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1. Introduction

Partial differential equations (PDEs) on manifolds have become an active area of research in recent years
due to the fact that, in many applications, models have to be formulated not on a flat Euclidean domain
but on a curved surface. For example, they arise naturally in fluid dynamics (e.g. surface active agents
on the interface between two fluids, James & Lowengrub (2004)) and material science (e.g. diffusion of
species along grain boundaries, Deckelnick et al. (2001)) but have also emerged in areas as diverse as
image processing and cell biology (e.g. cell motility involving processes on the cell membrane, Neilson
et al. (2011) or phase separation on biomembranes, Elliott & Stinner (2010)).

Finite element methods (FEM) for elliptic problems and their error analysis have been successfully
applied to problems on surfaces via the intrinsic approach in Dziuk (1988) based on interpolating the
surface by a triangulated one. This approach has subsequently been extended to parabolic problems in
Dziuk & Elliott (2007b) as well as evolving surfaces in Dziuk & Elliott (2007a). However, as in the
planar case there are a number of situations where FEM may not be the appropriate numerical method,
for instance, advection dominated problems which lead to steep gradients or even discontinuities in the
solution.

DG methods are a class of numerical methods that have been successfully applied to hyperbolic,
elliptic and parabolic PDEs arising from a wide range of applications. Some of its main advantages
compared to ‘standard’ finite element methods include the ability of capturing discontinuities as arising
in advection dominated problems, and less restriction on grid structure and refinement as well as on the
choice of basis functions. The main idea of DG methods is not to require continuity of the solution
between elements. Instead, inter-element behaviour has to be prescribed carefully in such a way that
the resulting scheme has adequate consistency, stability and accuracy properties. A short introduction
to DG methods for both ODEs and PDEs is given in Cockburn (2003). A history of the development
of DG methods can be found in Cockburn et al. (2000) and Arnold et al. (2002). Arnold et al. (2002)
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provides an in-depth analysis of a large class of discontinuous Galerkin methods for second-order elliptic
problems.

The motivation of this study has been to investigate the issues arising when attempting to apply
DG methods to problems on surfaces. We restrict our analysis to a linear second-order elliptic PDE
on a compact smooth connected and oriented surface. We expect that parabolic problems on evolving
surfaces as featured in the above mentioned applications can be dealt with along the lines of Dziuk &
Elliott (2007a).

This paper is organised in the following way. We consider the Helmholtz equation on a compact
smooth connected and oriented surface G ⇢ R3 and introduce a particular DG method known as the
interior penalty (IP) method on a triangulated surface Gh. The surface IP method we consider is similar
in nature to the one introduced in Arnold (1982), and its well-posedness follows naturally from results
in the planar case given in Arnold et al. (2002) and Ainsworth & Rankin (2011). We then derive a-priori
error estimates in the appropriate norms by relating Gh to G via a lifting operator and by making use
of results from Dziuk (1988) and Giesselmann & Müller (2012) to show that the additional geometric
error terms arising when approximating the surface scale in such a way that they do not affect the
convergence rates proved and observed for the standard FEM approach in Dziuk (1988) when using
linear ansatz functions.

We then present some numerical results, making use of the Distributed and Unified Numerics Envi-
ronment (DUNE) software package (see Bastian et al. (2008b), Bastian et al. (2008a)) and, in particular,
the DUNE-FEM module described in Dedner et al. (2010) (also see dune.mathematik.uni-freiburg.de
for more details on this module). We consider a number of test problems, for which we compute ex-
perimental orders of convergence (EOCs) in both the L2 norm and the DG norm, and show that these
coincide with the theoretical error estimates derived in the previous section. Furthermore, we consider
several intuitive ways of approximating the surface conormal in our IP formulation, and investigate the
resulting schemes numerically. In the process, we present a generic implementation of test problems on
surfaces which follows as a direct application of the Demlow & Dziuk (2008) algorithms.

Finally, we briefly present numerical results for non-comforming grids and higher order polynomial
ansatz functions, which suggest that the convergence rates of the standard FEM approach still hold for
such generalisations.

2. Notation and Setting

The notation in this section closely follows the one used in Dziuk (1988). Let G be a compact smooth
connected and oriented surface in R3. Let d denote the signed distance function to G which we assume
to be well-defined in a sufficiently thin open tube U around G . The orientation of G is set by taking the
normal n of G to be in the direction of increasing d whence

n(x ) = —d(x ), x 2 G .

With a slight abuse of notation we also denote the projection to G by x , i.e. x : U ! G is given by

x (x) = x�d(x)n(x) where n(x) := n(x (x). (2.1)

Later on, we will consider a triangulated surface Gh ⇢U approximating G such that there is a one-to-one
relation between points x 2 Gh and x 2 G so that, in particular, the above relation (2.1) can be inverted.
Throughout this paper, we denote by

P(x ) := I �n(x )⌦n(x ), x 2 G ,
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the projection onto the tangent space T
x

G on G at a point x 2 G .

DEFINITION 2.1 For any function h defined on an open subset of U containing G we can define its
tangential gradient on G by

—
G

h := —h �—h ·nn = P—h

and then the Laplace-Beltrami operator on G by

D

G

h := —
G

· (—
G

h).

DEFINITION 2.2 We define the surface Sobolev spaces

Hm(G ) := {u 2 L2(G ) : Da u 2 L2(G ) 8|a|6 m}, m 2 N[{0},

with the corresponding Sobolev norm

kukHm(G ) :=

 

Â
|a|6m

kDa uk2
L2(G )

!1/2

.

