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Multi-Modal Multi-Channel Target
Speech Separation

Rongzhi Gu , Student Member, IEEE, Shi-Xiong Zhang, Yong Xu, Lianwu Chen,
Yuexian Zou , Senior Member, IEEE, and Dong Yu , Fellow, IEEE

Abstract—Target speech separation refers to extracting a target
speaker’s voice from an overlapped audio of simultaneous talkers.
Previously the use of visual modality for target speech separation
has demonstrated great potentials. This work proposes a general
multi-modal framework for target speech separation by utilizing
all the available information of the target speaker, including his/her
spatial location, voice characteristics and lip movements. Also,
under this framework, we investigate on the fusion methods for
multi-modal joint modeling. A factorized attention-based fusion
method is proposed to aggregate the high-level semantic informa-
tion of multi-modalities at embedding level. This method firstly
factorizes the mixture audio into a set of acoustic subspaces, then
leverages the target’s information from other modalities to enhance
these subspace acoustic embeddings with a learnable attention
scheme. To validate the robustness of proposed multi-modal separa-
tion model in practical scenarios, the system was evaluated under
the condition that one of the modalities is temporarily missing,
invalid or corrupted. Experiments are conducted on a large-scale
audio-visual dataset collected from YouTube (to be released) that
spatialized by simulated room impulse responses (RIRs). Experi-
ment results illustrate that our proposed multi-modal framework
significantly outperforms single-modal and bi-modal speech sepa-
ration approaches, while can still support real-time processing.

Index Terms—Target speech separation, speech enhancement,
multi-modality fusion, deep learning.

I. INTRODUCTION

TARGET speech separation is to extract the speech of
interest from an observed speech mixture [1]. In the speech

processing literature, target speech separation has attracted
tremendous interests for decades [2]. With the entry into the deep
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learning era, most existing supervised approaches are based on
spectrogram masking [3]–[7], where the weight (mask) of the
target speaker at each time-frequency (T-F) bin of the mixture
spectrogram is estimated. As a result, the multiplicative product
between the mixture spectrogram and the predicted mask serves
as the target speech spectrogram. However, these approaches
only use audio information, termed audio-only approaches,
often suffering from intense interferences in complex acoustic
environment, such as noise and reverberation.

Recently, incorporating visual information into the speech
separation system becomes an emerging research direction to
improve the robustness and separation accuracy [8]–[11]. The
principle is mainly twofolds: 1) The visual information (e.g.,
lip movements, face embeddings) is usually not affected by
the acoustic environment; 2) It has been proved that the visual
information is able to provide additional speech and speaker
related cues. For example, speech content can be interpreted
from the lip movements [12], [13], which helps to improve the
speech reconstruction quality [14]. Moreover, the face indicates
the speaker identity information [15]. Besides the visual infor-
mation, the feature representation vector of the speaker, termed
speaker embedding, has also proved effective for extracting
the target speaker’s speech from the mixture signal [16]–[19].
Therefore, it is a promising direction to leverage the correlation
and complementarity between different sorts of target speaker
information for enhancing the performance of target speech
separation.

Majority of previous multi-modal methods are established for
monaural speech separation [8]–[11], [21] and achieve state-
of-the-art results on close-talk audio-visual speech separation
datasets. In this work, aimed at enhancing the robustness and
separation accuracy for far-field target speech separation, we
present a general multi-modal framework. The framework in-
tegrates multi-modal separation cues that extracted from the
multi-channel speech mixture, the target speakers lip movements
and enrollment utterance. The idea is that, the acoustic target
information can be blurry in the challenging acoustic environ-
ment, while the other modalities can provide complementary and
steady information to increase the robustness. Also, we investi-
gate on efficient multi-modality aggregation methods under this
framework. A factorized attention-based aggregation method
is proposed for fusing the high-level semantic information of
multi-modalities at embedding level. Finally, we address the
modality robustness problem when one of the modalities is
temporally noisy or unavailable.
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In summary, this work makes three main contributions: 1) We
introduce a multi-modal target speech separation framework,
fully exploiting the target information, including directional
information, lip movements and voice characteristics. To the
best of our knowledge, this work is the first to integrate multi-
modalities for far-field target speech separation; 2) Under the
proposed framework, we investigate and propose several multi-
modality fusion methods for target speech separation task; 3)
Experiments demonstrate the robustness of proposed framework
to the possible interferences from modality absence or noise.

II. RELATED WORKS

In this section, we review related works in two areas: audio-
only speech separation and audio-visual speech separation.

A. Audio-Only Speech Separation

Audio-only speech separation is extremely challenging under
the single-microphone speaker-independent scenario, where no
prior speaker information is available during evaluation. Major-
ity of audio-only methods are based on spectrogram masking.
Deep clustering [5] first proposes to combine neural networks
with the spectral clustering algorithm. Yu et al. [6] designs a
permutation invariant loss to reasonably assign the estimated
mask to the reference speech during training. Lately, Luo
et al. [22] proposes fully convolutional time domain audio sep-
aration network (Conv-TasNet) to separate the speech mixture
in time domain. It avoids phase reconstruction problem in spec-
trogram masking based methods and achieves state-of-the-art
performance. When a multi-channel speech signal is available,
microphone array based signal processing techniques can be
leveraged to further enhance the separation performance. Well
established spatial features, e.g., inter-channel phase difference
(IPD), have been proven especially useful when combined at the
input level for spectrogram masking based methods [23]–[25].

