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Abstract

Using a set-valued dual cost function we give a new approach to duality theory for linear
vector optimization problems. We develop the theory very close to the scalar case. Es-
pecially, in contrast to known results, we avoid the appearance of a duality gap in case
of b = 0. Examples are given.
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1 Introduction

For many reasons, duality assertions are very important in optimization theory from the theo-
retical as well as from the numerical point of view. The duality theory of linear programming
may serve as a model of what one can expect in the best case: A dual program can be stated
explicitly and if it is solvable, so is the original problem, and vice versa. In this case, the
optimal values coincide, i.e. no duality gap occurs. Establishing results of this type was an
important task of linear programming theory right from the beginning; compare e.g. G. L.
Dantzig’s book [5].

Duality for multicriteria optimization problems is more complicated than for single ob-
jective optimization problems. Usually, duality theorems are proved by scalarizing the cost
function. Proceeding in this way, it is possible to apply duality assertions for scalar optimiza-
tion problems and finally, the conclusions have to be translated back into the context of the
vector-valued case. The last step often requires some additional assumptions.

The first attempts to duality in linear vectorial programming seems to be Kornbluth
[13], Isermann [10], [11], Rödder [19], and with improvements and generalizations to convex
problems, Brumelle [1]. More recent expositions are Jahn [15], Göpfert/Nehse [8], Ehrgott [6].
But until now, there is no satisfactory strong duality theorem. Compare the counterexamples
in [15], p. 204f and [1].

In this note, we extend the duality theory in linear vectorial programming by using
a Lagrangean approach without any scalarization. Our dual problem has set-valued nature
because the ”inner” problem is the problem to determine a set of efficient elements depending
on a dual variable, and solving the ”outer” problem means that one has to find a set of efficient
points which is maximal in some sense. Regarding this set-valued nature, the aim of our paper
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is to use methods of set-valued optimization for deriving duality assertions in linear vector
optimization.

2 Basic notation and results

2.1 Basic notation

Let p > 0 be an integer. We denote by IR the set of real numbers and by IRp the usual linear
space of real p-tupels x = (x1, . . . , xp)

T , y = (y1, . . . , yp)
T . We frequently use the notation

and results of Rockafellar’s monograph [18] and, as there (p. 3), ”everything takes place in
IRp.”

For the convenience of the reader we shall rewrite some basic definitions.
A nonempty set K ⊂ IRp is said to be a cone iff it is closed under nonnegative scalar

multiplication, i.e. αK ⊂ K whenever α ≥ 0. A cone K ⊂ IRp is convex if and only if
K + K ⊂ K. Here and throughout the paper, the sum of two subsets of a vector space is
understood to be the usual Minkowski sum. For a nonempty set M ⊂ IRp, the set cone M =
IR+M denotes the cone generated by M consisting of all nonnegative multiples of elements
of M .

A cone is said to be pointed iff K ∩ −K = {0}. A convex pointed cone K generates a
partial ordering (i.e. a reflexive, antisymmetric, transitive relation) in IRp by y1 ≤K y2 iff
y2 − y1 ∈ K.

Let M ⊂ IRp be a nonempty set. An element ȳ ∈ M is called efficient with respect to K
iff

∀y ∈ M : ȳ − y /∈ K\ {0} ⇐⇒ (ȳ −K\ {0}) ∩M = ∅. (1)

The set of efficient elements of M with respect to K is denoted by Eff [M ;K]. By conven-
tion, we associate ”minimization” dealing with Eff [M ;K] and ”maximization” dealing with
Eff [M ;−K].

Let M be a nonempty convex subset of IRp. The set 0+M of all y ∈ IRp such that
M + y ⊂ M is a convex cone. It is called the recession cone of M . Moreover, a nonempty
closed convex set M ⊂ IRp is bounded if and only if 0+M = {0} (see [18], Theorem 8.1, 8.4).
If M is a closed set and K a closed convex cone, the sum M +K is closed if 0+M ∩−K = {0}
(see [18], Corollary 9.1.2).

A set M ⊂ IRp is said to be lower externally stable with respect to K iff M ⊂ Eff [M ;K]+
K. This property is sometimes called domination property and has been studied by several
authors. Compare Luc [14] and the references therein.

In our finite dimensional context, the following equivalences are valid. Note that in the
following lemma the cone K does not have to be pointed.

Lemma 1. Let M be a nonempty closed convex set and K be a closed convex cone. Then
the following statements are equivalent.