We refer to Wloka (1987) for a proper discussion of Sobolev spaces on manifolds.
The problem that we consider in this paper is the Helmholtz equation

�D

G

u+u = f (2.2)

for a given f 2 L2(G ). Using integration by parts on surfaces the weak problem reads:
(P

G

) Find u 2 H1(G ) such that
Z

G

—
G

u ·—
G

v+uv dA =
Z

G

f v dA 8v 2 H1(G ). (2.3)

Existence and uniqueness of a solution u follows from standard arguments. We assume that u 2 H2(G )
satisfies

kukH2(G ) 6Ck fkL2(G ) (2.4)

where we refer to Aubin (1982) and Wloka (1987) for more details on elliptic regularity on surfaces.

3. Approximation and Properties

To obtain a discretisation of u, the smooth surface G is approximated by a polyhedral surface Gh ⇢ U
composed of planar triangles. Let Th be the associated regular, conforming triangulation of Gh i.e.

Gh =
[

Kh2Th

Kh.

The vertices are taken to sit on G so that Gh is its linear interpolation. We assume that the projection map
x defined in (2.1) is a bijection when restricted to Gh, thus avoiding multiple coverings of G by Gh. Let
Eh denote the set of all codimension one intersections of elements K+

h ,K�
h 2 Th (i.e., the edges). We

define the conormal n+h on such an intersection eh 2 Eh of elements K+
h and K�

h by demanding that
• n+h is a unit vector,
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• n+h is tangential to (the planar triangle) K+
h ,

• in each point x 2 eh we have that n+h · (y� x)6 0 for all y 2 K+
h .

Analogously one can define the conormal n�h on eh by exchanging K+
h with K�

h .
A discrete DG space associated with Gh is given by

Vh := {vh 2 L2(Gh) : vh|Kh
2 P1(Kh) 8Kh 2 Th}

i.e. the space of piecewise linear functions which are globally in L2(Gh). For vh 2Vh, let

v+/�
h := vh

��
∂K+/�

h
.

We can now define a discrete DG formulation on Gh for a given function fh 2 L2(Gh) (note that, in
general, this is not a finite element function, it will be related to the function f given in problem (P

G

)
later on, see (3.5) below):
(PIP

Gh
) Find uh 2Vh such that

aIP
Gh
(uh,vh) = Â

Kh2Th

Z

Kh

fhvh dAh 8vh 2Vh (3.1)

where

aIP
Gh
(uh,vh) := Â

Kh2Th

Z

Kh

—
Ghuh ·—Ghvh +uhvh dAh

� Â
eh2Eh

Z

eh

(u+h �u�h )
1
2
(—

Ghv+h ·n+h �—
Ghv�h ·n�h )+(v+h � v�h )

1
2
(—

Ghu+h ·n+h �—
Ghu�h ·n�h ) dsh

+ Â
eh2Eh

Z

eh

beh(u
+
h �u�h )(v

+
h � v�h ) dsh. (3.2)

The penalty parameters beh are given by beh = wehh�1
eh

where heh is some length scale associated with
the intersection eh (for instance, the edge length). The interior penalty parameters weh are uniformly
bounded with respect to h := maxeh2Eh heh .

REMARK 3.1 This formulation corresponds to the one found in Arnold et al. (2002) in the case when
the domain is flat and is similar in nature to the original formulation of the IP method found in Arnold
(1982) for which the conormals n+/�

h are associated with their respective gradient terms rather than the
scalar terms. It is important to point out that this formulation is not equivalent to using the formulation
found in Arnold et al. (2002) on Gh. We will discuss this issue further in Section 5.

We now define a norm on the space of piecewise smooth functions:

DEFINITION 3.1 For uh 2Vh we define

|uh|21,h := Â
Kh2Th

kuhk2
H1(Kh)

, |u|2⇤,h := Â
eh2Eh

h�1
eh
ku+h �u�h k

2
L2(eh)

.

The DG norm is given by
kuhk2

DG := |uh|21,h + |uh|2⇤,h.
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LEMMA 3.1 Let EKh denote the set containing the individual edges of element Kh. Then if beh = wehh�1
eh

with

weh > max
Kh2Th:
eh⇢∂Kh

1
2 Â

ẽh2EKh

|ẽh|2

|Kh|
for all eh 2 Eh, (3.3)

then aIP
Gh

is stable and bounded. Hence there is a unique solution uh 2Vh of (PIP
Gh
) which satisfies

kuhkDG 6Ck fhkL2(Gh)
. (3.4)

Proof. Boundedness and stability of (3.2) follow in a similar way as for the classical IP method (see
Arnold et al. (2002) for more details) since all the arguments apply to Gh. For the lower bound of the
penalty parameters, the proof of Lemma 2.1 in Ainsworth & Rankin (2011) applies straightforwardly
to the surface Gh. Note that the reason why these results naturally extend onto Gh is that the latter is
composed of planar triangles. By Lax-Milgram, the uniqueness property follows. ⇤

Our goal now is to compare the solution u 2 H2(G ) of (P
G

) with the solution uh 2 Vh of (PIP
Gh
) but

these functions are defined on different domains. The approach suggested in Dziuk (1988) is to lift
functions defined on the discrete surface Gh onto the smooth surface G .

DEFINITION 3.2 For any function w defined on Gh we define the lift onto G by

wl(x ) := w(x(x )), x 2 G ,

where by (2.1) and the non-overlapping of the triangular elements, x(x ) is defined as the unique solution
of

x = x +d(x)n(x ).

Extending wl constantly along the lines s 7! x + sn(x ) we obtain a function defined on U . In
particular, we

define fh such that f l
h = f on G . (3.5)

By (2.1), for every Kh 2 Th, there is a unique curved triangle Kl
h := x (Kh)⇢ G . Note that we assumed

x (x) is a bijection so multiple coverings are not permitted. We now define the regular, conforming
triangulation T l

h of G such that
G =

[

Kl
h2T l

h

Kl
h.

