
Exploiting Data Semantics to Discover, Extract, and Model Web Sources

José Luis Ambite, Craig A. Knoblock, Kristina Lerman, Anon Plangprasopchok, Thomas Russ
USC Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292, USA
{ambite,knoblock,lerman,plangpra,tar}@isi.edu

Cenk Gazen, Steven Minton
Fetch Technologies

2041 Rosecrans Ave, El Segundo, CA 90245
{gazen,minton}@fetch.com

Mark Carman
Faculty of Informatics, University of Lugano
Via Buffi 13, CH-6904 Lugano, Switzerland

mark.carman@lu.unisi.ch

Abstract

We describe DEIMOS, a system that automatically dis-
covers and models new sources of information. The sys-
tem exploits four core technologies developed by our group
that makes an end-to-end solution to this problem possible.
First, given an example source, DEIMOS finds other sim-
ilar sources online. Second, it invokes and extracts data
from these sources. Third, given the syntactic structure of
a source, DEIMOS maps its inputs and outputs to semantic
types. Finally, it infers the source’s semantic definition, i.e.,
the function that maps the inputs to the outputs. DEIMOS
is able to successfully automate these steps by exploiting a
combination of background knowledge and data semantics.
We describe the challenges in integrating separate com-
ponents into a unified approach to discovering, extracting
and modeling new online sources. We provide an end-to-
end validation of the system in two information domains to
show that it can successfully discover and model new data
sources in those domains.

1. Introduction

An assumption in much of the work on data mining is
that a person must first find and model the information from
which an automated system would then perform the data
mining. This first step can require significant effort and
must be repeated for each new data source. An alternative
that we explore in this paper is to exploit a combination of
background knowledge and data semantics to automatically
discover and model new sources of information.

In this work, we assume that we start with a set of ex-
ample sources and semantic descriptions of those sources.
These sources could be web services with well defined in-

puts and output or even Web forms that take a specific input
and generate a result page as the output. The system is then
given the task of finding additional sources that are similar,
but not necessarily identical, to the known source. For ex-
ample, the system may already have knowledge about sev-
eral weather services and then be given the task of finding
additional weather services that provide additional coverage
for the world and building a semantic description of these
new weather services that makes it possible to exploit them
for additional analysis.

This problem can be broken down into four subtasks.
First, given an example source, how do we find other simi-
lar sources. Second, once we have found such a source, how
do we extract the data from that source. For a web service,
this is not an issue, but for a web site with a form-based
interface, the source might simply return an HTML page
from which the data needs to be extracted. Third, given
the syntactic structure of a source (i.e., the inputs and out-
puts), what are the semantics of the inputs and outputs of
that source. Fourth, given the inputs and outputs, what is
the function that maps the inputs to the outputs.

The core components that make an end-to-end solution
to this problem possible have been developed in previous
work. Lerman and Plangrasopchok [15] showed that so-
cial bookmarking sites, such as del.icio.us can be used to
identify sources similar to a given source. For example,
given a geocoder, which maps street addresses to its latitude
and longitude coordinates, the system can identify other
geocoders that are available online by exploiting the key-
words used to describe such sources on a social bookmark-
ing web site. Gazen and Minton [5] developed an approach
to automatically structure web sources without any previ-
ous knowledge of the source. Lerman, Plangrasopchok, and
Knoblock [9] developed an approach to semantic labeling of
the online information. The system uses sources for which

it already has a semantic model to then learn to label the in-
puts and outputs of a perviously unknown source. Finally,
Carman and Knoblock [1] developed an approach to learn
a semantic description that precisely describes the relation-
ship between the inputs and outputs of a source. This ap-
proach learns these descriptions as datalog descriptions in
terms of known sources.

In all of this previous work, each of these problems were
solved independently of the other components. In this pa-
per, we describe the integration of these four separate com-
ponents into a single unified approach to discovering, ex-
tracting and modeling new online sources. The challenge in
integrating these separate components is that in the previ-
ous work each of these systems makes assumptions that are
not necessarily consistent with the other components. To
build an end-to-end approach, we had to address these is-
sues. This work provides the first general approach to auto-
matically discover and model new sources of data. Previous
work, such as the ShopBot system [13], has done this in a
domain-specific way where a significant amount of knowl-
edge is encoded into the problem (e.g., shopping knowledge
in the case of Shopbot), but there are no general approaches
to this problem.

