

Identifying Novice Difficulties in Object Oriented Design

Benjy Thomasson, Mark Ratcliffe, Lynda Thomas
University of Wales, Aberystwyth

Penglais Hill
Aberystwyth, SY23 1BJ

+44 (1970) 622424

{mbr, ltt} @aber.ac.uk

ABSTRACT
We report on a study of novice programmers’ object oriented
class designs. These designs were analysed to discover what
faults they displayed. The two most common faults related to
non-referenced classes (inability to integrate them into the
solution), and problems with attributes and class cohesion. The
paper ends with some implication for teaching that may be
indicated by the empirical results.

Categories and Subject Descriptors
D.1.5 [Object-oriented Programming]: Design
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design

Keywords
Software design, Introductory programming, Design faults

1. INTRODUCTION
For many years, educators have been concerned that beginning
students of computer programming have not been performing to
the levels expected. There is considerable evidence for this. For
instance, in the much quoted international study by McCracken
et al [7] of first year programming students who were attempting
to solve an assigned programming problem, the average grade
was just 21%.

1.1 Overview
The McCracken study looked at students’ work on a complete
software development task from design to coding. Subsequent
work influenced by McCracken has focused on aspects of the
whole task. A 2004 ITiCSE working group examined the ability
of students to ‘trace’ code in multiple choice questions [6].

In this paper, we look at the ‘other end’ of the software
development process and report on a study restricted to
beginning computer science students’ object-oriented designs.
These designs have been examined in order to identify the most
common faults. We hope that an understanding of students’
errors in producing reasonable designs will help guide CS
educators to focus effort in instruction.

This study reports on the initial stage of an ongoing project to
develop a collaborative development environment (Vortex) that,
through a case-based reasoning system, gives structured
feedback to student-users and enables educators to capture
information about their designs. Further information is available
in [14].

2. BACKGROUND
Learning to program is not easy. Du Boulay [1] points out that
there are issues of: orientation, learning to control the notional
machine, understanding notation, acquiring standard structures
and finally pragmatics. When educators teach beginning
programming, they need to address all these issues at once and
this is also not an easy task. We all have our own pet theories of
how best to do this: objects first, breadth first, depth first, etc.,
so we may place more or less emphasis on Object-Oriented
design in introductory classes, but almost all introductory texts
seem to introduce the idea of a class with attributes and methods
at some point in the first semester. In Aberystwyth we begin the
introductory programming sequence (which is taught using Java)
with a two pronged approach. We investigate programming
language structures, but also spend quite a lot of effort in
demonstrating and encouraging students to design classes. This
is done through interactive lectures, closed lab sessions, and
tutorials.

2.1 Design
As outlined in [11], most research in novice software
development has tended to focus on learning and using a
programming language; but some authors have examined design.
Soloway et al. [12] discuss how to teach design in five phases
with an emphasis on the idea of decomposing the problem and
then selecting and composing plans to form a solution. More
recently authors such as Muller [9] have discussed algorithmic
patterns and how they may form a basis for students to recognise
and solve variations on common problems.

2.2 Errors
Research into what kind of errors novice programming students
make has also concentrated more on coding than on design. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

instance, in a recent paper, Hristova et al. [5] identified Java
programming errors, but these were mainly at the level of syntax.

In addition to our personal experience there is considerable
evidence that design is difficult for students, even those about to
graduate. Spohrer and Soloway [13] noted nearly 20 years ago
that students exhibit most difficulty in putting the ‘pieces’ of a
program together rather than in programming language
constructs per se. This could be generalised to the design arena.
Only 9% of graduating seniors in a recent study [2] produced
what the authors call a ‘reasonable design’ for a problem that
required several classes and some interesting behaviour. Garner
et al. [3] collected a count of student problems in labs and
discovered that the second most frequent problem was ‘stuck on
program design’ (behind ‘basic mechanics’ – small problems
that were expected to diminish as time progressed.)

Or-Bach and Lavy investigated cognitive activities of
abstraction in Object Orientation [10]. They found that third
year students still struggled to sufficiently abstract entities when
defining objects, thus missing necessary classes, placing
irrelevant attributes within a class, and lowering cohesion.