Moreover, elaborately designed directional features that indi-
cate the directional source’s dominance in each T-F bin further
improve the separation performance [26], [27]. Also, the sepa-
rated speech can be associated with its corresponding directional
feature, which enables target speech separation. However, these
spatial cues extracted from the multi-channel signal suffer from
the spatial ambiguity issue. The spatial ambiguity issue occurs
when simultaneous speech come from close directions [25],
which makes the directional features less discriminative. In this
case, if the target speaker separation network is only conditioned
on directional information, it becomes uncertain about which
speaker needs to be separated.

Apart from the directional information, target speech sepa-
ration can also benefit from the prior knowledge of the speak-
ers [16]–[18]. The speaker embedding represents the speaker’s
voice characteristics and is usually extracted from an enrollment
audio clip with a pre-trained neural network. With the aid of the
speaker embedding (or speaker one-hot vector, speaker posterior
in [28]), the separation network learns to extract and follow
the target speaker over different frames. Furthermore, in [29],
in addition to speaker embedding of the target speaker, those
of possible interfering speakers are also utilized to prompt the

discrimination between speakers. But these methods have been
only proven effective in close-talk corpora.

B. Audio-Visual Target Speech Separation

Multi-sensory integration using neural networks for acous-
tic scene perception have gained increasing interest in recent
years. The studied areas include speech recognition [30], lip
reading (predicting speech from silent video) [12], acoustic
event detection and localization [31]. In the same way, the
audio-visual speech separation task and lip reading are closely
linked. Gabbay et al. [8] explores the correlation between the
speaker’s lip movements and speech spectrogram and proposes
a video-to-sound method. However, it’s a speaker-dependent
approach since the video-to-sound model is separately trained
for each speaker. Also, it is purely visually driven and has not
employed the speech mixture signal. Then, Afouras et al. [9]
introduces a large-scale audio-visual English dataset AVSpeech
for training speaker-independent models. In [9], the authors
propose to jointly model the acoustic and visual components
by making use of the speech mixture and the speaker’s face
embedding. Also, complex masks are served as the separation
target for improving the phase reconstruction. [10] shares the
similar idea and designs an audio-visual framework, in which
lip movements are served as visual information. These two
approaches generalize well in real-world samples and unseen
languages with consistent video and audio input. Recently,
Afouras et al. [11] addresses the video obstruction problem when
a speaker’s lip is occluded by e.g. a microphone. To solve this
problem, [11] combines the use of visual input and the speaker
embedding of the target speaker. Therefore, when the speaker’s
mouth is occluded, voice characteristics of the target speaker can
be relied on to compensate the target information. This approach
is robust to partial video occlusions, hence a promising approach
in practical applications. Wu et al. [21] develops a time-domain
audio-visual speech separation system, where short time Fourier
transform (STFT) and inverse STFT (iSTFT) is replaced with a
linear encoder and decoder. Therefore, the encoded audio rep-
resentation is formulated in the real-value domain and complex
phase estimation problem is avoided.

III. MULTI-MODAL MULTI-CHANNEL SEPARATION

A. Overview

In this work, we address the task of separating the target
speaker from a multi-channel speech mixture, by making use
of target information from the target speaker’s direction, lip
movements and speaker embedding. Previous works [9]–[11],
[18], [26], [27] have proposed to leverage part of these tar-
get information to perform the separation. As discussed in
Section II, each kind of target related information has benefits
and limitations. The directional information is quite effective for
separating spatially diffuse sources, however it becomes invalid
or even noisy when speakers are closely located. Although
the visual information is not affected by the complex acoustic
environment, the lack of visual access to the speaker’s face (e.g.,
turning and obstructions) may cause potential target absence.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 17,2023 at 03:59:14 UTC from IEEE Xplore.  Restrictions apply. 



532 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 3, MARCH 2020

Fig. 1. The diagram of proposed multi-modal target speech separation frame-
work.

The speaker embedding works especially well for separating
speakers of opposite genders, however the discriminability of
speaker embeddings needs to be ensured via pre-training on a
large-scale dataset.

In this work, we integrate all the target information into one
framework, in order to achieve more superior and robust separa-
tion performance under challenging scenarios. As illustrated in
Fig. 1, the proposed system is a multi-stream architecture which
takes four inputs: (i) noisy multi-channel mixture waveforms,
(ii) target speaker’s direction calculated by face detection, (iii)
video frames of cropped lip regions, (iv) enrollment audio(s)
of the target speaker. The system directly outputs estimated
monaural target speech, while all other interfering signals are
suppressed1.

B. Audio Stream

The detailed paradigm of audio stream processing is illus-
trated as the top stream in Fig. 2. A STFT convolution 1 d
layer is used to map the multi-channel mixture waveforms to
complex spectrograms. Based on the complex spectrograms, the
single-channel spectral feature and multi-channel spatial feature
are extracted. Apart from the target speaker independent spectral
and spatial features, a directional feature is extracted according
to the spatial direction of target speaker. All of the features are
then concatenated and fed into the audio blocks, which consist of
stacked dilated convolutional layers with exponentially growing
dilation factors, following [22]. This design supports a long
reception field to capture more sufficient contextual information.
The output of the audio blocks are the acoustic embeddings
A ∈ RT×E , where E is the output convolution channels of the
conv1d layers. On the system output side, an iSTFT convolution
1 d layer is used to convert the estimated target speaker complex
spectrogram back to the waveform. Next, we will give a detailed
description to the acoustic features, including the spectral, spa-
tial and directional features.