In this paper we describe DEIMOS (Discovery, Extrac-
tion, and Inference of Models Of Sources), a system that
exploits background knowledge in order to discover, ex-
tract from, and model online data sources. In the remain-
der, we first describe the architecture of DEIMOS and the
background knowledge it needs (Section 2). Second, we
describe the integrated steps to discover new sources (Sec-
tion 3), invoke and extract data from the discovered sources
(Section 4), semantically type the inputs and outputs of
these discovered sources (Section 5), and then semantically
modeling the function performed by these sources (Sec-
tion 6). Third, we present results of an end-to-end valida-
tion in two information domains, where the only input to
the system is an example of a source in that domain and a
semantic description of that source, and the system discov-
ers and builds a semantic model of the discovered sources
(Section 7). Finally, we compare with related work (Sec-
tion 8) and conclude with a discussion and directions for
future research (Section 9).

2. Architecture and Background Knowledge

The architecture of DEIMOS appears in Figure 1, which
shows how the individual components of the system interact
with each other and with the background knowledge. We
illustrate our terminology on the geospatial domain. The
background knowledge for the geospatial domain, which
contains geocoding and related services, consists of (1) Se-
mantic types: e.g., Address, Latitude, Zipcode; (2) Sam-
ple values for each type: e.g., “123 Elm Street” for Ad-
dress, and “90292” for Zipcode; (3) Possible inputs and

outputs: a source may accept a full Address or a com-
bination of Street and Zipcode (4) Known sources: e.g.,
http://geocoder.us; (5) Source descriptions: specifying the
functionality of the source in a formal language of the kind
used by data integration systems [10], e.g., the following
datalog rule specifies that geocoder.us returns geographic
coordinates of an address:

geocoder.us(Address, Street, City, StateAbbr, ZIP,
Latitude, Longitude):-

Address(Address, Street, City, StateAbbr, State, ZIP,
CountryAbbr, Country, Latitude, Longitude)

DEIMOS components rely on the information contained
in the background knowledge for the domain to automate
the process of identifying and modeling new data sources
for the domain, as shown in Fig. 1. DEIMOS starts by iden-
tifying services that are likely to provide functionality sim-
ilar to that provided by a known source in the domain, that
we call the seed. A sample seed for the geospatial domain is
geocoder.us. Once a promising set of Web sources has been
identified, DEIMOS has to invoke the sources and extract
the returned data. This process involves determining what
inputs are needed on Web forms, and how to extract and
interpret the returned values. This provides a input/output
type signature of the service. DEIMOS exploits background
knowledge, both in the use of known semantic types for the
input values with which to query the services, and also to
automatically infer semantic types of the output data. Once
DEIMOS constructs a type signature for a new source, it can
programmatically invoke the source and analyze its output
to infer a source description of the new source.

3. Source Discovery

The goal of Source Discovery is to identify services that
are likely to provide similar functionality to the seed. One
approach to solve this problem is to query a Web search
engine with terms that appear in the seed to identify all
other sources that use the same terms. Then, we could use a
traditional Information Retrieval-based similarity measure,
e.g., TF/IDF, to find sources similar to the seed. Such ap-
proaches are not likely to produce high quality results for
Web sources that generate their contents dynamically in re-
sponse to a query. First, such sources may contain very little
text in the input form page, where the user enters the query.
In addition, no descriptive terms indicating the output of the
source may be included on this page. At best, a search en-
gine may rely on the metadata supplied by the source or the
anchor text in the pages that link to the source. Woogle [3]
is one of the few search engines to address this problem by
indexing Web services based on the syntactic metadata pro-
vided in the WSDL files. However, this approach applies
only to Web services and not to a host of other dynamic
Web sources whose discovery we plan to automate.

Figure 1. DEIMOS system architecture

Instead, in order to discover sources similar to the seed,
we mine a corpus of tagged documents from the social
bookmarking site del.icio.us. Tagging has become a pop-
ular method for annotating content. When a user tags an
object, e.g., a Web document on del.icio.us, a scientific pa-
per on CiteULike, or an image on flickr, she labels it with
a tag freely chosen from an uncontrolled personal vocabu-
lary. Tagging enables the user to organize objects in order
to efficiently find them later. We assume that users annotate
Web sources according to their functionality. As of August
4, 2008, geocoder.us has been tagged by over 1,600 people
on del.icio.us. Among popular tags are useful descriptors of
the service such as “geocoding,” “gps,” “mapping,” “tool,”
and “geocode.”

