Online Submission ID: 121

Interactive 3D Force-Directed Edge Bundling

Category: Research

Fig. 1: Node-link diagram of an almost fully connected, bidirectional graph, originating from a NEST simulation based on a
macaque’s brain [14]. This images depicts 32 each of which represents a brain region. The edges are the regions’ interconnec-
tivity. Left: original graph; Right: the same graph after edge bundling; the edges are directed from purple to yellow.

Abstract—Interactive analyis of 3D relational data is challenging. A common way of representing such data are node-link diagrams
as they support analysts in achieving a mental model of the data. However, naive 3D depictions of complex graphs tend to be
visually cluttered, even more than in a 2D layout. This makes graph exploration and data analysis less efficient. This problem can be
addressed by edge bundling. We introduce a 3D cluster-based edge bundling algorithm that is inspired by the force-directed edge
bundling (FDEB) algorithm [17] and fulfills the requirements to be embedded in an interactive framework for spatial data analysis. Itis
parallelized and scales with the size of the graph regarding the runtime. Furthermore, it maintains the edge’s model and thus supports
rendering the graph in different structural styles. We demonstrate this with a graph originating from a simulation of the function of a

macaque brain.

Index Terms—3D Information visualization, graph visualization, edge bundling, clustering, physical simulation.

1 INTRODUCTION

A graph is an ubiquitous data structure, which describes relational data
and is often visually inspected in its representation as node-link dia-
gram. Ware and Mitchell showed [31] that when enriched with the
appropriate depth cues, such as provided by immersive virtual environ-
ments, graphs laid out in 3D, support data analysis. This is especially
true for graphs with a natural spatial embedding, for example brain
region connectivity data [1, 4, 5], where a reduction to 2D results in a
loss of information. However, when laid out in 3D, graphs are prone
to visual clutter, even more than in a 2D layout. This makes graph
exploration and data analysis less efficient. Aside from methods that
change the positioning of vertices, like in [11], this problem can be
addressed by methods changing the course of the edges. The latter can
be classified into methods that perform local changes, such as Edge-
Lense [33] or Edge Plucking [32], and global methods such as edge
bundling [15, 26]. Edge bundling is a method that combines geometri-
cally close edges into bundles, which use much less screen space. This
work introduces a 3D cluster-based edge bundling algorithm that is in-
spired by the force-directed edge bundling (FDEB) algorithm [17] and
fulfills the requirements to be embedded in an interactive framework
for spatial data analysis.

Interactivity, on the one hand, imposes the need of keeping the sys-
tem’s response time within 100ms [24], while navigating and interact-
ing with the visual representation of the graph and updating it at 30
frames per second or even more frequent when used with current 3D
image projection devices. On the other hand, it requires algorithms to
be fast enough so that they can be added to the workflow of an analyst.

The requirement due to runtime is hard to quantify, since this is af-
fected by several conditions. A duration in the order of a few seconds
is acceptable [24], until it does not have to be performed every few
seconds.

Furthermore, the algorithm should be applicable to general graphs.
This enables the possibility to be embedded into a general analysis
framework. Moreover, special graphs, like weighted and directed
ones, should be supported without restrictions. For this purpose, the
presented approach is meant to maintain the model, or rather an ex-
plicit geometry of the graph, as this allows applying the same visual
representation to the graph when unbundled.

Our main contributions are a native 3D edge bundling algorithm
that is optimized for interactive data analysis. Furthermore, it offers
flexible rendering styles based on an explicit bundle topology. Finally,
the algorithm scales with the graph size regarding runtime.

The rest of the paper is structured as follows. First, we propose
an edge cluster-based (see Section 3.1) edge bundling algorithm (see
Section 3.2). Within this algorithm, the bundles’ topology is main-
tained, which supports rendering the graph in different structural styles
(see Section 3.3). Furthermore, the algorithm is parallelized (see Sec-
tion 3.4) and scales with the size of the graph regarding the runtime
(see Section 4.1). This allows the algorithm to be embedded in an
interactive framework for spatial data analysis (see Section 4.2). Fur-
thermore, we discuss our approach and present future work in Section
5. Finally, we conclude our approach in Section 6.
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2 RELATED WORK

The representation of relational data as node-link diagram is prone
to visual clutter. Holten et al. [15, 17] introduced the approach of
merging geometrically close edges to bundles with the objective of
reducing edge clutter for general graphs. For this purpose, their force-
directed edge bundling algorithm (FDEB) attaches spring and electro-
static forces to segmentation points of the edges that then attract each
other. This algorithm works very well for smaller graphs and is gen-
eralizable to 3D, but does not scale regarding runtime [3], as it has a
quadratic runtime in the number of edges. Selassie et al. extend this
algorithm to work better on directed graphs since antiparallel bundles
are explicitly laid side by side [29].

