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ABSTRACT
Finding causal relations in text is an important task for many types
of textual analysis. It is a challenging task, especially for the many
languages with no or only little annotated training data available.
To overcome this issue, we explore cross-lingual methods. Our
main focus is on Swedish, for which we have a limited amount
of data, and where we explore transfer from English and German.
We also present additional results for German with English as a
source language. We explore both a zero-shot setting without any
target training data, and a few-shot setting with a small amount of
target data. An additional challenge is the fact that the annotation
schemes for the different data sets differ, and we discuss how we
can address this issue. Moreover, we explore the impact of different
types of sentence representations. We find that we have the best
results for Swedish with German as a source language, for which
we have a rather small but compatible data set. We are able to take
advantage of a limited amount of noisy Swedish training data, but
only if we balance its classes. In addition we find that the newer
transformer-based representations can make better use of target
language data, but that a representation based on recurrent neural
networks is surprisingly competitive in the zero-shot setting.
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1 INTRODUCTION
Event detection is an important step in analyzing large bodies of text.
One important relation type is causal relations, expressions of how
a cause can lead to an effect. The Swedish example 1 illustrates this
as it contains a cause åsknedslag (’thunderstorms’), its consequence
bränder (’fires’) and this relation is made explicit through the use
of a causal connective till följd av (’as a consequence of’).
(1) Efter

After
bränder
fires

till
as

följd
consequence

av
of

åsknedslag
thunder

och
and

övriga
other

kända
known

brandorsaker
fire-causes

fanns
existed

soteld
chimney-fire

och
and

övriga
other

eldstadsrelaterade
fireplace-related

bränder
fires

som
as

nästa
next

kategori.
category.
’After fires as a consequence of thunderstorms and other
known causes of fire, there were chimney fires and other
fires related to fireplaces as a next category.’

Identifying such sentences can, for instance, be an important step
in impact assessment of governmental reports, which is our end
target. Identifying causal relations in a large, ever-growing body
of textual data might allow governmental agencies to track down,
analyze, and predict developments within the public sector and,
consequently, within society. However, properly annotated data
for training supervised neural models on this task still represents a
challenge as data is often scarce or not available at all.

This is for example the case for Swedish, which theoretically
may be considered a medium-resourced language, with a large
Wikipedia giving a fairly good representation in resources like
mBERT [5]. Unfortunately, it lacks any annotated data for causality
detection. However, there are available data sets, albeit not perfectly
matching our target, for the related languages English and German,
allowing us to explore cross-lingual learning.

Transfer learning according to [23] aims at improving the per-
formance on a task in a target domain by making use of knowledge
obtained from a source domain. Cross-lingual transfer represents
a case of such transfer learning where the source domain is repre-
sented through a source language (sometimes also called a transfer
language) and the target domain through a specific target language
and which may help here to address the lack of training data. In this
paper we explore two settings, zero-shot learning where we only
use training data from the source language and few-shot learning,
where we also add a limited amount of training data from the target
language. Multilingual representations such as mBERT [5] have
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been shown to yield good results across a range of tasks [24, 32] in
zero-shot settings where no training data is available for the target
language and task. However using few-shot learning, even with
only a small amount of in-language annotated data for the target
task may lead to competitive results [21].

In this paper our main focus is on sentence-level causality detec-
tion for Swedish. We investigate zero-shot transfer with training
and testing on different languages and investigate potential gains
from adding a small amount of target language data. Previous work
[11, 21] has suggested that just a few hours of annotation work may
greatly improve results. Thus, we also investigate how a quickly an-
notated small Swedish data set can be used for training. In order to
evaluate our methods, we annotate a test set for Swedish sentence-
level causality detection, where the task is to decide whether a
sentence contains a causal relation or not.

The disparity of sources presents an additional challenge. There
are considerable differences between both the two English data
sets, and the German data set we use for training our cross-lingual
models, as well as differences between our Swedish data sets. In
previous work on cross-lingual argument mining for example [9],
domain mismatches between data sets from different sources led to
problems. In the data sets used in our study, the guidelines for when
to consider a sentence causal differ, as well as the level of annotation,
and the balance between causal and non-causal examples. In all
cases it was possible to convert the data sets to sentence-level
causality detection, so that we could use them for our goals. To shed
further light on cross-lingual causality detection, we also perform
exploratory experiments with German as the target language.