The triangulation T l
h of G is thus induced by the triangulation Th of Gh via the lift. Similarly, el

h :=
x (eh) 2 E l

h are the unique curved edges. We denote by dh the local area deformation when transforming
Kh to Kl

h i.e. dhdAh = dA, deh the local edge deformation when transforming eh to el
h i.e. dehdsh = ds.

The appropriate function space for lifted functions is given by

V l
h := {vl

h 2 L2(G ) : vl
h(x ) = vh(x(x )) with some vh 2Vh}.

Note that the DG norm for functions ul
h 2V l

h is the same one as in Definition 3.1 but with the triangula-
tion T l

h instead and corresponding length scale hel
h

associated with el
h. The context of its use makes it

clear which DG norm we are dealing with. Furthermore, we observe that

hl
eh
> heh (3.6)

since the deformation of the straight edges can only increase their length. We now prove some geometric
error estimates relating G to Gh.
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LEMMA 3.2 Let G be a compact smooth connected and oriented surface in R3 and Gh its linear interpo-
lation with outward unit normal nh. Denote H = —2d and Ph = I �nh ⌦nh. Then we have

kdkL•(G ) 6Ch2, k1�dhkL•(G ) 6Ch2, kn �nhkL•(G ) 6Ch, kP�RhkL•(G ) 6Ch2

k1�dehkL•(G ) 6Ch2 and kn�Pnl
hkL•(el

h)
6Ch2

where Rh := 1
dh

P(I �dH)Ph(I �dH).

Proof. All these geometric estimates follow from standard interpolation theory via the linear interpola-
tion of G . Proofs of the first four estimates can be found in Dziuk (1988), the fifth one in Giesselmann
& Müller (2012). The last estimate is a corollary of another result in Giesselmann & Müller (2012),
which states that if n and nl

h are given as before and t denotes a unit tangent vector on some el
h 2 E l

h , we
have

|(t,nl
h)|6Ch2, |1� (n,nl

h)|6Ch2.

Writing Pnl
h = (t,Pnl

h)t +(n,Pnl
h)n, we deduce that indeed

kn�Pnl
hkL•(el

h)
= kn� (t,Pnl

h)t +(n,Pnl
h)nkL•(el

h)

6 |1� (n,Pnl
h)|+ |(t,Pnl

h)|= |1� (n,nl
h)|+ |(t,nl

h)|= O(h2).

⇤
LEMMA 3.3 Let uh 2Vh satisfy (3.4). Then ul

h 2V l
h satisfies

kul
hkDG 6Ck fkL2(G ). (3.7)

Proof. We first show that that for any function vh 2Vh,

kvhkDG >Ckvl
hkDG. (3.8)

The | · |21,h component of the DG norm is dealt with in exactly the same way as in Dziuk (1988). Similarly,
making use of Lemma 3.2 and the fact that h�1

eh
> h�1

el
h

(see (3.6)), we obtain the following for the | · |2⇤,h
component of the DG norm:

Â
eh2Eh

h�1
eh

Z

eh

(v+h � v�h )
2 dsh > Â

el
h2E l

h

h�1
el

h

Z

el
h

(vl+
h � vl�

h )2 1
deh

ds

= Â
el

h2E l
h

h�1
el

h

Z

el
h

(vl+
h � vl�

h )2 ds+ Â
el

h2E l
h

h�1
el

h

Z

el
h

(vl+
h � vl�

h )2
✓

1
deh

�1
◆

ds

>C Â
el

h2E l
h

h�1
el

h

Z

el
h

(vl+
h � vl�

h )2 ds

where C 2 (0,1) for sufficiently small h. Noting that k fhkL2(Gh)
6 Ck f l

hkL2(G ) = Ck fkL2(G ) (see Dziuk
(1988)), we can extend the stability estimate (3.4) to the lifted discrete function ul

h as required. ⇤
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We conclude this section by defining a bilinear form on G induced by aIP
Gh

and the lifting operator:

aIP
G

(u,v) := Â
Kl

h2T l
h

Z

Kl
h

—
G

u ·—
G

v+uv dA

� Â
el

h2E l
h

Z

el
h

(u+�u�)
1
2
(—

G

v+ ·n+�—
G

v� ·n�)+(v+� v�)
1
2
(—

G

u+ ·n+�—
G

u� ·n�) ds

+ Â
el

h2E l
h

Z

el
h

bel
h
(u+�u�)(v+� v�) ds (3.9)

where n+ and n� are respectively the unit surface conormals to Kl+
h and Kl�

h on el
h 2 E l

h and the penalty

parameters are defined to be bel
h

:= beh
deh

. This bilinear form is well defined for functions u,v 2 H2(G )+

V l
h . Furthermore, using again standard arguments as found in Arnold et al. (2002), we can show that aIP

G

is bounded on H2 +V l
h with a constant Cl

b and using Lemma 3.3 together with (3.8) we also see that the
bilinear form aIP

G

is stable on V l
h with a constant Cl

s.
Since the weak solution u given by (2.3) is in H2, it satisfies

aIP
G

(u,v) = Â
Kl

h2T l
h

Z

Kl
h

f v dA 8v 2 H2(G )+V l
h . (3.10)

4. Convergence

THEOREM 4.1 Let u 2 H2(G ) and uh 2Vh denote the solutions to (P
G

) and (PIP
Gh
), respectively. Denote

by ul
h 2V l

h the lift of uh onto G . Then

ku�ul
hkL2(G ) +hku�ul

hkDG 6Ch2k fkL2(G ).

