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Preface

Recent studies have enriched the expressive power of logic programming as a knowl-

edge representation tool and the growing importance of logic programming in artificial

intelligence is well recognized these days. Disjunctive logic programming is one of such

extensions of logic programming which provides us with the ability of reasoning with

indefinite information. Due to their expressiveness, disjunctive logic programming

has been given an increasing attention over the past few years.

In this dissertation, we study theoretical frameworks for disjunctive logic program-

ming. Our particular interest is in the semantic issues of disjunctive logic programs

and their correspondences to commonsense reasoning in artificial intelligence.

As a semantics of disjunctive logic programs, we propose a new declarative se-

mantics called the possible model semantics. The possible model semantics is an

alternative theoretical framework for disjunctive logic programs, which provides a

flexible inference mechanism for representing knowledge and also has a computational

advantage over the classical minimal model semantics.

To relate disjunctive logic programs to commonsense reasoning in artificial intel-

ligence, we propose transformations from disjunctive logic programs to various forms

of nonmonotonic reasoning such as default logic, circumscription, and autoepistemic

logic. Moreover, we discuss connections between disjunctive logic programs and ab-

ductive logic programs, and reveal close relationships between each framework.

Another important issue for commonsense reasoning is the treatment of incon-

sistent knowledge. Since classical logic programming is not useful in inconsistent

programs, we introduce paraconsistent semantics for disjunctive logic programs which

provide uniform frameworks for handling both indefinite and inconsistent information

in a program.

We finally discuss program optimization issues in disjunctive logic programs. A

technique of partial deduction in logic programming is extended to disjunctive logic

programs and its correctness is presented.
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Chapter 1

Introduction

All parties to the debate agree that a central goal of research is that computers must

somehow come to “know” a good deal of what every human being knows about the world

and about organisms, natural and artificial, that inhabit it. This body of knowledge –

indefinite, no doubt, in its boundaries – goes by the name “common sense”.

— David Israel [1983].

After the discovery of resolution principle by J. Alan Robinson [1965a], logic based

approaches to artificial intelligence (AI) have been developed in the area of automated

theorem proving in the late 1960’s [Chang and Lee, 1973]. In the early 1970’s, Kowal-

ski [1974] attached a procedural interpretation to Horn clause logic and introduced

the framework of logic programming . This leads to the design of the programming

language Prolog by Colmerauer and his group [1973]. After the success of Pro-

log, the logic programming framework has been employed in many AI projects in

the world, including the Japanese Fifth Generation Computer Project in the 1980’s.

A prominent feature of logic programming is its formal logical basis. That is, a

logic program is viewed as a set of axioms, its computation corresponds to deduction,

and the meaning of a program is exactly the logical consequences of the program. It is

worth noting that such a formal foundation of logic programming enables researchers

in this field to communicate with each other using mathematical logic as a common

language. This is an important and distinguished advantage of logic programming

which is never seen in the fields of expert systems nor object-oriented databases today.

This unique feature of logic programming has promoted theoretical studies in its own

right, and found various applications ranging from databases to artificial intelligence
[Gallaire et al., 1984; Kowalski, 1991; Baral and Gelfond, 1994].

Another important feature of logic programming is the separation of logic and

control [Kowalski, 1979]. That is, logic programs specify declarative sentences repre-

1



2 CHAPTER 1. INTRODUCTION

senting knowledge in the world, while their algorithms are designed independent of

the contents of programs. Such a separation is also important from the viewpoint of

knowledge representation in artificial intelligence [McCarthy and Hayes, 1969].

A declarative meaning of a logic program is characterized by the declarative se-

mantics , which is usually given by the model theory of first-order logic. On the other

hand, a computational aspect of a logic program is characterized by the procedural

semantics , which is provided as a proof procedure of the program. Thus, declarative

and procedural semantics characterize two different aspects of logic programming.

The semantics of logic programming was firstly studied by van Emden and Kowal-

ski [1976], in which they introduced declarative and procedural semantics of Horn

logic programs . Horn logic programs are the simplest class of logic programming and

have applications such as the programming language Prolog or deductive databases
[Gallaire et al., 1984].

Horn logic programs have powerful computational mechanisms in the sense that

they are as expressive as a Turing machine [Tärnlund, 1977]. Considering Horn

logic programs as a knowledge representation language, however, they describe only

definite information in the world and provide no inference mechanism for reasoning

with incomplete information. In fact, these limitations have often caused a criticism

that knowledge representations based on formal logics and deductive inference are

not useful for commonsense reasoning in AI.

The necessity of dealing with incomplete information in knowledge representation

is addressed by Levesque [1983]:

The reason incomplete knowledge bases are so important is that, in many

applications, the knowledge base undergoes a continual evolution. At

each stage, information can be acquired that is potentially very vague or

indefinite in nature. More important, a problem solving system cannot

simply wait for the knowledge base to stabilize in some final and complete

form since this may never happen.

Then, in order to overcome those limitations, attempts have been done to enhance

the expressiveness and inference abilities of logic programming. Such extensions are

mainly achieved in two ways.

First extension is the representation of negation. In a definite Horn logic program,

each fact derived from the program represents true knowledge in the program, while

any fact unproved in the program is assumed to be false as default negation or negation

as failure to prove [Clark, 1978; Reiter, 1978]. Such default negation can augment

incomplete knowledge in a program, while it makes logic programming semantics
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nonmonotonic. Together with this non-classical mechanism, the framework of logic

programming was extended from Horn logic programs to non-Horn logic programs by

incorporating default negation in programs. Stratified logic programs [Chandra and

Harel, 1985; Apt et al., 1988; van Gelder, 1988] and normal logic programs [Gelfond

and Lifschitz, 1988; van Gelder et al., 1991] are such extensions. Those frameworks

were further extended by Gelfond and Lifschitz [1990] to extended logic programs

which include classical negation as well as default negation.

Second extension is the representation of indefinite or disjunctive information.

Logic programming which can represent such information is called disjunctive logic

programming . A theoretical framework of disjunctive logic programming was firstly

studied by Minker [1982] for positive disjunctive programs , and then generalized to

normal disjunctive programs [Lobo et al., 1992], and extended disjunctive programs
[Gelfond and Lifschitz, 1991] by including negation.

Negation and disjunctions are two important extensions of logic programming

which provide abilities to deal with incomplete information in a program. Those

extensions of logic programming greatly increase the expressive power of logic pro-

gramming as a knowledge representation tool and realize commonsense reasoning in

artificial intelligence.

With these backgrounds, in this dissertation we study theoretical frameworks of

disjunctive logic programming.

1.1 Motivations and Objectives

Most of the semantics of logic programming have traditionally been studied based on

the notion of minimal models . The notion of minimal models reflects the so-called

Occam’s razor 1 in the sense that a minimal model contains exactly as many facts as

required to hold in a program. Such a principle of minimality has been supported in

the area of not only logic programming, but also nonmonotonic logics in artificial in-

telligence. Therefore, it has been recognized that the principle of minimality is one of

the most basic and indispensable criteria that each semantics for commonsense reason-

ing should obey [Schlipf, 1992a]. In fact, the least Herbrand model semantics of Horn

logic programs [van Emden and Kowalski, 1976], the perfect model semantics of strat-

ified logic programs [Przymusinski, 1988a], and the stable model semantics of normal

logic programs [Gelfond and Lifschitz, 1988] are all based on the principle of minimal-

ity. This is also the case in the context of disjunctive logic programming, namely, the

1William of Occam, 1285-1349?, England, Scholastic Philosopher.
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minimal model semantics of positive disjunctive programs [Minker, 1982] and the dis-

junctive stable model semantics of normal disjunctive programs [Przymusinski, 1991a;

Gelfond and Lifschitz, 1991] are both minimal.

However, such a minimalism is not always appropriate in a program containing

indefinite information. Ross and Topor [1988] have firstly noticed this problem in

the context of inferring negation in disjunctive logic programs. They argue that

when one infers negation from a disjunctive logic program, one should be cautious to

interpret disjunctions inclusively rather than exclusively . In fact, the minimal model

semantics minimizes truth facts, then it usually interprets disjunctions exclusively

and maximizes negative information inferred from a program.

Then Ross and Topor gave a framework for inferring negation in inclusive disjunc-

tive logic programs, which is different from the minimal model semantics. However,

the problem is that their framework, on the contrary, has difficulty for treating exclu-

sive disjunctions in a program. Moreover, they provided no model theoretical meaning

for inclusive disjunctive logic programs as a counterpart of the minimal model seman-

tics. Thus our first objective is to give a theoretical framework of disjunctive logic

programs which can distinguish both exclusive and inclusive disjunctions uniformly

in a program.

Our second objective is to clarify the relations between disjunctive logic pro-

grams and various forms of commonsense reasoning in artificial intelligence. Re-

cent studies have revealed close relationships between logic programming and non-

monotonic reasoning [Reiter, 1982; Lifschitz, 1985; Gelfond, 1987; Lifschitz, 1988;

Przymusinski, 1988b; Gelfond et al., 1989; Bidoit and Froidevaux, 1991a; Bidoit and

Froidevaux, 1991b], and there are increasing interests to investigate interrelations be-

tween the two areas [Nerode et al., 1991; Pereira and Nerode, 1993]. These studies

are important both for logic programming and artificial intelligence. Representing

logic programs in terms of nonmonotonic formalisms helps us to realize commonsense

reasoning in logic programming, on the other hand, it opens possibilities for using

logic programming proof procedures as inference engines for nonmonotonic reasoning.