(i) Eff[M ;K] 6= ∅,

(ii) 0+M ∩ −K = {0},

(iii) M is lower externally stable with respect to K.
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Proof. (i)⇒(ii): Assume the contrary of (ii), namely 0+M ∩ −K 6= {0}. So there is ỹ ∈
0+M ∩ −K, ỹ 6= 0. Hence we have for each y ∈ M

(y + ỹ)− y = ỹ ∈ −K\ {0}

as well as y + ỹ ∈ M , hence no element of M can be efficient in contradiction to (i).
(ii)⇒(iii): Let 0+M ∩ −K = {0}. For every ȳ ∈ M we have (ȳ −K) ∩M 6= ∅. Hence

0+[(ȳ −K) ∩M ] = 0+(ȳ −K) ∩ 0+M = −K ∩ 0+M = {0}

(see [18] Corollary 8.3.3) and consequently (ȳ −K) ∩M is bounded (see [18] Theorem 8.4).
So (ȳ −K) ∩M is a compact section of M since K and M are closed. Hence

∅ 6= Eff[(ȳ −K) ∩M ;K] ⊂ Eff[M ;K]

by [15], Lemma 6.2 a) and Theorem 6.3 c) and consequently ȳ ∈ Eff[M ;K] + K.
(iii)⇒(i): Obviously.

Note that the above lemma collects a number of scattered results working under different
assumptions. The reader may compare e.g. [14], Corollary 3.9, 4.5 and Proposition 5.12.

2.2 Linear vector optimization

Let n ≥ 1 be an integer and X ⊂ IRn. Let us consider a function F : X → IRp. Denoting
F (X ) := ∪x∈X {F (x)}, the basic problem of vector optimization is to determine and/or
characterize the sets

Eff [F (X ) ;K] , {x ∈ X : F (x) ∈ Eff [F (X ) ;K]} . (VOP)

Even if F is a set-valued map from X to the power set of IRp, (VOP) is well-defined by setting
F (X ) = ∪x∈XF (x). In this way, set-valued optimization, as considered in e.g. [3], [14], [16]
may be subsumed under vector optimization.

Roughly speaking, we are in the framework of linear vector optimization if the set M
is the image under a linear mapping of a set that can be described by finitely many affine
functions.

To be precise, we give the following assumptions which are considered to be in force
throughout the paper.

Standing assumptions:

• m,n, p are positive integers;

• C ∈ IRp×n, A ∈ IRm×n, b ∈ IRm;

• K ⊂ IRp be a nontrivial closed convex pointed cone.

Note that the ordering cone K is not necessarily polyhedral convex. Recall that we
understand a set to be polyhedral convex iff it is the intersection of finitely many closed half
spaces. For details see [18], Section 19.
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We shall write IRn
+ = {x ∈ IRn : xi ≥ 0, i = 1, . . . , n} for the non-negative orthant of

IRn. We denote by X := {x ∈ IRn : Ax = b} ∩ IRn
+ the set of admissible elements and by

C (X ) := {y = Cx : x ∈ X} ⊂ IRp the image set of our problem. The linear vector optimiza-
tion problem is to determine (and investigate) the set

Eff [C (X ) ;K] . (P)

An element of Eff [C (X ) ;K] is called efficient for the linear vector programming problem
(P). An element x̄ ∈ X such that Cx̄ ∈ Eff [C (X ) ;K] is called a solution of (P).

In scalar linear optimization, i.e. p = 1, K = IR1
+, there exists a complete duality

theory featuring a dual problem such that exactly one of the following four cases occurs: 1)
Admissible elements exist for the primal as well as for the dual problem, both problems have a
solution, the optimal values are equal (strong duality). 2), 3) The set of admissible elements is
empty either for the primal or for the dual problem; the other one is unbounded. 4) There are
no admissible elements neither for the primal nor for the dual problem. Moreover, the dual
of the dual problem is the original problem, in this sense the scalar theory is ”symmetric”.
See e.g. [5], [20], [14]

A duality theory for the linear vector optimization problem (P) can be found for exam-
ple in Isermann [10], [11], Brumelle [1], Göpfert/Nehse [8] and, in an infinite dimensional
framework, in Jahn [15] and [2]. In all these references the assumption b 6= 0 was supposed
to ensure strong duality results. Neither of these references gives a complete enumeration of
possible cases for a linear vector optimization problem parallel to the scalar case.

We shall improve the theory in three directions: First, introducing a set-valued dual
cost function we can avoid the assumption b 6= 0 and nevertheless, we have no duality gap.
Secondly, we provide weak duality assertions and give a full strong duality theorem like it is
well-known in scalar linear programming. We complete the theory by presenting a case study
parallel to the scalar linear optimization. Moreover, we base our proofs onto a separation
property which seems to be new in the context of vector optimization.

Note that we do not interpret (P) in the sense of a parametrized optimization problem
using a scalarization right from the beginning. In contrast, we avoid a scalarization up to the
point where a separation argument is needed. Compare the proof of Theorem 2 below.

2.3 Separation lemma

The following strict separation lemma is a basic tool for the proof of the strong duality results.
It might be of independent interest since it differs slightly from well-known formulations
including a strict separation property at both sides of the separating hyperplane.

Let Γ ⊂ IRp be a convex cone. The dual cone of the cone Γ is understood to be the set

Γ∗ =
{
γ ∈ IRp : ∀y ∈ Γ : γT y ≥ 0

}
.

Note that a closed convex cone Γ ⊂ IRp is pointed iff int Γ∗ 6= ∅.