We have developed a probabilistic model which groups
‘similar’ tags to learn a compressed description of a collec-
tion of tagged Web sources [15]. The compressed descrip-
tion, or ‘latent topics’, forms the basis for comparing sim-
ilarity between sources. In other words, if a source’s topic
distribution is similar to the seed’s, the source is likely to
provide the same functionality. The retrieved sources are,
therefore, ranked according to how similar they are to the
seed in the learned topic space.

For the geospatial domain, among the results are URLs
of sources that provide information about geocoding prod-
ucts and services, e.g., http://www.nacgeo.com/geocode.asp
and http://www.pushpin.com/ ; a Canadian geocoder

http://geocoder.ca; multi-country geocoders such as
http://www.travelgis.com/geocode/, as well as other US-
specific geocoders, such as http://www.ontok.com/geocode/
and http://www.lat-long.com/.

4. Source Invocation and Extraction

In order to retrieve data from Web sources, DEIMOS has
to identify input forms on Web pages and parse them to de-
termine how to invoke the source. The returned pages are
then processed to extract data from it. The page is divided
into virtual “columns” which contain strings. The algorithm
used by DEIMOS often produces a large number of columns
(sometimes more than 1,000 per page). It is the task of the
semantic typing component of DEIMOS to choose a subset
of those columns to form the type signature for that partic-
ular source.

4.1. Source invocation

DEIMOS relies on the background knowledge to con-
strain the search for valid inputs. The background knowl-
edge contains information about the possible types of in-
puts expected by sources in the domain. In the geospa-
tial domain, some sources may expect a single input in
the form of an address, while others require the street and
city to be entered separately. Table 1 shows possible inputs

Inputs Outputs
Type Value
Address 123 Elm Street, El Segundo, CA 90294 Field of type Address
Street 123 Elm Street Field of type Street
City El Segundo Field with one of City, StateName, StateAbbr,
StateAbbr CA ZipCode5Digit, Zipcode5Plus4Digit
CityState El Segundo, CA Field with one of Latitude,
ZipCode5Digit 90294 LatitudeDMS, LatitudeDMS-D
Latitude 34.898748 Field with one of Longitude,
Longitude -118.037684 LongitudeDMS, LongitudeDMS-D

Table 1. Possible input and output types for a geocoding service, along with some sample values.

for a geospatial service, along with sample values for each
type. DEIMOS repeatedly invokes the source with differ-
ent permutations of possible domain input values until a set
of mappings is found that yields results pages from which
it can successfully extract data. DEIMOS stops as soon as
one successful mapping is found. The brute force approach
works because in many domains most Web forms have a
fairly small number of fields.

4.2. Data extraction

We are interested in modeling Web sources that generate
pages dynamically in response to a query. These sources
specify the organization of the page through a page tem-
plate, which is then filled with results of a database query.
The page template is, thus, shared by all pages returned by
the source. Given two or more sample pages, we can derive
the page template and use it to extract data from the pages.

The page template can be thought of as the grammar that
generates the pages. DEIMOS induces a grammar for the
Document Object Model (DOM) trees of the pages [5]. The
kinds of grammars it induces allow us to extract single data
items as well as lists, where the rows of a list contain data
items or nested lists. It finds the grammar by comparing
pages to identify repeating sub-structures and merges gram-
mars into a more general one. Both stages use ideas based
on templates. A template is a sequence of alternating slots
and stripes where the stripes are the common sub-structures
among all the pages and slots are the placeholders for pieces
of data. One way to find the template of a set of pages is
to find the longest common subsequence (LCS) of all the
pages. The LCS immediately gives the stripes of the tem-
plate and with a little bookkeeping, the slots can also be
found.

We can extend the template idea to DOM trees. Given
a set of sequences of DOM elements, we find the LCS and
then for each element in the LCS, we recursively apply the
algorithm to the set of child elements.