Our main goals are to:
• Investigate which type of multilingual pretrained embed-
ding may be the most beneficial, comparing the transformer-
based mBERT [5] and XLM-RoBERTa [3] with LASER [1]
embeddings based on recurrent neural networks

• Explore the impact of annotation schemes from different
annotation projects, since data is still relatively scarce for
the present task

• Investigate to what extent cross-lingual transfer for causality
detection may benefit from additional target language data
in training

In summary, we find that LASER for zero-shot transfer and causal-
ity detection is often able to at least compete with the newer
Transformer-based models. It, however, is not able to make much
use of additional training data, which on the other hand has a
great impact on the performance of mBERT and XLM-R, although
not always in a positive way. Our results also further stress the
importance of consistent annotation guidelines.

2 PREVIOUS WORK
2.1 Causality Detection
Early attempts to automatically detect causal relations were rule-
based and focused on lexical patterns as well as morphological and
morphosyntactic clues [10, 17]. Later work started using machine
learning, such as decision tree classifiers taking different lexical
and syntactical features as input to learn rules by which causality
could be detected [12]. Besides decision trees, also support vector

machines (SVM) have been proven useful. Most of the contribu-
tions to the SemEval-2010 Task 8 on the classification of semantic
relations, including causal or cause-effect relations, made use of
SVMs [15], including the best performing contribution [27].

More recently, neural networks have been used to detect causal
relations, for instance [4], a BiLSTM that takes GloVe word vectors
plus linguistic features based on POS-tags, dependency relations
andWordNet noun hierarchies as input for finding causal sentences
and extracting the respective cause, effect and causal connective.
In the first subtask of the FinCausal 2020 shared task [22], focusing
on binary classification of causal relations, pretrained language
models based on the Transformer architecture [30], and BERT [5]
in particular, were dominating, with ensemble architectures [13,
28] being among the best performing systems. However, also the
provided baseline [22] using only the English BERT-based model
with a dropout layer and a linear regression layer on top of it
resulted in a strong performance.

2.2 Multilingual Pretrained Embeddings and
Cross-Lingual Transfer

LASER (Language Agnostic Sentence Representations) [1] repre-
sents one attempt to provide sentence representations that can be
used in NLP tasks for a wide range of languages. These sentence rep-
resentations are based on a recurrent neural network, in this case
a BiLSTM [14, 16]. Sentence representation are obtained through
a BiLSTM-encoder, pretrained on a machine translation task by
translating sentences from 93 different languages into English and
Spanish. The evaluation on multilingual natural language inference
(XLNI) and document classification with English as a source lan-
guage in all experiments resulted in accuracies between 62% and
72% for the former and 60% and 85% for the latter.

Devlin et al. [5] provided amultilingual version of the transformer-
based BERT (mBERT) besides the monolingual version that was
for example also successful for causality detection [22]. It was
pretrained on a masked language modeling and a next sentence pre-
diction task involving the entire Wikipedia dumps of 104 languages.
In zero-shot experiments on NER and the languages English, Ger-
man, Dutch and Spanish, mBERT achieved accuracies between 65%
and 75%. For zero-shot POS-tagging with mBERT, the accuracies
were even ranging from 80% to 90%. These experiments were later
extended, covering 38 languages and zero-shot document classifi-
cation and XNLI [32]. It was also found that the layers of mBERT
were able to recognize the respective language with an accuracy of
96% on average when tested on sentences of 99 different languages,
which suggests that each layer at least to some extent contains
language-specific information [32].