Lemma 2. Let Γ ⊂ IRp be a closed convex pointed cone.

(i) If M ⊂ IRp is a polyhedral convex set with M ∩ Γ = {0} then there is a γ ∈ IRp \ {0}
such that

γT y ≥ 0 > γT k ∀y ∈ M, ∀k ∈ Γ \ {0} . (2)
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(ii) If M ⊂ IRp is a nonempty closed convex set with M ∩ Γ = ∅ and 0+M ∩ Γ = {0} then
there is a γ ∈ IRp \ {0} such that

γT y > 0 > γT k ∀y ∈ M,k ∈ Γ \ {0}. (3)

Proof. (i) We have cone M ∩ Γ = {0} since otherwise there would exist α > 0 and ŷ ∈ M
with ỹ := αŷ ∈ Γ \ {0}, hence ŷ = 1

α ỹ ∈ M ∩ Γ \ {0} in contradiction to M ∩ Γ = {0}. Since
M is a polyhedral convex set containing the origin cone M is polyhedral too, hence a closed
convex cone (see [18], Corollary 19.7.1 and Theorem 19.1). Thus we can apply a separation
theorem (see [15], Theorem 3.22) to the cones Γ and cone M which states the existence of a
γ ∈ IRp \ {0} with (2).

(ii) M does not contain the origin since M ∩ Γ = ∅ and 0 ∈ Γ. Thus

cl (cone M) = cone M ∪ 0+M

(see Theorem 9.6 in [18]). We have

cone M ∩ Γ = {0}

since otherwise there would exist α > 0, ŷ ∈ M such that ỹ := αŷ ∈ Γ \ {0}, hence ŷ = 1
α ỹ ∈

M ∩ Γ in contradiction to M ∩ Γ = ∅. Together with 0+M ∩ Γ = {0} this implies

cl (cone M) ∩ Γ = (cone M ∪ 0+M) ∩ Γ = (cone M ∩ Γ) ∪ (0+M ∩ Γ) = {0}. (4)

Since cl (cone M) and Γ are closed convex cones, int Γ∗ 6= ∅ and (4) holds true we can apply a
separation theorem (see [15], Theorem 3.22) to Γ and cl (cone M) which states the existence
of a γ1 ∈ IRp \ {0} with

γT
1 y ≥ 0 > γT

1 k ∀y ∈ M,k ∈ Γ \ {0}.

Due to 0+M ∩ Γ = {0} the nonempty disjoint closed convex sets M and Γ have no common
direction of recession, hence they can be separated strongly (see [18], Corollary 11.4.1), i.e.
there exists γ2 ∈ IRp\ {0} such that

γT
2 y > γT

2 k ∀y ∈ M,k ∈ Γ

which implies
γT

2 y > 0 ≥ γT
2 k ∀y ∈ M,k ∈ Γ

since Γ is a cone containing 0. With γ := γ1 + γ2 we obtain

γT y = γT
1 y + γT

2 y > 0 > γT
1 k + γT

2 k = γT k

for all y ∈ M and k ∈ Γ \ {0} and γ = 0 is not possible.
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3 Lagrange duality in linear vector optimization

3.1 Definitions and basic results

Constructing a dual problem to (P) using a suitable Lagrange function is one classical ap-
proach. The dual cost function is the Lagrangean minimized with respect to the original
variables. The justification of this approach stems from weak and strong duality theorems.
We are going to generalize this procedure to linear vector optimization problems of type (P),
i.e. to

Eff [C (X ) ;K]
X = {x ∈ IRn : Ax = b} ∩ IRn

+

K ⊂ IRp a closed convex pointed cone.

 (P)

The Lagrange function for x ∈ IRn
+, U ∈ IRm×p with values in IRp is defined as usual:

L (x,U) := Cx + UT (b−Ax) =
(
C − UT A

)
x + UT b.

We define the dual cost function (with respect to x ”minimized” Lagrangean) by

G (U) := Eff
[
L

(
IRn

+, U
)
;K

]
= UT b + Eff

[(
C − UT A

)
IRn

+;K
]
.

Note that G is a set-valued mapping from IRm×p in 2IRp
. It can easily be seen that for x ∈ IRn

+

Eff
[
L

(
x, IRm×p

)
;−K

]
=

{
{Cx} : x ∈ X
∅ : x /∈ X

i.e. we obtain the original problem from a ”maximization” of the Lagrangean with respect
to the dual variables. First, we give elementary properties of G (U).

Proposition 1. We have

G (U) =
{

∅ :
(
C − UT A

)
IRn

+ ∩ −K\ {0} 6= ∅
UT b + D (U) :

(
C − UT A

)
IRn

+ ∩ −K\ {0} = ∅

where D (U) := Eff
[(

C − UT A
)
IRn

+;K
]

is a cone. Moreover, D (U) = {0} if and only if(
C − UT A

)
IRn

+ ⊂ K.