The proof will follow an argument similar to the one outlined in Arnold et al. (2002). We first
consider

kf

l
h �ul

hk2
DG 6 1

Cl
s
aIP

G

(f l
h �ul

h,f
l
h �ul

h) =
1

Cl
s
aIP

G

(u�ul
h,f

l
h �ul

h)+
1

Cl
s
aIP

G

(u�f

l
h,f

l
h �ul

h). (4.1)

Since we do not directly have Galerkin orthogonality the first term is not zero, and the second term will
require an interpolation estimate. These terms are addressed by the following lemmas:

LEMMA 4.1 For a given w 2 H2(G ) there exists an interpolant Il
hw 2V l

h such that

kw� Il
hwkL2(G ) +hk—

G

(w� Il
hw)kL2(G ) 6Ch2

⇣
k—2

G

wkL2(G ) +hk—
G

wkL2(G )

⌘
.

Proof. See Dziuk (1988). ⇤
LEMMA 4.2 Let u and ul

h be given as in Theorem 4.1 and define the functional Eh on V l
h by

Eh(vl
h) := aIP

G

(u�ul
h,v

l
h).
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Then Eh can be written as

Eh(vl
h) = Â

Kl
h2T l

h

Z

Kl
h

(Rh �P)—
G

ul
h ·—G

vl
h +

✓
1
dh

�1
◆

ul
hvl

h +

✓
1� 1

dh

◆
f vl

h dA

+ Â
el

h2E l
h

Z

el
h

(ul+
h �ul�

h )
1
2
(—

G

vl+
h ·n+�—

G

vl�
h ·n�)

� (ul+
h �ul�

h )
1
2
(P+

h (I �dH)P—
G

vl+
h ·nl+

h �P�
h (I �dH)P—

G

vl�
h ·nl�

h )
1

deh

ds

+ Â
el

h2E l
h

Z

el
h

(vl+
h � vl�

h )
1
2
(—

G

ul+
h ·n+�—

G

ul�
h ·n�)

� (vl+
h � vl�

h )
1
2
(P+

h (I �dH)P—
G

ul+
h ·nl+

h �P�
h (I �dH)P—

G

ul�
h ·nl�

h )
1

deh

ds

where Rh is given as in Lemma 3.2. Furthermore, Eh scales quadratically in h i.e.

|Eh(vl
h)|6Ch2k fkL2(G )kvl

hkDG. (4.2)

REMARK 4.1 Note that the error functional Eh in Lemma 4.2 includes all of the terms of the classical
FEM setting (see Dziuk (1988)) as well as additional terms arising from the jumps across elements
which characterise the DG method.

The proof of Lemma 4.2 will be the main part of this section. Before we give its full proof, we
will complete that of Theorem 4.1 assuming this result. Using the estimate (4.1) given at the start of
the proof of Theorem 4.1, the boundedness of aIP

G

, the quadratic scaling of Eh in h (4.2) and the elliptic
regularity result (2.4), we have

kf

l
h �ul

hk2
DG 6 1

Cl
s
Eh(f

l
h �ul

h)+
1

Cl
s
aIP

G

(u�f

l
h,f

l
h �ul

h)

6 1
Cl

s
Eh(f

l
h �ul

h)+
Cl

b
Cl

s
ku�f

l
hkDGkf

l
h �ul

hkDG

6Ch2k fkL2(G )kf

l
h �ul

hkDG +Cku�f

l
hkDGkf

l
h �ul

hkDG,

thus
kf

l
h �ul

hkDG 6Ch2k fkL2(G ) +Cku�f

l
hkDG.

Now taking the continuous interpolant f

l
h = Il

hu and using Lemma 4.1 we obtain

ku�ul
hkDG 6 ku�f

l
hkDG +kf

l
h �ul

hkDG 6 ku�f

l
hkDG +Ch2k fkL2(G ) +Cku�f

l
hkDG 6Chk fkL2(G )

as required. The L2 error estimate can be derived using the usual Aubin-Nitsche trick in a similar way
as in Dziuk (1988), which concludes the proof of Theorem 4.1.
Proof of Lemma 4.2. The form of Eh given in Lemma 4.2 is obtained by lifting the integrals of (3.2)
onto G . For every Kh 2 Th we have

Z

Kh

—
Ghuh ·—Ghvh +uhvh dAh =

Z

Kl
h

Rh—
G

ul
h ·—G

vl
h +

1
dh

ul
hvl

h dA.
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Furthermore, for every eh 2 Eh we have
Z

eh

(u+h �u�h )
1
2
(—

Ghv+h ·n+h �—
Ghv�h ·n�h )+(v+h � v�h )

1
2
(—

Ghu+h ·n+h �—
Ghu�h ·n�h ) dsh

=
Z

el
h

(ul+
h �ul�

h )
1
2
(P+

h (I �dH)P—
G

vl+
h ·nl+

h �P�
h (I �dH)P—

G

vl�
h ·nl�

h )

+(vl+
h � vl�

h )
1
2
(P+

h (I �dH)P—
G

ul+
h ·nl+

h �P�
h (I �dH)P—

G

ul�
h ·nl�

h )
1

deh

ds.

And finally we have using bel
h
=

beh
deh

that

Z

eh

beh(u
+
h �u�h )(v

+
h � v�h ) dsh =

Z

el
h

bel
h
(ul+

h �ul�
h )(vl+

h � vl�
h )ds

so that the integrals involving the penalty terms cancel. The right-hand side of (3.1) gets transformed in
a similar way:

Â
Kh2Th

Z

Kh

fhvh dAh = Â
Kl

h2T l
h

Z

Kl
h

f vl
h

1
dh

dA.

The expression for the error functional Eh given in Theorem 4.2 is thus obtained by considering the dif-
ference between the two bilinear forms (3.9) and (3.2) and lifting the integrals of the latter as described
above.