Another pretrained transformer-based model is XLM (X-Lingual
Model), pretrained on an additional machine translation task be-
sides masked language modelling [19]. XLM eventually outper-
formed mBERT on zero-shot XNLI. Conneau et al. introduced a
further improved version of XLM, XLM-RoBERTa (XLM-R), which
was pretrained using only the masked language modelling task, on
a larger corpus, a larger vocabulary and a higher number of hidden
states [3]. It outperformed both mBERT and XLM on zero-shot NER,
XNLI and question answering.
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Table 1: Distribution of the English training and development data including the percentage of causal examples

SE+FC % FinCausal % SemEval % SE+FC-c %
Train 21,478 9.37 13,478 7.49 7,200 12.06 8,210 22.87
Dev 8,629 6.62 8,629 6.62 800 16.88 1,369 51.42

It has further been shown that finetuning mBERT and XLM-R
on various sizes of target language data, ranging from 10 to 1000
additional sentences can lead to improvements [21]. For most tasks,
improvements were seen even with as little as ten sentences. This
improvement was more pronounced for languages that were not
related to English. Most work on zero-shot transfer has used English
as a source language. However, it has been shown that it is often
beneficial to use other languages, even when the other language is
machine translated from English [29]. Here, in particular, German
and Russian often worked well as source languages across tasks
and target languages.

3 DATA
In this section we describe the newly annotated Swedish data, as
well as the existing data sets for English and German, including
the modifications we had to make to them to fit the Swedish target.
Tables 1 and 2 show an overview of the data.

3.1 English
The English data is composed of the data sets of two previous shared
tasks: SemEval-2010 Task 8 [15] and the FinCausal 2020 shared task
[22]. The latter already had a binary labelling according to whether
a sentence expresses causality or not. The original annotations of
the SemEval-2010 data set contain nine different semantic relations,
which were replaced with a binary labelling, where all sentences
expressing a cause-effect relation were considered as causal and all
other sentences received the label non-causal.

The two English data sets differ with respect to their annotation
schemes. For FinCausal [22] a modification to the effect role is pro-
posed so that only a quantified fact, a fact that is directly connected
to a measure and that expresses a number or quantity, can be an
effect. Neither SemEval, nor the German and Swedish data sets
include this constraint in their annotation guidelines. To see the
effects of this difference, we used only the FinCausal or SemEval
data respectively, a concatenation of both (SE+FC in Table 1), and,
since the FinCausal annotations are stricter and it thus can be as-
sumed that a causal example according to the FinCausal annotation
would also be causal according to the SemEval annotation scheme,
a combination of the FinCausal positive data and all SemEval data
(SE+FC-c in Table 1). Since no development set was provided for
SemEval, we used 10% of the provided SemEval training data as a
development set in experiments where only the SemEval data was
involved. In the setting with the SemEval data plus the positive
FinCausal examples, we simply add the positive examples from the
FinCausal development set to these 800 sentences.

3.2 German
All German data used in the present study is taken from a data set
of causal language [25], who base their annotation scheme on [8]. It

contains sentences from the TIGER corpus [6] of German newspa-
per texts and the Europarl corpus [18] that consists of proceedings
from the European parliament. Contrary to the English data sets,
they annotated the data on the token level with two different types
of tags, indicating the role of a participant in a causal relation (cause,
effect, affected and actor) and the specific type of causation (conse-
quence, motivation, purpose). We transformed their annotations to
binary sentence labels in order to bring them into accordance with
the other data sets by considering all examples that contain both a
cause and an effect as causal relations and consequently, sentences
in which one of these tags or both were missing, were considered
to be non-causal. Additionally, we considered all the different types
of causation here as a single causal class.

3.3 Swedish
All Swedish data was extracted from a corpus of governmental
reports, written between 1994–2020.1 This data was extracted from
HTML-format, and pre-processed to retrieve headers and running
text, removing non-text elements such as tables, headers, and foot-
ers, and merging sentences and words across line and page breaks.2