Proof. To show that G (U) = ∅ if there exists x̄ ∈ IRn
+ such that

(
C − UT A

)
x̄ ∈ −K\ {0}

we note that
(
C − UT A

)
x̄ ∈ 0+

(
C − UT A

)
IRn

+. Hence we can apply Lemma 1 (i) and (ii)
which yields the desired assertion.

Considering the other case, i.e.
(
C − UT A

)
IRn

+ ∩ −K\ {0} = ∅, we first note that 0 ∈
D (U) = Eff

[(
C − UT A

)
IRn

+;K
]

by definition.
Assuming that ȳ ∈ D (U), i.e. ȳ−

(
C − UT A

)
x /∈ K\ {0} for all x ∈ IRn

+ we may conclude
that ȳ −

(
C − UT A

)
x
α /∈ K\ {0} for all α > 0, x ∈ IRn

+. This implies αȳ −
(
C − UT A

)
x /∈

K\ {0} for all α > 0, x ∈ IRn
+. Hence αȳ ∈ D (U) and D (U) is a cone.

The ”if”-part of the last assertion is obvious. The ”only if” part follows from the external
stability of

(
C − UT A

)
IRn

+ and Lemma 1 (i), (iii).

The cone D (U) is not necessarily convex. An example is given below.
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Definition 1. If G (U) is not the empty set the corresponding U is called dual admissible.
The set

U :=
{
U ∈ IRm×p :

(
C − UT A

)
IRn

+ ∩ −K\ {0} = ∅
}

.

is called the domain of the dual cost function G.

We denote G (U) =
⋃

U∈U G (U). Our dual problem belonging to the linear vector opti-
mization problem (P) reads as follows:

Eff [G (U) ;−K]
U =

{
U ∈ IRm×p :

(
C − UT A

)
IRn

+ ∩ −K\ {0} = ∅
}

.

}
(D)

Remark 1. 1. If D (U) = {0}, K = IRp
+ we have U ∈ U if and only if UT A ≤ C in

IRp×n
+ . It is well known that the set Ū :=

{
U ∈ IRm×p : UT A ≤ C

}
is to small to generate a

satisfactory duality theory. Hence the dual of (P) should not be just Eff
[
ŪT b;−K

]
, a linear

vector maximization problem.
2. The attempt to enlarge the set of dual admissible variables to U (instead of Ū) obtaining

Eff
[
UT b;−K

]
as dual problem was not completely successful as well. The counterexamples

of Brumelle and Jahn, quoted in Section 4, show that especially in case of b = 0 something
goes wrong with duality. However, in case b 6= 0 there are strong duality results in the sense
that the sets Eff [C (X ) ;K] and Eff

[
UT b;−K

]
coincide.

3. Several authors, e.g. Corley [3], Luc [14] and Jahn [15], share the understanding of the
dual of a vector optimization problem to be set-valued in nature as explained at the beginning
of Section 2.2. But there seems to be no complete duality theory even in the linear case using
this approach up to now.

4. Problem (D) includes the more general cost function G (U). In this case, b = 0 does
not imply G (U) = 0 for all U ∈ U . Using this construction we are able to give strong duality
results as well as a complete case study like it is well-known from scalar linear programming.
Compare Theorem 2, 3 below.

3.2 Weak duality

The following weak duality theorem extends several well-known concepts in vector optimiza-
tion, e.g. Iwanow/Nehse [12], Göpfert/Nehse [8]. The new feature lies in the fact that a
set-valued dual cost function G (U) is involved, hence the weak duality relation is valid for
”more” elements of the space IRp. Luc [14] also used set-valued dual cost functions. He
obtained similar weak duality results for a different dual problem: the set of dual admissible
elements in [14], chap. 5.1 is always a cone.

A very general approach using set-valued objectives for a dual of a vector optimization
problem can be found in Göpfert et al. [9].

Theorem 1. Weak duality theorem
If x ∈ X and U ∈ U then

G (U) ∩ (Cx + K\ {0}) = ∅. (5)

Proof. Assume the contrary of (5), i.e.

∃x̄ ∈ X , Ū ∈ U : ȳ ∈ G
(
Ū

)
∩ (Cx̄ + K\ {0}) .
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Then there exists z ∈ D
(
Ū

)
= Eff

[(
C − ŪT A

)
IRn

+;K
]

such that ȳ = ŪT b+ z. We have z−
y /∈ K\ {0} for all y ∈

(
C − ŪT A

)
IRn

+ by efficiency and therefore, choosing y =
(
C − ŪT A

)
x̄,

we obtain z −
(
C − ŪT A

)
x̄ /∈ K\ {0}. This implies

ȳ − ŪT b−
(
C − ŪT A

)
x̄ = ȳ − Cx̄ /∈ K\ {0}

contradicting the assumption. This proves (5).

Remark 2. Of course, (5) is equivalent to

G (U) ∩ (C (X ) + K\ {0}) = ∅. (6)

Moreover, the following equivalences hold true:

G(U) ∩ (C (X ) + K \ {0}) = ∅ ⇔ (G(U)−K \ {0}) ∩ C (X ) = ∅
⇔ (G(U)−K \ {0}) ∩ (C (X ) + K) = ∅
⇔ (G(U)−K) ∩ (C (X ) + K \ {0}) = ∅

hence (5) can be replaced by (6) or any of the equivalent relationships.