Once we have the template, we can use it to extract the
slots by finding the nodes in the original DOM structures

that are not in the stripes of the template. Data in the same
slot is added to the same column. The output of this step is
a (sometimes large) table of columns of data.

5. Semantic Typing of Sources

We leverage background knowledge in order to semanti-
cally type the data returned by Web sources. Data usually
has some structure: phone numbers, prices, addresses, etc.
follow some format. We have developed a content-based
classification method that learns this structure and uses it to
recognize new examples of the same semantic type. Below
is a brief explanation of the approach.

5.1. Semantic labeling

We developed a domain-independent language [7] that
represents the structure of data as a sequence of tokens
and token types, called a pattern. Since tokens are strings
that contain different character types: alphabetic, numeric,
punctuation, etc, we use the token’s character types to as-
sign it to one or more general types: e.g., alphabetic, all-
capitalized, numeric, one-digit, etc. The general types have
regular expression-like recognizers.

The patterns associated with a semantic data type can be
efficiently learned from example values of the type. We can
later use learned patterns to recognize new instances of a se-
mantic type by evaluating how well the patterns describe the
new data. We developed a set of heuristics to evaluate the
quality of the match. These heuristics include how many of
the learned learned patterns match data, how specific they
are, how many tokens in the examples are matched, and so
on. We found that our system can accurately recognize new
instances of known semantic types from a variety of do-
mains, such as weather and flight information, yellow pages
and personal directories, financial and consumer product
sites, etc [8, 9].

Input: field “addr” of type Address
Outputs: column6 of type Longitude, 115.62

column7 of type Latitude, 92.4
column8 of type Street, 3.94
column16 of type StateAbbr,14

Table 2. Mapping information for a geospatial
source http://ontok.com

5.2. Identifying Column Types

To validate a results page, the column view of the pages
provided by the Source Extraction component is processed
to produce a mapping of a subset of columns to seman-
tic types. The background knowledge is used in two ways
here. First, it provides sample values of each semantic type
to build recognizers, or ‘patterns’, which DEIMOS uses to
automatically infer semantic types of the outputs. Second,
the background knowledge also contains information about
what types of outputs can be expected from a source. The
output types are divided into required and optional return
values, as shown in Table 1 for a geospatial source. All re-
quired and a specified fraction of the optional values must
be identified in the output for a source to be deemed a proper
service for the domain. For a geospatial service 80% of the
optional types have to be identified.

Once the mapping of columns to types is completed, we
have a type signature of the Web source. This provides
the input to the next stage of our processing, the deriva-
tion of the source model. As an example, the type signature
of http://ontok.com, which was identified by the Discovery
component as a possible geospatial service, is shown in Ta-
ble 2.

There are several reasons why a type signature can fail to
be found. First, we may not be able to invoke the form with
a set of inputs that provides a consistently identifiable out-
put. This is usually because the form does not really repre-
sent an example of the type of web source that we are trying
to learn. Recall that the source discovery phase is not a very
precise procedure. The precision is supplied by determining
whether we can invoke the source successfully. Second, we
may not get reasonable output because incomplete model-
ing of potential input value combinations. Third, the system
may not be able to parse the result pages consistently. If
the returned pages are highly variable, perhaps because of
dynamically inserted advertisements, this can throw off the
grammar inference stage of the column splitting algorithm.
Finally, a source may not return enough of the fields that are
needed by the domain. This is usually legitimate grounds
for rejecting the source, but in some cases it may indicate
that the page source is just a more minimalistic web source.
For example, a minimalist return page for a geocoder, which

just returns latitude and longitude but doesn’t echo the input
address, would not be identified by the criteria that we used
for the domain.

6. Source Modeling

At this stage, DEIMOS has learned a typed input/output
signature for a novel source. For example, the system
represents the ontok.com geocoding service of Table 2 by
the signature: ontok.com($Address, Address,
Longitude, Latitude, Street, StateAbbr).
However, a typed signature is only a partial description
of the behavior of a source. What we want is a charac-
terization of the functionality of the service, that is, the
relationship between the input and output parameters of the
service. Such functionality can be declaratively described
as a logical rule in a relational query language such as
Datalog. Once the functionality of a source is specified in
such declarative form, the data provided by the resource
can be accessed and integrated using data integration
techniques [19, 10, 17]. Specifically, DEIMOS infers a
Local-as-View (LAV) description [10, 18]. The inference
algorithm for source definitions is described in detail in
Carman & Knoblock [1]. Here, we illustrate the main ideas
through an example.