1) Spectral Feature: To obtain the spectral feature from the
U -channel raw mixture waveform y, a standard STFT module
is used for spectrum analysis. STFT transforms the signal to a
complex domain that can be decomposed into magnitude and

1Separated samples are presented at https://moplast.github.io/

phase components. Given a window function w with length
N , the multi-channel complex spectrogram Y calculated by
standard STFT is written as:

y[n]
STFT−−→ Yt,f =

N−1∑

n=0

y[n]w[n− t] exp

(
−i

2πn

N
f

)
(1)

The logarithm power spectrum (LPS) of the reference channel
(the first channel in this work) is served as the spectral feature,
calculated by LPS = log(|Y1|2) ∈ RT×F , where Y1 is the first
channel of multi-channel complex spectrograms, T and F is
the total frames and frequency bands of the complex spectro-
gram, respectively. In our implementation, the STFT operation
is reformulated as a convolution kernel to enable on-the-fly com-
putation [27], [32], [33] and speech up the separation process.

2) Spatial Features: As discussed in Section II-A, well-
established spatial cues like IPDs have shown greatly beneficial
for spectrogram masking based multi-channel speech separation
methods [24], [25], [34], [35]. The standard IPD is computed by
the phase difference between channels of complex spectrogram
as:

IPD(m)
t,f = ∠Ym1

t,f − ∠Ym2

t,f (2)

where m1 and m2 are two microphones of the m-th micro-
phone pair, M is the number of selected microphone pairs.
Note that in our experiments, we don’t have to use all pairs
of microphones. To reduce the dimension of spatial features,
we select M microphone pairs with different spacings. M pairs
of m : {m1,m2} are concatenated to form the IPD features:
IPD = [. . ., IPD(m)

t,f , . . ., ]M×T×F . The IPD extracts spatial in-
formation of all speakers in the mixture, so that we refer it as
speaker-independent spatial feature.

3) Directional Feature: Given the direction of the target
speaker, target-dependent directional feature can be extracted
to provide explicit target information. A location-guided direc-
tional feature (DF) for speech separation is introduced in [23].
The design principle lies in that if the T-F bin (t, f) is dominated
by the source from θ, then dt,f (θ) will be close to 1, otherwise
close to 0. The DF is formed according to the direction of the
target speaker, which measures the cosine distance between the
steering vector and IPD:

dt,f (θ) =

M∑

m=1

〈
eTPD(m)

f (θt), eIPD(m)
t,f

〉

TPD(m)
f (θt) = 2πfΔm cos θt/(2c(F − 1)) (3)

where vector e(·) = [ cos(·)
sin(·) ], TPD(m)

f (θt) (Target-dependent
Phase Difference) is the phase delay of a plane wave (with
frequency f ) experienced, evaluated at the m-th pair of mi-
crophones, travelling from angle θt (target speaker’s direction
at time t), Δm is the distance between the m-th microphone
pair, c is the sound velocity. In Eq. (3), we assume that all
the speakers do not change their locations during speaking, i.e.,
θt = θ. The pre-masking step in [23] is also applied to the DF to
increase the discriminativity between speakers. Note that Eq. (3)
is reformulated so that it can be applied to general microphone
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Fig. 2. Our proposed multi-modal target speech separation framework with three streams: audio, video and speaker embedding stream. The video steam extracts
frame-level lip embeddings from the lip video. The speaker embedding stream processes the enrollment audio(s) of the target speaker and generates an utterance-level
speaker embedding. The audio stream takes the noisy multi-channel speech mixture and the target speaker’s direction as input, extracting acoustic embeddings.
Then, the multi-modality fusion module will combine these embeddings and feed into proceeding fusion blocks, which outputs a T-F mask for the target speaker.
The output of our framework is the estimated target speech waveform.

array topology rather than the special seven-element microphone
array used in [23].

How to obtain the target speaker’s direction θ. During
training, the direction of target speaker θ is known, because the
multi-channel audios for training are generated by simulation
(see Algorithm 1). In practice, the direction of target speaker θ
can be estimated by a face detection and tracking system [36].
Alternatively, audio-based localization methods can also be used
to estimate the directions of multiple sound sources (with less
than 10 degrees of mean absolute error [37]). However it remains
uncertain that which direction of the sound corresponds to which
speaker. To address this issue, an additional speaker recognition
system is required. The drawbacks of introducing this system
are 1) an extra enrollment process is required; 2) comparing
to the performance of the face recognition system [36], the
performance of state-of-the-art speaker verification systems is
still far behind [38]. Thus, for real-recorded samples, we use the
face detection method to identify and track the target speaker
in the video and estimate his/her direction based on the camera
position. Since visual information is not affected by the acoustic
environment, face detection based speaker localization method
is more robust for our task. The details of face detection, recog-
nition, tracking and speaker diarization are beyond the scope of
this paper.

C. Video Stream

For the video stream, the majority of previous audio-visual
speech separation approaches [9]–[11], [21] adopt the pre-
training strategy. Before jointly training with the audio stream,

they firstly set a lip reading objective to train the video stream,
called lip reading network. The input of the lip reading network
can either be a sequence of images of cropped lip regions [10]
or the face embedding of the target speaker [9]. The network is
trained to estimate the word-level or phone-level posteriors [12],
[13]. The supervision information is formed with the speech
transcription.

In this work, we try to separate the speech of Mandarin
speakers. And due to the concern that there are a few lipreading
datasets for Mandarin to train our lip reading network, we inves-
tigate the effects of joint training of both video and audio stream
from scratch, only using the speech separation objective function
(see Section III-F). As shown in Fig. 2 (the middle stream),
we follow the work in [10], [21] and take gray frames as the
input to the lip reading network. The structure of our lip reading
network is similar to the one proposed by [10], which consists of
a spatio-temporal convolution layer and a 18-layer ResNet [39],
to capture the spatio-temporal dynamics of the lip movements.
The lip reading network is followed by several video blocks,
each contains several dilated temporal convolutional layers with
residual connections. ReLU and batch normalization [40] are
also included in each block. The output of the video blocks are
lip embeddings V̂ ∈ RK×D, where K is the number of video
frames and D is the dimension of lip embedding. Since the time
resolution of video and audio stream is different, we upsample
the lip embeddings V ∈ RT×D, to synchronize the audio and
video stream by nearest neighbor interpolation. The interpolated
value at a query point is the value at the nearest sample point.