Another class of edge bundling approaches implicitly bundles
edges together by routing them through nearby, static control points
[8, 21, 27]. These points are obtained by a regular grid or a mesh
geometry, which is generated from the graph’s structure. These ap-
proaches avoid the costly edge-to-edge comparisons but require a
healthy geometry generation. If the density of points is too low, edges
are sharply bent, or in the opposite case, are not bundled at all. Ad-
ditional challenges arise with the extension to 3D. For example, there
are a lot more possible routes for the edges to take and it is more dif-
ficult to aid them in taking a common one. However, for a limited
three-dimensional case, i.e., with the vertices and edges bound to the
surface of a sphere, Lambert et al. [20] showed that it is possible, in
general.

A number of recent approaches take advantage of the pixel pipelines
of today’s GPUs [9, 19, 30]. This enables massively parallel process-
ing in the pixel space. These image-based techniques are to some ex-
tent similar to the ones discussed before, as the result of the GPU ac-
celerated calculations, e.g., a density field, can be described as a set of
control points, even if equipped with a weight and an expansion in 2D
space. These approaches are very fast, but in addition to the problems
of the geometry-based techniques, they are even more difficult to adapt
to 3D, since when the view is changed, the complete edge bundling has
to be recomputed. Depending on the size of the graph, this still could
be possible in real time. However, without major changes in the al-
gorithms, the resulting bundling depends on the view, which would
be very confusing for the user, as it would be hard to obtain a con-
sistent mental model of the graph. But simultaneously, view changes
are very common in interactive applications. As mentioned in the in-
troduction, graphs laid out in 3D support data analysis [31], such as
provided by immersive virtual environments. But, in projection se-
tups like CAVEs, [7] the user usually does not look orthogonally at
the projection screens, or even worse, simultaneously looks in differ-
ent angles on different projection screens. This would lead to artifacts
at the borders while using image based techniques. In summary, it is
very difficult to handle image space techniques for edge bundling in
an interactive 3D application.

Bottger et al. [4, 5] were the first to construct an algorithm explic-
itly adapted to full 3D. It combines methods from FDEB and kernel
density estimation edge bundling (KDEEB) [19]. They compute all
pairwise edge compatibilities and then move an increasing count of
support points to a weighted mean of the surrounding points. How-
ever, the authors stated that their approach is not in general able to
process weighted graphs due to hardware limitations.

Gansner et al. designed Multilevel Agglomerative Edge Bundling
for Visualizing Large Graphs (MINGEL) consisting of two compo-
nents [12]. First, they reduced the complexity of the problem by clus-
tering the edges and building a proximity graph. Second, the decision
to combine a pair of neighbored edges is taken by calculating if there
is a saving of “ink” in this case. They use the quantity of ink as a
metaphor for the used pixel space and this again is a metric for display
clutter. Our algorithm also follows a two-stage approach. But in the
first step, it is based on the combination of a more drastic separation of
edge clusters, that are calculated in advance, and in the second step, we
use a variant of the original FDEB algorithm for the edge bundling in-
stead. This produces smoother edges, which is important as you want
the user to be able to track the shape of connections without being
distracted by sharp bends fetching the attention.
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Fig. 2: Edge bundling pipeline. The edges are clustered and then, per
cluster task-parallel, bundled and drawn.
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3 METHOD

In this paper, we define a Graph G as an ordered tuple (V,E), where
V € R3 is a finite set of vertices and E C V x V a set of edges. Without
loss of generality, we assume that an edge e is an ordered tuple («,v),
with u,v € V, as we can order u and v in case of an undirected graph,
e.g., by the order of their occurrence in the underlying data structure.
So, in case of a directed as well as of an undirected graph, we can
identify an edge’s origin, destination, and direction. Thus, for a given
e = (u,v), we define € = v — u. For the purpose of drawing, an edge is
described as a set of points e = {e(i) Yo<i<k» with k € N. Furthermore
letn=|V|and m= |E|.

To avoid the complete edge-to-edge comparisons and reduce the
runtime complexity, we take advantage of the fact already stated by
Holten et al. [17] that only very few edges really influence the posi-
tioning of any given one. Thus, we break down the edge bundling into
a two step process (see Fig. 2). In Section 3.1 we describe how the
edge population is divided into clusters, without using a full pairwise
comparison approach. From these edge clusters, subgraphs are cre-
ated and a modified FDEB algorithm is calculated in parallel on those,
which is described in Section 3.2. While these calculations are still
running, the rendering takes place to provide the user with interme-
diate results (see Section 3.3). Here, various rendering styles are of-
fered to the user. For example, a way of reasonably drawing weighted
edges, or bundles, is presented which is challenging with holding just
an implicit model of the bundled graph and is therefore usually not
considered by other approaches.