Corollary 1. Sufficient optimality condition
The following inclusions hold true:

G(U) ∩ C (X ) ⊂ Eff[C (X ) ;K] and G(U) ∩ C (X ) ⊂ Eff[G(U);−K].

Proof. If ȳ ∈ G(U) ∩ C (X ) then we have G(U) ∩ (ȳ + K \ {0}) = ∅ by (5) hence ȳ ∈
Eff[G(U);−K] and ȳ /∈ C (X )+K\{0}, i.e. C (X )∩(ȳ−K\{0}) = ∅, hence ȳ ∈ Eff[C (X ) ;K].

3.3 Strong duality

Next, we propose strong duality theorems. The idea is to remain close to scalar optimization:
The optimal values of the primal and the dual problem turn out to be the same, and each
point being optimal for (P) is also optimal for (D) and vice versa.

If A 6= 0 even more can be said: The image space IRp can be parted into three disjoint sets:
Points which are ”strictly greater” than optimal values of the primal problem, i.e. elements
of Eff[C (X ) ;K], points which are ”not greater or equal” than optimal values of the dual
problem, i.e. elements of Eff[G(U);−K], and the set consisting of efficient points for both of
the problems.

Theorem 2. Under the standing assumptions and if Eff[C (X ) ;K] 6= ∅ and A 6= 0, then

(C (X ) + K \ {0}) ∪ (G(U)−K \ {0}) ∪ (G(U) ∩ C (X )) = IRp. (7)

This theorem does not exclude the case b = 0. We need the following two lemmas for the
proof.

Lemma 3. Let b, v ∈ IRm, γ, y ∈ IRp be given vectors with b, γ 6= 0 and γT y = vT b. Then
there is a solution U ∈ IRm×p of the system

Uγ = v, UT b = y. (8)
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Proof. This lemma is a very special case of Theorem 2.3.3 of [17] which is standard in the
theory of generalized inverses.

Lemma 4. Let A ∈ IRm×n with A 6= 0, b ∈ IRm and γ ∈ IRn be given and assume that the
scalar linear optimization problem min{γT x : Ax = b, x ∈ IRn

+} has a solution with value α.
Then there is x̄ ∈ IRn

+ with Ax̄ 6= b such that

min
{
γT x + 0 · λ : Ax = b, x− x̄ · λ ≥ 0, (x, λ) ∈ IRn+1

}
= α.

Proof. If b 6= 0 then x̄ = 0 meets all requirements.
Now, let b = 0. If min{γT x : Ax = 0, x ∈ IRn

+} =: α exists then α = 0. We will show
that one of the unit vectors ej , j = 1, . . . , n, satisfies the requirements. Assume the contrary,
namely

min{γT x : Ax = 0, x− ejλ ≥ 0} < 0 = α

for all j ∈ J :=
{
j ∈ {1, ..., n} : Aej 6= 0

}
. That means for all j ∈ J there is x̂j ∈ IRn with

Ax̂j = 0, x̂j
i ≥ 0 for all i 6= j such that γT x̂j < 0. The n vectors x̂j for j ∈ J and ej for

j ∈ I :=
{
j ∈ {1, ..., n} : Aej = 0

}
all belong to the proper linear subspace {x ∈ IRn : Ax = 0}

of IRn hence they are linearly dependent. Consequently, there are n numbers λ1, . . . , λn, not
simultaneously equal to 0, such that∑

j∈J

λj x̂
j +

∑
j∈I

λje
j = 0.

Since the vectors ej , j ∈ I, are linearly independent at least one of the λj ’s, j ∈ J , has to be
non-zero. We will now consider x̃ :=

∑
j∈J |λj | x̂j . For i ∈ I we have x̂j

i ≥ 0 for all j ∈ J
hence x̃i ≥ 0. We define J+ := {j ∈ J : λj ≥ 0} and J− := {j ∈ J : λj < 0}. If i ∈ J we have
ej
i = 0 for j ∈ I, hence ∑

j∈J−

λj x̂
j
i +

∑
j∈J+

λj x̂
j
i = 0.

For i ∈ J− we obtain ∑
j∈J+

λj x̂
j
i ≥ 0

since λj ≥ 0 and x̂j
i ≥ 0 for all j ∈ J+. Hence

x̃i =
∑
j∈J−

(−λj)x̂
j
i +

∑
j∈J+

λj x̂
j
i = 2

∑
j∈J+

λj x̂
j
i ≥ 0.

For i ∈ J+ we obtain ∑
j∈J−

λj x̂
j
i ≤ 0

since λj < 0 and x̂j
i ≥ 0 for all j ∈ J−. Hence

x̃i =
∑
j∈J−

(−λj)x̂
j
i +

∑
j∈J+

λj x̂
j
i = −2

∑
j∈J−

λj x̂
j
i ≥ 0.