Thus, clarifying such interrelations enables us to use techniques developed in one area

by the other, and it will help researchers in each community to progress their work

and enrich perspectives. Until now, those interrelations have been mainly studied

for normal logic programs, then our next goal is to extend those previously studied

results to the case of disjunctive logic programs.
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Abduction is also a form of commonsense reasoning to which much attention has

been paid recently. Abduction supplies an ability to perform reasoning with hypothe-

ses, and its growing importance in various AI problems is widely recognized. In the

context of logic programming, abduction is realized by the framework of abductive

logic programming [Kakas et al., 1992]. Abductive logic programming is an extension

of logic programming and also realizes reasoning with incomplete information in a

program. In this regard, abductive logic programs and disjunctive logic programs

appear to deal with very similar problems from different viewpoints. However, each

formalism has been independently developed so far and has different syntax and se-

mantics from the other. Then our primary interest is whether there is any formal

correspondences between those two frameworks.

Another important aspect of commonsense reasoning in logic programming is the

treatment of inconsistent knowledge. In practical situations, inconsistency is likely

to happen as well as indefiniteness when we build a large scale of knowledge base.

In such a knowledge base, it may be the case that a program contains local inconsis-

tency and yet might have a global intended meaning. However, as traditional logic

programming is based on classical first-order logic, a piece of inconsistent informa-

tion makes a whole program trivial. A logic which is not destructive in the presence

of inconsistent information is called paraconsistent logic, and its application to logic

programming is known as paraconsistent logic programming [Blair and Subrahma-

nian, 1989]. Then, in order to treat both inconsistent and indefinite information in a

program, paraconsistent frameworks for disjunctive logic programs are necessary.

Our last objective is an optimization issue of disjunctive logic programs. In logic

programming, program transformation and optimization are important from practical

viewpoints since correctly specified programs are not necessarily efficient programs.

Partial deduction or partial evaluation is known as one of such optimization techniques

in logic programming. Partial deduction derives a more specific program through

performing deduction on a part of the program, while retaining the original meaning

of the program. Such a specialized program is usually more efficient than the original

program when executed. Partial deduction techniques have been mainly studied

for normal logic programs so far. However, since computation of disjunctive logic

programs is generally expensive than normal logic programs, it is necessary to develop

partial deduction techniques for disjunctive logic programs also.

To summarize, the objectives of this dissertation are to study various aspects of

disjunctive logic programming from both theoretical and practical points of view.
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1.2 Contributions

The contributions of the research reported in this dissertation are as follows.

1. We propose a new declarative semantics of disjunctive logic programs called

the possible model semantics . The possible model semantics is a different the-

oretical framework from the classical minimal model semantics, and provides

a flexible negative inference mechanism under the closed world assumption. A

new fixpoint semantics of disjunctive logic programs is introduced to charac-

terize the possible model semantics and its proof procedure is presented. It is

shown that the possible model semantics also has a computational advantage

over the minimal and the stable model semantics of disjunctive logic programs.

2. We show a method of representing disjunctive logic programs in terms of de-

fault logic [Reiter, 1980]. The problem of previously proposed approaches is

pointed out, and an alternative correct transformation from disjunctive logic

programs to default theories is proposed. We also present the correspondences

between disjunctive logic programs and other forms of nonmonotonic reasoning

in AI such as disjunctive default logic [Gelfond et al., 1991], circumscription
[McCarthy, 1980], and autoepistemic logic [Moore, 1985].

3. We reveal a close relationship between disjunctive logic programs and abductive

logic programs. It is shown that the possible models of disjunctive logic pro-

grams are essentially equivalent to the generalized stable models of abductive

logic programs [Kakas and Mancarella, 1990]. We also show that the possible

model semantics is useful to characterize abductive logic programs from the

computational complexity point of view.

4. We propose paraconsistent frameworks for disjunctive logic programs which can

distinguish inconsistent information from other information in a program. Para-

consistent semantics for extended disjunctive programs are introduced which

are based on lattice-structured multi-valued logics. Fixpoint characterizations

of those paraconsistent semantics are presented, and methods for reasoning with

inconsistency are discussed.

5. We develop partial deduction techniques for disjunctive logic programs. In dis-

junctive logic programs, normal partial deduction is shown to be not useful, and

a new partial deduction method for disjunctive logic programs is introduced.

It is shown that the proposed partial deduction preserves the meanings of dis-

junctive logic programs, and its application to goal-oriented partial deduction

is presented for query optimization.
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1.3 Outline of the Dissertation

This dissertation consists of eight chapters. The rest of the dissertation is organized

as follows.

In Chapter 2, we first give basic notions of logic programming and other related

notions used in this dissertation. We introduce the framework of disjunctive logic pro-

gramming and review previously studied results on logic programming and disjunctive

logic programming.

In Chapter 3, we propose a new theoretical framework of disjunctive logic pro-

grams. The possible model semantics is introduced as a declarative semantics of

disjunctive logic programs. Negative inference under the possible model semantics is

presented and its properties are discussed. A new fixpoint semantics of disjunctive

logic programs is introduced to characterize the possible model semantics. For the

procedural part, a bottom-up proof procedure is provided to compute the possible

model semantics of positive and normal disjunctive programs. We also compare com-

putational complexities of various semantics of disjunctive logic programs and show

that the possible model semantics has a computational advantage over other proposed

semantics.

In Chapter 4, we present a method of relating disjunctive logic programs to Re-

iter’s default logic. We first point out the problem of previously studied results,

then establish a correct default translation of disjunctive logic programs. We show a

one-to-one correspondence between the stable models of a disjunctive logic program

and the extensions of its associated default theory. Next we extend the results to

extended disjunctive programs and investigate the connection with Gelfond et al.’s

disjunctive default logic. The stable model semantics of disjunctive logic programs is

also characterized by Moore’s autoepistemic logic and McCarthy’s circumscription.

We also show that the possible model semantics is naturally expressed in terms of

autoepistemic logic.

In Chapter 5, we present the equivalence relationship between disjunctive logic

programs and abductive logic programs. We show that the generalized stable models

of abductive logic programs can be translated into the possible models of disjunctive

logic programs, and vice versa. It is also shown that abductive disjunctive programs

can be expressed by abductive logic programs under the possible model semantics.

Moreover, we observe that when considering the disjunctive stable model semantics

instead of the possible model semantics, it is unlikely that disjunctive logic programs

can be efficiently expressed in terms of abductive logic programs. The usefulness
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of the possible model semantics for abductive logic programs is also verified by its

computational complexity.

In Chapter 6, we propose declarative semantics of possibly inconsistent disjunctive

logic programs. We introduce the paraconsistent minimal and stable model semantics

for extended disjunctive programs, which can distinguish inconsistent information

from other information in a program. The possible model semantics introduced in

Chapter 3 is also extended to the paraconsistent possible model semantics in extended

disjunctive programs. These semantics are natural extensions of the answer set se-

mantics of extended disjunctive programs [Gelfond and Lifschitz, 1991], and are based

on lattice-structured multi-valued logics. Paraconsistent semantics are also charac-

terized by a fixpoint semantics of extended disjunctive programs, and methods for

reasoning in inconsistent programs are addressed.

In Chapter 7, we present methods of partial deduction for disjunctive logic pro-

grams. We first show that normal partial deduction is not useful for disjunctive logic

programs, then introduce disjunctive partial deduction for disjunctive logic programs.

It is proved that disjunctive partial deduction preserves the minimal model semantics

of positive disjunctive programs and the disjunctive stable model semantics of normal

disjunctive programs. We also show that together with suitable program transforma-

tions, normal partial deduction can compute disjunctive partial deduction and also

preserves the possible model semantics. The proposed partial deduction method is

applied to goal-oriented partial deduction for query optimization.

In Chapter 8, we conclude the dissertation and address future directions of the

research.

1.4 Publications

Some chapters of this dissertation are based on the published papers as follows.

Chapter 3 is based on the papers [Sakama, 1989] and [Sakama and Inoue, 1993a],

which were presented at the First International Conference on Deductive and Object-

Oriented Databases (DOOD’89; Kyoto, Japan, December 1989) and the Tenth In-

ternational Conference on Logic Programming (ICLP’93; Budapest, Hungary, June

1993), respectively. Also much of this chapter is in [Sakama and Inoue, 1994c] which

will appear in the Journal of Automated Reasoning .

Chapter 4 is based on the paper [Sakama and Inoue, 1993b] which was presented

at the Second International Workshop on Logic Programming and Nonmonotonic
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Reasoning (LPNMR’93; Lisbon, Portugal, June 1993).