From the Swedish corpus, we sample sentences by searching for
term pairs that potentially express a causal relation, such as radon
→ cancer and car traffic→ pollution. The sentences were annotated
by three annotators with a background in computational linguistics,
two native speakers and one native German speaker with a high
level of Swedish, according to whether they express causality. In an
initial pilot annotation round, the inter-annotator agreement was
relatively low, with a Fleiss’ Kappa κ of 0.38, which expresses only
fair agreement [20]. Thus, specific guidelines inspired by Dunietz
et al. [8], similar to the guidelines of the German data presented
in Section 3.2, were drawn. These guidelines focused on explicit
causality, which requires, besides a cause and an effect, the pres-
ence of a causal connective that exclusively expresses causality.
Thus, temporal relations that implicitly express causality are for
example ruled out, but modal and negative causality was anno-
tated. Unlike [7] we did not consider different types of causality,
but grouped all their types into a single causal class. The guide-
lines led to an improved inter-annotator agreement of 0.58 in a
second pilot round on 30 sentences. The final annotation round
covered 300 sentences, which were combined with the 30 sentences
from the final pilot round, giving 330 sentences in the final data
set. Each sentence was annotated by at least two annotators. The
inter-annotator-agreement after the annotation phase, was at 0.5,
thus similar to the second pilot. To further improve annotation
quality, all disagreements were consolidated by discussion among
the annotators.
1Statens offentliga utredningar, available from http://data.riksdagen.se/data/
dokument/.
2Available from https://github.com/UppsalaNLP/SOU-corpus
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Table 2: Distribution of the German and Swedish data, in-
cluding the percentage of causal examples

German % Swedish %

Train 3,104 50.48 210 see Tab. 3
Dev 375 51.73 – –
Test 905 50.60 330 48.49

Table 3: Label distribution of the three different variants of
the Swedish training data

Pos. Neg. % Pos.
Numerical Scores 170 40 80.95
Majority Vote 143 67 68.10
Balancing 67 67 50.00

The small Swedish training set was collected by a quick annota-
tion phase with three annotators. Ten sentences were sampled from
the governmental report corpus for each of 21 terms which could
potentially express causality such as orsaka (’cause’), på grund av
(’because of’) and resultat (’result’).3 This extraction procedure led
to a large proportion of positive examples. Each annotator decided
for each sentence if it expresses causality, if it is an unclear case or
if it does not express causality. Similarly to the first test set pilot
without guidelines, only fair inter-annotator-agreement [20] of 0.45
was reached. Additionally, no consolidation was performed on this
data.

We attempted several methods to transform the annotation of
the three annotators into one single annotation for each sentence.
Here, it can be argued that if for example one annotator decides on
a sentence to be causal and another one decides that this sentence
represents an unclear case, then the sentence conveys at least some
notion of causality that would make a negative annotation too strict.
A method that takes this into account would be the assignment of
numerical scores where a positive annotation received a score of 0.2,
an unclear annotation a score of 0.1 and a non-causal annotation
a score of zero. We considered the causal label for examples that
reach a score of 0.3 or more. This presents a relatively low thresh-
old since only one positive and one unclear annotation would be
needed for the causal label. A stricter alternative is a simple ma-
jority vote, where all sentences are considered causal if two of the
three annotators agreed on that. For both the numerical weighting
and the majority vote, the distribution is strongly skewed towards
the causal class, as Table 3 shows. Thus, we create a third variation
including the negative examples from the Swedish training data
plus a sample of positive examples from the training data, which
has the same size.

Both Swedish causality data sets are publicly available under the
CC-BY license.4
3The full set of causality terms and causal term pairs can be found in [26].
4https://github.com/UppsalaNLP/Swedish-Causality-Datasets

4 EXPERIMENTAL SETUP
4.1 Model Architectures and Embeddings
One goal of this paper is to compare different pretrained multilin-
gual embeddings on their performance on causality detection, espe-
cially by comparing the BiLSTM-based LASERwith the transformer-
based mBERT and XLM-R. The embedding types and the classifier
architectures that make use of themwill be introduced in the follow-
ing. Tuning hyperparameters for all models, if not stated otherwise,
was conducted through training or finetuning the respective models
on English and testing them on the German development set since
it seems to be intuitive to choose hyperparameters by evaluating
them on a setting where some cross-lingual transfer is involved,
rather than in a monolingual setting.

LASER. The LASER sentence embeddings [1] are used in order
to include a non-finetuning based approach. As recommended in
[1], we first tokenize our sentences, and then transform them to
BPE subword units. We finally feed them to the encoder to obtain
the respective embeddings. For classification, we use the provided
multi-layer perceptron (MLP) classifier, with two hidden layers. We
train the MLP classifier for 100 epochs with a learning rate of 0.001,
10 nodes in the first and 8 nodes in the second hidden layer, a batch
size of 12 and dropout of 0.1.