Holland et al. [4] offer suggestions for how to avoid fostering
misconceptions about Object-Oriented concepts in novices.
These suggestions are based on their experience of designing
and teaching introductory courses rather than on an empirical
analysis of student designs. The misconceptions they highlight
include:
• object/variable conflation – classes should have more than

one instance variable,
• object/class conflation – there is usually more than one

instance of a class,
• identity/attribute confusion – when a Module object, with

identifier ‘CS12320’ has name as an instance variable with
value ‘CS12320’ confusion ensues,

• Objects are not simple records – they may have different
behaviour depending on their state (note that this is beyond
the boundaries of this study).

All these misconceptions affect students’ ability to design
reasonable classes.

In this paper we concentrate on observable faults in students’
designs rather than the misconceptions that may cause those
faults, but clear inferences for improvement may be observed.

3. THE EXPERIMENT
In the first semester of all the Computing degrees at the
University of Wales, Aberystwyth, students take an introduction
to programming and object-orientation course that comprises
between one third and one half of their time commitment. In this
study we examined the designs that students produced about half
way through the first semester.

The study was split into several phases. Students’ designs,
produced on paper in a lecture, were collected with the purpose
of identifying the most common faults. There was considerable
verification in the project as a whole, using different problems,
different groups of students and, eventually, an early prototype
of the Vortex tool that collected all the designs for later analysis.
This paper concentrates on the studies that led to the
categorisation of the errors that were exhibited in the student
designs.

For all phases, students were instructed to produce class designs
in the UML style that had been demonstrated by the lecturer,
and introduced and used previously in practicals and tutorials.
The problems were at the level of (in fact, very similar to)
examples produced interactively in class and in tutorials, and
were designed to examine at what level students had understood
the process of decomposing a problem into its component parts.
Our study focused specifically on the expression of class designs
for a problem solution and required no representation of code or
detailed behaviour. In fact, we only look here at class attributes
as expressed by instance variables, not even method names.

3.1 Phase 1
In this phase we studied the designs of 180 students, 115 were
novices and 65 had some programming experience. Results were
collected on paper and students worked alone. The problem
studied was the ‘paper round’:

Model classes for a paper round system identifying the
classes required, their attributes and their methods. An
individual paper round consists of a paperboy/papergirl
delivering orders to various customers.

3.2 Later Phases
Phase 2 occurred 3 weeks after Phase 1. The same students were
given a different problem, in which they were asked to design
classes for a car-hire company with multiple depots, cars and
customers. The students were again asked only to produce class
diagrams to support the final system. The class was divided so
that some students (n=48) worked alone and others worked
together (19 groups). Designs were again produced on paper and
analysed manually. In Phase 3, conducted the following year, a
different group of students (n=90) was given the car-hire
problem. These students worked alone and produced designs on
paper.

4. RESULTS
Obviously there may be variation in the solutions to these
problems, but such variation would be minimal at the class level.
A model solution was produced which identified classes.
Student designs were then compared to the model for suitability
and completeness. Firstly the designs were analysed for
suitability, to ensure that the classes produced were relevant to
the specification. Completeness was analysed by comparing the
number of suitable classes successfully identified to those
identified in the model answer.

Results from all phases were similar, in that almost all designs
exhibited considerable problems. Designs were somewhat better
when the students worked in a group (Phase 2) but the same
kind of errors showed up (see Table 2). In this discussion, we
will concentrate on the results of Phase 1 since they were typical
of all phases.

4.1 Faults Identified in Phase 1
The model answer suggested ‘Paper’, ‘Customer’, ‘Address’,
‘Order’, ‘Paperboy/girl’, ‘Round’, and ‘Person’ as the necessary
classes. The ‘Person’ class was not expected to be identified by
many students as this illustrated inheritance, a topic not yet
covered in the course.

4.1.1 Summary of Faults
Table 1 shows the extent to which students managed to identify
individual suitable classes in a numeric sense. This shows that
of 180 students, only 1 student managed to identify 7 suitable
candidate classes. In fact this student’s solution was identical to
the model answer. We had expected that by simply reading the
project specification a novice might reasonably identify 5
classes (‘Paper’, ‘Round’, ‘Paperboy/girl’, ‘Order’, ‘Customer’)
and yet only 14% of first time programmers managed a design
with 5 or more suitable classes. Most students were only able to
identify 3 suitable classes.