3.1 Edge Clustering

Most of the runtime of FDEB originates from the calculations of the
compatibility for every pair of edges and of the force every single edge
exerts on the current one. Notably, the compatibility and consequently
the forces for most of the pairs are in most cases almost zero. There-
fore, we cluster edges with high compatibility in advance and only do
further calculations within these clusters. To measure the necessary
edge similarity, we define some basic edge metrics. These metrics are
inspired by the ones used to calculate the pairwise edge compatibil-
ity in FDEB, such as edge length corresponding to the scale from one
edge to the other
Iv—ul € R,

the edge’s gradient corresponding to the angle between two edges

<(vi—u,')> e R3, withv=(v1,v2,V3)T
[[v—ull 1<i<3

and the edge’s position
u+v

2

These metrics are composed of very basic geometric measures and
can be complemented or replaced by more application-specific ones,
e.g., metrics describing graph topology or edge weights if it is desired
that bundled edges share, e.g., common origin/target vertices or only
similar-weighted edges should be laid together. It is important to note

eR3.
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Fig. 4: Graph from Fig. 1 shown with color-coded clusters consisting of similar edges; black edges are unclustered, i.e., not similar to any
other. Left: Complete graph; Right: 6 example clusters, where the upper left depicts not a cluster, but all unclustered edges.

Fig. 3: Example of a DBSCAN cluster calculation [10], with mini-
mal cluster size is 2. The dashed circles, each framing one data point,
depict the destiny parameter eps. Whenever a data point falls within
the radius of any existing point of the current cluster, it is added re-
cursively. The result is a green and a purple cluster. The two black
data points are marked as unclustered.

that the chosen metrics should not refer to pairs of edges but instead are
computable per edge. Otherwise the quadratic complexity of FDEB
just would be moved to a preprocessing step. In most cases they do not
have the same expressiveness as their compatibility counterparts, but it
is completely sufficient to find a preselection. For example, the angle
between two edges is more meaningful than comparing their gradient.
This means that the found clusters do not have to be perfect, but a
superset of similar edges, as the connected edge bundling algorithm
will do the precise work in the following.

This basic set of the three metrics finally specifies a seven-
dimensional feature vector for every edge. After normalizing every
component to the interval [0, 1], these vectors are inserted into an R*-
tree [2], which enables an efficient access to this multi-dimensional
data with spatial queries. Compared with an R-tree, an R*-tree guar-
antees a better aligned indexing within a longer setup time but faster
access during runtime. For the clustering we use DBSCAN [10], a
density-based clustering algorithm, whose parameter for the minimal
cluster size is set to a value of 2. This is because we want to bundle
sets of similar edges starting with a size of 2. The number of clusters,

or the similarity of edges, necessary to form a cluster is determined
by the density parameter eps. It is a threshold for deciding if two data
points, according to their Euclidean distance in the parameter space,
are close enough to be assigned to a common cluster (see Fig. 3). A
default eps value is chosen by first precomputing an interval of rea-
sonable values [/,u], starting with a lower bound where most of the
edges first become assigned to any cluster and an upper bound where
the result is only one cluster. Finally the value is set to [+ (u—1)/3
as this often has turned out to be a good choice in our experiments,
which means there is no loss of bundling quality while a good runtime
performance is achieved. However, always computing the “right” den-
sity parameter for the clustering algorithm is not feasible. On the one
hand, it could be very different for two graphs, and a good parameter
selection strongly depends on the current analysis task on the other
hand. But since the clustering is fast, it allows us to put the user in
the loop of interactively choosing or changing the value on demand
within the precalculated interval (see Section 4.2). After selecting an
eps value, a color-coded visual representation of the resulting clusters
is instantly shown (cf. Fig. 4).

Now, out of the resulting clusters we create new subgraphs, whereas
from the implementation view they only hold references to the edges
of the original one, so that changes in the subgraphs propagate to the
root graph. Note that the subgraphs are not necessarily connected,
even if the parent graph was. They are processed by a modified FDEB
algorithm, described in the next section, below.