Multilingual BERT. In our experiments involving mBERT, we
use the BertForSequenceClassification architecture provided by
HuggingFace [31], in which dropout and an additional linear layer
for classification are added on top of the regular BERT architecture.
No preprocessing is carried out before encoding the text through
the BERT tokenizer. The mBERT-based classifier is finetuned for
3 epochs with a learning rate of 2e − 5 and batch size of 32. The
maximum length of the inputs is 256.

XLM-R. Here again, the implementation from the HuggingFace
Transformer library for sequence classification with an addtional
linear layer was used. We finetune XLM-R for 2 epochs with a
learning rate of 2e − 5, a batch size of 32 and a maximum length of
256.

4.2 Experiments
Our goal is it to compare different embedding types as well as
to measure the impact of additional target language data.5 Con-
sequently, we perform both zero-shot experiments and few-shot
experiments, with all three multilingual representations involved.
The source language for German as a target language will be Eng-
lish in all experiments. In experiments with Swedish as a target
language, we additionally use German as a source language, also in
combination with English. We also investigate the influence of the
different annotation schemes, especially with respect to the stricter
annotation for the FinCausal data. Thus, for experiments with Eng-
lish as a source language, we try out all the different combinations
of the English data sets.

For measuring the effect of target language data in training, we
follow an approach similar to [21] by using varying amounts of
training examples. The Swedish data is scarce, which limits our
possibilities to experiment with different sizes. To measure the
5Additional experiments as well as a more in-depth analysis can be found in [26]
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effect of larger portions of target language data, we thus use the
German data set, which is notably larger in size compared to the
Swedish data, but still considerably smaller than all English data
sets and use 210 sentences (6.8%,; the size of the Swedish training
data), as well as 12.5%, 25%, 50%, 75% of it, as well as the full German
training data. For Swedish we also experiment with different ways
of combining the training data from the three annotators.

We consider the variation when running systems, and repeat all
zero-shot experiments five times. For evaluation we present the
F1-macro score, and in addition the precision and recall for the
causal class.

5 RESULTS AND DISCUSSION
5.1 Zero-Shot Experiments
Table 4 presents the results of the zero-shot experiments with Eng-
lish as a source language. For all combinations of target and source
languages, the differences across embedding types were relatively
small with LASER often matching or even outperforming mBERT
and XLM-R. However, differences can be observed with respect to
the training data choices. When looking at the F1-macro and the
recall for the causal class of the models where the joint English
data set or only the FinCausal data were used, we can see that the
models in the end failed to recognize a wide range of examples in
the test data that actually expressed causality. Here, it indeed seems
that the aforementioned problem of a stricter annotation for the
FinCausal data, compared to the other data sets, caused problems,
especially when considering that in the two experiments without
the negative FinCausal examples the recall for the causal class and
the F1-macro were much higher.

In both the English–German and the English–Swedish zero-shot
scenario, adding the positive FinCausal examples to the SemEval
data improved recall substantially as well as the performance over-
all. It, however, did so at the price of precision. The models then
were exposed to a broad range of additional positive examples with
vocabulary from the financial domain and expressions of quantity.
This consequently led to difficulties in generalization, which is ex-
pressed through a decrease in precision when comparing the results
here to the results when only the SemEval data is involved.

Additionally, there were several issues concerning the experi-
ments where we used English as a source language and German as
a target language which can be linked to differences between the
two languages. German differs with respect to adpositions since,
besides prepositions, it also offers a range of causal postpositions
that follow the verb, instead of preceding it, such as halber (“for
the sake of“). Moreover, several German prepositions that express
causality like mangels (“out of a lack of“) require more complex
constructions when being translated to English. Problems with
these two phenomena occurred with all different English data sets
in the zero-shot scenario when being tested on German.