Table 1. Results from Phase 1: Student design exercise
Experience Number of classes identified

 1 2 3 4 5 6 7

Complete novice n=115 1 14 45 39 13 2 1

Some Experience n=65 0 10 24 19 10 3 0

The designs were then analysed to see what design faults could
be identified. The results are explained below with examples and
discussion centring on the designs produced in Phase 1.

Table 2 illustrates the number and kind of faults identified in all
three phases. In the rest of this section we describe each of these
faults, but first we must note that design faults rarely occur in
isolation, so identification of one fault usually leads to the
discovery of further difficulty within the design.

Table 2. Individual fault occurrences
Phase: 1 2 3

Total classes 647 295 254

Total designs 180 59 53

Total Non-Referenced Class faults 388 129 112

Designs exhibiting this fault 97% 86% 83%

Total References to Non-Existent
Classes

65 34 17

Designs exhibiting this fault 28% 36% 30%

Total Single Attribute
Misrepresentation faults

208 35 34

Designs exhibiting this fault 73% 41% 36%

Total Multiple Attribute
Misrepresentation faults

18 12 12

Designs exhibiting this fault 9% 19% 17%

Total Multiple Object
Misrepresentation faults

2 0 0

4.1.2 Non-Referenced Class faults
Analysis of the students’ designs revealed that most students
developed a class in isolation and failed to utilise it within their
proposed system. Novices understood the necessity for a concept,
but were unable to relate it to other classes through appropriate
use of instance variables1.

1 Note that the designs were eventually entered into Vortex,
where they could be automatically checked. In particular class

For example the design shown in Figure 1 shows ‘Customer’,
‘PaperPerson’ and ‘Order’ classes. The Order and Customer
classes are related by an attribute in the Order class, but nowhere
in the design is there any reference to the PaperPerson class.

Figure 1. Non-referenced Class example

The results in Table 3 suggest that non-referenced classes are a
serious problem for the novice programmers who took part in
the study. Only 6 designs did not exhibit this problem and 42
exhibited only one such fault. The rest of the designs (132 of
180) manifested at least 2 instances of this design fault. One
such fault might be an accident (although all students appeared
to finish their designs in the time allotted). But we believe that
two or more such faults are probably caused by inability to link
the parts of the design into a coherent whole.

Table 3. Non-Referenced Class fault statistics
Total Non-Reference faults 388 (59.9%)

Designs with faults 174 (96.7%)

Max Non-Reference faults in one design 9

Avg Non-Reference faults per design 2.15

Figure 2 illustrates an example of a class which, though its
author probably considered it ‘complete’, contains Non-
Referenced Class faults because of a misconception about
objects and classes.

Figure 2. Worst Non-Referenced Class example

The design also reflects numerous others of the design faults that
are discussed below, including Multiple Object
Misrepresentations faults.

names could be checked for spelling with WordNet [8] so
missing class references due to simple misspellings were
eliminated.

4.1.3 References to Non-Existent classes
In contrast to defining classes that are not referenced by the
design, it was found also that novices made reference to classes
which had not been defined.

If we rule out lack of time, as above, this fault may be caused
either because the student considered the class ‘too easy’ to
worry about at this stage e.g. Address, or had not worked
through the design sufficiently to recognise its omission.

Table 4. Referenced Non-Existent Class Fault statistics
Total Referenced Non-Existent Class faults 65

Designs with faults 51 (28.3%)

Max Reference Non-Existent Class faults in one
design

4

Table 4 shows that Referenced Non-Existent Class faults
occurred in 28% of the designs, sometimes more than once. In
total there were 65 separate references to non-existent classes.

Although references to non-existent classes result in an
incomplete design, they generally result in one that is still
comprehensible. The novice has consciously identified the
requirement for the class through the use of the class name but
has left the design incomplete.

