positive constants cλα, cα, cψ

and cf such that

∑

k∈N0

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤

∑

k∈N0

cψ(ψ,ϕk)
2
L2(Ωσ)

+(cλαλk+cα)(αk)
2+cfT‖fk‖2L2(0,T ).

Proof. For these estimates we need to consider three cases, namely β2k−4λk > 0, β2k−4λk < 0
and β2k − 4λk = 0.
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1. Let β2k − 4λk > 0. We define κ1 :=
−βk+

√
β2
k
−4λk

2 , κ2 :=
−βk−

√
β2
k
−4λk

2 , γk =
√

β2k − 4λk.

Then the solution of (28) is given by

ak(t) =(ψ,ϕ
k
)L2(Ωσ)

eκ1t − eκ2t

γk
+ αk

κ1e
κ2t − κ2e

κ1t

γk

+
1

γk

t∫

0

(eκ1(t−s) − eκ2(t−s))fk(s) ds.

We know that κ1, κ2 < 0, because β2k − 4λk > 0 and so (−βk −
√

β2k − 4λk) < 0. Additionally

we get −(κ1 + κ2) = βk as well as κ1κ2 = λk. With these facts and using (a+ b)2 ≤ 2a2 +2b2

we compute

T∫

0

(
eκ1t − eκ2t

)2
dt ≤ 1

κ1
(e2κ1T − 1) +

1

κ2
(e2κ2T − 1) ≤ 1

−κ1
+

1

−κ2
=
βk
λk
.

In the same way, we estimate

T∫

0

(
κ1e

κ1t − κ2e
κ2t
)2

dt ≤ κ1(e
2κ1T − 1) + κ2(e

2κ2T − 1) ≤ βk.

With this, we can compute an estimate for the desired norms using again (a+ b)2 ≤ 2a2+2b2

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ 2(ψ,ϕ

k
)2L2(Ωσ)

4βk
β2k − 4λk

+ 2(αk)
2λk

4βk
β2k − 4λk

+ 2
2βk

β2k − 4λk
T

T∫

0

f2k (s) ds.

From the estimate
√
2ab ≤ (a − b) for a, b ≤ 0 and a > b we derive 1

(β2
k
−4λk)

≤ 1√
2bk2

√
λk

≤
1

2bk
√
λk

. Using this estimate we arrive at

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

4√
λ0

+ (αk)
2λk

4√
λ0

+
2√
λ0
T‖fk‖2L2(0,T )

where λ0 is the smallest eigenvalue of {λk}k∈N0 from Lemma 1.5 for Ω = Ωσ.

2. Let β2k − 4λk < 0 and define γk =
√

4λk − β2k . Then we write the solution of (28) as

ak(t) = αke
−βk

2
t

(

cos(γkt) +
βk
2γk

sin(γkt)

)

+
1

γk
(ψ,ϕ

k
)L2(Ωσ)e

−βk
2
t sin(γkt)

+
1

γk

t∫

0

e
βk
2
(s−t) sin(γk(t− s))f(s) ds
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Note that the parameter βk = (σϕ
k
, ϕ

k
)L2(Ωσ) is positive. Hence we can estimate

T∫

0

e−βkt dt ≤ 1

βk
.

Next, we use the fact that sin2(γkt) ≤ 1 and cos2(γkt) ≤ 1. Then we derive by using (a+b)2 ≤
2a2 + 2b2 and the Cauchy-Schwarz inequality yet again the following estimate

T∫

0

λk(ak)
2(t) dt ≤ λk(ψ,ϕk)

2
L2(Ωσ)

4

βkγ
2
k

+ 4(αk)
2λk

(
1

βk
+

βk
4γ2k

)

+
2λk
βkγ

2
k

T

T∫

0

f2k (s) ds.

In the same way, we estimate

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

4

βkγ
2
k

(
β2k
2

+ 2γ2k

)

+ 4(αk)
2 1

βk

(

γ2k +
β4k
16γ2k

)

+
2

βkγ
2
k

(

2
β2k
4

+ 2γ2k

)

T

T∫

0

f2k (s) ds.

By inserting γ2k = 4λk − β2k we get

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

(
36λk

βk(4λk − β2k)
+

6βk
4λk − β2k

)

+ 4(αk)
2

(
5λk
βk

+
λkβk

4(4λk − β2k)
+

β3k
16(4λk − β2k)

)

+

(
2λk

βk(4λk − β2k)
+

βk
4λk − β2k

+
4

βk

)

T

T∫

0

f2k (s) ds.

Note that the term λk
4λk−β2

k

only shows up when β2k < 4λk. It is bounded since βk is bounded

by βmax := maxk βk, which is bounded by supx∈Ωσ
σ(x), but λk is increasing monotonically.

Therefore the maximum will be reached for smaller k.
Let us define βmin := mink βk > 0. Then we use the estimate 1

(β2
k
−4λk)

≤ 1
2bk

√
λk

to derive

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

(
36λk

βmin(4λk − β2k)
+

3√
λ0

)

+ 4(αk)
2

(
5λk
βmin

+
λkβmax

4(4λk − β2k)
+

β2max

32
√
λ0

)

+

(
2λk

βk(4λk − β2k)
+

1

8
√
λ0

+
4

βmin

)

T‖fk‖2L2(0,T ).
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3. Let us consider the last case β2k − 4λk = 0. Then the solution to (28) is given by

ak(t) = αk(1 +
βk
2
t)e−

βk
2
t + (ψ,ϕ

k
)L2(Ωσ)te

−βk
2
t +

t∫

0

(t− s)e
βk
2
(s−t)f(s) ds.

With the estimate
∫ t

0
t2e−βkt dt =

1

β3k
(2− e−βkt(β2kt

2 + 2βkt+ 2)) ≤ 2

β3k

we then compute by using (a+ b)2 ≤ 2a2 + 2b2 and the Cauchy-Schwarz inequality that

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

(

λk
8

β3k
+

12

βk

)

+ 4(αk)
2

(

λk
3

βk
+

1

2βk

)

+

(
2λk
β3k

+
3

βk

)

2T

T∫

0

f2k (s) ds.

At last, we use 4λk = β2k to derive

T∫

0

λk(ak)
2(t) dt+

T∫

0

(ak
′)2(t) dt ≤ (ψ,ϕ

k
)2L2(Ωσ)

14

βmin
+ (αk)

2λk
5

4β3min

+
14

β3min

T‖fk‖2L2(0,T ).

Adding all three cases will give the desired estimate.

Using the above lemma we can finally prove the last statement of Theorem 2.1.

Proposition 3. Let the Assumption 1 hold true, j
a
∈ L2(Q;Rd), and A be the unique solu-

tion of (16). Then there exists positive constants cφ, c
c
φ, cψ, and cf such that the following

inequality holds true

|A|2Hcurl;1(Q) ≤ cφ‖φ‖2L2
ε(Ω) + ccφT‖ curlx φ‖L2

µ(Ω) + cψT‖ψ‖2L2
ε(Ω) + cf max{T, T 2}‖j

a
‖2L2

ε(Q).

