For a prime power $ q $, we construct two classes of LDPC codes $ C(n, q^2) $ and $ C^T(n, q^2) $, both with girth $ 8 $, based on the space of $ n\times n $ Hermitian matrices over the finite field $ \mathbb{F}_{q^2} $. The minimum distance and the stopping distance are both determined for $ C^T(n, q^2) $. Meanwhile, lower bounds of these parameters are obtained for $ C(n, q^2) $. Furthermore, when the characteristic of $ \mathbb{F}_{q^2} $ is $ 2 $, we are also able to derive upper bounds of these two parameters for $ C(n, q^2) $.
Citation: |
[1] | N. Alon and M. Luby, A linear time erasure-resilient code with nearly optimal recovery, IEEE Trans. Inform. Theory, 42 (1996), 1732-1736. doi: 10.1109/18.556669. |
[2] | H. Falsafain and M. Esmaeili, A new construction of structured binary regular LDPC codes based on Steiner systems with parameter $t > 2$, IEEE Trans. Commun., 60 (2012), 74-80. |
[3] | Y. Feng, S. Deng, L. Wang and C. Ma, Minimum distances of three families of LDPC codes based on finite geometries, Front. Math. China, 11 (2016), 279-289. doi: 10.1007/s11464-016-0530-2. |
[4] | R. G. Gallager, Low-density parity-check codes, IRE Trans., 8 (1962), 21-28. doi: 10.1109/tit.1962.1057683. |
[5] | S. J. Johnson and S. R. Weller, Regular low-density parity-check codes from combinatorial designs, Proceedings of 2001 Information Theory Workshop, Cairns, Australia, (2011), 90–92. |
[6] | J.-L. Kim, U. N. Peled, I. Perepelitsa, V. Pless and S. Friedland, Explicit construction of families of LDPC codes with no 4-cycles, IEEE Trans. Inform. Theory, 50 (2004), 2378-2388. doi: 10.1109/TIT.2004.834760. |
[7] | Y. Kou, S. Lin and M. P. C. Fossorier, Low-density parity-check codes based on finite geometries: A rediscovery and new results, IEEE Trans. Inform. Theory, 47 (2001), 2711-2736. doi: 10.1109/18.959255. |
[8] | S. Laendner and O. Milenkovic, LDPC codes based on Latin squares: Cycle structure, stopping set, and trapping set analysis, IEEE Trans. on Commun., 55 (2007), 303-312. |
[9] | J. Li, S. Lin, K. Abdel-Chaffar, W. E. Ryan and D. J. Costello Jr, LDPC Code Designs, Constructions, and Unification, Cambridge University Press, 2017. doi: 10.1017/9781316780152. |
[10] | X. Liu, LDPC Codes Based on the Space of Hermitian Matrices, Master Thesis, Hebei Normal University, 2015. |
[11] | Z. Liu and D. A. Pados, LDPC codes from generalized polygons, IEEE Trans. Inform. Theory, 51 (2005), 3890-3898. doi: 10.1109/TIT.2005.856936. |
[12] | C. Ma, Q. Wang and M. Zhao, LDPC codes based on the space of symmetric matrices over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4332-4343. doi: 10.1109/TIT.2017.2685501. |
[13] | D. J. C. MacKay, Good error-correcting codes based on very sparse matrices, IEEE Trans. Inform. Theory, 45 (1999), 399-431. doi: 10.1109/18.748992. |
[14] | D. J. C. MacKay and R. M. Neal, Near shannon limit performance of low density parity check codes, Electronics letters, 32 (1996), 1645-1646. |
[15] | P. Sin, J. Sorci and Q. Xiang, Linear representations of finite geometries and associated LDPC codes, J. Combin. Theory Ser. A, 173 (2020), 105238, 15 pp. doi: 10.1016/j.jcta.2020.105238. |
[16] | H. Tang, J. Xu, S. Lin and K. A. S. Abdel-Ghaffar, Codes on finite geometries, IEEE Trans. Inform. Theory, 51 (2005), 572-596. doi: 10.1109/TIT.2004.840867. |
[17] | R. M. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inform. Theory, 27 (1981), 533-547. doi: 10.1109/TIT.1981.1056404. |
[18] | Z. Wan, Geometry of Matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/9789812830234. |
[19] | S. Xia and F. Fu, Minimum pseudo-codewords of LDPC codes, IEEE Trans. Inform. Theory, 54 (2008), 480-485. doi: 10.1109/TIT.2007.911177. |