Finally we need to show that the error functional Eh scales quadratically in h i.e.

|Eh(vl
h)|6Ch2k fkL2(G )kvl

hkDG.

To this end we need to show that the additional terms arising in the error functional Eh do not affect the
convergence rates expressed in Dziuk (1988). The first term of the error functional Eh (the element inte-
gral) is the one resulting from the standard FEM approach. By Lemma 3.2 this term scales quadratically
in h as shown in Dziuk (1988). We will now get a bound for the third term of Eh, for which we have the
following:

Â
el

h2Eh

Z

el
h

(vl+
h � vl�

h )
1
2
(—
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ul+
h ·n+�—
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ul�
h ·n�)

✓
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deh

� 1
deh

◆

� (vl+
h � vl�

h )
1
2
(P+

h (I �dH)P—
G
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h ·nl+

h �P�
h (I �dH)P—

G

ul�
h ·nl�

h )
1

deh

ds

= Â
el

h2E l
h

Z

el
h

(vl+
h � vl�

h )
1
2
(—

G

ul+
h ·n+�—

G

ul�
h ·n�)

✓
1� 1

deh

◆
+

1
deh

(vl+
h � vl�

h )
1
2

⇣
(—

G

ul+
h ·n+

�—
G

ul�
h ·n�)� (P+

h (I �dH)P—
G

ul+
h ·nl+

h �P�
h (I �dH)P—

G

ul�
h ·nl�

h )
⌘

ds.

The first component in the above scales quadratically in h by Lemma 3.2, so all we have to deal with is
the second component. We have

—
G

ul+
h ·n+�P+

h (I �dH)P—
G

ul+
h ·nl+

h = —
G

ul+
h ·n+�—

G

ul+
h ·P(I �dH)P+

h nl+
h

= —
G

ul+
h ·n+�—

G

ul+
h ·P(I �dH)nl+

h = —
G

ul+
h · (n+�Pnl+

h )+dH—
G

ul+
h ·nl+

h ,
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hence

Â
el

h2E l
h

Z

el
h

1
deh

(vl+
h � vl�

h )
1
2

⇣
(—

G

ul+
h ·n+�—

G

ul�
h ·n�)

� (P+
h (I �dH)P—

G

ul+
h ·nl+

h �P�
h (I �dH)P—

G

ul�
h ·nl�

h )
⌘

ds

= Â
el

h2E l
h

Z

el
h

1
deh

(vl+
h � vl�

h )
1
2

⇣
(n+�Pnl+

h ) ·—
G

ul+
h +dH(—

G

ul+
h ·nl+

h �—
G

ul�
h ·nl�

h )

+(Pnl�
h �n�) ·—

G

ul�
h

⌘
ds.

For the first component of the above, we have

Â
el

h2E l
h

Z

el
h

1
deh

(vl+
h � vl�

h )
1
2
(n+�Pnl+

h ) ·—
G

ul+
h ds

6 kvl
hkDG

0

@ Â
el

h2E l
h

Z

el
h

1
4

1
(deh)

2 hel
h

⇣
(n+�Pnl+

h ) ·—
G

ul+
h

⌘2
ds

1

A

1
2

after applying Cauchy-Schwartz. Using similar arguments as done for proving boundedness of the
classical IP method (see Arnold et al. (2002)), we have

Â
el
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el
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after applying the trace theorem and inverse inequality (see Brezzi et al. (1999)). For the second com-
ponent, we have
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Z

el
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A

1
2

.

Pursuing the analysis as before and using the fact that the Hessian H is symmetric and bounded, we
have
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after applying the trace theorem and inverse inequality as before.
We can now estimate the error functional Eh:

|Eh(vl
h)|6 kRh �PkL•(G )kul

hkDGkvl
hkDG +k 1

dh
�1kL•(G )kul

hkDGkvl
hkDG

+k1� 1
dh

kL•(G )k fkL2(G )kvl
hkDG +C max

el
h2E l

h

kn�Pnl
hkL•(el

h)
kul

hkDGkvl
hkDG

+CkdkL•(G )kul
hkDGkvl

hkDG.

So by Lemma 3.2 and the stability estimate (3.7) we have

|Eh(vl
h)|6Ch2k fkL2(G )kvl

hkDG

for every vl
h 2V l

h as required. ⇤

5. Numerical Tests

5.1 Implementation Aspects

The IP method has been implemented using DUNE-FEM, a discretization module based on the Dis-
tributed and Unified Numerics Environment (DUNE), (further information about DUNE can be found
in Bastian et al. (2008a), Bastian et al. (2008b) and Bastian et al. (2012)). DG methods are well tested
for the DUNE-FEM module, as shown in Dedner et al. (2010), Brdar et al. (2012), but only simple
schemes have been tested for surface PDEs (further information about the DUNE-FEM module can
be found in Dedner et al. (2010) and Dedner et al. (2012)). In all our numerical tests we choose the
polynomial order on each element Kh 2 Th to be 1 and interior penalty parameters to satisfy (3.3). The
initial mesh generation for each test case is performed using the 3D surface mesh generation module of
the Computational Geometry Algorithms Library (CGAL) (see Rineau & Yvinec (2009)).