(29)

The constants cφ, c
c
φ, cψ, and cf depend on supσ, σ−1

min,
1√
λ0

and max k∈N0

β2
k
−4λk<0

(4− β2
k

λk
)−1 which

is bounded since βk is bounded by supσ and the non-zero eigenvalues λk of curlx µ
−1 curlx

increase monotonically for k → ∞. The βk ∈ R+ are defined by σ such that

(σϕ
k
, ϕ

l
)L2(Ωσ) = βkδkl

for the fundamental system {ϕ
k
} of Lem. 1.5.

Proof. Again we split the domain Ω into the support Ωσ = Ω∩ supp(σ) of the conductivity σ
and its complement Ω0 := Ω\Ωσ. First we take a look at Ωσ and Qσ := (0, T )×Ωσ. To show
the inequality we consider the basis representation (15) for the unique solution A of (16)

A(t, x) =
∑

k∈Z
ak(t)ϕk(x),
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(t, x) ∈ Qσ, where ϕ
k

are the basis functions of H(curl; Ωσ) from Lemma 1.5 . If we insert
the representation into the energy norm , we get

(ε∂tA,∂tA)L2(Qσ) + (µ−1 curlxA, curlxA)L2(Qσ)

=
∑

k,j∈Z
(∂tak, ∂tcj)(0,T )(εϕk, ϕj)Ωσ + (ak, cj)(0,T )(µ

−1 curlx ϕk, curlx ϕj)Ωσ

=
∑

k∈N0

∥
∥ak

′∥∥2
L2(0,T )

+
∥
∥
∥λ

1/2
k ak

∥
∥
∥

2

L2(0,T )
+

∑

k∈Z\N0

∥
∥ak

′∥∥2
L2(0,T )

. (30)

In the proof of Prop. 1 we saw that ak satisfies one of two ordinary differential equations
depending on the case of k ∈ N0 and k ∈ Z\N0. The first is

ak
′′(t) + βkak

′(t) = fk(t),

ak
′(0) = (ψ,ϕ

k
)L2(Ωσ), (31)

ak(0) = αk,

for k ∈ Z\N0 and the second is

ak
′′(t) + βkak

′(t) + λkak(t) = fk(t),

ak
′(0) = (ψ,ϕ

k
)L2(Ωσ), (32)

ak(0) = αk,

for t ∈ (0, T ) and k ∈ N0, where fk(t) = (j
a
, ϕ

k
)L2(Ωσ) and λk are the non-zero eigenvalues of

the curlx µ
−1 curlx operator.

Let us first estimate ak in the case that k ∈ Z\N0. Then we consider the first equation
(31), and compute the solution

ak(t) = αk +
1

βk
(ψ,ϕ

k
)L2(Ωσ)(1− e−βkt) +

1

βk

t∫

0

(1− eβk(s−t))fk(s) ds.

For this solution, we need to estimate the L2-norm of ak
′. Using (a + b)2 ≤ 2a2 + 2b2, we

arrive with the Cauchy-Schwarz inequality at

T∫

0

(ak
′)2 dt ≤ 2(ψ,ϕ

k
)2L2(Ωσ)

T∫

0

(e−2βkt) dt+ 2

T∫

0

t∫

0

e2βk(s−t) ds

t∫

0

f2k (s) ds dt

≤ (ψ,ϕ
k
)2L2(Ωσ)

1− e−2βkT

βk
+ 2

1− e−2βkT

2βk
T‖fk‖2L2(0,T )

≤ (ψ,ϕ
k
)2L2(Ωσ)

1

βmin
+

1

βmin
T‖fk‖2L2(0,T ), (33)

where βmin := mink βk ≥ σminε
−1
max > 0.

Second, we want to estimate ak in the second case k ∈ N0. In this case, we can apply
Lem. 2.4 for the second equation (32). Hence we get the estimate

∑

k∈N0

∥
∥ak

′∥∥2
L2(0,T )

+
∥
∥
∥λ

1/2
k ak

∥
∥
∥

2

L2(0,T )
≤
∑

k∈N0

cψ(ψ,ϕk)
2
L2(Ωσ)

+ (cλαλk + cα)(αk)
2 + cfT‖fk‖2L2(0,T ).

(34)
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Since 1
βmin

< cψ and 1
βmin

< cf we can combine (34) and (33) in (30) to arrive at

∑

k∈Z

∥
∥ak

′∥∥2
L2(0,T )

+
∥
∥
∥λ

1/2
k ak

∥
∥
∥

2

L2(0,T )
≤
∑

k∈N0

(
c1φ + c2φλk

)
α2
k +

∑

k∈Z

[
cψ(ψ,ϕk)

2
L2(Ωσ)

+ cfT‖fk‖2L2(0,T )

]
.

(35)

As λk were eigenvalues of the curlx µ
−1 curlx-opertor, we want to eliminate the λk from our

right hand side. Considering φ =
∑

k∈Z αkϕk and curlx φ =
∑

k∈N0
αk curlx ϕk we compute

∞∑

k=0

λk(αk)
2 =

∞∑

k=0

∞∑

l=0

αkαlλk(εϕk, ϕl)L2(Ωσ)

=

∞∑

k=0

∞∑

l=0

αkαl(µ
−1 curlx ϕk, curlx ϕl)L2(Ωσ)

= (µ−1 curlx φ, curlx φ)L2(Ωσ).

Using the basis representation for φ and j
a
, where fk = (j

a
, ϕ

k
)L2(Ωσ), respectively in (35) we

then arrive at

(ε∂tA, ∂tA)L2(Qσ)+(µ−1 curlxA, curlxA)L2(Qσ)

≤ cψ‖ψ‖2L2
ε(Ωσ)

+ cφ‖φ‖2L2
ε(Ωσ)

+ ccφ‖ curlx φ‖2L2
µ(Ωσ)

+ cfT‖ja‖
2
L2
ε(Qσ)

.

For the solution over Ω0 = Ω\Ωσ and Q0 := (0, T )×Ω0, where σ ≡ 0, we get the ordinary
equation given by (27) for k ∈ Z. The equation (27) for λk = 0 yields the estimate

∥
∥ak

′∥∥2
L2(0,T )

≤ T 2‖fk‖2L2(0,T ).

On the other hand, if λk > 0, then the equation (27) has the solution

ak(t) =
1√
λk

(ψ,ϕ
k
)L2(Ω0) sin(

√

λkt) + αk cos(
√

λkt) +
1√
λk

(fk(.), sin(
√

λk(t− .)))L2(0,t).

To estimate the L2(0, T ) norm of ak and a′k, we follow the same steps as above and derive

(ε∂tA, ∂tA)L2(Q0)+(µ−1 curlxA, curlxA)L2(Q0) (36)

≤4T‖ψ‖2L2
ε(Ω0)

+ 4T‖ curlx φ‖2L2
µ(Ω0)

+ T 2‖ja‖2L2
ε(Q0)

.

Note that we get a T in our estimates by estimating
T∫

0

sin2(
√
λkt) dt ≤ T and the same integral

with cosines. Adding the inequality (36) brings us to the desired inequality (29)

|A|Hcurl;1(Q) ≤ c̃ψT‖ψ‖2L2
ε(Ω) + cφ‖φ‖2L2

ε(Ω) + c̃cφT‖ curlx φ‖2L2
µ(Ω) + cf max{T, T 2}‖j

a
‖2L2

ε(Q).

