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Abstract

Non-invasive estimation of serum potassium, [K+],
is of major importance to prevent associated risks,
but current ambulatory estimation methods are limited.
We investigated changes in T wave nonlinear dynamics
by quantifying a divergence-related marker ψ on
electrocardiograms (ECGs) from 15 end-stage renal
disease (ESRD) patients undergoing hemodialysis (HD)
and we assessed the relationship between ψ and [K+].
ECGs from 22 simulated transmural ventricular fibers
were additionally calculated. In ESRD patients, ψ took the
largest values at the beginning and end of the HD session,
corresponding to the highest and lowest [K+] values.
The median correlation coefficient over patients between
the change in ψ and the change in [K+] was 0.92 and
decreased to 0.74 after controlling for the effects of [Ca2+]
and heart rate. These associations were, however, highly
patient-dependent. Both the strength and variability of the
ψ-[K+] relationship was reproduced in the simulations,
with the variability explained by differences in transmural
heterogeneities: 10% variations in the proportion of
epicardial and midmyocardial cells led to more than 10%
and 8% changes in ψ, respectively. In conclusion, changes
in the nonlinear dynamics of the ECG T waves can be
related to [K+] variations in ESRD patients, despite the
high inter-individual variability.

1. Introduction

Around 10% of the worldwide population are affected
by chronic kidney disease. The economic cost, increased
mortality risk and decreased quality of life associated
with this disease are remarkably high [1]. At the final
stage, so called end-stage renal disease (ESRD), patients
present an increasingly impaired ability to maintain
potassium homeostasis. Serum potassium levels ([K+])
outside normal ranges, in the form of hypokalemia

or hyperkalemia, increase the risk for life-threatening
arrhythmias and sudden cardiac death [2].

Investigating the effects of [K+] variations on the
electrical activity of the heart could allow deriving
electrocardiogram (ECG)-based markers for continuous
monitoring of [K+], which would facilitate the delivery
of more timely therapies for ESRD patients. Variations
in [K+] levels have been indeed shown to affect
depolarization and repolarization features of the ECG [2].
Most of the investigated ECG markers in the literature are
aimed at characterizing T wave properties [3]. However,
such properties commonly refer to a specific time point or
small portion of the T wave and are, thus, not necessarily
representative of the whole T wave morphology changes
in response to varying [K+].

In previous studies, we characterized changes in the
T wave shape at varying [K+] by using time-warping
techniques over clinical and simulated ECGs [4, 5].
The linear but also the nonlinear components of the
measured warping markers showed a strong relationship
with [K+]. Based on those results, we hypothesized
that evaluation of nonlinear dynamics of the T wave, as
measured by other techniques quantifying the divergence
of trajectories starting close to each other, could provide
relevant information for [K+] estimation. We quantified
a divergence-related marker ψ over ECGs of ESRD
patients during a hemodialysis (HD) session, where
large [K+] changes are expected to occur. Also, we
simulated a set of ventricular fibers covering a wide
range of transmural heterogeneities and we calculated
pseudo-ECGs (pECGs) at different [K+] levels. After
confirming that simulated ψ reproduced the evidences
from clinical ECGs, we performed a sensitivity analysis
to assess the contribution of transmural heterogeneities to
inter-individual differences in T wave nonlinear dynamics,
particularly for [K+] values out of normal ranges.
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2. Methods

2.1. Processing of ECG signals

48-hour 12-lead ECGs were recorded from 15 ESRD
patients at Hospital Clı́nico Universitario de Zaragoza
(HCUZ). ECG acquisition started 5 minutes before the
HD treatment onset and lasted for 48 hours, as shown in
Figure 1 [4,5]. Concurrently, six blood samples were taken
at the HD onset, at every hour during the HD session,
at the HD end (minute 215 or 245, depending on the
patient) and after 48 hours, immediately before the next
HD session (Figure 1, K1 to K6). Extracellular potassium
and calcium concentrations, [K+] and [Ca2+], as well as
heart rate were measured at those time points. The ethical
committee approved the study protocol and all patients
provided signed informed consent (CEICA ref. PI18/003).
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Figure 1. Diagram of the study protocol. K1 to K6 are the
time points (in minutes) for blood sample extraction.

ECG pre-processing included baseline wander removal,
muscle and electric noise removal as well as single-lead
delineation using a wavelet-based automatic algorithm
[6]. To enhance the T wave energy and allow more
precise delineation, spatial principal components (PCs)
were obtained by computing the inter-lead auto-correlation
matrix of T waves in a stable ECG segment at the end of
the HD session. The ECG recording was subsequently
projected onto the direction of the 1st PC and the
corresponding T waves were again delineated using the
method described in [6] to determine the locations of their
onset, peak and end.

Mean warped T waves (MWTWs), representing optimal
averages in the time and amplitude domains [7], were
calculated at each of the analyzed time points when blood
samples were extracted. For this calculation, T waves
in two-minute windows before the blood extraction time
point were aligned, iteratively warped and averaged to
compute the MWTW, as fully described in [4, 5].

2.2. Computational modeling and
simulation

Transmural electrical propagation from ventricular
endocardium to epicardium was simulated using
one-dimensional fibers of 1.65 cm in length. The

action potential (AP) model of Ten Tusscher and Panfilov
[8], with the updates by Severi et al. [9], was used
to represent human ventricular cell electrophysiology.
Transmural heterogeneities were simulated for a total of
22 combinations with variations in the proportions of
endocardial (from 10% to 50%), midmyocardial (from
10% to 50%) and epicardial cells (from 20% to 80%) [5].

