
Automated Termination Analysis for
Incompletely Defined Programs

Christoph Walther and Stephan Schweitzer

Fachgebiet Programmiermethodik
Technische Universität Darmstadt

www.informatik.tu-darmstadt.de/pm/

{chr.walther,schweitz}@informatik.tu-darmstadt.de

Abstract. Incompletely defined programs provide an elegant and easy
way to write and to reason about programs which may halt with a run
time error by throwing an exception or printing an error message, e.g.
when attempting to divide by zero. Due to the presence of stuck compu-
tations, which arise when calling incompletely defined procedures with
invalid arguments, we cannot use the method of argument bounded al-
gorithms for proving termination by machine. We analyze the problem
and present a solution to improve this termination analysis method so
that it works for incompletely defined programs as well. Our technique
of proving the termination of incompletely defined programs maintains
performance as well as simplicity of the original method and proved suc-

cessful by an implementation in the verification tool �eriFun .

1 Introduction

A central problem in the development of correct software is to verify that algo-
rithms terminate. A non-terminating algorithm results in looping computations,
hence machine resources are wasted if a given input is not in the domain of
the function computed by the algorithm. Also manpower is wasted with the
debugging of those algorithms, and the frustration caused by non-terminating
programs is a common experience of programmers and computer scientists.

Termination analysis is concerned with the synthesis and verification of ter-
mination hypotheses, i.e. proof obligations the truth of which entail the termina-
tion of the algorithm under consideration. In this paper, we are concerned with
functional programs where several proposals exist for proving termination, e.g.
[1],[2],[3],[4],[5],[6],[7],[8],[9],[10].

In the �eriFun system [11],[12],[13], a semi-automated verifier for functional
programs, the method of argument bounded algorithms [10] is used and proved
successful for verifying the termination of procedures by machine. Recently,
�eriFun was upgraded to work for incompletely defined programs as well [14].
Those programs compute partially determined functions, i.e. functions which
may yield (defined but) “unknown” results for some of their input arguments.
However, unsound inferences will result if our termination proof procedure is

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 332–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

www.informatik.tu-darmstadt.de/pm/

Automated Termination Analysis for Incompletely Defined Programs 333

structure bool <= true, false

structure nat <= 0, succ(pred:nat)

structure list <= empty, add(hd:nat,tl:list)

function minus(x,y:nat):nat <= function remainder(x,y:nat):nat <=

if y=0 if y=0

then x then * ‖ 0

else if x=0 else if y>x

then * ‖ 0 then x

else minus(pred(x),pred(y)) else remainder(minus(x,y),y)

fi fi

fi fi

Fig. 1. Data structures, incompletely and completely defined procedures

applied to incompletely defined procedures, because the method requires that
only totally determined functions are computed by the procedures of a program.
We therefore use domain procedures [14] to modify the method so that it can be
soundly applied to prove the termination of incompletely defined programs too.

2 Completely Defined Programs

Syntax We use a programming language in which data structures are defined
in the spirit of (free) algebraic data types. A data structure s is defined by
stipulating the constructors of the data structure as well as a selector for each
argument position of a constructor. The set of all constructor ground terms built
with the constructors of s then defines the elements of the data structure s.

For example, truth values are represented by the set T ({true, false}) =
{true, false} and the set of natural numbers is represented by the set T ({0, succ})
= {0 , succ(0), succ(succ(0)), . . .}, both given by data structures bool and nat of
Fig. 1.1 Likewise, the data structure list of Fig. 1 represents the set of linear lists
of natural numbers, with e.g. add(succ(0), add(0, empty)) ∈ T ({0, succ, empty ,
add}). The selectors act as inverses to their constructors, since e.g. hd(add(n, k))
= n and tl(add(n, k)) = k is demanded. Each definition of a data structure s
implicitly introduces an equality symbol =s : s × s → bool (where s �= bool) and
a function symbol if s : bool × s × s → s for conditionals.

A procedure, which operates on these data structures, is defined by giving
the procedure name, say f , the formal parameters and the result type in the
procedure head. The procedure body is given as a first-order term over the set
of formal parameters, the function symbols already introduced by some data
structures and other procedures plus the function symbol f to allow recursive
definitions, cf. Fig. 1 where “* ‖” in the procedure bodies should be ignored.

A finite list P of data structure and procedure definitions—always beginning
with the data structure definitions of bool and nat as given in Fig. 1—is called
1 T (Σ,V)s is the set of terms of type s, T (Σ)s = T (Σ, ∅)s, and CL(Σ,V) is the set

of clauses over a signature Σ for function symbols and a set V of variable symbols.

334 C. Walther and S. Schweitzer

a completely defined functional program. Σ(P) is the set of all function symbols
introduced by the data structures and procedures of P , and Σ(P)c ⊂ Σ(P) is
the set of all constructor function symbols given by the data structures of P .

Semantics and Termination Given a (completely defined functional) pro-
gram P , an interpreter evalP for P evaluates terms of T (Σ(P)) to “values”,
i.e. terms of T (Σ(P)c). The interpreter computes calls f(t1, . . . , tn) of a proce-
dure function f(x1:s1, . . . , xn:sn):s <= Rf call-by-value, i.e. by replacing each
formal parameter xi in the procedure body Rf by the computation t′i of the
actual parameter ti, and then continuing with the computation of the instan-
tiated procedure body obtained. The interpreter also respects the definitions
of the data structures by computing, for instance, false for 0=succ(t) and q
for pred(succ(t)), provided evalP (t) = q for some q ∈ T (Σ(P)c). For selectors
sel : s → s′ applied to constructors cons to which they do not belong, so-
called witness terms ωsel [x] ∈ T (Σ(P), {x})s′ with x ∈ Vs are assigned in P to
sel, and we define evalP (sel(cons(q1, . . . , qn)) := evalP (ωsel[cons(q1, . . . , qn)]).
Hence e.g. evalP (tl(empty)) = empty and evalP (hd(empty)) = 0 if ωtl [x] := x
and ωhd [x] := 0 for the selectors of data structure list, cf. Fig. 1. By these
definitions, our programming language is provided with an eager semantics.