Remark 2.5. Note that with the tools of Ladyzhenskaya [35, Thm. 3.2, p. 160] one can
translate the results of the scalar wave equation to the vectorial wave equation using the same
technique as the above theorem, see [20] for more details. Then we would derive the estimate

(ε∂tA, ∂tA)L2(Q) + (µ−1 curlxA, curlxA)L2(Q) (37)

≤4T‖ψ‖2[L2(Ω)]d + 4T‖ curlx φ‖2L2
µ(Ω) + T 2‖j

a
‖2[L2(Q)]d .
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for the solution of the variational formulation:
Find A ∈ Hcurl;1

0; (Q) with A(0, .) = φ such that

−(ε∂tA, ∂tv)L2(Q) + (µ−1 curlxA, curlx v)L2(Q) = (j
a
, v)L2(Q) − (εψ, v(0, ·))L2(Ω)

for all v ∈ Hcurl;1
0;,0 (Q).

3 A space-time finite element method in a tensor product

In Theorem 2.1 we have proven the unique solvability of the variational formulation (16). Now
we take a look at the discrete equivalent of the variational formulation for the vectorial wave
equation. First, we define the finite element spaces that we will be using. Then we derive the
finite element discretization and analyze the resulting linear equation. Afterward, we derive
a CFL condition that indeed seems to be necessary for stable computations of the numerical
examples.

3.1 Space-time finite element spaces

Before we compute any examples, we recap the main ideas of the space-time discretization of
the vectorial wave equation as was presented in [16]. We will use similar nomenclature to ease
the comparison of the results of both papers. The main difference to [16] is the addition of the
conductivity σ in our equation and that we consider second-order elements in time instead of
first-order elements as in [16].

For the discretization in time we decompose the time interval (0, T ) with N2
t + 1 points

0 = t0 < t1 < · · · < tN2
t −1 < tN2

t
= T

into N2
t subintervals τℓ = (tℓ−1, tℓ) ⊂ R, ℓ = 1, . . . , N2

t . We define the local mesh size of each
element τl as ht,ℓ = tℓ−tℓ−1, ℓ = 1, . . . , N2

t , with the maximal mesh size ht := maxℓ=1,...,N2
t
ht,ℓ.

For the discretization in space we decompose the spatial domain Ω ⊂ R
d into Nx elements

ωi ⊂ R
d for i = 1, . . . , Nx, satisfying

Ω =

Nx
⋃

i=1

ωi and ωi ∩ ωj = 0 for i 6= j.

We define the local mesh size in ωi as hx,i :=
(∫

ωi
1dx

)1/d
, i = 1, . . . , Nx, the maximal mesh

size as hx := hx,max(T x
ν ) := maxi=1,...,Nx hx,i and the minimal mesh size as hx,min(T x

ν ) :=
mini=1,...,Nx hx,i. The parameter ν ∈ N is the level of refinement and the spatial mesh is the
set T x := T x

ν = {ωi}N
x

i=1 at level ν. For simplicity, we only consider triangles for d = 2 and
tetrahedra for d = 3 as the spatial elements ωi ⊂ R

d, i = 1, . . . , Nx.

Assumption 2. We assume that the sequence (T x
ν )ν∈N consists of shape-regular, globally

quasi-uniform and admissible spatial meshes T x
ν .

By the shape-regularity of the mesh sequence (T x
ν )ν∈N there is a constant cF > 0 such that

∀ν ∈ N : ∀ω ∈ T x
ν : sup

x,y∈ω
‖x− y‖2 ≤ cF rω, (38)
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where ‖·‖2 is the Euclidean norm in R
d, and rω > 0 is the radius of the largest ball that can

be inscribed in the element ω. By the global quasi-uniformity of the mesh sequence (T x
ν )ν∈N

there is a constant cG ≥ 1 such that

∀ν ∈ N :
hx,max(T x

ν )

hx,min(T x
ν )

≤ cG.

On the other hand, a mesh is admissible if for each two elements τi, τj ∈ T x
ν the intersection

S = τi ∩ τj is either empty or a simplex of the same type belonging to both elements.
With the discretization of the time interval and spatial domain in mind, we now define

finite element spaces. For the test and ansatz space in time, we define the space of piecewise
quadratic, continuous functions

S2(T t) :=
{

vht ∈ C[0, T ] | ∀ℓ ∈ {1, . . . , N2
t } : vht|τℓ ∈ P 2(τℓ)

}

= span{ϕ2
ℓ}
N2

t

ℓ=0

with the usual nodal basis functions ϕ2
ℓ , satisfying ϕ2

ℓ (tκ) = δℓκ for ℓ, κ = 0, . . . , N2
t . The

space P p(B) is the space of polynomials on a subset B ⊂ R of global degree at most p ∈ N0,
and δℓκ is the Kronecker delta. Then, we introduce the subspaces which include initial and
end conditions

S2
0,(T t) := S2(T t) ∩H1

0,(0, T ) = span{ϕ2
ℓ}
N2

t

ℓ=1,

S2
,0(T t) := S2(T t) ∩H1

,0(0, T ) = span{ϕ2
ℓ}
N2

t −1
ℓ=0 .

In space, we introduce the vector-valued finite element spaces of Nédélec and Raviart–
Thomas finite elements. For a spatial element ω ∈ T x

ν , we define the polynomial spaces

RT 0(ω) :=
{

v ∈ [P 1(ω)]d | ∀x ∈ ω : v(x) = a+ bx with a ∈ R
d, b ∈ R

}

and

N 0
I (ω) :=

{

v ∈ [P 1(ω)]2 | ∀(x1, x2) ∈ ω : v(x1, x2) = a+ b · (−x2, x1)⊤ with a ∈ R
2, b ∈ R

}

for d = 2, and

N 0
I (ω) :=

{

v ∈ [P 1(ω)]3 | ∀x ∈ ω : v(x) = a+ b× x with a ∈ R
3, b ∈ R

3
}

for d = 3, see [4, Section 14.1, Section 15.1] for a more thorough introduction. With this
notation, we define the space of the lowest-order Raviart–Thomas finite element space and
the lowest-order Nédélec finite element space of the first kind

RT 0(T x
ν ) :=

{

vhx ∈ H(div; Ω) | ∀ω ∈ T x
ν : vhx|ω ∈ RT 0(ω)

}

= span{ψRT
k

}N
RT
x

k=1 ,

N 0
I (T x

ν ) :=
{

vhx ∈ H(curl; Ω) | ∀ω ∈ T x
ν : vhx|ω ∈ N 0

I (ω)
}

,

see [4, 6] for more details on these spaces. Further, we consider the subspace of N 0
I (T x

ν ) with
zero tangential trace

N 0
I,0(T x

ν ) := N 0
I (T x

ν ) ∩H0(curl; Ω) = span{ψN
k
}N

N
x

k=1.

25



Let us consider examples of shape functions for both N 0
I (T x

ν ) which associates with the edges
and RT 0(T x

ν ) which associates with the the faces. For an edge eij going from point pi to pj
the corresponding shape function would look like ψN

eij = λi∇λj +λj∇λi), where λi and λj are
the corresponding barycentric function to pi and pj. On the other hand, an example for the
lowest order shape functions associated to a face Fijk consisting of the three points pi, pj and
pk would look like ψRT

Fijk
= λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj, see [4, Section 14.1,

Section 15.1] for more details.

