2020 Volume E103.C Issue 10 Pages 524-532
This paper presents a large-angle imaging algorithm based on a dynamic scattering model for inverse synthetic aperture radar (ISAR). In this way, more information can be presented in an ISAR image than an ordinary RD image. The proposed model describes the scattering characteristics of ISAR target varying with different observation angles. Based on this model, feature points in each sub-image of the ISAR targets are extracted and matched using the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) algorithms. Using these feature points, high-precision rotation angles are obtained via joint estimation, which makes it possible to achieve a large angle imaging using the back-projection algorithm. Simulation results verifies the validity of the proposed method.