Chapter 5 is based on the paper [Sakama and Inoue, 1994a] which was pre-

sented at the Eleventh International Conference on Logic Programming (ICLP’94;

S. Margherita Ligure, Italy, June 1994).

Chapter 6 is based on the paper [Sakama and Inoue, 1994b] which will appear

in the Journal of Logic and Computation. Related topic is also discussed in the

paper [Sakama, 1992] which was presented at the International Conference on Fifth

Generation Computer Systems (FGCS’92; Tokyo, Japan, June 1992).

Chapter 7 is based on the paper [Sakama and Seki, 1994] which was presented at

the Fourth International Workshop on Logic Program Synthesis and Transformation

(LOPSTR’94; Pisa, Italy, June 1994). Related topic is also presented in the paper
[Sakama and Itoh, 1988] which was published in the Journal of New Generation

Computing , vol. 6, Nos.2-3.

The dissertation does not include those topics presented in author’s published

papers [Sakama and Itoh, 1988] and [Sakama and Okumura, 1988]. These papers also

discuss theoretical aspects of logic programming and nonmonotonic reasoning from

different viewpoints.
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Chapter 2

Preliminaries

This chapter introduces basic notions and terminologies used in this dissertation and

reviews previously studied results on logic programming.

2.1 First-Order Logic

A framework of logic programming stems from classical first-order logic. Then we

start from a brief overview of first-order theories. Terminologies and notations pre-

sented in this section are based on [Lloyd, 1987; Apt, 1990].

2.1.1 Language

An alphabet of a first-order language consists of a set of constants , variables , function

symbols , predicate symbols , and usual punctuation symbols, together with connectives

∧, ∨, ¬, ⊃,1 ≡ and quantifiers ∃ and ∀.
A term is defined inductively as either a variable or a constant or an expression

of the form f(t1, . . . , tn) where f is a function symbol and ti’s are terms.

A formula is defined inductively as follows:

(i) An atom p(t1, . . . , tn) is a formula where p is a predicate symbol and ti’s are

terms.

(ii) For formulas F and G, ¬F , F ∨G, F ∧G, F ⊃ G, and F ≡ G are all formulas.

(iii) For a formula F and a variable x, ∃xF and ∀xF are formulas.

1In the context of logic programming, the connective ← is also used for implication.

11
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A formula is closed if it contains no free occurrences of any variable (that is, any

variable is bounded by some quantifier). A term or a formula containing no variables

is called ground . A ground formula is also called a proposition or a propositional

formula. A first order language L over an alphabet is defined as the set of all formulas

constructed from the symbols of the alphabet. A literal is an atom A or its negation

¬A. A literal is called positive if it is an atom, otherwise it is called negative.

A clause is a formula of the form:

∀x1, . . . ,∀xk (A1 ∨ . . . ∨ Al ∨ ¬B1 ∨ . . . ∨ ¬Bm)

where each Ai (1 ≤ i ≤ l) and Bj (1 ≤ j ≤ m) are atoms and x1, . . . , xk are variables

occurring in the formula. A clause is also written as:

∀x1, . . . ,∀xk (A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm)

or simply as:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm. (2.1)

The left-hand side of the clause (2.1) is called the head , and the right-hand side of the

clause is called the body . Note that any closed first-order formula can be transformed

to clausal form [Chang and Lee, 1973].

2.1.2 Model Theory

The meaning of a first-order theory is given by an interpretation of formulas.

An interpretation I for a first-order language L consists of a non-empty set D,

called the domain of I, and an assignment defined as follows:

• each constant in L is assigned to an element in D,

• each n-ary function in L is assigned to a mapping from Dn to D,

• each n-ary relation r in L is assigned to a mapping from Dn to {true, false},

where true and false are the truth values assigned to propositions.

Given an interpretation I of L, a variable assignment V is an assignment to each

variable in L of an element in the domain of I. The term assignment (with respect

to I and V ) of the terms in L is defined as follows:

• for each variable in L, the assignment according to V ,

• for each constant in L, the assignment according to I,
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• for each n-ary function f(t1, . . . , tn) in L, the assignment f ′(t′1, . . . , t
′
n) where f ′

is the assignment of f according to I, and t′1, . . . , t
′
n are the term assignments

of t1, . . . , tn.

Now given an interpretation I and a variable assignment V , truth values of for-

mulas are inductively defined as follows.

(i) If the formula is an atom p(t1, . . . , tn), then its truth value is obtained by calcu-

lating the value of p′(t′1, . . . , t
′
n), where p′ is the mapping assigned to p by I and

t′1, . . . , t
′
n are the term assignments of t1, . . . , tn with respect to I and V .

(ii) Given formulas F and G,

• ¬F is true (resp. false) iff F is false (resp. true).

• F ∨G is true (resp. false) iff either F or G is true

(resp. both F and G are false).

• F ∧G is true (resp. false) iff both F and G are true

(resp. either F or G is false).

• F ⊃ G is true (resp. false) iff either F is false or G is true

(resp. both F is true and G is false).

• F ≡ G is true (resp. false) iff both F ⊃ G and G ⊃ F are true

(resp. either F ⊃ G or G ⊃ F is false).

(iii) The formula ∃xF is true iff there exists d ∈ D such that F has a truth value

true with respect to I and V (x/d), where V (x/d) is V except that x is assigned

to d; otherwise its truth value is false.

(iv) The formula ∀xF is true iff for all d ∈ D, F has a truth value true with respect

to I and V (x/d); otherwise its truth value is false.

A formula F is satisfied in an interpretation I (written I |= F ) iff F is true in I

for any variable assignment V . In particular, when F is closed, the truth value of the

formula is independent of V . Given a set of formulas S, an interpretation I is called a

model of S if I satisfies every formula in S. A set of formulas S is called satisfiable or

consistent if it has a model; otherwise S is called unsatisfiable or inconsistent . When

every interpretation is a model for S, we say that S is valid .
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2.2 Logic Programming

In computer science, logic plays an important role for designing, analyzing, and rea-

soning about computer programs. On the other hand, logic programming , advocated

by Kowalski [1974], uses first-order predicate logic itself as a procedural program-

ming language. Logic programming has a very simple syntax and a clear semantics

based on the formal mathematical logic and the theory of resolution proof procedures.

Compared with conventional programming languages, logic programming provides a

very high-level specification language for describing problems, and at the same time,

it serves as a computer executable programming language.

In this section, we review the framework of logic programming and present previ-

ously studied results (not necessarily in a comprehensive manner).

2.2.1 Horn Logic Programs

An early stage of logic programming is defined as a subset of first-order clauses of the

form (2.1), called Horn clauses [Kowalski, 1974].

A Horn logic program is a finite set of Horn clauses of the form:

Al ← B1 ∧ . . . ∧Bm (0 ≤ l ≤ 1; m ≥ 0) (2.2)

where Al and Bi’s are atoms.

A Horn clause with a non-empty head (l = 1) is called a definite clause, and a

definite clause with the empty body (m = 0) is called a unit clause. A Horn clause

with the empty head (l = 0) and a non-empty body (m 6= 0) is called a negative

clause, which is also called a goal or an integrity constraint depend on its usage. A

Horn logic program including only definite clauses is called a definite logic program.

From the database point of view, a set of Horn clauses attaches deductive ca-

pabilities to conventional relational databases in the context of deductive databases
[Gallaire et al., 1984]. For example, in a definite logic program it is easy to specify

the transitive closure of a relation by recursive clauses like that:

ancestor(x, y)← parent(x, z) ∧ ancestor(z, y) ,

ancestor(x, y)← parent(x, y) ,

which cannot be expressed in relational databases [Ullman, 1982].

The declarative semantics of logic programming is usually defined by means of

particular models of a program, called Herbrand models .
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Given a logic program P , its Herbrand universe UP is the set of all ground terms,

which can be formed out of the constants and function symbols appearing in the

language L of P .2 The Herbrand base HBP is the set of all ground atoms formed by

predicate symbols from L with ground terms from UP as arguments.

An Herbrand interpretation for P is the interpretation which is defined over the

Herbrand universe UP as a domain with an assignment as follows:

• each constant in L is assigned to itself in UP ,

• each n-ary function symbol f in L is assigned to the mapping from (UP )n to

UP defined by (t1, . . . , tn)→ f(t1, . . . , tn),

• each n-ary relation r in L is assigned to a mapping from (UP )n to {true, false}.

Note that since the assignment to constants and function symbols is fixed in Her-

brand interpretations, any Herbrand interpretation is identified with a corresponding

subset of the Herbrand base.

An Herbrand model for P is an Herbrand interpretation which is a model for P .

Throughout the dissertation, an interpretation means an Herbrand interpretation and

a model means an Herbrand model. A consistent program has an Herbrand model,

while an inconsistent program has none.

A substitution is a finite mapping from variables to terms σ = {x1/t1, . . . , xn/tn},
where each xi is a variable, each ti is a term distinct from xi, and the variables

x1, . . . , xn are distinct. The substitution σ is called a ground substitution if all ti’s

are ground. If σ is empty, it is called an empty substitution.

By an expression we mean a term, a literal, or a clause and denote it by E. Given

an expression E and a substitution σ, the expression Eσ presents an instance of E

by σ, which is obtained from E by simultaneously replacing each occurrence of the

variable in E with the corresponding term according to σ. An instance is called

ground if it contains no variable.