Since P may contain non-terminating procedures, evalP is a partial mapping
only, i.e. evalP : T (Σ(P)) �→ T (Σ(P)c), and we define [14]:

Definition 1. (Termination) A procedure function f(x1:s1, . . . , xn:sn):s <=

. . . of a completely defined program P terminates in P iff evalP (f(q1, . . . , qn))
∈ T (Σ(P)c) for all qi ∈ T (Σ(P)c)si

. P terminates iff (i) each procedure of P
terminates in P and (ii) evalP (ωsel[q]) ∈ T (Σ(P)c) for each selector sel : s → s′

and for all q ∈ T (Σ(P)c)s.

3 Incompletely Defined Programs

Motivation Incompletely defined programs provide an elegant and easy way
to specify and to verify statements about (recursive) partial functions with deci-
dable domain [14]. Incompletely defined programs compute partially determined
functions, also called loosely specified or underspecified functions in the literature.

A total function is called partially determined iff the result of a function
application is indetermined for some arguments, called stuck arguments. Par-
tial functions φ : M �→ N with domain domφ can be represented by partially
determined but total functions φ̂ : M → N by stipulating φ̂(m) := φ(m) for each
m ∈ domφ but demanding φ̂(m) ∈ N for each m ∈ M \ domφ only, being silent
about which n ∈ N exactly is assigned to φ̂(m). The elements of M \ domφ are
the stuck arguments of φ̂, and φ̂(m) is indetermined iff m is a stuck argument.
Examples of partially determined functions are quotient and remainder with
stuck arguments of form (m, 0), list processing functions, like head , last and
minimum with the empty list as stuck argument, and so on. If domφ is decidable
and the completion φ̂ of φ is recursive, φ̂ can be computed by an incompletely

Automated Termination Analysis for Incompletely Defined Programs 335

defined procedure ℘φ̂ so that properties of φ can be verified by reasoning about
℘φ̂ , using some verifier based on a logic of total functions.

An incompletely defined program is obtained by giving an incomplete case
analysis in a procedure or using a specific symbol, say *, to denote an indeter-
mined result. Such programs can be implemented by causing a runtime error or
throwing an exception when called with a stuck argument, e.g. upon the attempt
to divide by zero. When focussing on functional programs—as we do here—the
interpreter of the programming language responds by returning a ground term
r /∈ T (Σ(P)c) when called with a stuck argument, and we call such a result r a
stuck computation.
Syntax A data structure s is incompletely defined by not stipulating witness
terms for the selectors of s. For defining a procedure f incompletely, we allow the
use of a wildcard * to stipulate the result when calling f with a stuck argument.
E.g., procedure minus of Fig. 1 is incompletely defined if “‖ 0” is ignored in the
procedure body, and the value of minus(n,m) is only determined if n ≥ m. Also
procedure remainder of Fig. 1 is incompletely defined when ignoring “‖ 0”, and
the value of remainder(n,m) is determined iff m �= 0.

Formally, we assume a constant symbol *s /∈ Σ(P) for each data structure
s in a functional program P , and we demand upon the extension of P by a
new procedure function f(x1:s1, . . . , xn:sn):s <= Rf , that Rf ∈ T (Σ(P) ∪
{f, *s} , {x1, . . . , xn}) be ∗-correct, i.e. Rf = * or * is only used as a (direct)
argument in the alternatives of an if -conditional.
Termination and Semantics For defining the termination and in turn the
semantics of an incompletely defined program P , the notion of a fair comple-
tion P ′ of P is needed [14]: P̂ is the set of all fair completions of P , where
each P ′ ∈ P̂ is a completely defined program containing each data structure
s which is given in P plus the witness terms for the selectors of s. P ′ also
contains a procedure function f(x1:s1, . . . , xn:sn):s <= R′

f for each procedure
function f(x1:s1, . . . , xn:sn):s <= Rf in P . The procedure body R′

f is ob-
tained from Rf by replacing each occurrence of * in Rf by some term from
T (Σ(P ′), {x1, . . . , xn}), where it does not matter whether different occurrences
of * are replaced by the same or by different terms. In addition, the fairness
requirement demands that the termination of procedure f in P ′ not be spoiled
just because procedure f is completed by a non-terminating result in a ∗-case or
a non-terminating witness term is assigned to a selector.

For example, a fair completion of a program containing the incompletely
defined procedure minus of Fig. 1 may contain the completely defined procedure
minus. Also the occurrence of * in procedure minus may be replaced by succ(y)
or 13 or minus(x, pred(y)) etc. in a fair completion P ′ of P . But we may not
replace * by minus(x, y) or by loop(y), where function loop(x:nat):nat <=
succ(loop(x)) is a procedure of P ′, as this violates the fairness requirement.

Definition 2. (Termination) A procedure function f(x1:s1, . . . , xn:sn):s <=

Rf of an incompletely defined program P terminates in P iff for each P ′ ∈
P̂ procedure function f(x1:s1, . . . , xn:sn):s <= R′

f of P ′ terminates in P ′. P
terminates iff each procedure of P terminates in P .