Thus we have shown x̃ ∈ IRn
+. Moreover, Ax̃ = 0 and γT x̃ < 0 in contradiction to min{γT x :

Ax = 0, x ∈ IRn
+} = 0.
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Proof of Theorem 2. Let ȳ /∈ C (X )+K \ {0}. We have to show that ȳ ∈ (G(U)−K \ {0})∪
(G(U)∩C (X )). We will consider the two cases ȳ ∈ C (X ) and ȳ /∈ C (X ). In the first case we
will show that ȳ ∈ G(U)∩C (X ) and in the latter case we will show that ȳ ∈ G(U)−K \{0}.

(i) Let ȳ ∈ C (X ). Then there exists x̄ ∈ X with

∀U ∈ IRm×p : ȳ = Cx̄ = UT b + (C − UT A)x̄,

hence ȳ ∈ UT b + (C − UT A)IRn
+ for all U ∈ IRm×p.

The conditions ȳ ∈ C (X ), ȳ /∈ C (X )+K \{0} imply (C (X )− ȳ)∩−K = {0}. Hence we
can apply Lemma 2, (i) with M = C (X )− ȳ and Γ = −K since K is closed convex pointed.
Hence there exists a γ ∈ IRp \ {0} such that

∀y ∈ C (X )− ȳ, k ∈ −K \ {0} : γT y ≥ 0 > γT k. (9)

This means γT ȳ = min{γT Cx : Ax = b, x ∈ IRn
+} since ȳ ∈ C (X ). Hence by duality theory

for scalar linear programming there is v0 ∈ IRm with AT v0 ≤ CT γ and bT v0 = γT ȳ. Thus

vT
0 b + (γT C − vT

0 A)x ≥ γT ȳ

for all x ∈ IRn
+. Since γ 6= 0 there is a solution U0 ∈ IRm×p of γT UT = vT

0 . Hence

γT
(
UT

0 b + (C − UT
0 A)x

)
≥ γT ȳ

for all x ∈ IRn
+ and consequently

∀y ∈ UT
0 b + (C − UT

0 A)IRn
+ : γT y ≥ γT ȳ.

By (9) we have γT y < γT ȳ for all y ∈ ȳ − K \ {0}. This implies UT
0 b + (C − UT

0 A)IRn
+ ∩

(ȳ −K \ {0}) = ∅, hence ȳ ∈ G (U0) = Eff[UT
0 b + (C − UT

0 A)IRn
+;K]. So we have shown

ȳ ∈ G(U) ∩ C (X ).
(ii) Let ȳ /∈ C (X ). Together with ȳ /∈ C (X ) + K \ {0} this yields ȳ /∈ C (X ) + K. Hence

(C (X )− ȳ) ∩ −K = ∅. Moreover, we have

0+(C (X )− ȳ) ∩ −K = 0+C (X ) ∩ −K = {0}

by Lemma 1 since Eff[C (X ) ;K] 6= ∅. So we can apply Lemma 2, (ii) to the sets M = C (X )−ȳ
and Γ = −K since K is pointed. Hence there exists γ ∈ IRp \ {0} such that

∀y ∈ C (X ) , k ∈ −K\ {0} : γT (y − ȳ) > 0 > γT k.

So the functional γT y is bounded below on C (X ). Therefore the scalar linear optimization
problem

min
{
γT Cx : Ax = b, x ∈ IRn

+

}
has a solution, say x0 ∈ X with value α := γT Cx0 > γT ȳ. Take arbitrary k0 ∈ K \{0} (hence
γT k0 > 0) and define

y0 := ȳ +
α− γT ȳ

γT k0
k0 ∈ ȳ ∈ K \ {0}.
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So we have ȳ ∈ y0 −K \ {0} and γT y0 = α. By Lemma 4 there exists x̄ ∈ IRn
+ with Ax̄ 6= b

such that the scalar linear optimization problem

min{γT Cx + 0 · λ : Ax = b, x− x̄ · λ ≥ 0}

has a solution with value α. The corresponding dual problem is

max
{
bT v : AT v ≤ CT γ, x̄T AT v = x̄T CT γ

}
having a solution as well, say v0 and we have vT

0 b = α = γT y0 hence

γT (y0 − Cx̄) = vT
0 (b−Ax̄).

Since c, b − Ax̄ 6= 0 we can apply Lemma 3 which guarantees the existence of a solution
U0 ∈ IRm×p of the system

Uγ = v0

UT (b−Ax̄) = y0 − Cx̄.

For this solution holds

y0 = UT
0 b + (C − UT

0 A)x̄ ∈ UT
0 b + (C − UT

0 A)IRn
+

and
γT (UT

0 b + (C − UT
0 A)x) = vT

0 b + (γT C − vT
0 A)x ≥ vT

0 b = γT y0

for all x ∈ IRn
+ hence

(y0 −K \ {0}) ∩
(
UT

0 b + (C − UT
0 A)IRn

+

)
= ∅

since γT k < 0 for all k ∈ −K \ {0}. So we have shown

y0 ∈ G(U0) = Eff[UT
0 b + (C − UT

0 A)IRn
+;K]

hence
ȳ ∈ G(U0)−K \ {0} ⊂ G(U)−K \ {0}.