3.2 Edge Bundling

Our bundling strategy is based on the force directed edge bundling al-
gorithm described by Holten and van Wijk [17]. This approach merges
geometrically similar edges to common bundles. For this purpose, it
attaches spring and electrostatic forces to segmentation points upon
the edges that mutually attract each other (see Fig. 5). We made ma-
jor changes and extensions to the algorithm to achieve especially three
goals:

(G1) De-parameterization
Of course it could be asked why especially an approach with the
aim to be interactive wants to reduce parameters, as user involve-
ment with direct feedback is a good method to find suitable pa-
rameters. However, it should be kept in mind that edge bundling
is a tool for supporting data analysis and the user should need as
little time as possible to tweak algorithm parameters.

(G2) More stable force system
The simulation of forces is often very fragile, e.g., to numerical
instability. We want to clear out the problems we identified.

(G3) Increase computational efficiency
This goal addresses the desired interactivity of the edge bundling.
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Fig. 5: Segmented edges e and e;. Example force calculation for
the 3rd segmentation point of e, assumed there is only one other
relevant edge e;: F(e§3)) = Fe(e§3)) + Fn(e(ﬁ)). All other points are
static. Figure based on [17].

In the initialization step, the compatibilities for all edge pairs are
calculated with more precise metrics than within the clustering and
stored (G3, cf. Algorithm 1, line 1). They are needed later, as it de-
pends on the comparability of two edges to which extent they attract
each other. It is possible to compute them now, as the comparability
measurements only depend on the origin and target point of the edges,
as described below, which are assumed not to change during the al-
gorithm. If it is required to change single vertex positions during the
simulation, a first naive solution to this would be to restart the bundling
for the affected clusters. If the changes provoke changes even in the
clustering, the computations have to be restarted.

The comparability criteria start with the angle between two edges
Cy(e1,e2), with

€€

C, =
alere2) = | Z el

€[0,1].

The second one describes the scale between two edges C(¢e7, €>) with,

max (||é1]|,]|ex
Cloren) — MG L [45])

- == € (0,1].
min(la ] 1z €&

At last, we rate the positioning to each other Cp(é7,¢3) with,

eit+és
2

Cpler,e2) = €[0,1],

AL 4 ||mid(e) —mid ey )|

e(o) =+ g(k)

We intentionally leave out the so called visibility criterion, described
by Holten et al. [17], as we argue that it is only a weighted combi-
nation of the other criteria. The reason for adding this fourth metric
are edges that are comparable with respect to the other metrics, but not
comparable in the intended sense. As an example, the opposite edges
of a skewed parallelogram are mentioned. However, in our opinion
this already is covered by the position metric.
Now, the total comparability C(ey,e;) is calculated as follows:

with mid(e) =

C(er,e2) = Cyler,e2)-Cyler,e2)-Cpler,e2) € 10,1]

After the initialization, a number of cycles c are simulated (see Al-
gorithm 1, line 2). At the beginning of a cycle, every edge is subdi-
vided by adding new segmentation points, refining the resulting curves
(line 3). With every cycle, the number of points is doubled by evenly
distributing the new ones along the risen edge line segments and si-
multaneously dropping the old ones. Within these cycles, we avoid an
explicit number of iterations but instead iterate until the total energy
in the system does not further decrease. This eliminates a parameter

Algorithm 1: Edge Bundling

Data: G = (Vertices, Edges),
numOfCycles,
maxDisp // maximum Displacement

1 comp = CalcComparabilityMap(Edges);
2 for numOfCycles do

3 DoEdgeSegmentation(Edges);

4 while newEnergy < oldEnergy do

5 oldEnergy = newEnergy;

6 newEnergy = 0;

7 foreach Edge e do

8
9
0

foreach Edge e, do
foreach segmentation point i do
/€D is the ith segmentation point of e
11 force = CalcForces(e(i>, e)(ci)) - comple,ex];
12 e = el 4 min(maxDisp, force);
13 newEnergy = newEnergy + force;
14 end
15 end
16 end
17 end
18 end

(G1) and in addition assures that edges are not bundled with differ-
ent densities (G2), a problem already described by Bottger et al. [4].
Within every iteration, for every segmentation point of any edge, the
total force it is affected by is calculated. This consists of two compo-
nents (see Fig. 5). First, the force F; holding the segmentation point

() in between its neighbors, with spring constant &
Fy(el) = k- ([let) — e + e — D)2,

We changed the force from a linear to a quadratic behavior, which
leads to more stable results (G2), as we want to better imitate the be-
havior of a physical spring and penalize the points in running away
much harder. The second force component F, is the sum over all forces
to the corresponding segmentation points of the other edges

Y (Cleses)- [l — )%,

ex€E

Fo(eW) =

Here again we take a squared distance, for the same reasons as before.
The total force on an edge segmentation point then is

F(e) = Fy(e") + Fy(e).