4.1.4 Misrepresentations
Another fault identified was novices’ failure to use good Object
Oriented Design principles. These faults are broken down here
into:

• Single Attribute Misrepresentations,
• Multiple Attribute Misrepresentations, and
• Multiple Object Misrepresentations.

Although these faults lead to less than ideal designs, they are
different from the previous two kind of faults in that designs
with these faults could lead to code that compiles and ‘works’.

4.1.4.1 Single Attribute Misrepresentation
Cohesion is a measure of how strongly related and focused the
responsibilities of a single class are. A class should model the
data attributes and behaviour of one concept. A Single Attribute
Misrepresentation fault occurs in two situation. In the first, a
class has an instance variable that should be part of another class.
For example in Figure 3, price would be better within the Paper
class rather than the Orders class. The second occurs when an
attribute should be an instance of a user-defined class but the
novice resorts to using a String. This is also demonstrated in
Figure 3 where most of the attributes would be better
represented as instances of user-defined classes.

Figure 3. Single Attribute Misrepresentation example

Single Attribute Misrepresentations were the second most
frequent faults observed within designs in Phase 1. Table 5

shows that almost a third of the total classes produced exhibited
this fault. As previously noted, Or-Bach [10] also found that
students placed irrelevant attributes within a class and thus
lowered cohesion. This suggests that novice designers struggle
to employ the good Object Oriented skills we expect from them.
This is understandable, considering that the participants of the
study were novices, and decisions regarding which aspects of
the problem space to model as classes are difficult. However,
eventually we would hope that students obtain the necessary
decomposition skills to create good Object Oriented designs.

Table 5. Single Attribute Misrepresentation statistics
Total Single Attribute Misrepresentation faults 275

Total classes with faults 208 (32.2%)

Designs with faults 131 (72.8%)

Max Single Attribute Representation faults in
one design

7

Average number of faults per design 2.1

Of the 180 designs, 49 did not exhibit this problem, 51 exhibited
it once, and the rest exhibited it more than once.

4.1.4.2 Multiple Attribute Misrepresentation
A Multiple Attribute Misrepresentation fault occurs when two or
more attributes within a single class should be bundled into
another class. This is similar to a Single Attribute
Misrepresentation but affects multiple attributes. Figure 4
provides an example of this error within a Customer class, where
4 attributes provide the address details for the Customer element
of the design. Separating these entities increases cohesion and
decreases coupling and provides a better Object Oriented Design.

- nam e : String
- houseNum : int
- street : String
- town : String
- postCode : String
- newspaper : Order

Custom er

Customer from Design 16

Figure 4. Multiple Attribute Misrepresentation example

Nearly 9% of the designs analysed exhibited a Multiple
Attribute Misrepresentation, see Table 6.

Table 6. Multiple Attribute Misrepresentation statistics
Total Multiple Attribute Misrepresentation
faults

20

Total classes with faults 18 (2.8%)

Designs with faults 16 (8.9%)

Max Multiple Attribute Representation faults
in one design

2

Average number of faults per design 1.25

4.1.4.3 Multiple Object Misrepresentation
The previous two faults relate to novices failing to use
appropriate cohesion and object references in their class

definitions. There are however other faults that relate to the
object references that they do provide.

Multiple Object Misrepresentations refer to the use of several
objects of the same type, such as the situation in which a
collection should be used. Instead novices provide numerous
instance variables. A typical example of this kind of Multiple
Object Misrepresentation is shown in Figure 5.

Figure 5. Multiple Object Misrepresentation example

The ‘Route’ class in Figure 5 calls for 4 individual instance
variables. The novice author probably intended to provide a
collection of objects relating to the addresses for this class.

This fault was only identified a small number of times, which in
some ways was surprising. This may relate to the examples that
students had seen in lectures and tutorials.

Table 7. Multiple Object Misrepresentation statistics
Total Multiple Object Misrepresentation faults 2

Total classes with faults 2 (0.3%)

Designs with faults 2 (1.1%)

5. CONCLUSION AND IMPLICATIONS
FOR TEACHING

In this paper we have focused on observable faults in novice
programmers’ class diagrams.