Corollary 2. Under the assumptions of Theorem 2 the following properties hold:

(i) Eff[C (X ) ;K] = Eff[G(U);−K] = C (X ) ∩G(U)
(ii) (G(U)−K \ {0}) ∪ (C (X ) + K) = (G(U)−K) ∪ (C (X ) + K \ {0}) = IRp.

Proof. (i) By Corollary 1 it remains to show that

Eff[C (X ) ;K] ⊂ C (X ) ∩G(U) and Eff[G(U);−K] ⊂ C (X ) ∩G(U).

Of course, y ∈ Eff[C (X ) ;K] implies y ∈ C (X ) and y /∈ C (X )+K \ {0}. By Theorem 1, (ii)
and Remark 2 y ∈ C (X ) implies y /∈ G(U)−K \ {0}. Hence y ∈ C (X ) ∩G(U) by Theorem
2.
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On the other hand, y ∈ Eff[G(U);−K] implies y ∈ G(U) and y /∈ G(U) − K \ {0}. By
Theorem 1, (ii) y ∈ G(U) implies y /∈ C (X ) + K \ {0}. Hence y ∈ C (X )∩G(U) by Theorem
2.

(ii) The statement follows from Theorem 2 since

(C (X ) + K \ {0}) ∪ (C (X ) ∩G(U)) ⊂ (C (X ) + K \ {0}) ∪ C (X ) = C (X ) + K

and

(G(U)−K \ {0}) ∪ (C (X ) ∩G(U)) ⊂ (G(U)−K \ {0}) ∪G(U) = G(U)−K.

We have C (X )+K = Eff[C (X ) ;K]+K since C (X ) is lower externally stable. Corollary
2 tells us that we have

G(U)−K \ {0} = IRp\ (Eff[G(U);−K] + K) .

This set consists of points being not greater than Eff[G(U);−K].

Proposition 2. Under the standing assumptions and if A = 0, X 6= ∅ then

Eff[C (X ) ;K] = Eff[G(U);−K] = C (X ) ∩G(U).

Proof. In this case, we have X = IRn
+ and therefore

G(U) = Eff[C
(
IRn

+

)
;K] = Eff[C (X ) ;K]

for all U ∈ IRm×p hence

Eff[G(U);−K] ⊂ G(U) = Eff[C (X ) ;K] ⊂ C (X )

and consequently

Eff[G(U);−K] ⊂ C (X ) ∩G(U) = Eff[C (X ) ;K].

Moreover G(U) = Eff[C (X ) ;K] implies ŷ − ȳ /∈ K \ {0} for all ŷ ∈ G(U) and ȳ ∈ C (X ).
Hence

C (X ) ∩G(U) ⊂ Eff[G(U);−K].

Proposition 3. Under the standing assumptions and if X = ∅ then Eff[G(U);−K] = ∅.

Proof. If X = ∅ then b 6= 0 since otherwise 0 ∈ X . Moreover, by Farkas’ lemma, X = ∅ is
equivalent with the existence of v̂ ∈ IRm such that AT v̂ ≤ 0 and bT v̂ > 0.

We have to show that for each y ∈ G(U) there exists ŷ ∈ G(U) such that ŷ− y ∈ K \ {0}.
Let ȳ ∈ G(U). Then there is Ū ∈ U such that

ȳ ∈ G(Ū) = Ūb + Eff[(C − ŪT A)IRn
+;K]
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i.e.
(ŪT b + (C − ŪT A)IRn

+ − ȳ) ∩ −K = {0} .

We can apply Lemma 2, (i) with M = ŪT b + (C − ŪT A)IRn
+ − ȳ and Γ = −K and obtain

the existence of γ ∈ IRp \ {0} such that

γT (ŪT b + (C − ŪT A)x− ȳ) ≥ 0 ∀x ∈ IRn
+ (10)

and
γT k < 0 ∀k ∈ −K \ {0}. (11)

Let v̄ := Ūγ then (10) implies in particular v̄T b ≥ γT ȳ and γT C − v̄T A ≥ 0.
Take arbitrary k0 ∈ K \ {0} (hence γT k0 > 0) and define

ŷ := ȳ +
(v̄ + v̂)T b− γT ȳ

γT k0
k0.

We obtain ŷ − ȳ ∈ K \ {0} and γT ŷ = (v̄ + v̂)T b. Hence by Lemma 3 the system

Uγ = v̄ + v̂, UT b = ŷ

has a solution, say Û . For this solution we have

ŷ = ÛT b ∈ ÛT b + (C − ÛT A)IRn
+

and
γT (ÛT b + (C − ÛT A)x− ŷ) =

(
γT C − (v̄ + v̂)T A

)
x ≥ 0

for all x ∈ IRn
+ hence

(ÛT b + (C − ÛT A)IRn
+ − ŷ) ∩ −K \ {0} = ∅

by (11). Consequently

ŷ ∈ ÛT b + Eff[(C − ÛT A)IRn
+;K] = G(Û) ⊂ G(U).