Consider a simple Web Service called
CalculateDistance, which takes as input two
zipcodes and returns the distance between the centroids
of the zipcodes in miles. The LAV rule describing the
functionality of the source is:

CalculateDistance($zip1, $zip2, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
greatCircleDist(lat1, long1, lat2, long2, dist2),
convertKm2Mi(dist1, dist2).

The predicates centroid, greatCircleDist, and
convertKm2Mi are part of the domain model and are
used to assign precise commonly-understood semantics to
sources from a given domain.

The task of the source modeling module of DEIMOS is
to learn this type of definitions. Our approach is to com-
bine known sources to try to emulate the input/out values
of the new unknown source. For example, assume that
the system already contained the following source descrip-
tions (obtained from a human or from the output of previous
learning):

source1($zip, lat, long):- centroid(zip, lat, long).
source2($lat1, $long1, $lat2, $long2, dist):-
greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2):- convertKm2Mi(dist1, dist2).

In this case, it should be fairly obvious that the follow-
ing join of the known sources should yield a good approx-
imation for the input/output values of our unknown source
CalculateDistance.

CalculateDistance($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).

Replacing the known sources by their definitions yields
the LAV source description shown above.1 Learning this
definition involves searching the space of possible hypothe-
ses, that is, conjunctive rules in Datalog that could explain
the inputs and outputs observed. DEIMOS employs Induc-
tive Logic Programming techniques to enumerate the search
space in an efficient best-first manner. During this search
the system takes advantage of the semantic types that have
been learned for the unknown source, and that are already
known for the background sources, in order to prune the
number of possible candidate hypothesis. The system con-
siders only conjunctive queries that join on variables of
compatible types.

The system evaluates each candidate hypothesis (a con-
junctive query) over a set of sample input tuples, thus gener-
ating a set of predicted output tuples. The induction system
then compares the generated output tuples with those actu-
ally produced by the source being modeled to see if the pre-
dicted and actual outputs are similar. An example of such a
test is shown in the table below:

$zip1 $zip2 dist (actual) dist (predicted)
80210 90266 842.37 843.65
60601 15201 410.31 410.83
00000 90210 Invalid! NULL
10005 35555 899.50 899.21

As part of its background knowledge DEIMOS associates
a similarity function with each of its semantic types. For
numeric values, a similarity can be expressed as an abso-
lute or a relative (percent) difference. For text fields, it uses
string distance metrics such as Levenshtein distance. Using
these similarity metrics the system compares each pair of
predicted versus observed values. Then, DEIMOS uses the
Jaccard similarity to rank different hypotheses according to
the amount of overlap between the predicted output tuples
and the observed ones.

The system continues its search for the best hypothesis
until it discovers the most specific rule that best explains
the observed data. Thus if the resource provides only dis-
tances between zipcodes in California, the system will learn

1In general, after unfolding the source definitions, the system needs
to simplify the resulting conjunctive query, since there may be provably
redundant predicates.

that the inputs to the source must indeed be Californian zip-
codes.

The induction system has been tested on a number of
different domains including geospatial data sources, finan-
cial data sources as well as weather, hotel and automo-
bile related Web Services. In all cases it was able to learn
high quality declarative descriptions for the functionality of
the different information sources, that could be used by an
information integration system to integrate and access the
source’s data [1].

7. Experimental Evaluation

We present results of an end-to-end evaluation of the sys-
tem on the geospatial and weather domains. The geospa-
tial domain consists of sources, such as http://geocoder.us,
that returns geographic coordinates for a specified ad-
dress. The weather domain contains sources, such as
http://wunderground.com, that return weather conditions at
a specified location.

Source Discovery. DEIMOS crawls del.icio.us to collect
sources potentially similar to the seed (http://geocoder.us
or http://wunderground.com respectively for the two do-
mains). For each seed it retrieves the 20 most popular tags
users applied to this source. Then, for each of the tags,
retrieves other sources that have been annotated with that
tag. Finally, for each source, it collects all bookmarks. This
process results in a set of over 15 million (source-user-tag
triples) for the domains.