A substitution σ is called a unifier of expressions E and F iff Eσ = Fσ holds.

In particular, a unifier σ is called the most general unifier (mgu) iff for any unifier θ

such that Eθ = Fθ, there is a substitution λ such that θ = λσ.

Given a logic program P and a clause C in P , an Herbrand instantiation of C

is the set of all ground instances of C by any substitution σ which replaces every

variable in C with an element from UP . The ground program of P is the (possibly

infinite) set of all Herbrand instantiations of every clause from P . A logic program

2We usually consider constants and function symbols appearing in a program unless stated oth-
erwise. If the program contains no constants, some constant is added to form ground terms.
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P has an Herbrand model M iff its ground program has the Herbrand model M .

Thus, any logic program P is semantically identified with its ground program, so we

usually assume ground programs in this dissertation when considering semantics of

logic programs.

The declarative semantics of Horn logic programs is defined as the smallest Her-

brand model, called the least Herbrand model . The least Herbrand model is also

obtained as the intersection of all Herbrand models of the program [van Emden and

Kowalski, 1976]. A definite logic program is always consistent and has the least

Herbrand model.

The procedural semantics of logic programming is defined by proof procedures in

two-ways. A bottom-up proof procedure is based on usual modus ponens and starts

from the given facts and proceeds forward to the conclusions. On the other hand,

Kowalski [1974] introduced a procedural interpretation of Horn logic programs in

which the head of a definite clause is viewed as a procedure name and the body of

the clause is viewed as a set of procedural calls. A top-down proof procedure of logic

programming is based on this idea. It starts from a given goal to be proved and goes

backward to premises in a program by iteratively producing its subgoals.

For definite logic programs, van Emden and Kowalski [1976] present bottom-up

hyperresolution and show that the set of all ground atoms derived from a definite logic

program by hyperresolution coincides with the least Herbrand model of the program.

The least Herbrand model is also characterized by the success set of top-down SLD-

resolution [Apt and van Emden, 1982]. Various proof procedures for (function-free)

definite logic programs are also studied in the context of query-answering in deductive

databases [Bancilhon and Ramakrishnan, 1988].

The least Herbrand model assigns the truth value true to each atom included in

the model, and remained other atoms are interpreted as false. Proof-theoretically

speaking, however, definite logic programs allow to derive only positive consequences

and negative facts are never derived from a program. To infer negative information

in a program, we can use negative clauses to represent false facts in a Horn logic

program. However, it is impractical to represent negative information explicitly in a

program, since a program usually specifies true sentences in the actual world while

other false facts not written in the program are relatively huge (possibly infinite) in

their amount. Then it is more convenient to consider a collection of definite clauses

representing known positive information, and assume any fact non-derivable from the

program to be false by negation as failure to prove. Such negation is also called

default negation and is distinguished from classical negation in first-order logic.
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To formalize an inference rule for default negation in logic programming, Reiter
[1978] introduced the closed world assumption (CWA). Given a program P and for

any ground atom A, the CWA is formally stated as follows:

CWA(P ) |= ¬A iff P 6|= A.

An alternative formalization of default negation is known as Clark’s program com-

pletion [Clark, 1978]. Program completion characterizes the finite failure set of SLD-

resolution, while it has some drawbacks compared with the CWA [Shepherdson, 1984;

1988].

Note that default negation in logic programming is nonmonotonic in its nature.

That is, an addition of a new fact might withdraw a previously presumed default fact.

It is known that such nonmonotonic reasoning is useful for commonsense reasoning

in artificial intelligence. Thus introduction of default negation enhances inference

abilities of logic programming beyond monotonic deduction, while it makes the theory

of logic programming depart from classical first-order logic.

2.2.2 Normal Logic Programs

A (definite) Horn logic program is the simplest form of logic programming, however,

as a knowledge representation language, its expressive power is very limited since it

only allows one to specify conjunctions and implications between relations. With this

restriction, we cannot compute even the complement of a given relation. We have

already seen that default negation introduces a mechanism of negative inference into

Horn logic programs. Then the first extension of logic programming is to incorporate

such negation into a program and use it during deductive inference. To express default

negation in a program, Horn logic programs are extended to include normal clauses

as follows.

A normal logic program is a finite set of normal clauses of the form:

Al ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (0 ≤ l ≤ 1; n ≥ m ≥ 0) (2.3)

where Al and Bi’s are atoms and not is the negation-as-failure operator. A normal

clause with the empty head and a non-empty body is called an integrity constraint .

Note here that negation in normal clauses represents default negation and is dis-

tinguished using a new connective not. The above normal clause (2.3) is read as that

Al is true if B1, . . . , Bm are true and Bm+1, . . . , Bn are not true. Clearly, normal logic

programs reduce to Horn logic programs in the absence of default negation.
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A normal logic program is called stratified [Chandra and Harel, 1985; Apt et al.,

1988; van Gelder, 1988] if it contains no predicate derived recursively through its

negation. More precisely, a normal logic program P is stratified if there is a partition

P = P1 ∪ . . . ∪ Pn such that the following conditions hold for i = 1, . . . , n:

(i) If a predicate occurs positively in a clause in Pi, then its definition (i.e, clauses

containing the predicate in their heads) is contained within
⋃
j≤i Pj.

(ii) If a predicate occurs negatively in a clause in Pi, then its definition is contained

within
⋃
j<i Pj.

P1 can be empty.

For example, the popular flying-bird example is written in a stratified logic pro-

gram like that:

fly(x)← bird(x) ∧ not abnormal(x),

bird(x)← penguin(x),

abnormal(x)← penguin(x),

which means that a bird flies if she is not an abnormal bird.

The notion of stratified logic programs is further extended to locally stratified logic

programs [Przymusinski, 1988a] which contain no self-recursive atom through nega-

tion, and call-consistent/order-consistent logic programs [Kunen, 1989; Sato, 1990]

which contain no self-recursive predicate/atom through an odd number of negation.

In contrast to stratified logic programs, possibly unstratified normal logic pro-

grams are often called general logic programs [van Gelder, 1988; Gelfond and Lifs-

chitz, 1988; van Gelder et al., 1991]. The following game program [van Gelder et al.,

1991] is an example of such programs:

winning(x)← move(x, y) ∧ not winning(y),

which presents a game situation that one is in a winning position if there is a move

to a losing position.

The model theoretical meaning of a normal logic program is defined in the same

manner as that of a Horn logic program with an additional statement that an interpre-

tation I satisfies default negation notA whenever A is not true in I (I |= notA iff I 6|=
A). Then a model of a normal logic program is defined as an interpretation satisfying

every normal clause from the program. A normal logic program is consistent if it has

a model, otherwise it is inconsistent .
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A declarative semantics of normal logic programs is defined in terms of the par-

ticular Herbrand models called the minimal models . An Herbrand model M is a

minimal model of a program P if no proper subset of M is a model of P .

In case of definite logic programs, every program has exactly one minimal model,

the least Herbrand model. However, in the presence of non-Horn clauses, a program

may have several minimal models in general. In this situation, some canonical models

are usually chosen as the intended meaning of a program. By the “intended meaning”

we mean that one who writes/reads the program is likely to expect it.

One of the criteria for choosing canonical models is the supportedness [Apt et al.,

1988]. For a program P , a model M is called supported if for any atom A included

in M , there is a ground clause of the form (2.3) from P such that A = Al and M

satisfies the body of the clause.

The condition of supportedness is quite natural and appealing, since we are inter-

ested in a model which includes atoms actually derived from a program. For example,

the program { a← not b } has two minimal models {a} and {b}, where the first one

is supported while the second one is not. In fact, b is never derived from the program

and the intended meaning of the above program is {a} reflecting the sentence that

“a is true if b is not proved”.

The stable model semantics proposed by Gelfond and Lifschitz [1988] characterizes

such canonical models for normal logic programs.

Given a normal logic program P , an interpretation I is called a stable model of P

if I coincides with the least Herbrand model of the Horn logic program P I defined as

P I = { Al ← B1 ∧ . . . ∧Bm | there is a ground clause of the form (2.3)

from P such that {Bm+1, . . . , Bn} ∩ I = ∅ }.

An intuitive meaning of the above definition is that we first consider an assumption

set I, and compute the reduct P I of P with respect to the assumption set I. Then, if

I coincides with the set of logical consequences of P I , the assumption set I is justified

as an intended meaning.

Stable models are minimal and supported models, but not vice versa [Marek and

Subrahmanian, 1992]. A normal logic program may have none, one, or multiple stable

models in general. In particular, a consistent (locally) stratified logic program has a

unique stable model called the perfect model [Przymusinski, 1988a].

Note that a consistent program does not always have a stable model. For example,

the program { a←, b← not b } is consistent since it has a model {a, b}, while the

program has no stable model. A program having at least one stable model is called

coherent , otherwise it is called incoherent . For sufficient conditions of the existence
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of a stable model, call-consistent logic programs or order-consistent logic programs

are always coherent [Fages, 1990; Dung, 1992b].