Finally, we move the given point along the force vector by the step size
se = §/2¢, with ¢ the number of the current cycle run. But as an addi-
tional difference to FDEB, we cap this value by the length of the total
force vector (G2). This prevents an edge being attracted by another
edge when they are not similar, as a point originally was moved along
the combined force with a defined step size, as long as the force was
not exactly 0. From the increasing number of segmentation points,
Holten et al. also expect smoothed edges. We think that the bundling,
with respect to G3, is too expensive for this task and therefore recom-
mend to choose as few cycles as possible and as many as necessary,
and to instead smooth the edges in the following rendering step (see
Section 3.3).

It should be mentioned that we added the option to perform an am-
biguity free variant of the algorithm as described in [22], where only
edges with either a common origin or a common target are bundled.
This would guaranty that there is no loss of information in the bundled
representation, but in general reduces less clutter.



Online Submission ID: 121

Fig. 7: A section of the graph shown in Fig. 1 depicting different rendering styles: (a) edge rendering style, (b) bundle rendering style, line
width represents the number of edges combined in this bundle, (¢) bundle rendering style, line width represents the combined edge weight in

this bundle.

Fig. 6: Two bundles coming from the left become one bundle, with
their widths stacked. (a) without an additional smoothing step. (b)
with an additional smoothing.

3.3 Rendering

According to the model-view-controller design pattern, we include in
our framework a graph view, which renders a graph and consists of
a vertex view and an edge view. So a graph view with an empty
edge view and any vertex view is created for the parent graph. Nor-
mally, the latter draws simple spheres for every vertex. But due to the
framework’s flexibility, it is possible to add different vertex represen-
tations. For example, if the data represents a social network, pictures
of the people can be rendered on the position of the vertices, or if the
data represents a neural network, cell nuclei can be rendered instead.
Furthermore, for every subgraph we create an additional graph view,
this time with an empty vertex view. These views are responsible for
drawing the edges. We also could add a single edge view upon the
parent graph as the subgraphs are holding only references to the edge
segmentation points stored in the parent graph. But with the current
setup, we have to update much less data on the graphics card when
one parallelized edge bundling task (see Section 3.4) has finished and
triggers an update of the corresponding edge segments. In addition,
keeping the separation helps to reduce computational costs of all fol-
lowing steps.

3.3.1

During all computations, the graph and the changing edge segments
are redrawn every frame with a so-called edge rendering style (see
Fig. 7a). Thus, the user is able to interactively explore a largely
cleaned graph, while the bundling is being processed. This is pos-
itively affected by the observation that the main structural changes,
specifically the reduction of edge clutter, take place during the first cy-
cles of the bundling algorithm, whereas the following ones mainly just
refine the result.

The edge segmentation points are supplied to the OpenGL pipeline
as line segments, where they are rendered as polylines using a geom-
etry shader. In the case of a directed graph, the direction is encoded
by the intensity, from dark-to-light according to a study of Holten et
al. [16]. Although, a tapered representation is even higher rated, this
would interfere with the edge weight coding of the other views (see
Section 3.3.2) and for reasons of usability, we prefer to keep it consis-
tent. All together, the chosen representations are just examples and the
framework allows to change the representations and even interactively
switch between a set of them, further demonstrated in the following
(also see Section 4.2).

Edge Rendering Style

3.3.2 Bundle Rendering Styles

The result of most edge bundling approaches are lines, or in our case
tubes, laying on each other. However, as bundles are only implicit, this
means there is neither explicit knowledge about which edges become
part of a bundle, nor when or where this happens. This is sufficient
for various applications, but not for every one. For instance, the user
could be interested in the number of edges forming a bundle, but usu-
ally this information is lost. Of course, there are work-arounds, by,
for example, drawing edges with an stacking alpha [35] or just beside
each other [27]. But as work-arounds they all come with their limita-
tions, as bundles stay implicit and the representation is not exchange-
able. Another prominent example are weighted edges. To overcome
this issue, we extract the explicit bundling topology based on the seg-
mented edges. For this purpose, we have to decide when sets of edges
form bundles and when not. As a result of the quasi-continuous phys-
ical simulation, the edge segmentation points do not necessarily lie
precisely on top of each other. However, considering single points is



Algorithm 2: Segmentation to explicit Bundles

Data: G = (Vertices, Edges),
/") is the ith segmentation point of e and
k= 2(cyclesfl) _1
V Edges e : 3 (e,..,e(®),
// density parameter
eps
Result: // every bundle is a strip of segments
Bundles
// tracks for every edge the bundles it participetes in
Topology

new segment = (Vector3D, Vector3D);

foreach Edge e do

segment[0] = e(o);

segment[1] = e(]);