336 C. Walther and S. Schweitzer

Definition 3. (Standard Model MP , Theory ThP) Let P be an incompletely
defined and terminating program. Then a standard model MP of P is a Σ(P)-
algebra MP = (T (Σ(P)c), φ) such that some P ′ ∈ P̂ exists with φf (q1, . . . , qn) =
evalP ′(f(q1, . . . , qn)) for all f ∈ Σ(P)s1,...,sn,s and all qi ∈ T (Σ(P)c)si

. The
theory ThP of P is defined as {ϕ ∈ F(Σ(P),V) | MP � ϕ for each standard
model MP of P}. A verification system for P is sound iff ϕ ∈ ThP for each
ϕ ∈ F(Σ(P),V) verified by the system.2

By Definition 3, incompletely defined procedures (and selectors) are under-
stood as loose specifications of total functions. The standard models for incom-
pletely defined (and terminating) programs differ only in the interpretation of
functions applied to stuck arguments, but coincide for all other function appli-
cations. So ThP is incomplete, i.e. neither ϕ ∈ ThP nor ¬ϕ ∈ ThP for some
ϕ ∈ F(Σ(P),V), whereas ThP is complete for completely defined programs P .
Verification When we formulate proof obligations of form “ϕ ∈ ThP ” for in-
completely defined programs P in the following, we assume the availability of
some “sound verification system for P” to compute a proof for ϕ. We can do
so as (i) several verifiers for functional programs exist, see e.g. [15],[16],[17] for
references, and (ii) (most) logics used for the verification of terminating and
completely defined programs can be applied without profound modifications to
verify terminating but incompletely defined programs as well, see [14].
Computation To implement our programming language, we also have to de-
fine an interpreter evalP for incompletely defined programs P . As the formal
definition of evalP does not matter here, we refer to [14] for details. For the
purpose of this paper, it is enough to know that for each t ∈ T (Σ(P))

evalP (t) ∈ T (Σ(P)c) ⇐⇒
(
evalP (t) = evalP ′(t) for each P ′ ∈ P̂

)
. (1)

4 Termination Analysis with Argument Bounded
Algorithms

Argument bounded algorithms are the key concept for the automated termina-
tion analysis proposed in [10]. The method has been implemented and proved
successful in verification tools, [18],[19],[20],[21],[12], and provided the base for
further developments of termination analysis [22],[23],[24],[3],[4],[25],[26],[27],[9]
as well. Termination analysis with argument bounded algorithms is based on
the syntactic estimation �Γ,C of terms, where selector and procedure calls are
estimated above by some argument(s) of the call.

A total and totally determined function φ : T (Σ(P)c)s1×. . .×T (Σ(P)c)sn
→

T (Σ(P)c)sp
is called p-bounded iff p ∈ {1, . . . , n} and qp �# φ(q1, . . . , qn) for all

qi ∈ T (Σ(P)c)si
.3 A function φ is called argument bounded iff it is p-bounded for

2 F(Σ,V) is the set of closed formulas over Σ and V.
3 ># is the size order comparing constructor ground terms q ∈ T (Σ(P)c)s by the

number #s(q) of reflexive s-constructors in q, and q �# r abbreviates q ># r or
q =# r. A function symbol h : s1 × . . . × sn → s is reflexive iff s = si for some i.

Automated Termination Analysis for Incompletely Defined Programs 337

function half(x:nat):nat <=

if x=0

then 0

else if pred(x)=0 then * else succ(half(pred(pred(x)))) fi

fi

function log(x:nat):nat <=

if x=0

then *

else if pred(x)=0

then 0

else if even(x) then succ(log(half(x))) else * fi

fi

fi

Fig. 2. Incompletely defined procedures (cont.)

some p ∈ {1, . . . , n}. Each p-bounded function φ is associated with a so-called
(total and totally determined) p-difference function δp

φ : T (Σ(P)c)s1 × . . . ×
T (Σ(P)c)sn

→ {true, false} which satisfies δp
φ(q1, . . . , qn) ⇔ qp ># φ(q1, . . . , qn)

for all qi ∈ T (Σ(P)c)si
.

Given a family Γ = (Γp)p∈N of sets of p-bounded function symbols g ∈ Σ(P)
which denote p-bounded functions φ, and the function symbols ∆p

g denoting their
p-difference functions δp

φ, inequalities can be proved by the estimation calculus
[10] (called E -calculus for short). The formulas of the E -calculus are called esti-
mation pairs 〈∆,E〉, where ∆ ∈ CL(Σ(P),V), consisting mainly of atoms of form
∆p

g(. . .), and E is a finite set of expressions of form r � t with r, t ∈ T (Σ(P),V)s.
The E -calculus is decidable and is sound in the sense that

(i) [∀x1:s1, . . . , xn:sn.
∧

C → r �# t] ∈ ThP , and
(ii) [∀x1:s1, . . . ,xn:sn.

∧
C → (

∨
∆ ↔ r ># t)] ∈ ThP

(2)

hold if �Γ,C 〈∆, r � t〉, i.e. if 〈∆, {r � t}〉 is a theorem of the E -calculus, where
C ∈ CL(Σ(P),V) and xi ∈ Vsi

are the variables in C, r and t.
The E -calculus is used (i) to generate termination hypotheses for completely

defined procedures, (ii) to test whether a (terminating and completely defined)
procedure function g(x1:s1, . . . , xn:sn):sp <= Rg computes a p-bounded func-
tion φ, and (if so) (iii) to synthesize a p-difference procedure function ∆p

g(x1:s1,
. . . , xn:sn):bool <= R∆p

g
which computes the p-difference function δp

φ for φ.