Since the supervision information is formed from audio do-
main, the video stream is propelled to discover the cross-domain
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Fig. 3. The illustration of lip embeddings of the target speaker and the
interfering speaker when applied to a sample of the Mandarin dataset. The audio
is analyzed with 32 ms window and 16 ms hop size. The frame rate of video is
25 frames per second (fps).

correlations between the target speech and lip movements. One
evident correlation is between the opening/closing of the mouth
and voice activity. When a person’s mouth is continuously open,
there is a strong likelihood that he/she is speaking. Another
less evident correlation is between the specific pattern of mouth
movements and the phone. Since there is no supervision infor-
mation for the lipreading objective, the learned lip embeddings
may not discriminate all the phones well enough. However, the
network may have the potential to learn phone clusters with
distinct inter-differences.

To intuitively observe the learned patterns of lip embed-
dings through joint training of the audio and video stream,
Fig. 3 visualizes the lip embeddings obtained from a sample
of the Mandarin-mix dataset. Compared the LPS and the ex-
tracted lip embeddings of the target speaker, it is obvious that
the beginning-ending points of speech contents in continuous
speech can be inferred from the lip embeddings. Also, the lip
embeddings of the target speech and those of the interfering
speech exhibit different selection and emphasis on the embed-
ding dimension.

Furthermore, Fig. 4 visualizes the t-distributed stochastic
neighbor embedding (t-SNE) of lip embeddings that collected
from 40 lip videos. It is obvious that these lip embeddings
naturally form clusters, which indicates the existence of mutual
information cross video frames.

Fig. 4. The t-SNE visualization of lip embeddings collected from 50 target
lip videos. Each dot represents a video frame. The clusters imply the phonetic
information has been learned in the lip embeddings.

D. Speaker Embedding

As discussed in Section II-A, speaker embedding is a kind
of bias signal that informs the separation network of the target
information and enables target speaker separation. Here, we
introduce a pre-trained speaker model and utilize its produced
embedding to characterize the target speaker. The speaker model
was pre-trained on speaker verification task [41], with 4 convolu-
tion layers followed by a fully connected layer. To achieve more
discriminative speaker embeddings, self-attention is adopted as
the frame-level feature aggregation strategy. The input to the
speaker model is an enrollment utterance of the target speaker.
The speaker model outputs the utterance-level speaker embed-
ding s ∈ R1×G, where G is the speaker embedding dimension.
To match the time steps of the audio stream, the speaker embed-
ding is tiled in time as S = [. . ., st, . . .] ∈ RT×G, where st = s.

E. Multi-Modality Fusion

As described in above sections, three kinds of target informa-
tion are derived from a set of media sources, including acoustic
embeddings from multi-channel speech, lip embeddings from
the video and speaker embedding from the target speaker’s
enrollment utterance. In order to learn effective target speech
extraction from multi-modal information, in this section, we will
describe and discuss the investigated methods on fusing these
modalities.

1) Concatenation: The most common approach to integrate
the multi-modal embeddings is to simply concatenate them
along the feature axis. This fusion method has been widely
used in previous audio-visual speech separation works [9]–[11].
The subsequent network is expected to automatically learn the
interaction between cross-domain embeddings. In this way, all
the modalities are treated equally and the potential correlation
between modalities may not be effectively explored.

2) Factorized Attention: In recent speech recognition work,
a factorized layer is proposed [42] for fast adaptation to the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 17,2023 at 03:59:14 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: MULTI-MODAL MULTI-CHANNEL TARGET SPEECH SEPARATION 535

Fig. 5. The illustration of factorized attention when fusing audio embeddings
with video embeddings.

acoustic context. In speech recognition literature, a factor char-
acterizes a set of speakers or a specific acoustic environ-
ment [43]. The factorized layer uses a set of parameters to
process each acoustic class and these parameters are dependent
on external factors that represent the acoustic conditions.

Inspired by this, we propose to factorize the acoustic embed-
dings into a set of acoustic subspaces (e.g., phone subspaces,
speaker subspaces) and utilize information from other modalities
to aggregate them with selective attention. The other modalities
can also provide information related to the acoustic condition,
such as voice activity interpreted from the opening and closing
of the mouth, and voice characteristics contained in the speaker
embedding.

Specifically, we take the audio-visual fusion as an example,
illustrated in Fig. 5. Firstly, the acoustic embeddings A are
factorized into different acoustic subspaces with parallel linear
transformations W 1

a ,W
2
a , . . .,W

H
a , where H is the number of

subspaces and the acoustic representation in h-th subspace at
the t-th time step is denoted as aht = AtW

h
a ∈ R1×P , where

P is dimension of each subspace. Then, the lip embeddings V
are mapped from the D-dimensional space to a H-dimensional
space, where each dimension h is expected to contain bias
information that corresponds to the h-th acoustic subspace.
Next, these mapped lip embeddings are passed to a softmax
layer and then produce the estimated posterior for each sub-
space at each time step, calculated as v = softmax(VWv) =
[v1, v2, . . ., vH ] ∈ RT×H . Finally, the fused audio-visual em-
bedding (AVE) is obtained by summing up the weighted contri-
bution of different acoustic subspaces:

AV Et = σ

(
H∑

h=1

vht a
h
t

)
(4)

where σ is the sigmoid activation function. As for using fac-
torized attention for acoustic and speaker embedding fusion,

the audio-speaker embedding can be calculated by ASEt =
σ(
∑H

h=1 softmax(stWs)
haht ), where Ws is the weight matrix

that converts the speaker embedding st from the speaker space
to acoustic subspaces.