We trained the model on the data and used the learned
topic distributions to compute the similarity of resources in
each data set to the seed. We evaluated the performance
of the model by manually checking the top-ranked 100 re-
sources produced by the model. The resource is judged to
have the same functionality, if it provides an input form
that takes semantically the same inputs as the seed and re-
turns semantically the same data. Among the 100 high-
est ranked URLs for each domain, Source Discovery was
able to identify 20 relevant geospatial sources, 70 relevant
weather sources.

Source Invocation & Extraction and Semantic Typing.
Source Invocation & Extraction attempts to (1) recognize
the form input parameters and calling method, and (2) learn
an extractor for the resulting output. If successful, DEIMOS
can then call the websites programmatically as web ser-
vices. Then, Semantic Typing generates type signatures for
these services.

Given the top 100 URLs identified by Source Discovery,
these modules generated two semantically-typed geospatial
sources and six semantically-typed weather sources.

As an example, the type signatures learned for ontok.com
and geocoder.ca are:

ontok($Address, Longitude, Latitude, Street, StateAbbr)
geocoder.ca($Address, CityState, StateAbbr, Street,

Latitude, Longitude)

Semantic Modeling Geospatial Domain. As background
knowledge for the geospatial domain, we defined the fol-
lowing a source description for the seed source:

geocoder.us(Address, Street, City, StateAbbr, ZIP,
Latitude, Longitude):-

Address(Address, Street, City, StateAbbr, State, ZIP,
CountryAbbr, Country, Latitude, Longitude)

Given this source, DEIMOS was able to infer the follow-
ing hypothesis and corresponding source descriptions:

ontok($Address, Longitude, Latitude, ,):-
geocoder.us(Address, , , , , Latitude, Longitude)

ontok($Address, Longitude, Latitude, ,):-
Address(Address, , , , , , , , Latitude, Longitude)

geocoder.ca($Address, , StateAbbr, Street, Latitude,):-
geocoder.us(Address, Street, , StateAbbr, , Latitude,)

geocoder.ca($Address, , StateAbbr, Street, Latitude,):-
Address(Address, Street, , StateAbbr, , , , , Latitude,)

Analyzing the results, the reason that some of the at-
tributes could not be mapped hinged on extraction errors.
For the street and state attributes of ontok, the extractor
had left some HTML tokens in the output values (for exam-
ple, “601 WHITEHEAD ST KEY WEST,
FL 33040” and “FL”), so that the simi-
larity metric associated with these types could not consider
them similar to the predicted values. For the longitude at-
tribute of geocoder.ca the extractor omitted the sign of the
longitude, for example, it extracted 118.440470 instead of
−118.440470. Again this thwarted the comparison between
values and prevented learning a mapping.

Weather Domain. As background knowledge for the
weather domain we used these sources: wunderground.com
and a conversion function:

wunderground($Zip, Humidity, TempFhi, TempFlow,
TempFhinextday, Sky, PressureInches, WindDirection):-
weather(Zip, TempFhi, TempFlow, TempFhinextday,
Humidity, Sky, PressureInches, WindDirection)

ConvertC2F($TempC, TempF):-convertTemp(TempC, TempF)

The system was able to discover and model two ad-
ditional websites: weather.unisys.com and timetempera-
ture.com. The learned source descriptions are:

unisys($Zip, Sky, TempFhi, TempC, , ,):-
weather(Zip, TempFhi, , , , Sky, ,),
convertTemp(TempC, TempFhi)

timetemperature($Zip, , Sky, , , TempFlow, TempFhinextday,):-
weather(Zip, , TempFlow, TempFhinextday, , Sky, ,)

The ground truth signatures for these sources are:

unisys($Zip, Sky, TempFcurrent, TempCcurrent, Humidity,
WindDirection, TemperatureF, PressureMb)

timetemperature($Zip, TimeZone, Sky, Humidity,
PressureInches, TempFlowtonight, TempFhinextday, TempFlownextday)

For unisys.com the system was able to learn a cor-
rect conjunctive source description that included not only
the weather domain predicate but also the convertTemp
translation function. The system correctly learned four
attributes and missed three. Labeling TempFcurrent with
TempFhi is the best that the system could do given that the
seed source did not include TempFcurrent. The system is
able to correctly infer the translation between TempFcurrent
and TempCcurrent. The three missing attributes could not be
learned due to extraction errors and to value variability be-
tween the sources. For example, since the extracted values
for the last attribute were a combination of temperature and
pressure values, no correct mapping could be made. Also,
we discovered that the sites actually report significantly dif-
ferent values for Humidity, even though we extracted val-
ues for the seed and the target sources in close temporal
proximity.