Last, the temporal and spatial meshes T t = {τℓ}N
2
t

ℓ=1 and T x
ν = {ωi}N

x

i=1 lead to a decom-
position

Q = [0, T ]× Ω =

N2
t⋃

ℓ=1

τℓ ×
Nx
⋃

i=1

ωi

of the space-time cylinder Q ⊂ R
d+1 with N2

t ·Nx space-time elements. Therefore T t×T x
ν is a

space-time tensor product mesh. To this space-time mesh, we relate space-time finite element
spaces of tensor-product type using ⊗̂ as the Hilbert tensor-product. These spaces are

S2
0,(T t)⊗̂N 0

I,0(T x
ν ) and S2

,0(T t)⊗̂N 0
I,0(T x

ν ). (39)

Then, any function Ah ∈ S2
0,(T t)⊗̂N 0

I,0(T x
ν ) admits the representation

Ah(t, x) =

N2
t∑

κ=1

NN
x∑

k=1

Aκ
kϕ

2
κ(t)ψ

N
k
(x) (40)

for (t, x) ∈ Q with coefficients Aκ
k ∈ R. Further, for a given function f ∈ L2(Q;Rd), we

introduce the L2(Q) projection ΠRT ,1
h : L2(Q;Rd) → S1(T t)⊗̂RT 0(T x

ν ) to find ΠRT ,1
h f ∈

S1(T t)⊗̂RT 0(T x
ν ) such that

(ΠRT ,1
h f,wh)L2(Q) = (f ,wh)L2(Q). (41)

for all wh ∈ S1(T t)⊗̂RT 0(T x
ν ). Since we need enough regularity of the right-hand side such

that the continuity equation (6) is included in the vectorial wave equation, we require that
the divergence of the right-hand side ja is well defined. Therefore we are interested in the
projection ΠRT ,1

h . On the other side, we see in [16] what kind of effect another projection can
have, namely the production of so-called ‘spurious modes’.

With these definitions in mind, we can now formulate a conforming finite element ap-
proach for the variational formulation (16). We use S2(T t)⊗̂N 0

I,0(T x
ν ) as trial space and

S2
,0(T t)⊗̂N 0

I,0(T x
ν ) as test space. Then we end up with the discrete variational formulation:

Find Ah ∈ S2(T t)⊗̂N 0
I,0(T x

ν ), with Ah(0, x) = φ, such that

− (ε∂tAh, ∂tvh)L2(Q) + (σ∂tAh, vh)L2(Q)+
(
µ−1curlxAh, curlxvh

)

L2(Q)
(42)

=
(

ΠRT ,1
h j

a
, vh

)

L2(Q)
−
(
εψ, vh(0, .)

)

L2(Ω)

for all vh ∈ S2
,0(T t)⊗̂N 0

I,0(T x
ν ).
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3.2 The finite element discretization

Next, we follow the same steps as [16] to derive the finite element discretization, but include
additional terms involving the conductivity σ. Let, for a moment, the initial condition φ be
zero. Then we insert (40) into the discrete variational formulation (42). Afterward, the inte-
grals split into temporal and spatial matrices. Hence, the discrete variational formulation (42)
is equivalent to the linear system

(−Att ⊗Mx +At ⊗Mσ
x +Mt ⊗Axx)A = J (43)

with the temporal matrices

Att[ℓ, κ] = (∂tϕ
2
κ, ∂tϕ

2
ℓ )L2(0,T ), Mt[ℓ, κ] = (ϕ2

κ, ϕ
2
ℓ )L2(0,T ), (44a)

At[ℓ, κ] = (∂tϕ
2
κ, ϕ

2
ℓ )L2(0,T ) (44b)

for ℓ = 0, . . . , N2
t − 1, κ = 1, . . . , N2

t and the spatial matrices

Axx[l, k] = (µ−1 curlx ψ
N
k
, curlx ψ

N
l
)L2(Ω), Mx[l, k] = (εψN

k
, ψN

l
)L2(Ω), (45a)

Mσ
x [l, k] = (σψN

k
, ψN

l
)L2(Ω) (45b)

for k, l = 1, . . . , NN
x . The degrees of freedom are ordered such that the vector of coefficients

in (40) reads as

A = (A1, A2, . . . , AN
2
t )⊤ ∈ R

N2
t N

N
x (46)

with
Aκ = (Aκ

1 ,Aκ
2 , . . . ,Aκ

NN
x
)⊤ ∈ R

NN
x for κ ∈ {1, . . . , N2

t }.
The right-hand side in (43) is given in the same way by

J = (f0, f1, . . . , fN
2
t −1)⊤ ∈ R

N2
t N

N
x ,

where we define
f ℓ = (f ℓ1, f

ℓ
2 , . . . , f

ℓ
NN

x
)⊤ ∈ R

NN
x

with
f ℓl = (ΠRT ,1

h j, ϕ2
ℓψ

N
l
)L2(Q) − ϕ2

ℓ (0)
(

εψ, ψN
l

)

L2(Ω)
(47)

for ℓ = 0, . . . , N2
t − 1 and l = 1, . . . , NN

x .

Remark If we have non-zero initial condition φ, then we consider a continuous extension in

time φ̃ that is zero on all other degrees of freedom in time. Hence, for our application we use
the representation (40) to derive for t = 0

φ̃h(0, x) =

NN
x∑

k=1

A0
kψ

N
k
(x) ≈ φ̃(0, x).

Then, using the ordering of the degrees of freedom from Section 3.1, we end up with the
system

(−Att ⊗Mx +At ⊗Mσ
x +Mt ⊗Axx)A = J −AIni, (48)
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where

AIni := (A0
Ini, . . . , A

N2
t −1

Ini ), AℓIni := (AℓIni;1, . . . , A
ℓ
Ini;NN

x
),

AℓIni;l :=

NN
x∑

k=1

(−Att[ℓ, 0]Mx[l, k] +At[ℓ, 0]M
σ
x [l, k] +Mt[ℓ, 0]Axx[l, k])A

0
k

for ℓ = 0, . . . , N2
t − 1 and l = 1, . . . , NN

x with the matrices defined in (45), (44) and

Att[ℓ, 0] := (∂tϕ
2
0, ∂tϕ

2
ℓ )L2(0,T ), Mt[ℓ, 0] := (ϕ2

0, ϕ
2
ℓ )L2(0,T ),

At[ℓ, 0] := (∂tϕ
2
0, ϕ

2
ℓ )L2(0,T ).

3.3 The CFL condition

If we solve the equation (43) for simple examples, we see conditional stability in our results
which hints at a CFL condition. To compute this CFL condition for functions with second-
order elements in time we use a similar tactic as [30] did for linear elements. To simplify the
calculation we assume that we have an equidistant discretization in time with step size ht.