Compared to direct concatenation, the factorized attention
sums over all possible speakers or acoustic context guided by
cross-modal information. The interaction of embeddings of dif-
ferent modalities in various subspaces enables the deep semantic
information capturing and selection.

3) Rule-Based Attention: The motivation for fusing multi-
modalities with attention lies in that, the effectiveness and signif-
icance of each modality depends on the case. For example, when
the speakers come from close directions, the discriminability of
spatial and directional features may be weaker. In general, our
strategy is to foster strengths and circumvent weaknesses among
features of different modalities. Therefore, the network should
selectively attend to discriminative modalities and ignore the
other ones. Following our previous work [27], we compute the
attention using the priori knowledge of angle difference between
speakers. Specifically, when the angle difference ad between
speakers is small, the weight score that applied to spatial and
directional features is relatively low, calculated as:

att(ad) = 2 ∗max (σ(ad)− 0.5, 0) (5)

where σ(ad) = 1/(1 + exp(−w(ad− b))) is the sigmoid score
denotes how much emphasis should be put on spatial features
and directional feature, w and b are trainable parameters. Note
that the rules can take other factors into consideration, such as
the whether the face is sufficiently frontal-facing, etc.

4) Fusion of Three Modalities: To reduce the learning dif-
ficulty, for fusion of three modalities, we adopt a hierarchical
fusion strategy. Specifically, the three-modality fusion is di-
vided into two stages, proceeding from unimodal to bimodal
embeddings and then bimodal to trimodal embeddings [44].
Also, different fusion methods can be adopted at each stage.
For example, the acoustic and speaker embeddings are firstly
fused using the factorized attention method. Then, the fused
ASE is concatenated to the lip embeddings and combined
into the trimodal embeddings. The details will be described in
Section V.

F. End-to-End Training

The fusion blocks are followed by a 1× 1−conv layer and a
nonlinear activation function (rectified linear Unit (ReLU) in this
work), which produces the estimated magnitude mask ∈ RT×F

for target speech. Then, the estimated target speech complex
spectrogram can be obtained by multiplying the reference chan-
nel of mixture complex spectrogram Y1 by the estimated mask.
Finally, the iSTFT operation is used to convert the estimated
target speech spectrogram back to the waveform.

To optimize the network from end to end, instead of using
a time-domain mean squared error (MSE) loss, the speech
separation metric scale-invariant signal-to-distortion (SI-SDR)
is used to directly optimize the separation performance, since it
has been proven better for speech separation [45]. The SI-SDR
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Fig. 6. The 9 element non-uniform linear array layout.

is defined as:
⎧
⎪⎪⎨

⎪⎪⎩

xtarget :=
〈x̂,x〉x
‖x‖2

2

enoise := x̂− xtarget

SI-SDR := 10 log10
‖xtarget‖2

2

‖enoise‖2
2

(6)

where x and x̂ are the reverberant clean and estimated target
speech waveform, respectively. The zero-mean normalization is
applied to x and x̂ to guarantee the scale invariance.

IV. EXPERIMENTS PROCEDURES

A. Dataset

The audio-visual corpus used for experiments is collected
from Youtube, in which Mandarin accounts for the vast majority.
To select relatively high quality videos, a signal-to-noise (SNR)
estimator is used to filter out videos with low SNR speech, and a
face detection model is used to further remove the videos without
the speaker face. After selection, there are about 1,000 speakers
and 53,000 clean utterances in total. A mouth region detection
program is run on the target speaker’s video to capture the the lip
movements. The sampling rate for audio and video are 16 kHz
and 25 fps respectively.

The multi-talker multi-channel mixtures are simulated with
steps in Algorithm 1. The simulated dataset contains 160,000,
15,000 and 1,200 multi-channel noisy and reverberant mixtures
for training, validation and testing. The speakers in the training
set and test set are not overlapped, which means our approach is
evaluated under speaker-independent scenario. The duration of
each utterance is ranging from 1.0 to 15 seconds and the average
duration is about 4.5 s. We use a 9-element non-uniform linear
array, with spacing 4-3-2-1-1-2-3-4 cm, as shown in Fig. 6.
The multi-channel audio signals are generated by convolving
single-channel signals with Room Impulse Responses (RIRs)
simulated by image-source method [46]. The room size is rang-
ing from 4 m-4 m-2.5 m to 10 m-8 m-6 m (length-width-height).
The speakers and the microphone array randomly located in the
room at least 0.3 m away from the wall. The distance between
the speaker and microphones ranges from 1 m to 5 m. The
reverberation time T60 is sampled in a range of 0.05 s to 0.7 s.
The signal-to-interference rate (SIR) is ranging from−6 to 6 dB.
Also, noise with 18–30 dB SNR is added to all the multi-channel
speech mixtures.

To evaluate system performance of both non-overlapped and
overlapped speech, we consider three scenarios for the synthetic
examples generation: 1 speaker, 2 speakers and 3 speakers,
respectively accounts for 49%, 30% and 21% in the test dataset.
For the overlapped speech of 2 and 3 speakers cases, samples
with angle difference of 0–15◦, 15–45◦, 45–90◦ and 90–180◦

respectively accounts for 16%, 19%, 11% and 5% in the test
dataset, where the angle difference is defined as the smallest de-
gree difference between the target speaker and other interfering
speakers.