For timetemperature.com the system correctly learns
the source description and four of the attributes, while it
misses another four attributes. We argue that matching
TempFlowtonight and TempFlow is acceptable given the seed
description. The system correctly learned TempFhinextday,
but could not learn TempFlownextday since such values are
not present in the seed. Humidity values were again too
variable. The values of the second argument of timetem-
perature.com were actually time zone codes, which were
extracted and incorrectly labeled as WindDirection (due
to three capitalized letters being a pattern for wind direc-
tion, e.g., WSW). Obviously these values would not match
the seed source. We remark that the end-to-end system did
not produce any incorrect source description, only incom-
plete ones. Since the final source modeling step relies on
actual values from the sources, in addition to the semantic
types, we conjecture that it is unlikely that the both values
and semantic types would both match incorrectly.

Overall, we consider these results promising. DEIMOS
was able to discover Web sources, convert them into pro-
grammatically accessible services and provide accurate se-
mantic descriptions of these services in a completely auto-
mated fashion.

8. Related Work

Early work on the problem of learning semantic defini-
tions for Internet sources was performed by [14], who de-
fined the category translation problem. That problem can
be seen as a simplification of the source induction prob-
lem, where the known sources have no binding constraints
or definitions, and provide data that does not change over
time. Furthermore, it is assumed that the new source takes a
single value as input and returns a single tuple as output. To
find solutions to this problem, the authors too used a form
of inductive search based on an extension of FOIL.

More recently, there has been some work on classifying
web services into different domains [6] and on clustering
similar services together [4]. This work is closely related,
but at a more abstract level. Using these techniques one
can state that a new service is probably a weather service
because it is similar to other weather services. This knowl-
edge is very useful for service discovery, but not sufficient
for automating service integration. In our work we learn
more expressive descriptions of web services, namely view
definitions that describe how the attributes of a service re-
late to one another.

The schema integration system CLIO [20] helps users
build queries that map data from a source to a target schema.
If we view this source schema as the set of known sources,
and the target schema as a new source, then our problems
are similar. In CLIO, the integration rules are generated
semi-automatically with some help from the user.

The iMAP system [2] tries to discover complex (many-
to-one) mappings between attributes of a source and tar-
get schema. It uses a set of special purpose searchers to
find different types of mappings. Our system uses a gen-
eral ILP-based framework to search for many-to-many map-
pings. Since our system can perform a similar task to iMAP,
we tested it on the hardest problem used to evaluate iMAP.
The problem involved aligning data from two online cricket
databases. Our system, despite being designed to handle a
more general task, was able to achieve 77% precision and
66% recall, which is comparable to the performance (ac-
curacy) range of 50-86% reported for iMAP on complex
matches with overlapping data.

Finally, the Semantic Web community have developed
standards [12, 16] for annotating sources with semantic in-
formation. Our work complements theirs by providing a
way to automatically generate semantic information, rather
than relying on service providers to create it manually. The
Datalog-based representation used in this paper (and widely
adopted in information integration systems [11]) can be
converted to the Description Logic-based representations
used in the Semantic Web.

9. Discussion and Future Work

In this paper we presented a completely automatic ap-
proach to discover new online sources, extract the data from
those sources, learn the semantic types of the inputs and
outputs, and learn a semantic description of the function
performed by the source. We also presented some initial
results that demonstrate the the system can learn semantic
models for source in which it had no previous knowledge.
This work is important because it makes it possible for a
system to grow the sources and data to which it has access.
This work is directly relevant to other work on data min-
ing since it makes it possible to both find new sources that
can be exploited and to find connections with existing data
sources that make it possible to discover new knowledge or
patterns based on the relations between them.