First let σ = 0. Note that, since σ acts like a stabilizer to our system, the case σ ≡ 0 is the
hardest case. Let λk, k ∈ N0, be the eigenvalues of the curlµ−1curl operator in the weighted
L2
ε(Ω)-norm from Lemma 1.5. To analyze the stability of the discrete system we choose initial

data φ = 0, ψ = 0 as well as the right-hand side j
a
= 0. Now, we consider the basis ansatz

from Section 1.3.1 for A ∈ Hcurl;1
0;0, (Q) and write

AN =

N∑

k=−N
Ãk(t)ϕk(x)

Then we can rewrite the variational formulation (16) into a variational formulation in
the time domain only by using the properties of the eigenvalues λi of the spatial operator
curlµ−1curl. We end up with the set of variational formulations: Find Ãk ∈ H1

0,(0, T ) such
that

−(∂tÃk, ∂tv)(0,T ) + λk(Ãk, v)(0,T ) = 0 (49)

for all v ∈ H1
,0(0, T ) and all non-zero eigenvalues λk > 0 where k ∈ N0. On the other hand,

for k ∈ Z\N0, we end up with the formulation: Find Ãk ∈ H1
0,(0, T ) such that

(∂tÃk, ∂tv)(0,T ) = 0

for all v ∈ H1
,0(0, T ). This is equivalent to the Laplace equation and does not add to the

numerical instabilities that can be observed in section ??.
To derive the appropriate CFL condition, we need to analyze the stability of (49) in the

discrete case. Using again the ansatz and test spaces S2
0,(T t) and S2

,0(T t) we get the discrete
formulation:
Find Ãhk ∈ S2

0,(T t) such that

−(∂tÃ
h
k , ∂tvh)(0,T ) + λk(Ã

h
k , vh)(0,T ) = 0
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for all vh ∈ S2
,0(T t) and all non-zero eigenvalues λk, k ∈ N0. This is equivalent to analyzing

the linear system

(−Att + λkMt)Ã = 0 (50)

for its stability. The temporal matrices Att and Mt are defined in (44) and the solution
Ã = (Ãk(t1), . . . , Ãk(T ))

T ∈ R
N2

t is the coefficient vector of the basis representation Ãhk(t) =
∑N2

t

κ=1 Ãk(tκ)ϕ
2
κ(t). For a moment let us write λ = λk and h = ht. Then we compute the

element matrices

M e
t =

h

30





4 2 −1
2 16 2
−1 2 4



 , Aett =
1

3h





7 −8 1
−8 16 −8
1 −8 7



 .

By using the element matrices to assemble the system matrix we compute

Ksys =














8
3h + λh

15 − 1
3h − λh

30−16
3h + 8λh

15
8
3h + λh

15
8
3h + λh

15 − 14
3h + 4λh

15
8
3h + λh

15 − 1
3h − λh

30
8
3h + λh

15
−16
3h + 8λh

15
8
3h + λh

15

− 1
3h − λh

30
8
3h + λh

15 − 14
3h + 4λh

15
8
3h + λh

15 − 1
3h + λh

30 . . .
. . . . . . . . . . . .

8
3h + λh

15
−16
3h + 8λh

15
8
3h + λh

15














.

By multiplying with 3h we get the following recursive formula

(

8 + λh2

5 −1− λh2

10

−16 + 8λh2

5 8 + λh2

5

)(
u2κ−1

u2κ

)

=

(

−8− λh2

5 14− 4λh2

5

0 −8− λh2

5

)(
u2κ−3

u2κ−2

)

+

(

0 1 + λh3

10
0 0

)(
u2κ−5

u2κ−4

)

for κ = 2, . . . , N2
t /2. Note, that N2

t /2 ∈ N. This recursive formula can be understood as a
two-step method

Azκ = B1zκ−1 +B2zκ−2

for the vector zκ = (u2κ−1, u2κ)
T with

A :=

(

8 + λh2

5 −1− λh2

10

−16 + 8λh2

5 8 + λh2

5

)

,

B1 :=

(

−8− λh2

5 14 − 4λh2

5

0 −8− λh2

5

)

, B2 :=

(

0 1 + λh3

10
0 0

)

.

Further, we can rewrite the two-step method as the system

Yκ = AsysYκ−1 (52)

with Yκ = (u2κ−3, u2κ−2, u2κ−1, u2κ)
T and

Asys :=

(
0 I

A−1B2 A−1B1

)
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for κ = 2, . . . , N2
t /2. Next, we solve (52) by iterate in κ and arrive at the formula

Yκ = Aκ−1
sys Y1

for the solution Yκ with the initial values

(
u1
u2

)

= A−1

(

7− 2λh2

5

−8− λh2

5

)

u0,

where u−1 = 0 and u0 = Ãk(0). Therefore, if we want our system to be zero-stable, we need
the real parts of the eigenvalues of Asys to be less than one. By analyzing the eigenvalues of
Asys we see that two of the eigenvalues λA1 and λA2 are zero. The other two are given by the
formula

λA3,4 =
−2a2 − bd±

√

b(2c+ d)(4a2 − 2bc+ bd)

2(a2 − bc)

where

a = 8 +
λh2

5
, b = −16 +

8λh2

5
,

c = −1− λh2

10
, d = 14− 4λh2

5
.

The absolute value of real part of λA3,4, namely |ℜ(λA3,4)| is smaller than one if λkh
2
t ≤ 60

and λkh
2
t /∈ [10, 12], for k ∈ N0. If we introduce σ(x) > 0, x ∈ Ω, large enough, the small

instability region λkh
2
t ∈ [10, 12] would vanish and we are left with the condition λkh

2
t ≤ 60,

for k ∈ N0 .
In computational examples, we often observe only the bound λkh

2
t ≤ 60 for stability.

However, there might be unstable examples where λkh
2
t ∈ [10, 12], k ∈ N0. Note that these es-

timates can also be used for the scalar wave equation when we use S2
h(T t) for the discretization

since this bound applies to the ratio of the spatial eigenvalue and the time step size.
To use these insights in computational examples, we need to estimate the eigenvalues λk,

k ∈ N0. For this purpose, we use an inverse inequality for the curlxµ−1curlx operator in the
weighted L2

ε(Ω)-norm. For lowest order Nédélec elements, we have the inverse inequality

‖ curlx uh‖2L2(T x) ≤ cIh
−2
max‖uh‖2L2(T x) (53)

for all uh ∈ span{φN
I
0

E }E∈E , where

cI :=

{
18c2

F

π n = 2,

80c4F (
9

16π2 )
2/3 n = 3,

hmax := max
ωl∈T x

(|τl|−d).

For the proof consider [20, Lem. A.2]. The proof is done by computing each norm on each
element and showing the inequality there, then summing everything up. For completeness, we
quickly state where the constants come from. The constant cF is the shape regularity constant

defined in (38). Additionally, the coefficient cIh−2
max comes from estimating 18

λmax(JlJ
T
l
)

2∆l
h−2
l
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for d = 2 and for d = 3 estimating the term 160
4λmax(JlJ

T
l
)2

3(6∆l)2
, where Jl =

(
∂Fl,i

∂x̂j
(x̂j)

)

1≤i,j,≤d
is the derivative of transformation Fl : ω̂ → ωl which maps the reference element ω̂ to the
current element ωl.

Now, we apply the inverse inequality to estimate the eigenvalues λk, k ∈ N0, from Lem. 1.5.
We rewrite the inverse inequality (53) in the weighted norms to get

(µ−1 curlx uh, curlx uh)L2(T x) ≤ cI(µminεmin)
−1h−2

max‖uh‖2L2
ε(T x).