When performing mesh refinements it is often the case that there is no explicit projection map
for mapping newly created nodes from Gh to G , hence x (x) must be approximated. Two different
algorithms, discussed in more detail in Demlow & Dziuk (2008), have been tested for such problems:
one being Newton’s method and the other being an ad-hoc first-order method. Assume that x0 2U and
that we wish to compute x (x0). The Newton method seeks to find a stationary point of the function
F(x,l ) = |x� x0|2 +lf(x) with starting values chosen to be (x0,l0) = (x0,2f(x0)/|—f(x0)|2), where
f is the level-set function of G (and not necessarily a signed-distance function). We iterate the method
until  

f(x)2

|—f(x)|2 +

����
—f(x)
|—f(x)| �

x� x0

|x� x0|

����
2
!1/2

< tol (5.1)

is reached. Note that this stopping criteria incorporates both how close the iterate is to the surface G

as well as how accurately it lies in the normal direction. The second method is given by the following
first-order algorithm:

1. Stipulate tol and x0 and initialise x = x0.
2. While (5.1) is not satisfied, iterate the following steps:

(a) Calculate x̃ = x� f(x)—f(x)
|—f(x)|2 and dist = sign(f(x0))|x̃� x0|.

(b) Set x = x0 �dist —f(x̃)
|—f(x̃)| .
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We can make this algorithm more flexible by only requiring a second order finite difference approx-
imation of —f(x). It was observed in Demlow & Dziuk (2008) that in practice the second of the two
algorithms was more efficient due to the fact that each step of Newton’s method is relatively expensive.
This was observed in all of our numerical tests. It has also been noted that there has not been any rig-
orous error analysis done for either of the two algorithms with respect to the stopping criterion (5.1).
Though we do not provide any such error analysis, our numerical tests suggest that both algorithms may
stagnate at certain points for which the stopping criterion tolerance is never reached, even with fairly
refined initial meshes. The normal direction error contribution of the stopping criteria appears to be
responsible for the algorithm stagnating, hence for such points we remove this contribution so that the
algorithm terminates and the resulting point lies on the surface nevertheless (albeit not necessarily at
x (x0)).

In addition, we make use of this algorithm to provide a generic implementation of test problems on
surfaces. Computing the Laplace-Beltrami operator of some given function explicitely over an arbitrary
compact smooth connected and oriented surface given by the zero level-set of some function is rarely
possible. This is due to the difficulties of finding a closed form expression of the outward unit normal
to the surface as described earlier. For any u 2C2(R3), we have

D

G

u = Du�n ·—2un +—u ·n (n ·—nn � tr(—n)) (5.2)

where D is the usual Euclidean Laplace operator in R3, —2u 2 R3⇥3 the (Euclidean) Hessian of u, —u
the (Euclidean) gradient of u, —n 2 R3⇥3 whose entries are the (Euclidean) partial derivatives of each
component of the normal, and finally tr(—n) the trace of —n . We can make use of the ad-hoc first-order
algorithm described previously to approximate the outward unit normal n of G in (5.2): this is done
by computing n(x (x0))⇡ sign(f(x0))(x̃ (x0)� x0) where x̃ (x0) is the approximation of x (x0) resulting
from the algorithm . The only terms left to be approximated in (5.2) are the entries of —n : this is done
via second-order finite difference approximations as done for the approximation of —f in the first-order
algorithm. The error caused by this approximation of the Laplace-Beltrami operator appears not to
affect the resulting convergence order for any of our test cases.

5.2 Approximation of Surface Conormals

Consider the IP bilinear form ãIP
Gh

given by

ãIP
Gh
(uh,vh) := Â

Kh2Th

Z

Kh

—
Ghuh ·—Ghvh +uhvh dAh

� Â
eh2Eh

Z

eh

(u+h �u�h )
1
2
(—

Ghv+h ·n+eh
�—

Ghv�h ·n�eh
)+(v+h � v�h )

1
2
(—

Ghu+h ·n+eh
�—

Ghu�h ·n�eh
) dsh

+ Â
eh2Eh

Z

eh

beh(u
+
h �u�h )(v

+
h � v�h ) dsh (5.3)

where n+eh
and n�eh

are simply vectors which lie on the intersection eh 2 Eh of neighbouring elements K+
h

and K�
h . Now assume that we want to assemble the system matrix on an element Kh and we assume that
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Kh = K�
h for all eh ⇢ ∂Kh. To this end, we fix vh = j

� with supp(j�) = Kh which leads to

ãIP
Gh
(uh,j

�) :=
Z

Kh

—
Ghuh ·—Ghj

�+uhj

� dAh

+ Â
eh⇢∂Kh

Z

eh

(u+h �u�h )
1
2

—
Ghj

� ·n�eh
+j

� 1
2
(—

Ghu+h ·n+eh
�—

Ghu�h ·n�eh
) dsh

� Â
eh⇢∂Kh

Z

eh

beh(u
+
h �u�h )j

� dsh.

To assemble the block on the diagonal of the matrix we need to take uh = y

� with supp(y�) = Kh.
For the off-diagonal block we take uh = y

+ with supp(y+) = K+
h for one neighbour K+

h of Kh. We
will then discuss different choices for n+/�

eh which are linked to several intuitive ways of approximating
respectively the surface conormals n+/�. We use one choice for n+eh

in both cases. To cover all of the
choices we want to consider, it is necessary to use different choices for n�eh

, i.e., the vector belonging to
the element Kh on which we are assembling the matrix. For the diagonal block we will denote our choice
for this vector with n�D and use the original notation n�eh

for the choice used to assemble the off-diagonal
block. Note that n�D = n�h for all of the choices discussed below except for choice 3.

Now consider uh = y

� with supp(y�) = Kh in (5.3) using n�D instead of n�eh
:

ãIP
Gh
(y�,j�) :=

Z

Kh

—
Ghy

� ·—
Ghj

�+y

�
j

� dAh

� Â
eh⇢∂Kh

Z

eh

1
2

y

�—
Ghj

� ·n�D +j

� 1
2

—
Ghy

� ·n�D �behy

�
j

� dsh.