Algorithm 1: Data Simulation Process of Audio-Visual
Mandarin Dataset.
Input: audio-visual Mandarin corpus
Output: audio-visual spatialized noisy and reverberant

Mandarin-mix
for 1: total mixture number do

1) Sample the number of speakers C in the mixture from
[1, 2, 3];

2) Randomly select C videos from the audio-visual
Mandarin corpus;

3) Run face detection [36] on each video and capture the
corresponding lip movements;

4) Extract utterance-level speaker embeddings using the
enrolled utterances of target speakers;

5) Sample mixed SIR uniformly from [−6:6] dB for each
video’s audio stream;

6) Sample room size [rx, ry , rz] from 4 m-4 m-2.5 m to
10 m-8 m-6 m;

7) Sample T60 of room from [0.05, 0.7] seconds;
8) Generate microphone array position in the room

randomly. The array is at least 0.3 m away from
the wall;

9) Generate speakers position in the room randomly. The
distance between speakers and array is [1, 5] m;

10) Sample noise from a 20-hours data set including
music, TV, office, kitchen, babble etc. noises;

11) Generate impulse responses using RIR generator;
12) Convolve each single-channel source with

corresponding RIR to generated reverberated
multi-channel source;

13) Scale reverberated sources with sampled SIR;
14) Add these scaled and reverberated sources along with

selected noise under [18:30] SNR to obtain the
final mixture.

Note each mixture is associated with the target speaker’s
position (direction), lip movements and speaker
embeddings. The length of final simulated utterance is
decided by the longest utterances among target speech and
interfering speech.

end

The data will be released and more details will be described
in [47].

B. Features

Audio. For short time Fourier transform (STFT) setting, we
use 32 ms sqrt hann window and 16 ms hop size. Therefore,
the frame size and shift are 512 and 256 points, respectively.
512-point FFT is used to extract 257-dimensional LPS. The LPS
is computed from the first channel waveform of speech mixture.
IPDs are extracted between 5 microphone pairs (1, 9), (1, 5),
(2, 5), (5, 7) and (5, 6). These pairs are selected considered
that different spacings between microphones can be sampled.
For calculating the DF, we use the same microphone pairs for
TPDs. During both training and evaluation sessions, the ground
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Fig. 7. The illustration of convolutional blocks (ConvBlocks). Each Con-
vBlock consists of a 1 × 1-conv layer, a depth-wise separable convolution layer
(D − conv), with PReLU activation function and normalization added between
each two convolution layers. Also, residual connection is added in each block.

truth target speaker’s direction is used for computing the DF.
The total dimension for acoustic features are 7 × 257 = 1799.
The dimension of acoustic embedding is E = 256 in all experi-
ments.

Lip video. Each input frame of the video is gray with the size
of 112× 112× 1 (height × width × channel). The dimension
of lip embeddings is the same in all experiments, i.e., D = 256.

Enrollment. For each speaker, there are about 10 utterances
for enrollment on the average (about 30–40 seconds). The overall
speaker embedding is obtained by averaging all the utterance-
level speaker embeddings. The dimension of speaker embedding
is 128.

C. Network Structure

Audio processing. After the concatenation of spectral and
spatial features, they are fed into proceeding audio blocks.
The design of these blocks followed the version 2 of [48], as
illustrated Fig. 7. The number of channels in 1× 1−conv layer
is set as 256. For the D − conv layer, the kernel size is 3 with
512 channels. Batch normalization instead of global layer nor-
malization is adopted considering the processing speed. Every 8
convolutional blocks are packed as a repeat, with exponentially
increased dilation factors 20, 21, . . ., 27.

Video processing. The structure of the lipnet is the same
as [12]. The extracted lip embeddings are then passed to video
blocks, including 5 convolutional blocks. The block design is
similar to that of audio blocks, including depth-wise separa-
ble convolution layer, ReLU and normalization and residual
connection.

Fusion methods. For factorized attention, the factor number
H is set to 10 empirically. The dimension for acoustic embed-
ding in each subspace is RT×256. As a result, the weight matrix
Wh

a ∈ R256×256 for each audio linear layer and Wv ∈ R256×10

for the video linear layer. Also, a softmax layer followed the
video linear layer to compute the posteriors of each subspace.
For rule-based attention, according to [27], the w and b is
initialized with −0.5 and 10, respectively. After the fusion of
multi-modalities, the fused embeddings are passed to fusion

blocks. Fusion blocks include Nf times of repeats, which con-
tains Nf × 8 convolutional blocks, in our experiments Nf is set
as 3, following [21]. The number of convolution channels is 256.

D. Training Procedure

The training of model includes two stages. First, the speaker
model is pre-trained with the speaker verification on a Mandarin
dataset first. Later, it is freezed and utilized to extract speaker
embeddings from all the enrollment audios. Second, the audio
and video streames are jointly trained from scratch. The multi-
modal network is trained with utterance-level mixtures, using
Adam optimizer with early stopping. Initial learning rate is set
to 1e-3. If there is no improvement for consecutive 4 epochs on
validation loss, the learning rate will be halved.

E. Evaluation Metrics

Following the recent advances in speech separation met-
rics [49], average SI-SDR is adopted as the main evaluation
metric. Also, following the common practice, perceptual esti-
mation of speech quality (PESQ), short-time objective intelli-
gibility (STOI) and average SDR [50] are also used to measure
the speech quality. To further assess the intelligibility of the
estimated speech, we use the Yitu automatic speech recognition
(ASR) system to compute the speaker attributed word error rate
(WER) [51] between the separated speech and the ground truth
target speech. Speaker attributed WER refers to the sum of
transcription errors attributed to the target speaker divided by the
reference words. Since we do not perform speech dereverbera-
tion, we consider the reverberant clean speech as the reference
for all the metric computation.