Another well-known semantics for normal logic programs is the well-founded se-

mantics , originally proposed by van Gelder et al. [1991]. We do not address the

detailed definition of the well-founded semantics here, but refer the reader to the

literature [van Gelder et al., 1991; Przymusinski, 1989a; van Gelder, 1989].

The stable model semantics and the well-founded semantics provide alternative

theoretical frameworks for normal logic programs. An essential difference between

two formalisms is that the stable model semantics is based on the classical two-

valued logic, while the well-founded semantics is based on the notion of three-valued

well-founded partial model .

The well-founded semantics has an advantage that the well-founded (partial)

model is uniquely defined for any consistent normal logic program, while this is not

the case for the stable model semantics. However, this deterministic feature often

makes the well-founded semantics too skeptical compared with the stable model se-

mantics. For example, the program { c ← a, c ← b, a ← not b, b ← not a }
has two stable models {a, c} and {b, c}, while its well-founded model is the empty set

(i.e. each atom has truth value unknown). Thus, the stable model semantics or the

well-founded semantics is usually chosen according to applications.

Recent studies of logic programming have extended the stable model semantics

and the well-founded semantics in various ways, while their original forms still serve

as two representative semantics for normal logic programs at present. Moreover, both

formalisms are revealed to be closely related with each other [Przymusinski, 1990c;

Dung, 1992b; Baral and Subrahmanian, 1993].

For proof procedures, bottom-up algorithms are proposed for computing stable

models in [Sacca and Zaniolo, 1990; Eshghi, 1990; Inoue et al., 1992; Fernandez et al.,

1993; Subrahmanian et al., 1993; Bell et al., 1993], and for computing well-founded

models in [Kemp et al., 1992; Subrahmanian et al., 1993].

As a top-down proof procedure for normal logic programs, SLD-resolution is ex-

tended to SLDNF-resolution [Clark, 1978; Lloyd, 1987]. For stratified logic programs,

SLDNF-resolution is modified to cope with infinite failure in [Kemp and Topor, 1988;

Seki and Itoh, 1988; Przymusinski, 1989c] under the perfect model semantics. An

abductive proof procedure by Eshghi and Kowalski [1989] is a procedure based on

SLDNF-resolution and is correct with respect to the stable model semantics for call-

consistent logic programs. For the stable model semantics, however, there is no simple

top-down proof procedure applicable for any normal logic program in general. This is

due to the irrelevance property of the stable model semantics [Dix, 1992b] such that
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the truth value of an atom is often affected by a clause irrelevant to its derivation.

On the other hand, some general top-down proof procedures are known for the well-

founded semantics such as [Ross, 1989a; Przymusinski, 1989a; Bidoit and Legay, 1990;

Chen and Warren, 1993].

2.2.3 Extended Logic Programs

In logic programming, it is often useful to represent explicit negation as well as default

negation in a program. Gelfond and Lifschitz [1990] have extended the framework of

normal logic programs to include classical negation in a program.

An extended logic program is a finite set of extended clauses of the form:

Ll ← L1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (0 ≤ l ≤ 1; n ≥ m ≥ 0) (2.4)

where each Li is a literal. A not-free extended logic program is called a positive

extended logic program. An extended clause with the empty head and a non-empty

body is called an integrity constraint .

Note that in extended logic programs, two kinds of negation, classical negation (¬)

and default negation (not), are distinguished.3 For example, awarding scholarships

to college students is written by the following extended logic program [Gelfond and

Lifschitz, 1990]:

Eligible(x)← HighGPA(x) ,

¬Eligible(x)← ¬FairGPA(x) ,

Interview(x)← not Eligible(x) ∧ not ¬Eligible(x) ,

where ¬Eligible(x) means that x is non-eligible, while not Eligible(x) means that

there is no evidence that x is eligible.

Introduction of classical negation enables us to represent negative knowledge ex-

plicitly in a program. While positive and negative knowledge are now equivalently

specified in a program, those not explicitly represented in a program are considered

to be unknown. This means that the closed world assumption is not assumed in an

extended logic program any more, but is specified for each predicate by the following

CWA-rule:

¬P (x)← not P (x).

Thus, in an extended logic program we can freely specify the closed world assumption

depending on whether a relation is complete or not. In this sense, extended logic

programs can represent incomplete knowledge in a program.

3In contrast to default negation, classical negation is also called explicit negation.
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The stable model semantics for normal logic programs is extended to the answer

set semantics for extended logic programs [Gelfond and Lifschitz, 1990]. The answer

sets are defined in two steps.

Let P be a positive extended logic program and LP be the set of all ground literals

from the language of P . Then, an answer set of P is defined as the smallest subset

S of LP satisfying the conditions:

1. For each ground clause Ll ← L1 ∧ . . . ∧ Lm from P , {L1, . . . , Lm} ⊆ S implies

Ll ∈ S. In particular, for each ground clause ← L1 ∧ . . . ∧ Lm from P ,

{L1, . . . , Lm} 6⊆ S; and

2. If S contains a pair of complementary literals L and ¬L, then S = LP .

Next, let P be an extended logic program and S ⊆ LP . The reduct P S of P with

respect to S is defined as

P S = { Ll ← L1 ∧ . . . ∧ Lm | there is a ground clause of the form (2.4)

from P such that {Lm+1, . . . , Ln} ∩ S = ∅ }.

Then S is an answer set of P if S is an answer set of P S. An extended logic pro-

gram has either consistent answer sets different from LP , or the unique contradictory

answer set LP , or no answer set. An extended logic program having at least one

answer set is called coherent , otherwise it is called incoherent .

Gelfond and Lifschitz also show a syntactic translation from extended logic pro-

grams into normal logic programs. Given an extended logic program P , its positive

form P+ is defined as a normal logic program obtained by replacing each negative

literal ¬A in P with a newly introduced atom A′ in P+ where A′ and A have the

same arity. For example, the previous program is rewritten by the following positive

form:

Eligible(x)← HighGPA(x) ,

Eligible′(x)← FairGPA′(x) ,

Interview(x)← not Eligible(x) ∧ not Eligible′(x) .

Then consistent answer sets of an extended logic program P are expressed in terms

of stable models of the corresponding normal logic program P+.

Note that the semantics of extended logic programs is different from classical first-

order logic even in the absence of default negation in a program. For instance, the

meanings of the clauses L1 ← L2 and ¬L2 ← ¬L1 are different in an extended logic
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program; given L2, L1 is derived from the first clause, but not from the second clause.

In this sense, an extended clause is not contrapositive with respect to ← and ¬.

The well-founded semantics is also generalized to extended logic programs in [Przy-

musinski, 1990a; Pereira and Alferes, 1992]. Logic programming with two kinds of

negation is studied in [Wagner, 1991a; Alferes and Pereira, 1992] from different view-

points. Proof procedures for extended logic programs are developed in [Inoue et al.,

1992; Teusink, 1993b; Alferes et al., 1994].

As presented in this section, a framework of logic programming starts from classi-

cal first-order logic, while it becomes quite different from classical logic when negation

is introduced in a program. In a normal/extended logic program, each clause has its

intended meaning depending on its syntax (written form), and is viewed as a deriva-

tion rule or a constructive statement [Bry, 1989] rather than just a clause. With this

reason, a clause in a program is often called a rule in some literature, but we abuse

the term “clause” in this dissertation as far as no confusion arises.

2.3 Disjunctive Logic Programming

Logic programs introduced in the previous section specify knowledge having a definite

consequence in the head of each clause. By contrast, logic programs possibly including

clauses with disjunctive heads are called indefinite logic programs or disjunctive logic

programs [Gallaire et al., 1984; Lobo et al., 1992]. Indefinite or disjunctive logic

programs are more expressive than definite logic programs since they can represent

indefinite information as well as definite one in a program. Our primary interest in

this dissertation is in such programs, and hereafter we use the term disjunctive logic

programs or simply disjunctive programs.

2.3.1 Positive Disjunctive Programs

A foundation of disjunctive programs is firstly studied by Minker [1982], in which he

provided a theoretical framework of positive disjunctive programs.

A positive disjunctive program is a finite set of clauses of the form:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm (l, m ≥ 0) (2.5)

where Ai’s and Bj’s are atoms. A clause is called disjunctive if its head contains more

than one atom (l > 1); otherwise it is a Horn clause. Thus a positive disjunctive

program is a generalization of a Horn logic program.
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In a disjunctive program, indefinite information is specified using disjunctive

clauses. That is, when the condition of a disjunctive clause (2.5) holds, at least

one of the disjuncts Ai (1 ≤ i ≤ l) becomes true, but it is generally unknown which

one is true.

In real life situations, disjunctive knowledge appears in two ways. For example,

the clause:

male ∨ female← human

is intended to mean an exclusive disjunction such that human is either male or

female but not both. On the other hand, the clauses:

land-animal ∨ acquatic← animal ,

amphibian← land-animal ∧ acquatic

have an inclusive disjunction meaning that if an animal is both a land-animal and

acquatic, it is an amphibian.