Next we take uh = y

+ with supp(y+) = K+
h for one neighbour K+

h of Kh, we now have

ãIP
Gh
(y+,j�) := Â

eh⇢∂Kh

Z

eh

1
2

y

+—
Ghj

� ·n�eh
dsh +j

� 1
2

—
Ghy

+ ·n+eh
dsh �behy

+
j

� dsh.

We can now prescribe choices for the vectors n�D , n�eh
, n+eh

and will later investigate the behaviour of the
numerical scheme (5.3) for different choices of these three vectors.

Choice 1

n�D = n�h , n�eh
= n�h , n+eh

=�n�h .

Such a choice corresponds to using the IP method in a planar setting, for which n+h = �n�h , and is the
simplest scheme to implement.

Choice 2

n�D = n�h , n�eh
= n�h , n+eh

= n+h .

This choice yields the numerical scheme (3.2) that has been discussed up to now and used in the error
analysis.

Choice 3

n�D =
1
2
(n�h �n+h ) , n�eh

=
1
2
(n�h �n+h ) , n+eh

=
1
2
(n+h �n�h ).

This choice corresponds to prescribing the vectors to be the average of the two conormals and yields
additional symmetry in the resulting matrix due to the fact that the vectors are now independent of the
element on which they are computed.
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Choice 4

n�D = n�h , n�eh
=�n+h , n+eh

=�n�h .
This particular choice corresponds to using the formulation of the IP method found for example in Arnold
et al. (2002) on Gh, but with a modified penalty term that does not depend on the conormals i.e.

ãIP
Gh
(uh,vh) = Â

Kh2Th

Z

Kh

—
Ghuh ·—Ghvh +uhvh dAh

� Â
eh⇢∂Kh

Z

eh

(u+h n+h +u�h n�h ) ·
1
2
(—

Ghv+h +—
Ghv�h )+

1
2
(—

Ghu+h +—
Ghu�h ) · (v

+
h n+h + v�h n�h ) dsh

+ Â
eh⇢∂Kh

Z

eh

beh(u
+
h �u�h )(v

+
h � v�h ) dsh (modified penalty term).

We summarise the choices in Table 1.

Choice n�D n�eh
n+eh

Description
1 n�h n�h �n�h Planar (non-sym)
2 n�h n�h n+h Analysis (sym pos-def)

3
1
2 (n

�
h �n+h )

| 1
2 (n

�
h �n+h )|

1
2 (n

�
h �n+h )

| 1
2 (n

�
h �n+h )|

1
2 (n

+
h �n�h )

| 1
2 (n

+
h �n�h )|

Average (sym pos-def)

4 n�h �n+h �n�h Arnold et al. (2002) (sym pos-def)

Table 1: Choices of n�D , n+eh
and n�eh

, description of the numerical schemes they respectively lead to
and properties of resulting matrix.

We also consider the Arnold et al. (2002) formulation with its true penalty term given by

Â
eh⇢∂Kh

Z

eh

beh(u
+
h n+h +u�h n�h ) · (v

+
h n+h + v�h n�h ) dsh (true penalty term).

Choosing vh = j

� and uh = y

� as before yields

Â
eh⇢∂Kh

Z

eh

behy

�
j

� dsh.

For uh = y

+ we now have,

Â
eh⇢∂Kh

Z

eh

behy

+
j

�(n+h ·n�h ) dsh.

The matrices arising from choices 2-4 are symmetric positive definite, so the Conjugate Gradient
(CG) method is particularly well suited for such matrix problems. Choice 1 however yields a non-
symmetric matrix, for which we use the Biconjugate Gradient Stabilized (BICGSTAB) method. All
of these solvers make use of the algebraic multigrid algorithm (AMG) preconditioner coupled with the
incomplete-LU factorisation preconditioner to speed up the solvers. Information on the implementation
of these solvers and preconditioners in DUNE can be found in Blatt & Bastian (2007) and on their
parallelisation in Blatt & Bastian (2008).

We first tested our code on a sphere where the projection algorithm described in Section 5.1 is not
required. The results showed that the expected convergence rates and the choices of n�D , n�eh

and n+eh
had

little influence on the results. Hence we have decided not to include these tests since no insight can be
gained.
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5.3 Test Problem on Dziuk Surface

The first test problem, taken from Dziuk (1988), considers

�D

G

u+u = f (5.4)

on the surface G = {x 2 R3 : (x1 � x2
3)

2 + x2
2 + x2

3 = 1} whose exact solution is chosen to be given
by u(x) = x1x2. The outward unit normal to this surface is given by n(x) = (x1 � x2

3,x2,x3(1� 2(x1 �
x2

3)))/(1+ 4x2
3(1� x1 � x2

2))
1/2. There is no explicit projection map for mapping newly created nodes

to G so x (x) has to be approximated via the ad-hoc first order algorithm described in Section 5.1.

Elements h L2-error L2-eoc DG-error DG-eoc
92 0.704521 0.243493 0.894504
368 0.353599 0.0842372 1.53 0.490805 0.87

1472 0.176993 0.0268596 1.65 0.263808 0.90
5888 0.0885231 0.00637826 2.07 0.135162 0.97
23552 0.0442651 0.00171047 1.90 0.0685366 0.98
94208 0.022133 0.000416366 2.04 0.0343677 1.00

376832 0.0110666 0.000104274 2.00 0.0171891 1.00
1507328 0.0055333 2.60734e-05 2.00 0.0085935 1.00

Table 2: Errors and convergence orders for (5.4) on the Dziuk surface with choice 2 (analysis).

Table 2 shows the L2 and DG errors for choice 2. As expected, the experimental orders of conver-
gence (EOCs) match up well with the theoretical convergence rates. Figure 1(a) shows the resulting DG
approximation to (5.4) on the Dziuk surface using choice 2.