5 Incompletely Defined Argument Bounded Procedures

Consider the completely defined and 1-bounded procedure minus from Fig. 1,
and assume that the incompletely defined procedure half of Fig. 2 is fairly
completed by stipulating half (1) := 0 or half (1) := 1. Then half is 1-bounded
too, and the following estimation proof can be obtained:

x �Γ pred(x) �Γ half(pred(x)) �Γ minus(half(pred(x)),succ(y)) (3)

338 C. Walther and S. Schweitzer

Here �Γ abbreviates �Γ,∅, where �Γ,C is the syntactic estimation relation
defined by r �Γ,C t iff �Γ,C 〈∆, r � t〉 for some ∆ ∈ CL(Σ(P),V). However, in
an incompletely defined program, where minus and half are given as in Figs.
1 and 2, the result of a function applied to a stuck argument is not deter-
mined. Therefore pred, half and minus fail to be argument bounded, hence an
estimation proof like (3) cannot be obtained. This problem does not exist for
completely defined programs, as we may stipulate any result we like for a func-
tion applied to a “don’t-care” argument. Hence we may in particular use results
which do not spoil the 1-boundedness of the above functions, and may define
e.g. pred(0) := minus(0, n) := half (1) := 0.

Since the function computed by an incompletely defined procedure fails to
be argument bounded for stuck arguments, the notion of argument boundedness
as given in [10] has to be generalized:

Definition 4. (p-Boundedness) Let P be an incompletely defined program. Then
each reflexive selector of a data structure in P is 1 -bounded. A procedure
function f(x1:s1, . . . , xn:sn):s <= Rf of P is p-bounded iff

1. p ∈ {1, . . . , n} with sp = s,
2. Σ(r) ∩ {*, f} = ∅ for some result term r in the procedure body Rf , and
3. xp �⊕

Γ,Cr
r for each result term r �= ∗ appearing under clause Cr in Rf .4

Γ :=
⋃

p∈N
Γp is the set of argument bounded function symbols in P , where each

Γp is the set of p-bounded function symbols in P . Γp is defined as the smallest
subset of Σ(P) satisfying (i) rsel ∈ Γ1 for each reflexive selector rsel of a data
structure in P and (ii) f ∈ Γp for each p-bounded procedure f in P .

Requirement (3) of Definition 4 allows to ignore indetermined result terms
when testing for argument boundedness and is the only relevant modification
of the original definition. Requirement (2) is only an optimization, as proce-
dures computing indetermined results only cannot contribute to the termination
analysis.

For example, all reflexive selectors of the data structures given in Fig. 1 as
well as the incompletely defined procedures minus, remainder, half and log of
Figs. 1 and 2 now are 1-bounded, and remainder is 2-bounded too.

6 Domain Procedures

Having generalized the notion of argument boundedness by Definition 4, estima-
tion proofs now can be obtained for incompletely defined programs too. However,
such an estimation proof may be unsound, because the functions involved fail to
be argument bounded for stuck arguments.

For instance, the estimation proof (3) is unsound, because a standard model
exists which assigns 1 to pred(0) and 2 to half (1) as well as to minus(0, 1).
Hence 0 � pred(0), 2 ≥ 1 � half (1) and 3 ≥ 2 ≥ 1 � minus(1, 2).
4 We write �⊕

Γ,Cr
〈. . .〉 to denote the existence of an estimation proof which already

may use the Argument Estimation rule (5) of Definition 5 for each recursive call
f(t1, . . . , tn) in r. See [10] for a justification.

Automated Termination Analysis for Incompletely Defined Programs 339

As a remedy, we have to exclude the applications of reflexive selectors and ar-
gument bounded procedures to stuck arguments in an estimation proof. To this
effect, we use domain procedures which have been developed in [14] for reason-
ing about stuck computations explicitly: Domain procedures are given for non-
procedure function symbols �=“if ”by stipulating function ∇=(x:s, y:s):bool <=
true, function ∇seli(x:s):bool <= ?cons(x) and function ∇cons(x1:s1, . . . ,
xn:sn):bool <= true for the selectors sel i and constructors cons of a data
structure definition structure s <= . . . , cons(sel1:s1, . . . , seln:sn), . . ., where
?cons(x) abbreviates x = cons(sel1(x), . . . , seln(x)). For a procedure function
f(x1:s1, . . . , xn:sn):s <= . . ., a domain procedure function ∇f (x1:s1, . . . ,
xn:sn):bool <= . . . can be uniformly synthesized.

As proved in [14], (i) each domain procedure ∇f terminates iff its “mother”
procedure f terminates, (ii) computes a totally determined function, and (iii)
equivalently characterizes whether the computation of a call of procedure f
results in a stuck computation, i.e. for all qi ∈ T (Σ(P)c)si

evalP (f(q1, . . . , qn)) ∈ T (Σ(P)c) iff evalP (∇f (q1, . . . , qn)) = true.

Since domain procedures are tail recursive and compute a truth value, the
optimization techniques developed in [10] for difference procedures apply to do-
main procedures as well: Having generated a domain procedure ∇f , the body
of ∇f is simplified in a first optimization step, and then it is tried to eliminate
recursive calls in the simplified procedure body. Recursion elimination is par-
ticularly important, because proofs are more easily obtained if the procedures
“called” in a statement have no unnecessary recursive calls.

Example 1.
(i) function ∇minus(x,y:nat):nat <=

if y=0
then true
else if x=0 then false else ∇minus(pred(x),pred(y)) fi

fi

is computed as the optimized domain procedure for the incompletely defined
procedure minus from Fig. 1, and we find ∇minus(n,m) = true iff n ≥ m.
(ii) function ∇remainder(x:nat, y:nat):bool <=

if y=0 then false else true fi

is computed as the optimized domain procedure for the incompletely defined
procedure remainder from Fig. 1, and ∇remainder(n,m) = true iff m �= 0.
(iii) function ∇half(x:nat):nat <=

if x=0
then true
else if pred(x)=0 then false else ∇half(pred(pred(x))) fi
fi

is computed as the optimized domain procedure for procedure half from Fig. 2,
and we find ∇half(n) = true iff n is even.