A declarative semantics of positive disjunctive programs is given by the minimal

model semantics [Minker, 1982], which is defined as the set of all minimal models of a

program. A consistent positive disjunctive program has at least one minimal model,

while an inconsistent program has none. The minimal model semantics coincides

with the least Herbrand model semantics in Horn logic programs. The minimal

model semantics also has its origin in McCarthy’s circumscription [McCarthy, 1980]

and close relationships between circumscription and logic programming semantics are

studied in [Gelfond et al., 1989].

Inference rules for default negation are also introduced in disjunctive programs. In

the presence of disjunctive information in a program, however, Reiter [1978] pointed

out that the CWA causes an inconsistency in a program. For example, in the program

{a∨b←}, the CWA implies both ¬a and ¬b, which are inconsistent with the program.

To improve such a situation in disjunctive programs, two alternative extensions of the

CWA are known. One is the generalized closed world assumption (GCWA) by Minker
[1982], and the other is the weak generalized closed world assumption (WGCWA) by

Rajasekar et al. [1989]. The WGCWA is also independently proposed by Ross and

Topor [1988] under the name of the disjunctive database rule (DDR). Comparing each

rule, the GCWA provides a strong inference rule for negation, while the WGCWA or

the DDR provides a weak inference rule for negation. Both extensions fairly generalize

the CWA, however, each rule has some limitation in its inference ability as discussed

in Chapter 3. The completion semantics of normal logic programs is also extended

to disjunctive programs in [Lobo et al., 1992].
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Proof procedures for the minimal model semantics and the GCWA are studied

in the literature such as [Bossu and Siegel, 1985; Yahya and Henschen, 1985; Grant

and Minker, 1986; Henschen and Park, 1988; Manthey and Bry, 1988; Przymusinski,

1989b; Lobo et al., 1989; Minker and Rajasekar, 1990; Fernandez and Minker, 1991a],

while those for the WGCWA are in [Ross and Topor, 1988; Rajasekar et al., 1989].

2.3.2 Normal Disjunctive Programs

As the case of Horn logic programs, positive disjunctive programs are extended to

normal disjunctive programs by incorporating default negation in a program.

A normal disjunctive program is a finite set of clauses of the form:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (l ≥ 0, n ≥ m ≥ 0) (2.6)

where Ai’s and Bj’s are atoms and not is the negation-as-failure operator. A clause is

called a (normal) disjunctive clause if its head contains more than one atom; otherwise

it is a normal clause. A normal disjunctive program reduces to a positive disjunctive

program in the absence of default negation, and reduces to a normal logic program

in the absence of disjunctive clauses.

The notions of models and consistent/inconsistent normal disjunctive programs

are defined in the same way as those of normal logic programs. The stable model se-

mantics of normal logic programs is directly extended to normal disjunctive programs

as follows.

Given a normal disjunctive program P , an interpretation I is called a (disjunctive)

stable model 4 of P if I coincides with a minimal model of the positive disjunctive

program P I (called a reduct) defined as

P I = { A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm | there is a ground clause of the form (2.6)

from P such that {Bm+1, . . . , Bn} ∩ I = ∅ }.

The disjunctive stable model semantics [Przymusinski, 1991a; Gelfond and Lifs-

chitz, 1991] is defined as the set of all stable models of the program. By definition, the

disjunctive stable model semantics reduces to Gelfond and Lifschitz’s stable model se-

mantics in normal logic programs, and also coincides with the perfect model semantics

in stratified disjunctive programs [Przymusinski, 1988a].5

4We use the term disjunctive stable models when we distinguish them from stable models of
normal logic programs. Otherwise, we simply say stable models.

5The definition of a stratified disjunctive program is a direct extension of that of a stratified logic
program.
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The notion of supported models is also extended to disjunctive programs. Given a

normal disjunctive program P , a model M of P is supported if for any atom A included

in M , there is a ground clause of the form (2.6) from P such that A = Ai (1 ≤ i ≤ l)

and M satisfies the body of the clause. Stable models of a normal disjunctive program

are minimal and supported models.

Like normal logic programs, there are consistent normal disjunctive programs

having no stable model. A normal disjunctive program is called coherent (resp. in-

coherent) if it has a (resp. no) stable model.

The well-founded semantics of normal logic programs is also extended to the dis-

junctive well-founded semantics [Ross, 1989b; Baral et al., 1992a] or the station-

ary semantics [Przymusinski, 1990b; 1991b] in normal disjunctive programs. Proof

procedures for normal disjunctive programs are developed in the literature such as
[Ross, 1989b; Baral et al., 1992a; Inoue et al., 1992; Dung, 1992a; Dung, 1993;

Fernandez and Minker, 1992].

Now we compare the stable model semantics approach and the well-founded se-

mantics approach to normal disjunctive programs. Both the disjunctive stable model

semantics and the disjunctive well-founded/stationary semantics generalize the min-

imal model semantics of positive disjunctive programs. However, there are essential

differences between two approaches as follows.

1. The disjunctive stable model semantics characterizes non-deterministic behavior

of a disjunctive program in terms of multiple stable models. On the other hand,

the disjunctive well-founded/stationary semantics presents the meaning of a

program by a set of ground disjunctions called a state, which is different from

classical approaches based on Herbrand interpretations.

2. The stable model semantics is closely related to nonmonotonic reasoning in AI.

However, the well-founded semantics is based on the three-valued logic, and in

order to relate the well-founded semantics to nonmonotonic formalisms, three-

valued extensions of the formalisms are needed [Przymusinski, 1991c].

3. The stable model semantics is also known to be useful to characterize abduc-

tive reasoning in AI, while the well-founded semantics is not usually used for

abduction due to its deterministic feature.

Thus, approaches based on the stable model semantics still stay in classical two-

valued logic and are useful to characterize commonsense reasoning in disjunctive

programs. With these reasons, we take the stable model approach rather than the

well-founded model approach in this dissertation.
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2.3.3 Extended Disjunctive Programs

In disjunctive programs, classical negation is also included under the framework of

extended disjunctive programs.

An extended disjunctive program is a finite set of clauses of the form:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (n ≥ m ≥ l ≥ 0) (2.7)

where each Li is a literal. A clause is called an (extended) disjunctive clause if its

head contains more than one literal; otherwise it is an extended clause. An extended

disjunctive program containing no not is called a positive extended disjunctive pro-

gram. An extended disjunctive program reduces to a normal disjunctive program

when all Li’s are atoms, and in the absence of disjunctive clauses it reduces to an

extended logic program.

The answer set semantics of extended logic programs is directly extended to ex-

tended disjunctive programs as follows.

Let P be a positive extended disjunctive program and LP be the set of all ground

literals from the language of P . Then, an answer set of P is defined as the minimal

subset S of LP satisfying the conditions:

1. For each ground clause L1∨. . .∨Ll ← Ll+1∧. . .∧Lm from P , {Ll+1, . . . , Lm} ⊆ S

implies Li ∈ S for some i (1 ≤ i ≤ l). In particular, for each ground clause

← L1 ∧ . . . ∧ Lm from P , {L1, . . . , Lm} 6⊆ S; and

2. If S contains a pair of complementary literals L and ¬L, then S = LP .

Next, let P be an extended disjunctive program and S ⊆ LP . The reduct P S of

P with respect to S is defined as

P S = { L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm | there is a ground clause of the form (2.7)

from P such that {Lm+1, . . . , Ln} ∩ S = ∅ }.

Then S is an answer set of P if S is an answer set of P S. The notions of

consistent/contradictory answer sets, and coherent/incoherent programs are corre-

spondingly defined as in extended logic programs. A positive form of an extended

disjunctive program is also defined in the same manner as that of an extended logic

program.

Proof procedures for extended disjunctive programs are studied in [Inoue et al.,

1992; Ben-Eliyahu and Dechter, 1992].
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In extended disjunctive programs, incomplete information is expressed by dis-

junctions as well as classical negation. In this sense, extended disjunctive programs

provide a fairly general framework for representing commonsense knowledge.

Note that in extended disjunctive programs, the non-contrapositive feature of

extended clauses is inherited from extended logic programs. Moreover, the meaning

of the connective ∨ is different from classical logic. For instance, the clause a∨¬a←
is a tautology in its classical sense, then the programs { b ← a, a ∨ ¬a ← } and

{ b ← a } are equivalent under first-order logic. However, the first program has two

answer sets {a, b} and {¬a}, while the second one has the empty answer set. This

is because an answer set represents a set of literals possibly derived from a program,

then in the absence of the clause a ∨ ¬a ←, there is no way to derive a nor ¬a in

the second program. In this sense, the clause a ∨ ¬a← is not a tautology any more.

Hence, another connective “|” instead of ∨ is often used in some literature, but for

notational convenience we use the classical connective ∨ in this dissertation.

2.4 Fixpoint Theory

Fixpoint theory describes denotational aspects of programming languages. In logic

programming, it is usually used to characterize declarative semantics of logic pro-

grams. For a definite logic program, van Emden and Kowalski [1976] introduced a

closure operator which acts over the lattice of Herbrand interpretations 2HBP .