All the trained models are evaluated without knowing the
number of sources in the mixtures, since the models perform
target speech separation. Apart from the overall performance, we
also evaluate the performances under different ranges of angle
difference between speakers, and performances under different
speaker mixing conditions. The relative performance difference
varying from scenarios may help us give a more comprehensive
assessment to the model.

V. RESULTS AND ANALYSIS

A. Fusion Approaches

In this subsection, we will investigate different multi-modality
fusion approaches, including the fusion of audio and speaker
embedding (audio-speaker), audio and video (audio-visual) and
audio, video and speaker embedding (multi-modal). The base-
line is set as DF-only model that only trained with spectral,
spatial and directional features (LPS+IPDs+DF).

Table I compares the performance of the audio-speaker
models using different fusion methods, including directly
concatenation and factorized attention, trained with all data.
Both concatenation and factorized attention do not improve the
overall performance, possibly due to the unsatisfactory discrimi-
nation between speaker embeddings. However, factorized atten-
tion boosts the performance from 7.1 dB to 7.7 dB under small
angle different range. Since DF’s discriminability significantly
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TABLE I
SI-SDR (DB) PERFORMANCES OF AUDIO-SPEAKER MODELS ADOPTING

DIFFERENT FUSION METHODS

TABLE II
SI-SDR (DB) PERFORMANCES OF AUDIO-VISUAL MODELS ADOPTING

DIFFERENT FUSION METHODS, TRAINED ON OVERLAPPED DATA

TABLE III
SI-SDR (DB) PERFORMANCES OF MULTI-MODAL MODELS ADOPTING

DIFFERENT FUSION METHOD COMBINATIONS, TRAINED ON OVERLAPPED

DATA. A-S AND A-V REPRESENT THE AUDIO-SPEAKER AND AUDIO-VISUAL

MODEL, RESPECTIVELY

decreases under small angle difference case, speaker embed-
ding may play an important role in providing the target-related
information.

Table II compares the performance of the audio-visual models
using different fusion methods. These models are trained only
with overlapped data to save the training time. Both directly
concatenation and rule-based attention do not show clear per-
formance gain over DF-only model. Among three audio-visual
fusion methods, factorized attention exhibits the best overall per-
formance, owing to the benefits brought by subspace factoring
and the learnable attention.

Table III lists the performances of multi-modal models adopt-
ing different fusion methods, trained on the overlapped data.
Specifically, the experimental setup of each multi-modal fusion
method is as following:
� concat. + concat.: The fusion of acoustic, lip and speaker

embeddings is performed after all the audio blocks. These
embeddings are concatenated along the feature axis at
each time step and assigned with equal weight. The fused
embedding is interpreted as FE = concat(A,V,S). The
fusion blocks consist of 3 repeats.

� fac. att. + concat.: Firstly, the fusion of acoustic and
speaker embedding is done using factorized attention
method after all the audio blocks. Then, the fused embed-
dings are then concatenated with lip embeddings, written as
FE = concat(ASE,V). Finally, these fused embeddings
are passed to 3 repeats of fusion blocks.

� fac. att. + fac. att.: The acoustic embeddings are firstly
fused with speaker embedding after audio blocks using

factorized attention. Then, the ASE is fed into proceeding
2 repeats of fusion blocks and more abstract and high-level
embeddings are generated. Next, these embeddings are
fused with lip embeddings by factorized attention. Finally,
the fused multi-modal embeddings are further passed to a
extra repeat of fusion blocks. Our intention to put off the
fusion with lip embeddings lies in that, at deeper layers,
the phonemic information may be better abstracted from
the audio, which may make the fusion with lip embeddings
more efficient.

As shown in Table III, the best result is presented by fusion
method of factorized attention (audio-speaker) and concatena-
tion (audio-visual). The factorized attention for both audio-
speaker and audio-visual fusion is more effective than con-
catenation. However, it does not provide expected satisfactory
performance, possibly due to the late fusion of lip embeddings
and acoustic embeddings.

B. Impact of Different Modalities

After the investigations of modality fusion approaches, in this
subsection, we further analyze the impact of different modalities.
The aim is to verify each modality, along with the reasonable
multi-modality fusion, is effective in multi-channel target speech
separation.

Table IV reports the performances of target separation models
with different modalities input. All the models included LPS
and IPDs in input and trained on the whole training dataset.
The fusion method for models with more than one modality is
chosen according to the best result achieved in Section V-A.
Specifically, factorized attention for audio-speaker, factorized
attention for audio-visual, and factorized attention + concate-
nation for multi-modal. Also, the real-time factor (RTF) is also
reported for computation measurement. The real time factor is
defined as the GPU processing time (s) divided by the audio
time (s). The RTF result is evaluated on the whole test set and
it indicates that whether the model is fast enough for real-time
processing.

From Table IV, it’s obvious that DF makes a significant con-
tribution to the overall performance, compared to speaker em-
bedding and lip information. Also, the computation complexity
for DF-only model is relatively low, achieving a real-time factor
of 0.4% on the GPU. However, the performance of DF-only
model under small angle difference is poorer than that of lip-only
model. With the aid from lip movement information or speaker
embedding, both audio-speaker and audio-visual models have a
relative improvement on overall performance, especially under
small angle difference range. The multi-modal model exhibits
the best performance: 3.7 dB, 11.1 dB, 10.4 dB SI-SDR im-
provement under 1spk, 2spk, and 3spk case respectively. Also,
the multi-modal model achieves the lowest WER (10%) among
all the models. This confirms the effectiveness of our proposed
multi-modality exploitation and integration approach. Although
an increased RTF is observed, the process can still be achieved
in real-time (i.e., RTF < 1).