Table 5 presents results for Swedish, where we use German as a
source language, either on its own, or in combination with English.
When comparing the results of Table 4 and Table 5 it becomes visible
that for mBERT and XLM-R, finetuning on the German data clearly
led to better results than doing so on the English data, even though
the German training data contains substantially fewer examples.
Possible hypotheses for this may be that the underlying annotation

guidelines for both the German data and the Swedish test data were
relatively similar, which resulted in a notably better performance,
and that the German training data, unlike the English, is balanced.
The findings of [29], however, also hint that German in many cases
may be generally more beneficial than English as a source language
for cross-lingual NLP tasks, which may be the case here as well.
With LASER, though, English performs slightly better than German
as source language. Combining German and English led to slightly
worse results than for only German with mBERT and XLM-R, and
to higher recall but lower precision compared to a single language
for LASER. However, no clear patterns of problems with linguistic
phenomena were observed when applying zero-shot cross-lingual
transfer from English to Swedish.

5.2 Few-Shot Experiments
Table 6 gives an overview of the results in the few-shot experiments
involving additional Swedish target language data. For the Swedish
data set where the final annotations were calculated through the
numerical scheme, the performance was surprisingly low, espe-
cially for the two transformer-based models. For both mBERT and
XLM-R and for all source languages, a clear overuse of the causal
class can be observed. Interestingly, this problem seems to become
less obvious when using the Swedish training data where the anno-
tations were consolidated by majority vote, with fewer instances of
the causal class. Here only mBERT in combination with the English
data set was performing poor.

When we balance the Swedish training data in the previously
described manner, however, we were even able to see improvements
over the average of the zero-shot experiments, similar to previous
findings [21, 33]. This is interesting since in our case, we use only a
little bit more than half of the available Swedish training data. Previ-
ous work, e.g. [2] has found that mBERT and XLM-R capture more
language-specific information compared to models pretrained on a
machine translation task such as the BiLSTM encoder for LASER.
A possible hypothesis may thus be that, since a vast majority of
the Swedish examples is causal, the models appear to wrongly con-
sider some general aspects of the Swedish language as decisive
for the decision on causality and consequently overgeneralize and
classify a vast amount of Swedish examples as causal. This is also
supported by the fact that the problem is notably more pronounced
for English as a source language, where, on the other hand, positive
causal examples in the training data are scarce and that this issue
of overgeneralization does not really affect the LASER embeddings.
The Swedish few-shot results have demonstrated that an improve-
ment similar to the findings in [21] can be achieved for multilingual
causality detection, at least when efforts are taken to counteract
data imbalance.

Figure 1 shows results for few-shot learning with German as a
target, and a varying amount of German training data. For mBERT
as well as XLM-R, few-shot transfer led to a similar improvement
over the zero-shot setting. Moreover, we can see that larger ad-
ditional target language data sets may even lead to a greater im-
provement for both transformer-based models, even though, when
using more than half of the data set, the differences become smaller
again. For LASER on the other hand more target-language data
only leads to minor improvements and using the full data set leads
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Table 4: F1-macro scores and precision / recall values for the causal class on average in zero-shot experiments when the re-
spective model is trained or finetuned on English data

Model German Swedish

F1 P R F1 P R

SemEval
+FinCausal

LASER 41.85 75.03 9.05 52.21 96.35 19.38
mBERT 42.89 74.92 10.55 46.07 78.32 13.50
XLM-R 42.63 75.33 10.24 48.92 87.82 16.25

FinCausal
LASER 34.58 49.37 1.37 34.96 58.33 1.00
mBERT 35.97 41.24 2.71 36.26 61.09 2.50
XLM-R 35.06 25.10 2.08 35.91 60.91 2.12

SemEval
LASER 53.38 79.70 24.13 65.16 74.55 47.50
mBERT 49.50 76.51 19.20 62.19 72.23 51.13
XLM-R 52.64 79.81 23.28 63.11 69.01 50.38

SemEval
+FinCausal
(causal)

LASER 63.79 65.90 57.25 67.59 63.04 85.62
mBERT 57.29 62.43 42.84 57.17 69.54 44.38
XLM-R 56.76 64.33 41.73 62.03 67.17 60.25

Table 5: F1-macro scores and precision / recall values for the causal class on average in zero-shot-experiments involving fine-
tuning on German and testing on Swedish

Data Model F1 P R

German LASER 66.65 62.40 82.90
mBERT 72.51 73.09 72.75
XLM-R 76.93 75,78 79.37

German LASER 66.59 61.78 87.12
+ SemEval mBERT 71.44 73.59 65.50
+ FinCausal (causal) XLM-R 71.56 70.53 75.13

Table 6: F1-macro scores for few-shot experiments involving Swedish as a target language. The English data is Se-
mEval+FinCausal (causal).