340 C. Walther and S. Schweitzer

(iv) function ∇log(x:nat):nat <=
if x=0

then false
else if pred(x)=0

then true
else if even(x) then ∇log(half(x)) else false fi

fi
fi

is computed as the optimized domain procedure for procedure log from Fig. 2,
and we find ∇log(n) = true iff n = 2k for some k ∈ N. �

To optimize domain procedure ∇remainder, recursion elimination is required,
where the generated recursion elimination formulas are trivial to verify. All do-
main procedures of Example 1 are optimal because all recursive calls which
survived recursion elimination are required.

From now on we assume that each incompletely defined program P contains a
domain procedure function ∇f for each function symbol f ∈ Σ(P) with f �= if
and f �= ∇g, where g is any function symbol in Σ(P).5

7 Estimation Proofs in Incompletely Defined Programs

Domain procedures provide the necessary prerequisite to exclude the applications
of reflexive selectors and argument bounded procedures to stuck arguments in an
estimation proof. For example, to guarantee soundness of the estimation proof
(3) we only have to demand

∇pred(x) ∧∇half(pred(x)) ∧∇minus(half(pred(x)),succ(y)) . (4)

Requirement (4) expresses x �= 0, x−1 is even and (x−1) /2 ≥ 1 + y, thus
excluding the unsound estimations from Section 6. In the general case, we scan
an estimation proof

t1 �Γ,C t2 �Γ,C . . . �Γ,C tn−1 �Γ,C tn (5)

step by step and create a procedure call ∇f (r1, . . . , rm) for each estimation step
ti �Γ,C ti+1 with ti+1 = f(r1, . . . , rm) and f ∈ Γ , where 1 ≤ i ≤ n − 1. These
procedure calls are collected in a set ∇ ∈ CL(Σ(P),V), called the determination
clause of the estimation proof (5).

To this effect, the estimation calculus from [10] is refined:

Definition 5. (pE-Calculus) Let P be an incompletely defined program, let Γ be
a family of argument bounded function symbols in P , and let C ∈ CL(Σ(P),V),
called the context clause. Assume further that ircons, ircons1 and ircons2 are
(not necessarily different) irreflexive constructors, and that rcons, rcons1, . . . ,
rconsn are (not necessarily different) reflexive constructors of some data struc-
tures in P . Then the partial estimation calculus (pE-calculus) is given by:
5 This means that we do not need domain procedures of domain procedures.

Automated Termination Analysis for Incompletely Defined Programs 341

1. Language Estimation triples, i.e. expressions of form 〈∇,∆,E〉 where ∇,∆
∈ CL(Σ(P),V) and E ⊂ {r � t | r, t ∈ T (Σ(P),V)s} with |E| < ∞.

2. Inference Rules (Estimation Rules) 6

(1)
Identity
〈∇,∆,E � {t � t}〉

〈∇,∆,E〉

(2)
Equivalence
〈∇,∆,E � {r � t}〉

〈∇,∆,E〉 , if C � ?ircons2(r) and C � ?ircons1(t)

(3)
Strong Estimation
〈∇,∆,E � {r � t}〉
〈∇,∆ ∪ {true} , E〉 , if C � ?rcons(r) and C � ?ircons(t)

(4)
Strong Embedding

〈∇,∆,E � {r � t}〉
〈∇,∆ ∪ {true} , E ∪ {SELk(r) � t}〉 , if

C � ?rcons(r), and
k is a reflexive argument
position of rcons

(5)
Argument Estimation

〈∇,∆,E � {r � f (t1, . . . , tn)}〉
〈∇∪{∇f (t1, . . . , tn)} ,∆∪{∆p

f (t1, . . . , tn)}, E∪{r � tp}〉
, if f ∈Γp

(6)
Weak Embedding

〈∇,∆,E � {r � t}〉
〈∇,∆,E ∪

⋃h
i=1 {SELji

(r) � SELji
(t)}〉

, if

C � ?rcons(r),
C � ?rcons(t), and
j1, . . . , jh are all
reflexive argument
positions of rcons,

(7)
Minimum

〈∇,∆,E � {r � t}〉
〈∇,∆ ∪

⋃k
i=1 {?rconsi(r)} , E〉

, if

C � ?ircons(t), and
rcons1, . . . , rconsk are all
reflexive constructors of s

3. Deduction A deduction of 〈∇n,∆n, En〉 from 〈∇1,∆1, E1〉 is a finite se-
quence 〈∇1,∆1, E1〉 , . . . , 〈∇n,∆n, En〉 of estimation triples such that n ≥ 1
and 〈∇i,∆i, Ei〉 �Γ,C 〈∇i+1,∆i+1, Ei+1〉, i.e. 〈∇i+1,∆i+1, Ei+1〉 results
from 〈∇i,∆i, Ei〉 by an application of some estimation rule for each i < n.

r �Γ,C t abbreviates �Γ,C 〈∇,∆, r � t〉 for some ∇,∆ ∈ CL(Σ(P),V),
where �Γ,C 〈∇,∆, r � t〉 denotes the existence of an estimation proof
for r � t with determination clause ∇ and difference equivalent ∆, given by

�Γ,C 〈∇,∆, r � t〉 ⇐⇒ 〈∅, ∅, {r � t}〉 �+
Γ,C 〈∇,∆, ∅〉 .

6 We write C � ?consi(r) iff (i) r = consi(. . .) or (ii) ?consi(r) ∈ C or (iii)
{¬?consj(r) | j ∈ {1, . . . , n} \ {i}} ⊂ C for a data structure s with constructors
cons1, . . . , consn. SELk(r) stands for rk if r = rcons(. . . , rk, . . .), and abbreviates
selk(r) otherwise.