Figures 2(a)–(b) show respectively the ratios of the L2 and DG errors Erri
Err2

with i = 1,3,4 where Erri

denotes the error in the corresponding norm when using choice i. Choices 2 (analysis) and 3 (average)
appear to give the best results in both the L2 and DG norms. In particular, the additional symmetry
induced by using choice 3 which we mentioned previously makes it the preferable choice.

A few remarks on choice 4 with the true penalty term which, as mentioned before, would correspond
to the Arnold et al. (2002) IP method on Gh: interestingly, the scheme fails to converge for such a choice.
The numerical scheme appears to be particularly sensitive to small perturbations in the off-diagonal
entries of the resulting matrix, namely the ones caused by the product of the conormals n+h · n�h when
using the true penalty term for choice 4. Note that in the flat case, n+h · n�h is equal to �1. We tried
to reproduce this problem in the flat case, taking two different values for the penalty parameter on eh
depending on whether we are assembling the diagonal or the off-diagonal block. Already a factor of
10�5 leads to similar problems with stability. Since choice 4 with or without the true penalty term was
always less accurate than the other choices, we omit this choice in our next test case.

5.4 Test Problem on Enzensberger-Stern Surface

Our next test problem considers (5.4) on G = {x 2R3 : 400(x2y2 +y2z2 +x2z2)� (1�x2 �y2 � z2)3 �
40 = 0} whose exact solution is again chosen to be given by u(x) = x1x2. As for the previous test
problem there is no explicit projection map so we make use of the first order ad-hoc algorithm. In
contrast to the previous test problem, there is no explicit expression for the outward unit normal and
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(a)

FIG. 1: DG approximation of (5.4) on the Dziuk surface with choice 2 (analysis).

(a) (b)

FIG. 2: Ratio of respectively L2 and DG errors for (5.4) on the Dziuk surface with respect to
the analysis error (choice 2) for choices 1, 3 and 4.
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so the computation of D

G

u to derive the right-hand side of (5.4) is done via our approximation of the
Laplace-Beltrami operator described in Section 5.1.

Elements h L2-error L2-eoc DG-error DG-eoc
2358 0.163789 0.476777 0.998066
9432 0.0817973 0.175293 1.44 0.472241 1.08
37728 0.040885 0.0160606 3.45 0.150144 1.65

150912 0.0204411 0.00139698 3.52 0.0703901 1.09
603648 0.0102204 0.00033846 2.04 0.03473453 1.02

2414592 0.00511 7.86713e-05 2.10 0.0172348 1.01

Table 3: Errors and convergence orders for (5.4) on the Enzensberger-Stern surface with choice 2
(analysis).

Table 3 shows the L2 and DG errors for choice 2. Although the EOCs are more erratic than for
the previous test problem, largely due to our approximation of the Laplace-Beltrami operator, they
nevertheless match up well with theoretical convergence rates. Figure 3(a) shows the resulting DG
approximation to (5.4) on this surface using choice 2. We again consider the DG approximation of (5.4)
for different choices of n�D , n+eh

and n�eh
. Figures 4(a)–(b) show respectively the ratios of the L2 and DG

errors. These results confirm that choices 2 and 3 are the preferable ones to use for DG schemes on
surfaces.

6. Extensions

Although our analysis was restricted to conforming grids due to the nature of the surface approximation,
our numerical tests suggest that the estimates of Theorem 4.1 also hold for non-conforming grids as
shown in Table 4 for the Dziuk surface. Future work aims to derive a-priori error estimates for non-

Elements h L2-error L2-eoc DG-error DG-eoc
230 0.353599 0.21889 0.777436
920 0.176993 0.0530078 2.05 0.413817 0.91

3680 0.0885231 0.0281113 0.92 0.223119 0.89
14720 0.0442651 0.00442299 2.67 0.111518 1.00
58880 0.022133 0.00104207 2.08 0.0562128 0.99

235520 0.0110666 0.00026444 1.99 0.0281247 1.00
942080 0.00553329 6.60383e-05 2.00 0.0140544 1.00

Table 4: Errors and convergence orders for (5.4) on the Dziuk surface with choice 2 (analysis) for
a non-conforming grid.

conforming grids.
Demlow (2009) has proven that in particular, for a linear approximation of the surface and quadratic

polynomial basis functions, the FEM error scales quadratically in both the L2 and H1 norms. Numerical
tests suggest that our DG scheme scales similarly in the L2 and DG norms as shown in Table 5 for
the Dziuk surface. In future work we aim to derive higher order a-priori error estimates (that is, both
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(a)

FIG. 3: DG approximation of (5.4) on the Enzensberger-Stern surface with choice 2 (analysis).

(a) (b)

FIG. 4: Ratio of respectively L2 and DG errors for (5.4) on the Enzensberger-Stern surface with
respect to the analysis error (choice 2) for choices 1 and 3.
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higher order polynomial basis functions and higher order approximations of the surface) for the DG
approximation in a similar fashion to the work done in Demlow (2009).

Elements h L2-error L2-eoc DG-error DG-eoc
92 0.704521 0.136442 0.322416

368 0.353599 0.0551454 1.31 0.150303 1.10
1472 0.176993 0.0215041 1.36 0.0601722 1.32
5888 0.0885231 0.00448861 2.26 0.0182412 1.72
23552 0.0442651 0.00120287 1.90 0.00513161 1.83
94208 0.022133 0.00029651 2.02 0.00130482 1.98

376832 0.0110666 7.41044e-05 2.00 0.00032728 2.00

Table 5: Errors and convergence orders for (5.4) on the Dziuk surface with choice 3 (average)
using quadratic polynomial basis functions.
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