A series of 10 stimuli was applied to the endocardial
end of the fiber every 1000 ms with an amplitude equal
to 1.5 times the diastolic threshold. A finite element
method based software [10] was used to compute electrical
propagation with a time step of 0.01 ms and space
discretization of 0.01 cm. pECGs were computed as in
[11] and the T waves were also delineated with [6].

Simulations were run for the reference physiological
level in the Ten Tusscher−Panfilov model, i.e. [K+] = 5.4
mM, as well as two different levels below and above it:
[K+] = 3, 4, 5.4, 6.2, 7 mM.

2.3. T wave nonlinear dynamics

The T wave nonlinear dynamical content was described
by evaluation of a marker ψ based on the divergence
of trajectories starting close to each other [12]. ψ
was calculated for the patients’ ECGs and the simulated
ECGs. Let a given MWTW, upsampled by a factor 5,
be denoted by x = [x1, x2, ..., xN ]. The reconstructed
trajectories for a delay τ were represented by vectors
yj = [xj , xj+τ , ..., xj+(m−1)τ ], j = 1, 2, ...,M . Here,
M = N − (m − 1)τ , being m the embedding dimension
set to 9 and τ the delay in samples set to 15.

For each yj , its nearest neighbor yĵ was searched by
minimizing:

dj(0) = min
yĵ

||yj − yĵ ||, (1)

with |j − ĵ| > p, being p set to
⌈
N
100

⌉
. The notation || · ||

represents the Euclidean norm.
Next, the distance between the nearest neighbors yj and

yĵ was computed after i steps as:

dj(i) = ||yj+i − yĵ+i||, (2)

where i=1, 2, ..., I , being I set to
⌈
N
5

⌉
.

The marker ψ was computed as:

ψ =
1

I

I∑
i=1

ln(e(i)), (3)

where e(i) =
1

M

M∑
j=1

dj(i).

Figure 2 illustrates ψ for MWTWs from a patient
at different HD time points (H1-H3) as well as the
corresponding functions ln(e(i)) for varying i.
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Figure 2. Panels a-c: MWTWs from a particular patient at
different HD time points. Panels d-f: ln(e(i)) versus index
i varying from 1 to I as described in the text. ψ values
obtained as the average of ln(e(i)) for all values of i are
shown for each MWTW.

In each patient and simulated fiber, [K+]∗ and ψ∗

were used to denote the values of [K+] and ψ associated
with minimum ψ. We denoted ∆[K+]=[K+] − [K+]∗

and ∆ψ=ψ − ψ∗. Pearson correlation coefficients were
computed to assess the strength of the linear relationship
between ψ and [K+]. Linear partial correlation coefficients
were computed while controlling for the effects of [Ca2+]
and heart rate.

2.4. Sensitivity Analysis

To assess how transmural heterogeneities modulated ψ
at different [K+] concentrations, a sensitivity analysis was
performed. The percentage of change and the sensitivity of
ψ (Sψ) to variations in the proportion of endo-, mid- and
epicardial cells were calculated as described in [5, 13].

3. Results and Discussion

Figure 3 shows the regression lines obtained from
linearly fitting ∆ψ vs ∆[K+] for each of the analyzed
ESRD patients (left panel) and each of the simulated
ventricular fibers (right panel). The range of [K+] values
in the simulations corresponds to the range calculated from
the patients’ data. As can be observed from the figure,
the simulated results reproduce the behavior observed
from the clinical ECGs, including the high inter-individual
variability. In the patients, ∆ψ took the largest values
at the beginning of the HD session, corresponding to the
highest [K+] values. Similarly, in the simulated fibers, the
highest ∆ψ values were found under hyperkalemia.

Results presented in Figure 4 illustrate the strong linear
correlation between ∆ψ and ∆[K+] in the patients (ρA,
with a median value of 0.92) and in the simulated fibers
(ρC , median of 0.84). Also, the figure shows that,
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Figure 3. Fitted linear regression models to the
relationships between ∆ψ and ∆[K+] for the analyzed
patients (left panel) and simulated fibers (right panel).

even after controlling for additional effects, the partial
correlation between ψ and [K+] in the patients is still high:
median ρB of 0.74 after accounting for both heart rate and
[Ca2+] variations.
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Figure 4. Boxplots of Pearson correlation coefficients
between∆ψ and∆[K+] for the analyzed patients (ρA) and
simulated fibers (ρC) as well as boxplot of linear partial
correlation coefficients for the patients after controlling for
the effects of both [Ca2+] and heart rate (ρB). Each dot
represents a patient or a simulated fiber.

Figure 5 shows the results from the sensitivity analysis
for ψ. As can be observed, the largest sensitivity of
ψ was found to variations in the proportion of epi- and
midmyocardial cells within the ventricular wall. This
was particularly more prominent when [K+] became
elevated above physiological levels. For [K+] = 7 mM,
sensitivity values above 100% and 80% were found for epi-
and midmyocardial proportions, which means that 10%
variations in the epi- and midmyocardial proportions led
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to changes larger than 10% and 8% in ψ.
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Figure 5. Sensitivity of ψ to variations in the proportion
of endo-, mid- and epicardial layers of the simulated
ventricular fibers at two different [K+] levels.

4. Conclusions

The divergence-related marker ψ, as a descriptor of the
nonlinear dynamics of the T wave, presents remarkable
changes with varying [K+] in ESRD patients, although
high inter-individual variability in the ψ-[K+] relationship
is observed. The wide range of strengths and patterns
of such relationship in the patients are well reproduced
in silico. Transmural heterogeneities in simulated human
ventricular fibers are shown to play a relevant role in
determining the patient-specific response of the T wave to
hypo/hyperkalemia.
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