342 C. Walther and S. Schweitzer

Theorem 1. (Soundness of the pE-calculus) Let P be an incompletely defined
and terminating program, and let �Γ,C 〈∇,∆, r � t〉 where x1, . . . , xn with xi ∈
Vsi

are all variable symbols in C, r and t. Then

1. [∀x1:s1, . . . , xn:sn.
∧
∇ → (

∧
C → r �# t)] ∈ ThP , and

2. [∀x1:s1, . . . , xn:sn.
∧
∇ → (

∧
C → (

∨
∆ ↔ r ># t))] ∈ ThP .7

By Theorem 1, the soundness of a pE-deduction is relativized by the domain
clause ∇ inferred. This means that the soundness statements of (2) in Section
4 hold for incompletely defined programs only if each literal of ∇ is true, i.e.
if the absence of stuck computations is guaranteed. E.g., we now may obtain the
pE -deduction 〈∅, ∅, {x � minus(half(pred(x)) , succ(y))}〉 �+

Γ 〈
{
∇pred(x),

∇half(pred(x)), ∇minus(half(pred(x)), succ(y))},
{
∆1

minus(half(pred(x))

,succ(y)),∆1
half(pred(x)),∆

1
pred(x)

}
, ∅〉.

A proof procedure for the pE -calculus is easily obtained, because the set of
theorems of the pE -calculus is decidable:

Theorem 2. (Decidability of pE-deductions) Let P be an incompletely defined
program, let E = {r � t | r, t ∈ T (Σ(P),V)s}, and let M = {〈∇,∆,E〉 | ∇,∆ ∈
CL(Σ(P),V) and E ⊂ E with |E| < ∞}. Then

1. {〈∇,∆, {r � t}〉 ∈ M | �Γ,C 〈∇,∆, r � t〉} is decidable, and
2. r �Γ,C t is decidable.

8 Synthesis of Difference Procedures

The pE -calculus is used similarly to the E-calculus in [10] to recognize p-bound-
edness of a procedure function f(x1:s1, . . . , xn:sn):s <= Rf and to synthesize
a p-difference procedure function ∆p

f (x1:s1, . . . , xn:sn):bool <= R∆p
f

for pro-
cedure f . But we have to modify the synthesis process slightly to cope with the
∗-symbol which may occur in the procedure bodies Rf .

We define * as the result term of R∆p
f

under a clause C whenever * appears
as the result term under this clause in Rf . Consequently, a p-difference procedure
∆p

f is incompletely defined iff its “mother” procedure f is.

Definition 6. (p-Difference Procedures) Let P be an incompletely defined pro-
gram. Then each reflexive selector sel ∈ {sel1, . . . , seln} of a data structure
definition structure s <= . . . , cons(sel1:s1, . . . , seln:sn), . . . in P is associated
with the 1-difference procedure

function ∆1
sel(x:s):bool <= if ?cons(x) then true else ∗ fi .

Each p-bounded procedure function f(x1:s1, . . . , xn:sn):s <= Rf of P is
associated with some p-difference procedure

function ∆p
f (x1:s1, . . . , xn:sn):bool <= R∆p

f

7 We refer to [28] for omitted proofs.

Automated Termination Analysis for Incompletely Defined Programs 343

such that R∆p
f

is obtained from Rf by keeping each result term r with r = ∗ and
by replacing each result term r with r �= ∗ which appears under some clause Cr

in Rf by OR (∆r), where �⊕
Γ,Cr

〈∇r,∆r, xp � r〉.8

Theorem 3. Let P be an incompletely defined program, let f ∈ Σ(P)s1,...,sn,s

be p-bounded, and let function ∆p
f denote a p-difference procedure of f . Then

for all qi ∈ T (Σ(P)c)si
and for all P ′ ∈ P̂

1. evalP ′(f(q1, . . . , qn))∈T (Σ(P)c) ⇔ evalP ′(∆p
f (q1, . . . , qn))∈{true, false},

2. evalP (∇f (q1, . . . , qn)) = true =⇒ evalP (∆p
f (q1, . . . , qn)) ∈ {true, false},

3. P terminates ⇒ [∀x1:s1, . . . , xn:sn. ∇f (x1, . . . , xn) → xp �# f(x1, . . . , xn)
∧ (∆p

f (x1, . . . , xn) ↔ xp ># f(x1, . . . , xn))] ∈ ThP .

By Theorem 3(1), a difference procedure terminates iff its “mother” pro-
cedure terminates. By Theorem 3(2), ∇f (q1, . . . , qn) entails that computation
of ∆p

f (q1, . . . , qn) does not get stuck. We therefore abandon with generating a
domain procedure ∇∆p

f
for a difference procedure ∆p

f but use the domain pro-
cedure ∇f of its “mother” procedure f instead. Finally by Theorem 3(3), a
p-bounded procedure f computes a p-bounded function and a p-difference pro-
cedure is sound, i.e. it represents an equivalent requirement for a procedure call
f(q1, . . . , qn) being strictly bounded above by its pth argument qp, provided the
computation of f(q1, . . . , qn) does not get stuck.

After their synthesis, the difference procedures are optimized by simplifica-
tion and recursion elimination as defined in [10].

Example 2.
(i) function ∆1

minus(x,y:nat):bool <=
if y=0 then false else if x=0 then * else true fi fi

is computed as the optimized 1-difference procedure for the incompletely defined
procedure minus of Fig. 1. Hence ∆1

minus(n,m) = true iff m �= 0 �= n and
∆1

minus(n,m) = false iff m = 0.
(ii) function ∆1

remainder(x:nat, y:nat):bool <=
if y=0 then * else if y>x then false else true fi fi

is computed as the optimized 1-difference procedure for the incompletely defined
procedure remainder of Fig. 1. Hence ∆1

remainder(n,m) = true iff n ≥ m �= 0
and ∆1

remainder(n,m) = false iff n < m. Since remainder is 2-bounded too, we
also obtain the optimized 2-difference procedure

function ∆2
remainder(x:nat, y:nat):bool <=

if y=0 then * else true fi

and ∆2
remainder(n,m) = true iff m �= 0 and ∆2

remainder(n,m) �= false.
(iii) function ∆1

half(x:nat):bool <=
if x=0 then false else if pred(x)=0 then * else true fi fi

is computed as the optimized 1-difference procedure for procedure half of Fig.
2, hence ∆1

half(n) = true iff n ≥ 2 and ∆1
half(n) = false iff n = 0.