If we examine the faults, we see that most common is the Non-
Referenced Class fault. In other words students know that they
need a class to model a concept but cannot figure out how to
integrate the class into their designs. This is consistent with
other researchers’ findings. As Du Boulay [1] noted, the ability
to see the program as a whole and understand its parts, and the
relationship between them, is a skill which grows over time.
When educators are introducing classes, it is reasonable at first
to restrict the view to one class, and then introduce multiple
instances, but the fact that classes interact must be demonstrated
early enough so that students do not operate with an incorrect
model.

The next most common faults were Misrepresentations. These
boiled down to a failure to achieve high cohesion in class design.
Again, experience helps here, but this fault might be somewhat
mitigated if educators stress cohesion and coupling at an early
stage. This concept is often postponed until a discussion of
metrics in advanced level courses.

Interestingly, misconceptions discussed by Holland et al. [4]
such as object/variable and object/class conflation and
identity/attribute confusion were not much evidenced. It may be
that the style of instruction that we have adopted has helped.
Failure to use a collection was also quite low - perhaps our style
of instruction has addressed that also.

The research reported on here was followed up by the creation
of an interactive Case-Based tutoring tool, Vortex, which seeks
to warn students when their designs exhibit these faults, and
then suggests directions to find solutions. This work will be
reported elsewhere, but is currently available in [14].

6. REFERENCES
[1] Du Boulay, B., Some Difficulties in Learning to Program,

in Studying the Novice Programmer, Soloway, E. and
Spohrer, J. C. (eds), Lawrence Eribaum, 1988, 283-299.

[2] Eckerdal, A., McCartney, R, Mostrom, J.E., Ratcliffe, M.,
and Zander, C., Can graduating students design software
systems? in Proceedings SIGCSE ‘06, 2006.

[3] Garner, S., Haden, P. & Robins, A., My Program is correct
but it doesn't run: A preliminary investigation of novice
programmers' problems, in Proceedings of Australasian
Computing Education Conference, 2005, 173-180.

[4] Holland, S., Griffiths, R. & Woodman, M., Avoiding
Object Misconceptions, in Proceedings SIGCSE '97, 1997,
131-134.

[5] Hristova, M., Misra, A., Rutter, M., and Mercuri, R.,
Identifying and Correcting Java Programming Errors for
Introductory Computer Science Students, in Proceedings
SIGCSE '03, 2003.

[6] Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J. E., Sanders, K.,
Seppälä, O., Simon, B. and Thomas, L., A Multi-National
Study of Reading and Tracing Skills in Novice
Programmers, ACM SIGCSE Bulletin, 36, 4 (Dec. 2004),
119-150.

 [7] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagen, D., Kolikant, Y., Laxer, C., Thomas, L. A., Utting,
I., and Wilusz, T., A Multi National Study of Assessment
of Programming Skills of First year CS students, SIGCSE
Bulletin, 33, 4 (Dec. 2001), 125-140.

[8] Miller, G. A., WordNet a lexical database for the English
language, http://wordnet.princeton.edu/, 2005.

[9] Muller, O., Pattern Oriented Instruction and Enhancement
of Analogical Reasoning, Proceedings ICER ’05, 2005.

[10] Or-Bach, R. and Lavy, I., Cognitive Activities of
Abstraction in Object Orientation: An Empirical Study,
SIGCSE Bulletin 36, 2 (2004), 82-86.

[11] Robins, A., Rountree, A.J., and Rountree, N., Learning and
teaching programming: A review and discussion, Computer
Science Education, 13, 2 (2003), 137 – 172.

[12] Soloway, E., Spohrer, J.C., and Littman, D., E unum
pluribus: Generating Alternative Designs, in Mayer, R.E.
(ed), Teaching and Learning Computer Programming,
Lawrence Eribaum, 1988.

[13] Spohrer, J. C. & Soloway, E., Novice mistakes: Are the
folk wisdoms correct? in Studying the Novice Programmer,
Soloway, E. and Spohrer, J. C. (eds), Lawrence Eribaum,
1988, 401-416.

[14] Thomasson, B., Identifying Faults and Misconceptions of
Novice Programmers Learning Object Oriented Design,
PhD Thesis, University of Wales, Aberystwyth, 2005.

