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Channel Coding with the Erasure Option

- - - -
m x y

f Wn ϕ
m̂

An (n,Mn)-erasure code Cn consists of an encoder
fn : {1, . . . ,Mn} → X n and a decoder ϕ : Yn → {1, . . . ,Mn} ∪ {0}.

Decoding region Dm = ϕ−1(y) where m = 0, 1, . . . ,Mn

If y ∈ Dm, declare m was sent; if y ∈ D0, declare an erasure

We assume Wn is a DMC, i.e.,

Wn(y | x) =

n∏
i=1

W(yi | xi)
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Channel Coding with the Erasure Option : Illustration

D1

D2

D3

DM

D5

D6

D7

D0
Yn

Probability of total error

Pr(E1 | Cn) =
1

Mn

Mn∑
m=1

∑
y∈Dc

m

Wn(y | fn(m)).

Probability of undetected error

Pr(E2 | Cn) =
1

Mn

Mn∑
m=1

∑
y∈Dm

∑
m′ 6=m

Wn(y | fn(m′)).
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Some Historical Remarks on Erasure Decoding

Forney (1968) derived exponential error bounds for erasure and
list decoding using Gallager-type bounding techniques

Moulin (2009) presented improved universal error exponents over
those presented in Csiszár-Körner

Merhav (2008) derived error exponents based on the type class
enumerator method that are at least as good as Forney’s

Somekh-Baruch and Merhav (2011) showed that the the type
class enumerator method is ensemble-tight

Tan-Moulin (2014) considered non-vanishing total and undetected
error version of this problem.
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Various Asymptotic Regimes

We consider the message size to be

log Mn = nC − an1−t, 0 < t ≤ 1/2

When t = 1/2, this is the normal approximation regime and

ε∗n ≈ Φ

(
− a√

V

)
, non-vanishing

Strassen (1962), Hayashi (2009) and PPV (2010).

When 0 < t < 1/2, this is the moderate deviations regime and

ε∗n ≈ exp
(
−n1−2t a2

2V

)
, sub-exponential

Altuğ-Wagner (2014) and Polyanskiy-Verdú (2010)
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Our Contribution : Two Asymptotic Regimes

Moderate Deviations Regime with 0 < t < 1/2:

Pr(E1 | Cn) ≈ exp
(
−Θ(n1−2t)

)
, Pr(E2 | Cn) ≈ exp

(
−Θ(n1−t)

)

Mixed Regime with t = 1/2:

Pr(E1 | Cn) ≈ Φ (. . .) , Pr(E2 | Cn) ≈ exp
(
−Θ(n1/2)

)

Similar to Somekh-Baruch and Merhav (2011), we seek
ensemble-tight results, i.e., we seek asymptotic equalities for

ECn [Pr(E1 | Cn)], and ECn [Pr(E2 | Cn)]

where ECn [·] denotes expectation over a random codebook.
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Preliminary Quantities

Mutual information

I(P,W) =
∑

x

P(x)
∑

y

W(y|x) log
W(y|x)

PW(y)

Conditional information variance

V(P,W) =
∑

x

P(x)
∑

y

W(y|x)

[
log

W(y|x)

PW(y)
− D(W(·|x)‖PW)

]2

Minimum and maximum conditional information variances

Vmin(W) = min
P:I(P,W)=C

V(P,W), Vmax(W) = max
P:I(P,W)=C

V(P,W)

Always assume Vmin(W) > 0.
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Direct Results Using Information Spectrum : Moderate

Theorem (Moderate Deviations Direct)

Let 0 < t < 1/2 and a > b > 0. Let

log Mn = nC − an1−t

There exists a sequence of codebooks Cn with Mn codewords such that

lim
n→∞

− 1
n1−2t log Pr(E1 | Cn) =

(a− b)2

2Vmin(W)

lim inf
n→∞

− 1
n1−t log Pr(E2 | Cn) ≥ b

Decoding regions are reminiscent of information spectrum analysis:

D̃m :=

{
y : log

Wn(y|xm)

(PW)n(y)
≥ log Mn + bn1−t

}
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Remarks on Direct Results : Moderate

Total Pr(E1 | Cn) ≈ exp
(
−n1−2t (a− b)2

2Vmin(W)

)
Undetected Pr(E2 | Cn) . exp

(
−n1−tb

)
Undetected error probability� Total error probability

Note a > b. If a increases, fewer number of codewords and so
total error Pr(E1 | Cn) decays faster.

If b increases, decoding regions for m ≥ 1

D̃m :=

{
y : log

Wn(y|xm)

(PW)n(y)
≥ log Mn + bn1−t

}
become smaller

Undetected error Pr(E2 | Cn) decays faster.
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Direct Results Using Information Spectrum : Mixed

Theorem (Mixed Direct)

Let
log Mn = nC − a

√
n.