R*Tree.Add(segment);

end

fori=1..kdo

Cluster = DoClustering(R*Tree, eps);

R*Tree.Clear();

// consider unclustered segments as a set with size 1

foreach ser of segments {so, .., s} in Cluster do

//{eg,..,er} corresponding set of Edges

foreach e € {¢g,..,e,} do
UpdateTopology(e);
segment[0] = GetMeanSegEndPoint({so, .., sr});
segment[1] = (1),
R*Tree.Add(segment);

end

if {eg,..,e,} were a cluster before then

| ExtendBundle({so,.,s});
else
| AddBundle({so,..,s,});
end

end

end

usually not a good idea, as co-located points do not clearly imply par-
tially co-located edges. The edges could cross each other in this point
or could even be antiparallel.

Therefore, we introduce an algorithm that identifies co-located seg-
ments, each consisting of a pair of segmentation points (see Algo-
rithm 2). If two segments lie on top of each other, we can be sure that
they should be part of a bundle. To find these segments, it is useful to
use spatial clustering, so we use the DBSCAN algorithm [10]. Again,
we have to decide on the eps parameter. For this purpose, we could
evenly resample the edges and then calculate the eps value so that two
directly successive segments are just not detected as lying upon each
other. But as long we do not resample with the length of the small-
est segment, we could possibly lose existing smoothness. Therefore,
we leave that step optional but recommend to use it when there are
artifacts in the results. Hence, the algorithm by default just chooses
an eps value close to the smallest segment. Nevertheless, because of
two other conditions described in the following, we should not get too
confused with the clustering. First, we are still processing the edge
clusters independently, which reduces the number of simultaneously
processed edges, but even more important, due to the clustering con-
ditions all included edges are very similar and it is more difficult to
get confused with just crossing segments, etc. Second, the previously
performed bundling algorithm constrains that only corresponding seg-
mentation points, i.e., with the same index, attract each other. This is
favored by the fact that the segmentation points of implicitly bundled
edges are very close together. Furthermore, this allows us to systemat-
ically cluster the segments in groups from the origin of all edges to the

target (cf. Algorithm 2). The latter additionally enables the possibility
to keep track of the edges’ topology. Thus, the results are not only
explicit bundles, but also do not loose the edge semantic, as it is still
known that a specific edge consists of these bundles in that sequence.

During the process of replacing sets of segments by bundles, seg-
mentation points have to be averaged to single points in a bundle and
as everything needs to be kept connected, although previous points
have to be shifted. This could cause unaesthetic bends as illustrated in
Fig. 6. Hence, we pipe the results through a simple smoothing. The
resulting bundles finally are described by Catmull-Rom splines [6, 28]
and supplied to the OpenGL pipeline, where they are rendered using
a geometry shader. Due to the fact that we have calculated an explicit
representation and kept the edge topology, we are now able to add var-
ious data to our representation. We implemented two examples, edge
density and weight, stated in the beginning (see Fig. 7). Beyond that,
it would be even possible to represent time varying data.

In conclusion, the user has now the opportunity to switch between
different views depending on what she wants to analyze (see Section
4.2) or highlight.

3.4 Parallelization

To further increase performance, we additionally parallelized our al-
gorithm on two different layers. For this purpose, we decided on task-
based parallelization using Intel® Threading Building Blocks. TBB is
initialized to use up to number of available cores —1 threads in parallel
to exclusively reserve one core for the main thread, which is responsi-
ble for holding the frame loop in the target frame rate of 60 frames/s,
in our case, because we run different immersive display systems. Ev-
erything following is task-based and only in the background mapped
to threads by TBB.

Up to now, the edge clustering was only used to partition the data
before it is processed by a non-scaling algorithm. But as the avail-
able edge clusters (see Section 3.1) are independently processed by the
edge bundling (see Section 3.2), it is possible to create a new task for
every cluster. Thus, the bundling is parallelized. The same applies for
an update of the drawing (see Section 3.3). However, a large variance
in cluster sizes causes load-balancing issues in static parallelization.

This leads to the second layer of parallelization within the bundling.
Two outer for loops of the edge bundling algorithm, each iterating over
all edges in a cluster, are parallelized, too. The first one is hidden in
the edge segmentation function (cf. Algorithm 1, line 3) and does not
need any adjustments as this happens completely independently and
therefore no data races are possible. The second one is the outer one
iterating over all edges within a cycle (cf. Algorithm 1, line 7). To
solve data races here, we buffer the position updates and swap them
outside of the loop. Finally, we synchronize the update of the total
energy.