Given a definite logic program P and its interpretation I, an immediate conse-

quence operator TP is defined as the mapping TP : 2HBP → 2HBP such that

TP (I) = { A | A← B1 ∧ . . . ∧Bm is a ground clause from P

and {B1, . . . , Bm} ⊆ I }.

The ordinal powers of TP is defined as:

TP ↑ 0 = ∅,
TP ↑ n+ 1 = TP (TP ↑ n),
TP ↑ ω =

⋃
n<ω TP ↑ n,

where n is a successor ordinal and ω is a limit ordinal. Then the least fixpoint of TP
is given by TP ↑ ω.

Van Emden and Kowalski have shown that the above least fixpoint coincides with

the least Herbrand model of a definite logic program P . The result is extended by

Apt, Blair and Walker [1988], in their paper they developed a nonmonotonic fixpoint
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operator and its iterative fixpoint for logic programs with negation. Przymusinski
[1988a] showed that Apt et al.’s fixpoint characterizes the perfect model of a stratified

logic program. Further extensions of fixpoint semantics for normal logic programs are

studied for the stable model semantics [Sacca and Zaniolo, 1990; Fages, 1991] and the

well-founded semantics [van Gelder, 1989; Przymusinski, 1989a; van Gelder et al.,

1991].

In the context of disjunctive programs, Minker and Rajasekar [1990] introduced a

new fixpoint semantics for positive disjunctive programs. They first introduced the

extended Herbrand base as the set of all ground positive disjunctions from a program,

and defined the notion of a state as a set of positive disjunctions from the extended

base. Then they developed a fixpoint operator which operates on states and showed

that its least fixpoint contains disjunctions which are true in every minimal model of

a program.

Such a state based fixpoint semantics is extended to stratified disjunctive programs
[Rajasekar and Minker, 1989] and normal disjunctive programs [Baral et al., 1992a;

Przymusinski, 1990b; Przymusinski, 1991b]. Yet other fixpoint semantics are also

presented in the literature such as [Ross and Topor, 1988; Reed et al., 1991; Fernandez

and Minker, 1991b; Decker, 1992; Inoue and Sakama, 1992]. Detailed discussion on

the fixpoint semantics of disjunctive programs is presented in Chapter 3.

2.5 Computational Complexity

In this section, we briefly review basic concepts of complexity theory. More on the

subject can be found in [Garey and Johnson, 1979; Johnson, 1990].

Complexity theory is used to classify problems according to their intrinsic com-

putational difficulties. For classification, some complexity classes are introduced to

characterize problems. In this dissertation, we are mainly concerned with decision

problems which admit boolean answers (yes/no).

The class P represents the set of all decision problems solvable by deterministic

Turing machines in polynomial time. A problem in this class is called tractable or

efficiently solvable.

On the other hand, the class NP represents the set of all decision problems solvable

by non-deterministic Turing machines in polynomial time. The class co-NP is the set

of problems whose complements are in NP. Apparently, the class P is included both

in the class NP and in co-NP. The question whether this inclusion is strict remains

open, but it is usually considered that P 6=NP.
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The polynomial hierarchy consists of classes ∆P
k , ΣP

k , and ΠP
k defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P,

∆P
k+1 = PΣPk , ΣP

k+1 = NPΣPk , ΠP
k+1 = co-ΣP

k+1 (k ≥ 0).

In particular, ∆P
1 =P, ΣP

1 =NP, and ΠP
1 =co-NP.

In the above, ∆P
k+1 (resp. ΣP

k+1) is the set of problems solvable deterministically

(resp. non-deterministically) in polynomial time with an oracle for the problems in

ΣP
k , while ΠP

k+1 consists of the complements of ΣP
k+1. An oracle is considered as a

subroutine without cost, that is, it is decided in unit time for any problem.

In the polynomial hierarchy, the relations ∆P
k ⊆ ΣP

k ∩ ΠP
k and ΣP

k ∪ ΠP
k ⊆ ∆P

k+1

hold. Problems included in the upper levels of the hierarchy are more difficult to

solve than those in lower levels unless the polynomial hierarchy collapses.

A problem is called C-hard if every problem in a class C is efficiently reducible to

the problem by a polynomial-time transformation. The C-hard problem is also called

C-complete if the problem itself belongs to the class C. For instance, checking the

satisfaction of any propositional theory is an NP-complete problem.

When we discuss the complexity issue of logic programming, (finite) propositional

logic programs are usually assumed. This is because in the presence of function

symbols, a program containing variables has the infinite set of ground clauses, then

checking its satisfiability is undecidable even in the case of Horn logic programs.6 For

propositional Horn logic programs, deciding whether a ground atom is derived from a

program is tractable. This is also the case for the decision problem under the perfect

model semantics of propositional stratified logic programs [Apt et al., 1988].

On the other hand, when a propositional logic program has multiple canonical

models, the computational complexity of the program is usually characterized by the

following three decision problems.

Existence: Deciding the existence of a canonical model of a program.

Set-Membership: Deciding whether a ground atom is true in some canonical model

of a program.

Set-Entailment : Deciding whether a ground atom is true in every canonical model

of a program.

6For programs containing variables, their undecidabilities are characterized by the arithmetic
hierarchy of recursion theory. But we do not discuss such recursion-theoretic characterizations in
the dissertation.
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The set-membership problem also characterizes credulous reasoning , while the

set-entailment problem characterizes skeptical reasoning . For example, the existence

problem and the set-membership problem for the stable model semantics of normal

logic programs are both NP-complete, while the set-entailment problem is coNP-

complete [Marek and Truszczynski, 1991a; 1991b]. In disjunctive programs, problems

become harder than normal logic programs in general. The set-membership problem

for the disjunctive stable model semantics is ΣP
2 -complete, while the set-entailment

problem is ΠP
2 -complete. It is known that similar results also hold for nonmonotonic

logics [Gottlob, 1992].

For surveys on the complexity issues in logic programming, see [Schlipf, 1992b;

Eiter and Gottlob, 1993a; Cadori and Schaerf, 1993].
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Chapter 3

Possible Model Semantics for
Disjunctive Logic Programs

In this chapter, we introduce a new declarative semantics of disjunctive programs

called the possible model semantics . The possible model semantics is an alternative

theoretical framework to the classical minimal model semantics and provides a flexible

inference mechanism for inferring negation in disjunctive programs. The possible

model semantics is characterized by a new fixpoint semantics of disjunctive programs.

We also present a proof procedure for the possible model semantics and show that

the possible model semantics has an advantage from the computational complexity

point of view.

3.1 Introduction

Traditionally, the declarative semantics of logic programming and deductive databases

has been studied based on the notion of minimal models . For instance, the least

Herbrand model semantics for Horn logic programs [van Emden and Kowalski, 1976],

the prefect model semantics for stratified logic programs [Przymusinski, 1988a], and

the stable model semantics for normal logic programs [Gelfond and Lifschitz, 1988]

are all minimal models. The minimal models reflect the so-called Occam’s razor such

that “only those objects should be assumed to exist which are minimally required by

the context”. Such a principle of minimality plays a fundamental role in the area of

not only logic programming but also nonmonotonic reasoning in artificial intelligence
[McCarthy, 1980]. Therefore, it has been recognized that the principle of minimality is

one of the most basic and indispensable criteria that each semantics for commonsense

reasoning should obey [Schlipf, 1992a].

33
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This is also the case in the context of disjunctive programs, namely, the minimal

model semantics for positive disjunctive programs [Minker, 1982] and the disjunc-

tive stable model semantics for normal disjunctive programs [Przymusinski, 1988b;

Gelfond and Lifschitz, 1991] are both minimal. However, it has also been pointed out

that such a minimalism is not always appropriate in a theory containing indefinite

information. Ross and Topor [1988] have firstly noticed this problem in the context of

inferring negation in disjunctive programs. They argue that when one infers negation

from a disjunctive program, one should be cautious to interpret disjunctions inclu-

sively rather than exclusively . In fact, the minimal model semantics minimizes truth

extensions of predicates as much as possible, then it usually interprets disjunctions

exclusively and maximizes negative information inferred from a program.

In positive disjunctive programs, Minker [1982] has extended Reiter’s CWA to the

generalized closed world assumption (GCWA). On the other hand, Ross and Topor
[1988] have proposed an alternative rule called the disjunctive database rule (DDR),

which turns out to be equivalent to the weak generalized closed world assumption

(WGCWA) independently proposed by Rajasekar et al. [1989].

Comparing these two rules, the GCWA is based on the minimal model semantics

and usually interprets disjunctions exclusively, while the DDR and the WGCWA are

weaker than the GCWA and interpret disjunctions inclusively. Thus, both the GCWA

and the WGCWA (or DDR) fairly extend the CWA, but the problem is that they

are inherently different from each other. In fact, in the absence of a single uniform

framework, one has to use these separate rules in order to treat both exclusive and

inclusive disjunctions in the same program. Such a situation actually happens in our

real life situations. For instance, consider the program:

land-animal ∨ aquatic← animal,

biped ∨ quadruped← land-animal,

amphibian← land-animal ∧ aquatic,

in which the disjunction in the first clause is inclusive, while the disjunction in the

second clause is exclusive. As another example, a disjunctive clause possibly contains

hybrid disjunctions such as:

Sunday ∨ national-holiday ∨ weekday ← calendar-days,

in which Sunday∨weekday is exclusive, while Sunday∨national-holiday is inclusive.