Then we derive the following CFL condition for the vectorial wave equation

cI(µminεmin)
−1 h−2

x ≤ 10 h−2
t ,

and therefore

ht ≤
√
µminεmin

√
10

cI
hx, (54)

where ht and hx are the respective maximal temporal and spatial step sizes from Section 3.1.
In case σ is big enough, e.g. σ ≥ 1 everywhere, we even arrive at the CFL condition

ht ≤
√
µminεmin

√
60

cI
hx, (55)

Let us consider an example for µ = 1 and ε = I. If we consider Ω = (0, 1)2 and use a shape
regular triangulation with isosceles rectangular triangles then we compute, by estimating the
eigenvalues of JlJ

T
l directly, that cI = 18 as in [16]. Hence, in this case, we arrive at the CFL

conditions

ht <

√

60

18
hx ≈ 1.825741858 hx (56)

and the stricter condition

ht <

√

10

18
hx ≈ 0.74535599 hx. (57)

Note that the computation of the CFL condition in this section can be done for an arbitrary
polynomial degree in time. With a higher polynomial degree the system matrix Asys will
enlarge, but we still end up with conditional stability. Additionally, if we use a non-constant
step size in time, simply the element matrices in our computation change and we will get a
condition depending on the largest time step size. Hence, by using a tensor product approach
we will always end up with a CFL condition.

3.4 Expected convergence rates

Let us take a look at the convergence rates we might expect in our examples if the CFL
condition is satisfied. We will divide the analysis in two. First, we will analyze the convergence
in time. Then we will discuss the convergence in space. We can split the analysis in two since
we consider a tensor product structure. For this discussion we will use the concepts of the
continuous solution from the proofs of Thm. 2.1. Again we consider σ = 0 to analyze the
critical case.
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Let us take a look at the convergence in time and consider the semi-discrete function

Ahx(t, x) =

Nx∑

k=1

ak(t)ψ
N
k
(x).

We will follow the steps of [30, Sec. 5] and transfer the results from the scalar to the vectorial
wave equation. After inserting this ansatz into the vectorial wave equation, we derive the
system

Mx∂tta(t) +Axxa(t) = f(t) in (0, T ),

a(0) = ∂ta(0) = 0

with a(t) := (a1(t), .., aNx(t))
T , where Mx denotes the mass matrix and Axx the stiffness

matrix from (45). The right hand side f(t) := (f1(t), ..., fNx(t)) is defined by fk(t) :=

(j
a
(t, .), ψN

k
)L2(Ω) just as in the proof of Prop. 1. For this differential equation we derive

the following variational formulation: Find a ∈ [H1
0,(0, T )]

Nx such that

− (Mx∂ta, ∂tW )L2(0,T ) + (Axxa,W )L2(0,T ) =
(
f,W

)

L2(0,T )
(58)

for all W ∈ [H1
,0(0, T )]

Nx . Next, we apply decompositions such as [5, Prop. 47.6]. We use
Eigendecomposition of the real symmetric matrix Axx and Cholesky decomposition for the
real, positive-definite, symmetric mass matrix Mx to arrive at the decompositions

Axx = QΛQT and Mx = LLT .

Here, Q is an orthogonal matrix whose columns are the eigenvectors of Axx and Λ is a diagonal
matrix whose diagonal entries are the eigenvalues of Axx. On the other hand, L is a real lower
triangular matrix with positive diagonal entries. Next, we consider

z := QTLTa ∈ [H1
0,(0, T )]

Nx . (59)

If we apply LT and then QT to the equation (58), we derive

−〈∂tzj , ∂tw〉L2(0,T ) + κj〈zj , w〉L2(0,T ) = 〈gj , w〉L2(0,T ) (60)

for all w ∈ H1
,0(0, T ) and every j = 1, ...,Nx with zj as the j-th entry of z. The right hand side

gj is the j-th entry of the vector g = QTLTf . Until now we were able to follow the same steps
as [30, Sec. 5]. However, in our case we have to consider κj = 0 for j < 0 as well. Therefore,
the equation (60) represents two cases: The wave equation and the Poisson equation. Next,
let us take a look at the convergence rate of each equation.

If we consider κj = 0, we look at the Poisson problem

−〈∂tzj , ∂tw〉L2(0,T ) = 〈f,w〉(0,T ) ∀w ∈ H1
,0(0, T ).

For this Poisson problem we know from [5, Thm. 32.2, Lem. 32.11] that there exists c1, c2 > 0
such that for all z ∈ Hs(0, T )

‖zj − zht,j‖L2(0,T ) ≤ c1ht|zj |H1(0,T ),

‖zj − zht,j‖H1(0,T ) ≤ c2h
s−1
t |zj |Hs(0,T ),
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for d
2 < s ≤ k + 1, where k ≥ 1 is the degree of the Lagrange finite element. Hence, for first

order elements, k = 2, the highest expected convergence rate in the L2-norm is two and in the
H1-norm it is one.

On the other hand, if κj > 0, we can use existing results for the wave equation [31, Thm. 1].
In this theorem we consider f ∈ [H1

,0(0, T )]
′ and zj ∈ H1

0,(0, T ) as the unique solution of

−〈∂tzj , ∂tw〉L2(0,T ) + κj〈zj , w〉L2(0,T ) = 〈f,w〉(0,T ) ∀w ∈ H1
,0(0, T )

satisfying zj ∈ H1
0,(0, T ) ∩ Hs(0, T ), for some s ∈ [1, 2]. Then the unique solution zht,j ∈

S1
ht,0,

(0, T ) of the Petrov-Galerkin variational formulation

−〈∂tzht,j, ∂twht〉L2(0,T ) + κj〈zht,j , wht〉L2(0,T ) = 〈f,wht〉(0,T ) ∀wht ∈ S1
ht,,0(0, T )

satisfies

‖zj − zht,j‖L2(0,T ) ≤ c

(

1 +
4

π
T 2κj

)

hst‖zj‖Hs(0,T ) +
µTh2t
6

|zj |H1(0,T )

with a constant c > 0 independent of κj and ht .
Next, we take a look at the convergence in space and recall convergence results for the

Nédélec elements as stated in [6, Ch. 5.5]. Let τ ∈ Tx. By the construction of (ak(t))k
satisfying (58) and since the vectorial wave equation is uniquely solvable, we see that Ah is in
fact the projection of A in NI(Tx). Moreover, we know from [6, Thm. 5.41] that

∥
∥A(t, .)−Ahx(t, .)

∥
∥
L2(K)

+
∥
∥curl(A(t, .) −Ahx(t, .))

∥
∥
L2(K)

≤ chsx(|A(t, .)|Hs(K)3 + | curlA(t, .)|Hs(K)3)

for fixed t ∈ (0, T ) and k ∈ Tx if ψi ∈ Hs(K)3 and 1/2 + δ ≤ s ≤ k, where k is the degree of
the Nédélec space. Following [6, Rmk. 7.30] we know that for linear edge elements on a cube
we can expect all eigenfunctions ψ

i
to be in H2(Ω) with which we can construct A. Therefore,

we can expect first order convergence in the H(curl)-seminorm.
Putting all results together, we can expect for the L2(Q) norm second order convergence in

time and first order in space. The second order convergence can also be shown by following the
same steps as [31, Thm. 2]. For the H1;curl(Q)-seminorm we can expect first order convergence.
This we will also see in the numerical results of the next section.

3.5 Numerical Results

In this section, we will take a look at the numerical results and apply the theoretical results
from above. We will first take a look at the results for σ = 0 to have a baseline from which
we can judge other results.