Both layers together parallelize the edge bundling and simultane-
ously solve possible load balancing issues.

4 RESULTS
4.1 Runtime

In bundling an example graph with only 32 vertices but almost 600
edges (see Fig. 1), our algorithm took about 1.36 seconds (£ 0.036, in
10 measurements) with an eps value of 0.125 and 28 identified clus-
ters. Thus, it was about 150 times faster than our basic 3D implemen-
tation of the FDEB algorithm, which took about 220 seconds. Without
any parallelization and the same parameters our algorithm took about
5,03 seconds (&= 0.037, in 10 measurements). Measurements were per-
formed on an Intel Xeon E5540 2.53GHz quadcore-processor running
Windows 7 with 12 GB of RAM and a GeForce GTX480 graphics
card. The whole measurement series was performed on the graph with
different density parameters and in relation to the number of resulting
clusters, which is shown in Fig. 8. As expected, the plot shows a de-
creasing runtime with an increasing number of clusters, although the
distribution of cluster sizes was not examined here. All bundling re-
sults for the chosen eps interval are well-shaped and just differ in the
degree of bundling.
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Fig. 8: Dependency of the density parameter eps to runtime and
number of clusters, within the useful range of eps values for this par-
ticular graph. This means from, there is first time a real clustering”
to, ’clusters start getting that small that there is no more bundling
worth mentioning”. Additionally in the background the ratio of un-
clustered edges (dark) to clustered ones (bright) is depicted.

But much more interesting than these raw numbers, as they are only
expressive for the explored graph, is the question concerning runtime
scalability [3] regarding graph size. Following the processing pipeline
(see Fig. 2), first, setting up the R*-tree and clustering all edges costs
O(mlogm), with m number of the edges. Unfortunately, due to the
changed termination condition within an edge bundling cycle (see Sec-
tion 3.2), we are no longer able to guarantee any meaningful theoreti-
cal runtime complexity. This is because it is theoretically possible that
there is an epsilon-small decrease in the total energy with every itera-
tion and so the algorithm does not terminate. Nevertheless, to get an
idea of the runtime complexity we could assume a constant number of
iterations or a threshold. This would lead to a quadratic runtime with
respect to the number of edges in a cluster. When considered together,
we get an overall complexity of O(|Cpax|?), With Cppax the largest edge
cluster, which in the worst case again is O(m?). Based on the runtime
analysis, the proposed algorithm does not scale in the worst case.

But indeed, with examples that are not specially designed, the algo-
rithm behaves very well. This is because |Cyqx| does not necessarily
increases with the size of the input as many graphs and networks in real
world applications are sparse and have a low connection. Thus, with
increasing size, graphs can be broken down to an increasing number of
components. Edges in different components are very likely not simi-
lar, regarding the used metrics (see Section 3.1 and 3.2), and therefore
would be assigned to different clusters.

In conclusion, graphs with the mentioned properties will not gener-
ate larger edge clusters, in general and therefore support a scaling of
the proposed algorithm. Of course, these considerations do not hold
for all graphs. In Fig. 4 a nearly fully connected, bi-directed graph is
shown. With every vertex added to such a graph, the mean size of the
clusters will grow, so that the runtime is quadratic, as within the clus-
ters we still operate for every edge on every other one. Nevertheless,
the clustering still reduces the problem, as observable in Fig. 4.

4.2 Application

As proof of concept, we embedded our approach in an existing tool
for interactive brain analysis, called ANONYMIZED, which visual-
izes data originated from a NEST simulation [14]. The added part is
responsible for presenting spatial, weighted brain region connectivity
data (see Fig. 1 and 7). The vertices have static positions, each in the
center of the brain region they represent. The application is designed
to run in a CAVE-like environment, but it is possible to use it with
other VR devices as well as on a desktop PC. A basic set of interac-
tion techniques is given by the application context. First, there is basic
navigation and selection. Second, there are some options to directly
manipulate the graph, as limiting the depicted edges by their weight,
change colors, or move vertices.

We added the possibility to initiate a bundling of the current graph.