8 OR(C) denotes the disjunction of the elements in C represented by if -conditionals.

344 C. Walther and S. Schweitzer

(iv) function ∆1
log(x:nat):bool <=

if x=0
then *
else if pred(x)=0 then true

else if even(x) then true else * fi fi fi

is computed as the optimized 1-difference procedure for procedure log of Fig. 2,
and ∆1

log(n) = true iff n = 1 or n �= 0 is even and ∆1
log(n) �= false. �

9 Generating Termination Hypotheses

Using the pE -calculus of Definition 5, we adjust the synthesis of termination
hypotheses as defined in [10] to work also for incompletely defined procedures:

Definition 7. (Termination Hypotheses) Let function f(x1:s1, . . . , xn:sn):s
<= Rf be a procedure of an incompletely defined program P , let f (t1, . . . , tn)
be a recursive call which appears under some clause C in Rf , and let ∅ �= P ⊂
{1, . . . , n} such that �Γ,C 〈∇i,∆i, xi � ti〉 for each i ∈ P. Then a termination
hypothesis τP

f of procedure f is defined as

τP
f =

[
∀x1:s1, . . . , xn:sn.

∧
C →

∧
i∈P (

∧
∇i) ∧

∨
i∈P (

∨
∆i)

]
. (6)

Theorem 4. Let P = P0 ⊕ 〈function f(x1:s1, . . . , xn:sn):s <= Rf 〉 be an in-
completely defined program such that P0 terminates. Then procedure f terminates
in P if some non-empty P ⊂ {1, . . . , n} exists such that τP

f ∈ ThP0 for each
termination hypothesis τP

f .

Example 3. (i) We compute τ
{1}
minus = τ

{2}
minus = [∀x, y:nat. y �= 0 ∧ x �= 0 →

true ∧ true] for the incompletely defined procedure minus of Fig. 1.

(ii) We compute τ
{2}
remainder = [∀x, y:nat. y �= 0 ∧ y ≯ x → false] and τ

{1}
remainder =

[∀x, y:nat. y �= 0 ∧ y ≯ x → ∇minus(x, y) ∧ ∆1
minus(x, y)] for the incompletely

defined procedure remainder of Fig. 1.

(iii) We compute τ
{1}
half = [∀x:nat. x �= 0 ∧ pred(x) �= 0 → true ∧ true] for

procedure half of Fig. 2.

(iv) We compute τ
{1}
log = [∀x:nat. x �= 0 ∧ pred(x) �= 0 ∧ even(x) → ∇half(x) ∧

∆1
half(x)] for procedure log of Fig. 2. �

10 Summary and Conclusion

Our termination proof procedure for incompletely defined programs is imple-
mented in the �eriFun system in the following way:

Upon definition of a data structure s, the domain procedures ∇sel are gener-
ated for each selector sel of s, each reflexive selector sel′ of s is inserted into Γ1

and the 1-difference procedures ∆1
sel′ for sel′ are generated, cf. Sections 6 and 8.

Automated Termination Analysis for Incompletely Defined Programs 345

Upon definition of a procedure f , the pE -calculus is called to compute the
termination hypotheses for procedure f , cf. Definition 7. Then the system tries
to verify all termination hypotheses and—if successful—computes the domain
procedure ∇f and optimizes it, cf. Section 6. Next the pE -calculus is called
again to test whether procedure f is p-bounded for some argument position p,
cf. Definition 4. For each such p passing the test, the system computes the p-
difference procedure ∆p

f and optimizes it, cf. Section 8. Finally, f is inserted
into Γp to be available for subsequent termination proofs, i.e. for proving the
termination of procedures g which use procedure f in recursive g-calls.

Argument bounded algorithms proved as a useful concept to verify the termi-
nation of functional procedures by machine, easing the burden of a system user
significantly as termination functions need to be supplied less frequently when
defining procedures. Incompletely defined programs provide an elegant and easy
way to write and to reason about programs which may halt with a run time
error. Our proposal unifies the benefits of both approaches without sacrificing
performance or simplicity, neither when proving termination nor when reasoning
about programs.

Our method of proving the termination of incompletely defined programs au-
tomatically has proved successful in �eriFun [12],[13], a semi-automated verifier
for functional programs. The �eriFun system is available from the web [11].
Acknowledgement We are grateful to Markus Aderhold and Andreas Schlosser
for useful comments as well as to Jürgen Giesl for thorough and fruitful discus-
sions and for constructive criticism on a draft of this paper.

References

1. Boyer, R.S., Moore, J.S.: A Computational Logic. Acad. Press, NY (1979)
2. Giesl, J.: Termination Analysis for Functional Programs using Term Orderings.