To compute the linear system (43), we first have to assemble the right-hand side. The pro-
jection ΠRT ,1

h j
a

of the right-hand side ja in (41) are calculated by using-high-order quadrature
rules for the integrals, see [16] for more details. The calculation of all spatial and temporal
matrices (45) is done with the help of the finite element library NGSolve, see www.ngsolve.org
and [26]. Finally, the linear system (43) is solved by the sparse direct solver UMFPACK 5.7.1
[12].
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3.5.1 Testing the convergence for σ ≡ 0

We will first take a look at examples for σ ≡ 0 to investigate the CFL condition. For our
examples in this section we consider the domain Q = (0, 2) × (0, 1)2, with T = 2 and Ω =

[0, 1] × [0, 1], and ε ≡
(
1 0
0 1

)

and µ ≡ 1. We will consider two constructed solutions. The

first is given by

A1(t, x1, x2) = t2x1(1− x1)x2(1− x2)

(
x2
−x1

)

(61)

for (t, x1, x2) ∈ Q. The function A1 has homogeneous tangential trace γtA1 = 0 and homoge-
neous initial conditions. If we insert A1 into the vectorial wave equation, we compute

j1(t, x1, x2) :=

(
2x1(1− x1)x2(1− x2)x2

(2x1(1− x1)x2(1− x2)(−x1)

)

+ t2
(
x1(x1(5− 12x2) + 10x2 − 4)

−x2(−2x1(6x2 − 5) + 5x2 − 4)

)

.

To take a look at the convergence rates, we compute the experimental order of convergence
(EOC) with

EOC =
ln(errL−1)− ln(errL)

ln(hL−1)− ln(hL)
,

where errL is the L2(Q)-error, or the error in the Hcurl;1(Q)-seminorm respectively, at level L.
Additionally we use bisection in the refinement throughout the section ??, hence ln(hL−1)−
ln(hL) = ln(2).

To compute Table 1, we solve the discrete linear system described in (43) for second-
order elements in time and lowest order Nédélec elements in space. Here we see second order
convergence in the ‖.‖L2(Q)-norm and first order convergence in the |.|Hcurl;1(Q)-halfnorm. This

is the same result as we would get for linear elements in time and ΠRT ,1
h j

1
as the projection

of the right-hand side, see [16].

L hx ht #fdofs ‖A−Ah‖L2(Q) EOC |A−Ah|Hcurl;1(Q) EOC

0 0.5000 0.5000 80 3.25e-02 - 1.76e-01 -
1 0.2500 0.2500 896 1.27e-02 1.36 1.15e-01 0.62
2 0.1250 0.1250 8192 3.24e-03 1.97 5.90e-02 0.97
3 0.0625 0.0625 69632 7.87e-04 2.04 2.97e-02 0.99
4 0.0312 0.0312 573440 1.92e-04 2.03 1.48e-02 1.00

Table 1: Error table for the Galerkin–Petrov FEM (42) for the unit square Ω and T = 2 and
the solution A1 in (61) using a uniform refinement strategy.

Next, we want to test the sharpness of the CFL condition (56). To that purpose, we use a
more complicated artificial solution A2, which was also used in [16]. We set T =

√
2 to test

the example of [16] where the solution

A2(t, x1, x2) =

(
−5t2x2(1− x2)
t2x1(1− x1)

)

+ t3
(
sin(πx1)x2(1− x2)

0

)

(62)
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was used for (t, x1, x2) ∈ Q. The function A2 fulfills the homogeneous boundary condition
γtA2 = 0 and has homogeneous initial conditions. The related right-hand side j

2
is given by

j
2
(t, x1, x2) =

(
−10(t2 − x22 + x2)
2(t2 − x21 + x1)

)

+

(
2t3 sin(πx1) + 6t sin(πx1)x2(1− x2)

πt3(1− 2x2) cos(πx1)

)

for (t, x1, x2) ∈ Q and divxj2 6= 0.

Table 2: Errors in ‖·‖L2(Q) for the Galerkin–Petrov FEM (42) over (0,
√
2) × (0, 1)2 and the

solution A2 in (62).

hx
ht 0.2828 0.1414 0.0707 0.0354 0.0177

0.1768 4.19e-02 4.19e-02 4.19e-02 4.19e-02 4.19e-02
0.0884 1.04e-02 1.04e-02 1.04e-02 1.04e-02 1.04e-02
0.0442 2.60e-03 2.08e-02 2.59e-03 2.59e-03 2.59e-03
0.0221 6.59e-04 1.61e-02 1.72e+03 6.47e-04 6.47e-04

Table 3: Errors in |·|Hcurl;1(Q) for the Galerkin–Petrov FEM (42) over (0,
√
2)× (0, 1)2 and the

solution A2 in (62).

hx
ht 0.2828 0.1414 0.0707 0.0354 0.0177

0.1768 6.22e-01 6.22e-01 6.22e-01 6.22e-01 6.22e-01
0.0884 3.09e-01 3.08e-01 3.08e-01 3.08e-01 3.08e-01
0.0442 1.54e-01 2.16e+00 1.54e-01 1.54e-01 1.54e-01
0.0221 7.69e-02 3.13e+00 3.61e+05 7.69e-02 7.69e-02

First let us take T =
√
2 and look at the L2(Q)-norm error table Tab. 2 and the Hcurl;1(Q)-

seminorm error table Tab. 3. This is the same example as the numerical example in the paper
[16] which showcased the sharpness of the CFL condition for piecewise linear finite elements
in time and lowest order Nédélec elements in space. In the paper [16] we observe first-order
convergence in the Hcurl;1(Q)-seminorm and second-order convergence in the L2(Q)-norm in
the case of stability. We see this behavior as well in the interpolation errors in Table 4 and
5. Here we see first-order convergence in Tab. 5 and second-order convergence in Tab. 4.
When we compare these results to the results we find in the error tables 2 and 3 we see first-
order convergence in the Hcurl;1(Q)-seminorm and second order L2(Q)-norm after stability is
achieved.

On the other hand, when we take a look at the stability of the results in table 2 and 3
we clearly see the influence of the CFL condition. Following the last line we see in the third
column, where ht/hx ≈ 0.0707/0.0221 ≈ 3.1991 that our solution does not converge. On the
other hand in the fourth column, we have ht/hx ≈ 0.0354/0.0221 ≈ 1.6018 which satisfies
our CFL condition and we achieve convergence. In comparison with the results for piecewise
linear elements in time in [16] we see that the second-order elements in time result in a smaller
error in total. On the other hand, we see a quicker convergence in the time refinement when
we fix the spatial discretization.
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Table 4: Interpolation errors in ‖·‖L2(Q) in (0,
√
2)× (0, 1)2 and the solution A2 in (62).

hx
ht 0.2828 0.1414 0.0707 0.0354 0.0177

0.1768 7.49e-02 7.49e-02 7.49e-02 7.49e-02 7.49e-02
0.0884 1.93e-02 1.93e-02 1.93e-02 1.93e-02 1.93e-02
0.0442 4.84e-03 4.81e-03 4.81e-03 4.81e-03 4.81e-03
0.0221 1.24e-03 1.21e-03 1.20e-03 1.20e-03 1.20e-03

Table 5: Interpolation errors in |·|Hcurl;1(Q) in (0,
√
2)× (0, 1)2 and the solution A2 in (62).

hx
ht 0.2828 0.1414 0.0707 0.0354 0.0177

0.1768 6.49e-01 6.49e-01 6.49e-01 6.49e-01 6.49e-01
0.0884 3.20e-01 3.20e-01 3.20e-01 3.20e-01 3.20e-01
0.0442 1.59e-01 1.59e-01 1.59e-01 1.59e-01 1.59e-01
0.0221 7.95e-02 7.94e-02 7.94e-02 7.94e-02 7.94e-02

To showcase the behavior of the CFL condition (56) we take a look at the same example,
but take the final time T =

√
10.4. We use the same number of elements in time and space

as in the simulation for Tab. 2 and 3. By taking the final time T =
√
10.4 we see a ratio of

the time and spatial mesh size which is close to the CFL condition of section 3.3. For these
values, we see in both tables 6 and 7, e.g., in the third row, second to last column or last row,
last column that the ratio equals

ht
hx

≈ 0.0806

0.0442
=

0.0403

0.0221
≈ 1.82352941.