In order to intuitively verify the benefits brought by multi-
modal integration, Fig. 8 presents an example of separation
results estimated by DF-only model, audio-visual model and

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 17,2023 at 03:59:14 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: MULTI-MODAL MULTI-CHANNEL TARGET SPEECH SEPARATION 539

TABLE IV
SI-SDR (DB), SDR (DB), PESQ, STOI, WER (%) AND RTF RESULTS OF TARGET SEPARATION MODELS WITH DIFFERENT MODALITIES

Fig. 8. An example for target speech separation on the task of two-speaker
separation. DF-only model (d) over-suppresses the target speech in the yellow
box when the speaker slightly turns his face. Audio-visual model (e) may suffer
from interference leakage when the speaker opens his mouth without speaking.

multi-modal model, respectively. From Fig. 8(d) we can see that
the DF-only model loses the target speech in the yellow box.
This may happen when the target speaker temporally turned
his face, then the direction estimated by face detection may
deviate from the ground truth. Also, the result estimated by
audio-visual model (Fig. 8(e)) did not filter out the interfering
sound in the green box. This is probably due to that the target
speaker opens his mouth while not actually speaking. With all the
target information available, multi-modal model produces the
best estimation result (Fig. 8(f)), compared to the target speech
spectrogram (Fig. 8(c)).

C. Modality Robustness

There may be many cases in practical that one of the modal-
ities is unavailable or unreliable. In order to demonstrate the
robustness of our multi-modal model in real-world scenarios,

TABLE V
SI-SDR (DB) PERFORMANCES OF TARGET SEPARATION MODELS WITH

DIFFERENT DROPOUT RATES ON LIP VIDEO FRAMES

we tested it under two particular cases: temporarily missing
lip information and estimation error of the target speaker’s
direction.

1) Impact of Missing Lip Information: In practical, the lip
information may be invalid in many cases. For example, the
transmission of high-resolution video may be not stable enough,
thus the frames may drop randomly. Moreover, the target speaker
may temporarily turn his face away from the camera, or his
lip may be obstructed by the microphone. We regard these
scenarios as the missing of lip information. When one frame
is missing, this absent frame will be filled up with the latest
previous frame in our experiment. We compare the performance
of multi-modal model, to lip-only and audio-visual model when
randomly dropping out 0%, 10%, 20% and 50% frames.

Results are presented in Table V. For lip-only model, the
dropping of frames have an obvious negative effect on the
overall performance. While for models integrated with other
complementary modalities, the negative influence is alleviated.
Especially for the multi-modal model, the performance decrease
is less than 2% when existing 50% frame drops. This confirms
the robustness of our multi-modal model to the missing of visual
information.

2) Impact of Sound Direction Estimation Error: For the
audio-only model that greatly depends on the directional fea-
tures, tiny direction estimation error may cause huge estimation
inaccuracy. When other modalities are available, the deviation
can be remedied to some extent. We compare the performance
of multi-modal model, to DF-only and audio-visual model when
there exists an estimation error of the direction detected by
the speaker’s face. The ground truth direction is deviated for
±1-±10◦ to compute the target speaker’s DF. The performance is
examined under two cases: the closest angle difference between
target and interfering speaker is smaller than 15◦ and larger
than 15◦. Fig. 9 plots the changing curve of performances
versus direction estimation errors for three models: DF-only,
audio-speaker and multi-modal model.
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Fig. 9. The SI-SDR (dB) performance of audio-only, audio-speaker and
multi-modal model when existing the direction estimation error, evaluated on
overlapped data.

As we can observe from Fig. 9(b), fortunately, the perfor-
mances of all the models under ad > 15◦ are robust to the
direction estimation error. However, as the direction estimation
error increases, the performance of DF-only model degrades
dramatically when the target and interfering speaker(s) are close
(Fig. 9(a)). This is due to the spatial ambiguity issue when
directional information is not sufficient enough to discriminate
between the target and interfering speaker. Since only directional
information is served as the target information, the network can-
not identify which speaker should be separated. When speaker
embedding is integrated into the model (audio-speaker), the
dropping of performance relatively slows down. This is because
the voice characteristics of the target speaker can complement
the target information. Furthermore, when all the target informa-
tion is aggregated in one single model (multi-modal), the overall
performance degradation is less than 1.5 dB for the direction
estimation error of ±10◦.

Experimental results suggest that our proposed multi-modal
model exhibits more stable and persistent performance under
interferences from video or audio modality.

VI. CONCLUSION

In this work, we propose the first deep multi-modal frame-
work for multi-channel target speech separation. The multi-
modal framework exploits all sorts of target-related informa-
tion, including the target’s spatial location, lip movements and
voice characteristics. Efficient and robust multi-modal fusion
approaches are proposed and investigated within the framework.
Evaluation on a large-scale audio-visual to-be-released dataset
demonstrates the effectiveness and steadiness of the proposed
multi-modal system.

This work still has some limitations that needs to be addressed
in our future work. Firstly, the joint training of video and audio
stream may not produce lip embeddings that are discriminative
enough. We will follow the work of [9] and [10] to pretrain the
lipnet with phonetic transcribed data. Secondly, although the
proposed multi-model system has demonstrated its robustness
to error/missing of some of input modalities, data augmentation
schemes can be further used to improve the robustness. Thirdly,
the fusion methods investigated in this work are useful but we
believe there is still room for improvement.
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