To complete the theory, the case X 6= ∅, Eff [C (X ) ;K] = ∅ has to be investigated.

Proposition 4. Under the standing assumption and if X 6= ∅ and Eff [C (X ) ;K] = ∅ then
U = ∅.

Proof. Since X is polyhedral convex we have

0+ (C (X )) = C
(
0+ (X )

)
=

{
Cx : x ∈ IRn

+, Ax = 0
}
⊂ (C − UT A)IRn

+

for all U ∈ IRm×p. Thus

(C − UT A)IRn
+ ∩ (−K \ {0}) ⊃ 0+(C (X )) ∩ (−K \ {0}) 6= ∅

by Lemma 1 hence U = ∅.
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We summarize the situation in the following theorem.

Theorem 3. Duality in Linear Vector Optimization
Under the standing assumptions the statement

Eff[C (X ) ;K] = Eff[G(U);−K] = C (X ) ∩G(U)

is always true. Moreover, the following relationships are valid:

(i) Let X 6= ∅. Then Eff[C (X ) ;K] = ∅ if and only if U = ∅.

(ii) Let U 6= ∅. Then Eff[G(U);−K] = ∅ if and only if X = ∅.

Proof. It is a consequence of Proposition 3, Proposition 4, Corollary 2 and Proposition 2.

Thus we arrived at a complete description of the possible cases like it is well-known in
scalar linear optimization (p = 1, K = IR1

+). The main features of the theory, above all the
case b = 0, are illustrated by simple examples in the next section.

4 Examples

4.1 A standard example

Consider the problem

Eff
[{(

1 0
0 1

)
·
(

x1

x2

)
: x1 + x2 = 1, x ∈ IR2

+

}
; IR2

+

]
. (12)

Here we have p = n = 2 and m = 1. The meaning of C, A, b is clear, we have U = (u1, u2).
It is easy to see that each admissible element x ∈ X is a solution of (12) and C (X ) =

Eff [C (X ) ;K]. The set UT ⊂ IR2 of dual admissible elements is the union of the triangle
with corners (0, 0)T , (1, 0)T and (0, 1)T and the complement of IR2

+.
For a given dual admissible U , the set UT b+

(
C − UT A

)
IR2

+ is the convex hull of the two
rays originating in UT b = UT and running through (1, 0) and (0, 1), respectively. Considering
U = (1/2, 1/4) we see that D (U) = Eff

[(
C − UT A

)
IR2

+;K
]

and G (U) = UT b + D (U) are
not necessarily convex. We have

G(U) ∩ C (X ) =
{
x ∈ IR2

+ : x1 + x2 = 1
}

= C (X ) = Eff [C (X ) ;K] = Eff[G(U);−K].

This example matches the situation of Theorem 2. Since b 6= 0, the strong duality results
e.g. of [8], Theorem 2.39 and [1], Theorem 4.2 also apply.

4.2 Brumelle’s example

Consider the problem

Eff
[{(

1
−1

)
· x : x ∈ IR1

+

}
; IR2

+

]
. (13)

Here we have p = 2, n = 1 and m = 0 (no equality constraints). The meaning of C is clear,
and A = 0, b = 0.
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We have X = IR1
+, K = IR2

+ and C (X ) = Eff [C (X ) ;K]. Moreover, G (U) = D (U) =
Eff [C (X ) ;K] = C (X ) for each U since b = 0.

We are in the framework of Proposition 2 with G(U) = C (X ). Note that the strong
duality in the sense of Proposition 2 is true although former results do not apply since b = 0.
Compare e.g. [1], [15].

4.3 Jahn’s example

Consider the problem

Eff
[{(

1 0
0 1

)
·
(

x1

x2

)
: x1 + x2 = 0

}
; IR2

+

]
. (14)

Here we have p = n = 2, m = 1 and no non-negativity constraints. The meaning of C and A
is clear. Note that again b = 0.

Since there are no non-negativity restrictions to x, there is something to do to reach the
framework of problem (P). This can be done by different methods. The well-known procedure
from scalar linear programming is to replace the variable x by x′ − x′′ and x′, x′′ ∈ IR2

+.
Another possibility consists of redefining the dual cost function by

G (U) := Eff [L (IRn, U) ;K] = UT b + Eff
[(

C − UT A
)
IRn;K

]
and going into the developments of the Sections 2 and 3.

We come out with the fact that it is necessary for U = (u1, u2) being dual admissi-
ble that the matrix C − UT A is singular. By simple calculations one can find that U =
{U : u1 + u2 = 1} and C (X ) = D (U) for each U ∈ U .

The validity of our weak and strong duality formulas are easy to check. Again, the
”classical” dual problem to minimize the function UT b ≡ 0 subject to certain constraints
does not give any useful information.
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