In addition, it is possible to enable a bundling mode, where with every
change in the graph structure, the bundling is automatically refreshed.
This method and all options are accessible via an extended pie menu
[13]. The usual work flow starts with the clustering of the graph with
the precalculated eps value (see Section 3.1). The result is color coded
as depicted in Fig. 4. The colors are evenly distributed within the CIE
L*a*b* color space, which is perceptually uniform [18, 23]. However,
currently we are not optimizing the cluster coloring with respect to
the clusters’ distance to each other. Altogether, the visualization is not
sufficient to analyze the clusters in detail, but it is for obtaining a quick
overview of whether the calculated clusters are meaningful or not. If
this is not the case, the user is able to change the eps value via a slider
within the precalculated interval (see Section 3.1) and the cluster vi-
sualization will update. When satisfied with the clustering, the user
starts the edge bundling and simultaneously gets feedback, as the up-
dated positions of the edge’s segmentation points are directly drawn.
She usually starts inspecting the graph, by rotating and translating her
view point, while the bundling is finished. Now it is possible to switch
between the rendering styles (see Section 3.3). Depending on the ac-
tive style, additional parameters can be adjusted, as for example the
minimal, maximal, or both line widths relating to an edge parameter.
Finally, it is possible to continuously fade between the Edge Render-
ing Style (see Section 3.3.1) and the unbundled graph, which can be
interesting for finding just the right ratio between clutter reduction and
information loss through edge bundling.

5 DiscussiON & FUTURE WORK

In the following, we want to discuss single aspects of the presented
approach in sequence of their appearance in the pipeline, according to
Fig. 2, and start with the clustering of the edges.

For the calculation of edge clusters, we have used a density-based
approach, which expects a density parameter. To support the user in
choosing the right parameter, we precalculate an interval of meaning-
ful parameters. To avoid patronizing the user, we used a very con-
servative method for this purpose, starting with a lower bound where
most of the edges first become assigned to any cluster and an upper
bound where the result is only one cluster. This can lead to the situa-
tion that still large parts of the interval are not of interest, e.g., because
there is only one big cluster for larger parts of the interval. It may be
sufficient to be more restrictive for this part and further analyze the
clustering behavior in future.

Then, we took the calculated edge clusters and started an optimized,
force-directed edge bundling algorithm on each cluster independently
and in parallel.

Furthermore, we described that the clusters are drawn indepen-
dently, too. This can be an issue with directed graphs and antiparallel
bundles, as it is possible that they are drawn at the same position and
so cover each other. Although we could change the clustering metrics
in a way that these edges fall in one common cluster, there is no ap-
plicable solution yet to place those bundles relative to each other in
3D. In a general 2D case, Selassie et al. [29] placed bundles side by
side with respect to a highway metaphor. Unfortunately, this metaphor
does not work in a three dimensional space, as there is no left and right
anymore.

We embedded the proposed method in a data analysis tool and
added user interaction, such as the possibility to fade in and out be-
tween the bundled and unbundled graph. Some of this interaction
could be even more beneficial if it would be possible to perform them
only on parts of the graph. These parts can often be expected to se-
mantically correspond to the calculated clusters. The only missing
component for a realization is finding a working selection metaphor
for the clusters, which is not straightforward as the clusters are usu-
ally interwoven or hidden. A first idea to achieve this is to combine
a standard selection strategy, with the possibility to select a specific
cluster from a list of small multiples, as depicted in Fig. 4 (right).
This additionally would support the pure cluster visualization.

We argued that the proposed algorithm should scale for most graphs
appearing in data analysis. This statement in future could be supported
by an empirical study. Nevertheless, this represents a challenge due



to the sample size. On the one hand, graphs would have to be syn-
thetically created, and on the other, they need to be meaningfully dis-
tributed with respect to their properties.

Finally, future work includes investigating the relevance of edge
bundling as a misleading factor in inferring paths or structures in the
data that are actually not there. For example, axon paths in the brain do
not have to follow the paths taken by the bundles, but can be interesting
for neuroscientists and for this reason are noticed from another view
point as for a specialist from a different domain. Of course, this is not
only a risk, but an opportunity too. If, for instance, the real pathways
are known, the bundles could be attracted by these.

6 CONCLUSION

Interactive analysis of 3D relational data is challenging. A common
way of representing such data are node-link diagrams as they support
analysts in achieving a mental model of the data. However, naive 3D
depictions of complex graphs tend to be visually cluttered. This makes
graph exploration and data analysis less efficient. This problem can
be addressed by edge bundling, which combines geometrically close
edges into bundles. We have presented a native 3D, edge cluster-based
and parallel edge bundling algorithm that fulfills the requirements nec-
essary to be embedded in an interactive framework for spatial data
analysis. Furthermore, it maintains the topology of the edge bundles
and thus supports rendering of the graph in different structural styles.
Finally, the proposed algorithm scales in runtime with the number of
edges for most of the graphs.
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