Method Source LASER mBERT XLM-R

F1 P R F1 P R F1 P R

None
(Zero-Shot)

EN 67.59 63.04 85.62 57.17 69.54 44.38 62.03 67.17 60.25
DE 66.65 62.40 82.90 72.51 73.09 72.75 76.93 75.78 79.37
EN+DE 66.59 61.78 87.12 71.44 73.59 65.50 71.56 70.53 75.13

Numerical
EN 67.06 59.41 88.75 32.65 48.48 100 36.76 49.22 98.75
DE 60.69 57.72 56.76 56.76 56.32 97.50 67.09 61.63 94.37
EN+DE 65.46 60.67 90.62 55.24 55.16 96,88 53.90 54.70 98.12

Majority
EN 68.25 63.38 84.38 35.22 49.08 100 60.20 57.36 92.50
DE 64.78 60.44 85.00 67.53 62.13 91.25 71.23 64.91 72.50
EN+DE 66.65 61.78 86.88 72.43 75.74 64.38 71.86 66.83 84.83

Balanced
EN 70.57 67.40 76.25 59.30 56.68 87.50 68.46 65.56 73.75
DE 68.58 64.47 79.37 71.34 66.84 81.87 78.24 82.96 70.00
EN+DE 67.52 62.67 85.00 75.07 80.62 65.00 77.46 79.45 72.50

even to a worse performance compared to when using 75% or more
of the available German training data. Given findings of [2], that

the LASER embeddings contain less language-specific information
compared to the embeddings of mBERT and XLM-R, it could thus
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Figure 1: F1-macro scores when including target language
data of different sizes through concatenating target and
source language training data

be that LASER may be worse at taking advantage from additional
German and Swedish data.

6 CONCLUSION
We explored cross-lingual causality detection for German with
English as a source language as well as for Swedish with English and
German as source languages. A challenge is that there are several
differences between the existing data sets in English and German, as
well as our new Swedish data sets. In particular, the strict annotation
scheme of the FinCausal data [22] led to shortcomings in the zero-
shot scenario, which, however, could be smoothed over by removing
the negative examples, hinting at a possible confusion related to
the different annotation guidelines. We also needed to balance our
small Swedish training set, in order to be able to take advantage of
it.

We also compared the BiLSTM-based LASER to the transformer-
based mBERT and XLM-R. We showed that LASER was surprisingly
competitive, especially in the cross-lingual zero-shot setting from
English, where it had the best performance. For Swedish, it was
preferable to transfer from German with XLM-R and mBERT, which
gave the overall best results, whereas the difference was small for
LASER. This preference for German could be traced back to, on the
one hand, similar annotation guidelines for the respective data sets
and a more balanced data set, but potentially also to German being
a better source language for cross-lingual transfer [29].

The findings of [21] regarding few-shot transfer also apply here
since additional target language data led to notable improvements
for mBERT and XLM-R. However, the findings of the Swedish few-
shot experiments demonstrate that caution is advised with regards
to class imbalance. Even small samples of target language data that

are skewed towards one class may lead to overgeneralization, pos-
sibly because the model interprets some actually language specific
characteristics as relevant for the decision on causality.

So far, we only attempted cross-lingual transfer for causality
detection between languages of the same family. A possible line
for future research may thus be to explore how well the multilin-
gual representations used in the present study are able to transfer
between more distantly related languages. One more possible line
of research, not only related to causality detection but generally to
multilingual NLP would be to further explore the observed phenom-
enon of overgeneralization, especially its links to the information
learned by mBERT and XLM-R.
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