In: Proc. of the 2nd Intern. Static Analysis Symposium (SAS-95). Volume 983 of
Lecture Notes in Artifical Intelligence., Glasgow, Springer (1995) 154–171

3. Giesl, J.: Termination of Nested and Mutually Recursive Algorithms. Journal of
Automated Reasoning 19 (1997) 1–29

4. Giesl, J., Walther, C., Brauburger, J.: Termination Analysis for Functional Pro-
grams. In Bibel, W., Schmitt, P., eds.: Automated Deduction - A Basis for Appli-
cations. Volume 3. Kluwer Acad. Publ., Dordrecht (1998) 135–164

5. Kamareddine, F., Monin, F.: An extension of an automated termination method
of recursive functions. Intern. J. of Found. of Comp. Sc. 13 (2002) 361–386

6. Manoury, P., Simonot, M.: Automatizing Termination Proofs of Recursively De-
fined Functions. Theoretical Computer Science 135 (1994) 319–343

7. Monin, F., Simonot, M.: An Ordinal Measure based Procedure for Termination of
Functions. Theoretical Computer Science 254 (2001) 63–94

8. Nielson, F., Nielson, H.R.: Termination Analysis based on Operational Semantics.
Technical report, Aarhus University, Denmark (1995)

9. Sengler, C.: Termination of Algorithms over Non−Freely Generated Data Types.
In McRobbie, M.A., Slaney, J.K., eds.: Proc. of the 13th Inter. Conf. on Automated
Deduction (CADE-13). Volume 1104 of Lecture Notes in Artifical Intelligence., New
Brunswick, NJ, Springer (1996) 121–136

346 C. Walther and S. Schweitzer

10. Walther, C.: On Proving the Termination of Algorithms by Machine. Artificial
Intelligence 71 (1994) 101–157

11. http://www.verifun.de.

12. Walther, C., Schweitzer, S.: About �eriFun. In Baader, F., ed.: Proc. of the 19th
Inter. Conf. on Automated Deduction (CADE-19). Volume 2741 of Lecture Notes
in Artifical Intelligence., Miami Beach, Springer (2003) 322–327

13. Walther, C., Schweitzer, S.: Verification in the Classroom. Journal of Automated
Reasoning - Special Issue on Automated Reasoning and Theorem Proving in Ed-
ucation 32 (2004) 35–73

14. Walther, C., Schweitzer, S.: Reasoning about Incompletely Defined Programs.
Technical Report VFR 04/02, Programmiermethodik, Technische Universität
Darmstadt (2004)

15. Bundy, A.: The Automation of Proof by Mathematical Induction. In Robinson,
A., Voronkov, A., eds.: Handbook of Automated Reasoning. Volume I. Elsevier
(2001) 845–911

16. Comon, H.: Inductionless Induction. In Robinson, A., Voronkov, A., eds.: Handb.
of Autom. Reasoning. Volume I. Elsevier (2001) 913–962

17. Walther, C.: Mathematical Induction. In Gabbay, D., Hogger, C., Robinson, J.,
eds.: Handbook of Logic in Artificial Intelligence and Logic Programming. Vol-
ume 2. Oxford University Press, Oxford (1994) 127–228

18. Autexier, S., Hutter, D., Langenstein, B., Mantel, H., Rock, G., Schairer, A.,
Stephan, W., Vogt, R., Wolpers, A.: VSE: Formal Methods Meet Industrial Needs.
Intern. J. on Software Tools for Technology Transfer 3 (2000) 66–77

19. Autexier, S., Hutter, D., Mantel, H., Schairer, A.: inka 5.0 - A Logic Voyager.
In Ganzinger, H., ed.: Proc. 16th Inter. Conf. on Autom. Deduction (CADE-16).
Volume 1632 of Lect. Notes in Artif. Intell., Trento, Springer (1999) 207–211

20. Hutter, D., Langenstein, B., Sengler, C., Siekmann, J., Stephan, W., Wolpers, A.:
Verification Support Environment (VSE). High Integrity Syst. 1 (1996) 523–530

21. Hutter, D., Sengler, C.: INKA: The Next Generation. In McRobbie, M., J.Slaney,
eds.: Proc. 13th Inter. Conf. on Autom. Deduction (CADE-13). Volume 1104 of
Lect. Notes in Artif. Intell., New Brunswick, Springer (1996) 288–292

22. Brauburger, J.: Automatic Termination Analysis for Partial Functions using Poly-
nomial Orderings. In: Proc. of the 4th Intern. Static Analysis Symposium (SAS-97).
Volume 1302 of Lect. Notes in Artif. Intell., Paris, Springer (1997) 330–344

23. Brauburger, J., Giesl, J.: Approximating the Domains of Functional and Impera-
tive Programs. Science of Computer Programming 35 (1999) 113–136

24. Giesl, J.: Automated Termination Proofs with Measure Functions. In: Proc. of
the 19th Annual German Conf. on Artifical Intelligence (KI-95). Volume 981 of
Lecture Notes in Artifical Intelligence., Bielefeld, Springer (1995) 149–160

25. Gow, J., Bundy, A., Green, I.: Extensions to the Estimation Calculus. In
Ganzinger, H., McAllester, D.A., Voronkov, A., eds.: Proc. of the 6th Inter. Conf.
on Logic Progr. and Autom. Reasoning (LPAR-6). Volume 1705 of Lect. Notes in
Artif. Intelligence., Tbilisi, Georgia, Springer (1999) 258–272

26. Hutter, D.: Using Rippling to Prove the Termination of Algorithms. Technical
Report RR 97-03, DFKI, Saarbrücken (1997)

27. McAllester, D., Arkoudas, K.: Walther Recursion. In McRobbie, M.A., Slaney,
J.K., eds.: Proc. of the 13th Inter. Conf. on Autom. Deduction. Volume 1104 of
Lect. Notes in Artif. Intell., New Brunswick, NJ, Springer (1996) 643–657

28. Walther, C., Schweitzer, S.: Automated Termination Analysis for Incompletely De-
fined Programs. Technical Report VFR 04/03, Programmiermethodik, Technische
Universität Darmstadt (2004)

	Introduction
	Completely Defined Programs
	Incompletely Defined Programs
	Termination Analysis with Argument Bounded Algorithms
	Incompletely Defined Argument Bounded Procedures
	Domain Procedures
	Estimation Proofs in Incompletely Defined Programs
	Synthesis of Difference Procedures
	Generating Termination Hypotheses
	Summary and Conclusion