There are a number of directions for future work. So far
we have completed a proof of concept that demonstrates
that we can perform the end-to-end discovery and learn-
ing. The next step is to flesh out these components and
improve the interoperation between them. For example, by
learning more fine-grained semantic types, we can improve
the ability to learn the semantic descriptions of the sources.
Similarly, by improving the extraction of the data from the
web page, we can improve the ability to assign the seman-
tic types. We also plan to run a much more comprehensive
set of experiments to demonstrate that we can discover and
model sources across a variety of problem domains.

Acknowledgements

We thank Sorin Ticrea for providing code for processing
Web forms, and Dipsy Kapoor for architecting the source
invocation and extraction system.

This research is based upon work supported in part by
the National Science Foundation under award numbers IIS-
0324955 and IIS-0535182, in part by the Air Force Of-
fice of Scientific Research under grant number FA9550-
07-1-0416, and in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. FA8750-07-
D-0185/0004.

The U.S.Government is authorized to reproduce and dis-
tribute reports for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
any of the above organizations or any person connected with
them.

References

[1] M. J. Carman and C. A. Knoblock. Learning semantic def-
initions of online information sources. Journal of Artificial
Intelligence Research (JAIR), 30:1–50, 2007.

[2] R. Dhamanka, Y. Lee, A. Doan, A. Halevy, and P. Domin-
gos. imap: Discovering complex semantic matches between
database schemas. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD International Conference on Manage-
ment of data, 2004.

[3] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity search for web services. In Proc. of
VLDB, pages 372–383, 2004.

[4] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity search for web services. In Proceed-
ings of VLDB, 2004.

[5] B. Gazen and S. Minton. Autofeed: an unsupervised learn-
ing system for generating webfeeds. In K-CAP’05: Pro-
ceedings of the 3rd international conference on Knowledge
capture, pages 3–10, New York, NY, USA, 2005. ACM.

[6] A. Heß and N. Kushmerick. Automatically attaching se-
mantic metadata to web services. In IJCAI-2003 Workshop
on Information Integration on the Web, 2003.

[7] K. Lerman, S. Minton, and C. Knoblock. Wrapper mainte-
nance: A machine learning approach. Journal of Artificial
Intelligence Research, 18:149–181, 2003.

[8] K. Lerman, A. Plangprasopchok, and C. Knoblock. Auto-
matically labeling the inputs and outputs of web services.
In Proc. of National Conference on Artificial Intelligence
(AAAI-06), 2006.

[9] K. Lerman, A. Plangprasopchok, and C. A. Knoblock. Se-
mantic labeling of online information sources. International
Journal on Semantic Web and Information Systems, Special
Issue on Ontology Matching, 3(3):36–56, 2007.

[10] A. Y. Levy. Logic-based techniques in data integration.
In J. Minker, editor, Logic-Based Artificial Intelligence.
Kluwer Publishers, November 2000.

[11] A. Y. Levy. Logic-based techniques in data integration.
In J. Minker, editor, Logic-Based Artificial Intelligence.
Kluwer Publishers, November 2000.

[12] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. Mc-
Dermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara. Bringing seman-
tics to web services: The owl-s approach. In Proceedings of
the First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), 2004.

[13] M. Perkowitz, R. B. Doorenbos, O. Etzioni, and D. S. Weld.
Learning to understand information on the internet: An
example-based approach. Journal of Intelligent Information
Systems, 8:133–153, 1999.

[14] M. Perkowitz and O. Etzioni. Category translation: Learning
to understand information on the internet. In Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), 1995.

[15] A. Plangprasopchok and K. Lerman. Exploiting social an-
notation for resource discovery. In AAAI workshop on Infor-
mation Integration on the Web (IIWeb07), 2007.

[16] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology. Applied On-
tology, 1(1):77–106, 2005.

[17] S. Thakkar, J. L. Ambite, and C. A. Knoblock. Compos-
ing, optimizing, and executing plans for bioinformatics web
services. VLDB Journal, 14(3):330–353, 2005.

[18] J. D. Ullman. Information integration using logical views.
In Proceedings of the Sixth International Conference on
Database Theory, pages 19–40, Delphi, Greece, January
1997.

[19] G. Wiederhold. Mediators in the architecture of future in-
formation systems. IEEE Computer, 25(3):38–49, March
1992.

[20] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-
driven understanding and refinement of schema mappings.
In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD
International Conference on Management of data, 2001.