There exists a sequence of codebooks Cn with Mn codewords such that

Pr(E1 | Cn)→


Φ

(
b−a√

Vmax(W)

)
a ≤ 0

Φ

(
b−a√

Vmin(W)

)
a > 0

and

Pr(E2 | Cn) . exp
(
−
√

n b
)
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Ensemble Tightness?

Are the results tight? Examine ECn [Pr(Ej | Cn)], j = 1, 2.

Restrict attention to additive DMCs, i.e.,

Yi = Xi ⊕ Zi

and Zi ∼ P(·) ∈ P(Fq), some noise distribution.

Furthermore {Zi}i≥1 are i.i.d.

Varentropy

Vmin(W) = Vmax(W) = V(P) = var
[

log
1

P(Z)

]
Also need a stronger decoder; c.f. Forney (1968)

Dm :=

{
y :

Wn(y|xm)∑
m′ 6=m Wn(y|xm′)

≥ exp(nTn)

}
Tn : Blocklength-varying threshold depending on regime.
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Ensemble Tightness

Theorem (Moderate Deviations Regime)

Let 0 < t < 1/2 and a > b > 0. Let

log Mn = nC − an1−t.

Consider a sequence of random codebooks Cn with Mn codewords
each drawn uniformly at random from Fn

q. Choose the threshold as

Tn =
b
nt ,

Then,

lim
n→∞

− 1
n1−2t logECn [Pr(E1 | Cn)] =

(a− b)2

2V(P)

lim
n→∞

− 1
n1−t logECn [Pr(E2 | Cn)] = b
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Remarks on Ensemble Tight Result

Similar result for mixed regime, i.e.,

ECn [Pr(E1 | Cn)] ≈ Φ

(
b− a√

V(P)

)
ECn [Pr(E2 | Cn)] ≈ exp

(
−
√

n b
)

Observe that with Tn = b
nt ,

Dm :=

{
y : log

Wn(y|xm)∑
m′ 6=m Wn(y|xm′)

≥ bn1−t

}

As b increases towards a, decoding regions become smaller;
erasure probability higher; undetected probability smaller
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Main Analysis Technique

Recall Forney’s optimum decoding rule

Dm :=

{
y :

Wn(y|xm)∑
m′ 6=m Wn(y|xm′)

≥ exp(nTn)

}

Suppose m = 1 is sent. We should analyze behavior of the
random variable

Fn := log

∑
m′ 6=1

Wn(Yn|Xn
m′)

− log Wn(Yn|Xn
1)

Suffices to understand the cumulant generating function

φn(s) := logE [exp(sFn)]

Here s doesn’t have to be a constant; can vary with n
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Cumulant Generating Function Asymptotics

Lemma

Consider φn(s) := logE [exp(sFn)]. Let 0 < t ≤ 1/2. We have

φn

( u
nt

)
=

(
−au + u2 V(P)

2

)
n1−2t + o(1)

for any constant u > 0.

Type class enumerator method (cf. Merhav)

Concentration bounds

For example, if t = 1/2, we have

lim
n→∞

φn

(
u√
n

)
= −au + u2 V(P)

2
⇒ Gaussian
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Modified Gärtner-Ellis Theorem

Exponent of expected total error probability ECn [Pr(E1 | Cn)] is

− logECn [Pr(E1 | Cn)] = − log Pr(Fn > −bn1−t)

Asymptotic behavior of the cumulant generating function of Fn

lim
n→∞

1
n1−2tφn

( u
nt

)
= −au + u2 V(P)

2

By a suitably modified of the Gärtner-Ellis theorem

− logECn [Pr(E1 | Cn)] =
(a− b)2

2V(P)
n1−2t + o(n1−2t).

For ECn [Pr(E2 | Cn)], we need a change-of-measure and shifted
form of Gärtner-Ellis theorem.
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Conclusion and Further Work

We analyzed the total and undetected errors whose scalings are

Pr(E1 | Cn) ≈ exp
(
−Θ(n1−2t)

)
, Pr(E2 | Cn) ≈ exp

(
−Θ(n1−t)

)
Pr(E1 | Cn) ≈ Φ (. . .) , Pr(E2 | Cn) ≈ exp

(
−Θ(n1/2)

)

Ensemble-tight results for additive DMCs.

Relax assumption of additivity in future; Need to probably make
Assumption 1 of Merhav (2008).

Higher-order terms in the asymptotic expansions of

− logECn [Pr(E1 | Cn)], and − logECn [Pr(E2 | Cn)].

Full version: http://arxiv.org/abs/1407.0142.
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