This ratio is below the CFL condition ht < 1.825741858 hx. On the other hand in row three,
column three and row four, column four we we do not satisfy the CFL condition with the ratio

ht
hx

≈ 0.1612

0.0442
=

0.0806

0.0221
≈ 3.64705.

Therefore we see no convergence in our results for these cases.

Table 6: Errors in ‖·‖L2(Q) for the Galerkin–Petrov FEM (42) in (0,
√
10.4)× (0, 1)2 and the

solution A2 in (62).

hx
ht 0.6450 0.3225 0.1612 0.0806 0.0403

0.1768 3.54e-01 3.54e-01 3.54e-01 3.54e-01 3.54e-01
0.0884 8.90e-02 1.04e+00 8.85e-02 8.85e-02 8.85e-02
0.0442 2.29e-02 4.87e-01 1.95e+05 2.21e-02 2.21e-02
0.0221 7.88e-03 1.83e-01 9.99e+05 1.04e+19 5.52e-03
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Table 7: Errors in |·|Hcurl;1(Q) for the Galerkin–Petrov FEM (42) in (0,
√
10.4) × (0, 1)2 and

the solution A2 in (62).

hx
ht 0.6450 0.3225 0.1612 0.0806 0.0403

0.1768 4.29e+00 4.28e+00 4.28e+00 4.28e+00 4.28e+00
0.0884 2.15e+00 5.25e+01 2.14e+00 2.14e+00 2.14e+00
0.0442 1.08e+00 4.57e+01 2.00e+07 1.07e+00 1.07e+00
0.0221 5.57e-01 1.66e+01 1.77e+08 1.93e+21 5.36e-01

3.5.2 The convergence for σ 6≡ 0

As a last case, we want to take a look at the convergence if we set σ 6≡ 0 on a subdomain of the

spatial domain Ω. For that purpose we consider again Q = (0, 2) × [0, 1]2 with ε ≡
(
1 0
0 1

)

,

µ ≡ 1. We take the constructed solution A1 of (61). However, we choose σ = 1 over
conv{(0.5, 0.35), (0.65, 0.5), (0.5, 0.65), (0.35, 0.5)} as shown in Fig. 1 and zero elsewhere. Then
we compute the constructed right hand side j

a
= ∂ttA1 + σ∂tA1 + curlx curlxA1.

Ωσ

Ω

σ = 0

x1

x2

0 1

1

Figure 1: The domain Ω and the support Ωσ = supp(σ) of the conductivity σ.

When we solve (43) for this example we get the L2(Q)-norm error as shown in Table 8 and
the Hcurl;1(Q)-seminorm error shown in Table 9 for piecewise quadratic functions in time. In
both tables, Tab. 9 and Tab. 8, we see the CFL condition (56), ht < 1.825741858 hx, as in
the case of σ ≡ 0. Indeed, in each table, we see in the last row and the second column where
ht/hx = 4.7348 to the third column where ht/hx = 2.3674 an increase in the error which
stops after the CFL condition is satisfied in the fourth column where ht/hx = 1.18. After
the CFL condition is met we again see linear convergence in the Hcurl;1(Q)-seminorm but no
second-order convergence in the L2(Q)-norm, however. Note, that the stricter CFL condition
(57) does not apply here.

Remark 3.1. In the case of ε = ε0, µ
−1 = µ−1

0 we get ht <
√
ε0µ0

√
60
18hx ≈ 6.09 10−9 hx

since µ0 = 1.256637 10−6 and ε0 = 8.854188 10−12. In this case, since µ−1 and σ are at least
of order 1012 greater, it might be reasonable to think about the application of this problem.
Either, we consider a very fine resolution where we are interested in the resolution on the
atomic level or it might be reasonable to consider the Eddy Current problem instead of solving
(42). This will be a topic of future work.
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Table 8: Errors in ‖·‖L2(Q) for the Galerkin–Petrov FEM (42) in (0, 2)×(0, 1)2 and the solution
A1 in (61).

hx
ht 0.2500 0.1250 0.0625 0.0312 0.0156

0.2111 1.06e-02 1.06e-02 1.06e-02 1.06e-02 1.06e-02
0.1055 3.72e-03 3.70e-03 3.70e-03 3.70e-03 3.70e-03
0.0528 2.23e-03 1.31e+00 2.14e-03 2.14e-03 2.14e-03
0.0264 1.49e-03 1.77e+01 6.57e+10 1.48e-03 1.48e-03

Table 9: Errors in |·|Hcurl;1(Q) for the Galerkin–Petrov FEM (42) in (0, 2) × (0, 1)2 and the
solution A1 in (61).

hx
ht 0.2500 0.1250 0.0625 0.0312 0.0156

0.2111 1.08e-01 1.08e-01 1.08e-01 1.08e-01 1.08e-01
0.1055 5.76e-02 5.47e-02 5.47e-02 5.47e-02 5.47e-02
0.0528 6.48e-02 1.49e+02 2.76e-02 2.76e-02 2.76e-02
0.0264 2.12e-02 3.42e+03 1.49e+13 1.39e-02 1.42e-02

4 Conclusion

In this paper, we have investigated the unique solvability of the variational formulation of
the vectorial wave equation considering Ohm’s law. First, we have taken a look at the trial
and test spaces and showed properties of the functional spaces that we needed to prove the
solvability. Then we proved unique solvability for the variational formula (16), where j

a
∈

L1(0, T ;L2(Ω;Rd)). For electromagnetic problems, the variational formula (16) applies to a
variety of electromagnetic examples since it is posed for Ohm’s law and anisotropic material.

Having proven the unique solvability, we turned to computational examples in the tensor
product. We used piecewise quadratic ansatz functions in time and lowest order Nédélec
elements in space. Here, as in the case of linear ansatz functions in time, [16], we realized that
there is a CFL condition. We calculated the CFL condition and gave examples. Using the
reasoning from Section 3.3, it is also possible to derive a CFL condition for other higher-order
elements in time. We thus learn that simply increasing the order of finite elements in time
does not lead to an unconditionally stable method. In the case of the tensor product structure,
we can always expect a CFL condition for the space-time discretization of the vectorial wave
equation. A possible solution is the use of the modified Hilbert transform as performed in
[16].

The results of this work form the basis for more complicated electromagnetic problems.
We observed the main difficulties of the vectorial wave equation and what they imply. This
will be a starting point for future work on the calculation of eddy current problems and further
applied calculations such as unstructured space-time meshes.
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