To treat such kinds of programs, we need a single framework which can distinguish

two kinds of disjunctions. Another point is that Ross and Topor, and Rajasekar et al.



POSITIVE DISJUNCTIVE PROGRAMS 35

have provided a rule for inferring negation in inclusive disjunctive programs, however,

they concern only negative information in a program and do not provide any model

theoretical meaning for inclusive disjunctive programs as a counterpart of the minimal

model semantics.

In this chapter, we present an alternative approach to the declarative semantics

of disjunctive programs. We first introduce a new semantics called the possible model

semantics for disjunctive programs. In contrast to the classical minimal model se-

mantics, the possible model semantics considers not only minimal models but also

certain kinds of non-minimal models in a program. Due to its non-minimal feature,

we show that the possible model semantics enjoys several interesting properties. Es-

pecially by treating both inclusive and exclusive disjunctions uniformly in a program,

it can provide a flexible mechanism for inferring negation in a program. Next we

present a new fixpoint semantics of disjunctive programs. We introduce a mapping

operating over sets of interpretations and show that its fixpoint closure character-

izes the possible models of a disjunctive program. We also develop an algorithm to

compute the possible model semantics in normal disjunctive programs which is based

on a bottom-up model generation proof procedure. We finally discuss the computa-

tional complexity of the possible model semantics and show that the possible model

semantics has a computational advantage compared with other minimal model based

semantics.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the

possible model semantics for positive disjunctive programs and present its properties.

The possible model semantics is also extended to normal disjunctive programs in Sec-

tion 3.3. In Section 3.4, we propose a new fixpoint semantics of disjunctive programs

to characterize the possible model semantics. A proof procedure for computing pos-

sible models is given in Section 3.5. In Section 3.6, we discuss the computational

aspect of the possible model semantics. Section 3.7 presents detailed comparisons

with related work, and Section 3.8 summarizes this chapter.

3.2 Possible Model Semantics for Positive Disjunc-

tive Programs

In this section, we first consider positive disjunctive programs, that is, disjunctive

programs containing no default negation.
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3.2.1 Negation in Positive Disjunctive Programs

As presented in Section 2.3, Reiter’s CWA is not useful in the context of disjunc-

tive programs. Then, for inferring negation in positive disjunctive programs, Reiter’s

CWA is mainly extended in two ways: one is Minker’s generalized closed world as-

sumption (GCWA) and the other is Ross and Topor’s disjunctive database rule (DDR)

or Rajasekar et al.’s weak generalized closed world assumption (WGCWA).1 We first

review definitions and properties of those two frameworks.

Given a positive disjunctive program P , let us denote by MMP the set of all

minimal models of P . Then the GCWA is defined as follows.

Definition 3.1 ([Minker, 1982]) Let P be a consistent positive disjunctive program.

Then GCWA(P ) is defined as:

GCWA(P ) = {¬A | A ∈ HBP and A 6∈ I for any I ∈MMP}. 2

On the other hand, the WGCWA provides a weaker form of closed world reasoning

in positive disjunctive programs as follows.

The Horn transformation [Ross and Topor, 1988] of a positive disjunctive program

P is defined as:

Horn(P ) = {Ai ← B1 ∧ . . . ∧Bm | A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm ∈ P
and 1 ≤ i ≤ l, l ≥ 1}.

Note here that Horn(P ) is always consistent since it does not contain integrity

constraints.

Definition 3.2 ([Ross and Topor, 1988; Rajasekar et al., 1989])

Let P be a consistent positive disjunctive program and Horn(P ) be its Horn transfor-

mation. Let MHorn(P ) be the least Herbrand model of Horn(P ). Then WGCWA(P )

is defined as:

WGCWA(P ) = {¬A | A ∈ HBP and A 6∈MHorn(P )}. 2

Properties of the GCWA and the WGCWA are as follows.

Theorem 3.1 ([Minker, 1982; Ross and Topor, 1988; Rajasekar et al., 1989])

Let P be a consistent positive disjunctive program and A be a ground atom. Then,

1According to [Rajasekar et al., 1989; Lobo et al., 1992], the DDR and the WGCWA are equiv-
alent. Then we use the term WGCWA hereafter.
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(i) P ∪GCWA(P ) is consistent.

P ∪WGCWA(P ) is consistent.

(ii) P |= A iff P ∪GCWA(P ) |= A.

P |= A iff P ∪WGCWA(P ) |= A.

(iii) P ⊆ P ′ does not imply GCWA(P ′) ⊆ GCWA(P ).

P ⊆ P ′ implies WGCWA(P ′) ⊆ WGCWA(P ).

(iv) WGCWA(P ) ⊆ GCWA(P ).

(v) For a definite logic program P , GCWA(P ) = WGCWA(P ) = CWA(P ). 2

That is, (i) both GCWA(P ) and WGCWA(P ) are consistent with P , (ii) positive

facts proven from P are invariant , (iii) the GCWA (resp. WGCWA) is non-decreasing

(resp. decreasing), (iv) the GCWA is stronger than the WGCWA, and (v) for definite

logic programs each rule reduces to the CWA.

Example 3.1 Let P be the program:

{ a ∨ b ∨ c←, d← a ∧ b, e← b ∧ c, ← b ∧ c }

where MMP = {{a}, {b}, {c}} and MHorn(P ) = {a, b, c, d, e}. Then, GCWA(P ) =

{¬d,¬e}, while WGCWA(P ) = ∅. 2

In the above example, the GCWA interprets each disjunction exclusively , while

the WGCWA interprets them inclusively . Then, GCWA(P ) excludes the inclusive

interpretation of a ∨ b and infers ¬d from the program. On the other hand, the in-

tegrity constraint ← b ∧ c inhibits an inclusive interpretation of b ∨ c, nevertheless,

WGCWA(P ) cannot infer ¬e. This is because the WGCWA does not consider the

model theoretical meaning of a given program, and ignores the effect of integrity con-

straints in a program. In fact, MHorn(P ) is no longer a model of P . Generally speaking,

the GCWA is too strong to interpret inclusive disjunctions, while the WGCWA is too

weak to treat exclusive disjunctions. Then, to treat both types of disjunctions in a

program, one has to use two different rules in the same program.

To improve such a situation, in the next section we introduce a new declarative

semantics called the possible model semantics , which can distinguish two types of

disjunctions uniformly in a program.
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3.2.2 Possible Model Semantics

A disjunctive program is considered to represent a set of possible facts that might

have been true in the actual world. The possible model semantics is intended to

formulate this situation.

Given a positive disjunctive program P , a split program is defined as a ground

Horn logic program obtained from P by replacing each ground disjunctive clause of

the form:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm

with the following ground definite clauses (called split clauses):

Ai ← B1 ∧ . . . ∧Bm for every Ai ∈ S

where S is some non-empty subset of {A1, . . . , Al}. Note that every ground Horn

clause from P is included in any split program of P . Then, a possible model of P is

defined as the least Herbrand model of any split program of P . The set of all possible

models of P is denoted by PMP .

Example 3.2 Let P be the program:

{ a ∨ b←, b ∨ c←, ← b ∧ c }.

Then the split programs of P are

{a←, b←, ← b ∧ c},
{a←, c←, ← b ∧ c},
{b←, ← b ∧ c},
{b←, c←, ← b ∧ c},
{a←, b←, c←, ← b ∧ c}.

Since the last two split programs are inconsistent, the set of all possible models of P

is PMP = {{a, b}, {a, c}, {b}}. 2

Possible models have the following properties.

Proposition 3.2 A consistent positive disjunctive program has at least one possible

model.

Proof: Since a consistent positive disjunctive program has a consistent

split program, the result immediately follows. 2
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Proposition 3.3 A possible model of a positive disjunctive program P is a model

of P .

Proof: Let M be a possible model of P such that M is the least Herbrand

model of a consistent split program Ps. Then, for each clause C ′ : Ai ←
B1 ∧ . . . ∧ Bm in Ps, there is a corresponding clause C : A1 ∨ . . . ∨ Al ←
B1 ∧ . . . ∧ Bm in P where 1 ≤ i ≤ l. Since M satisfies each C ′, it also

satisfies C. Also each integrity constraint in P is included in Ps and is

satisfied in M . Hence M is a model of P . 2

The notion of possible models is different from minimal models. In fact, in Exam-

ple 3.2, {a, b} is a possible model, but not a minimal model. The intuitive meaning

of the possible model is that each atom included in a possible model has its possible

justification in a program. Thus, both inclusive and exclusive interpretations of dis-

junctions are considered whenever there is no integrity constraint to inhibit inclusive

interpretations. The following property directly follows from the definition.

Proposition 3.4 A possible model is a supported model. 2

Note that the converse of the above proposition does not hold in general. For

example, {a} is a supported model of the program { a ∨ b← a }, but not a possible

model. The following relationship holds between possible models and minimal models

of a program.

Proposition 3.5 Let P be a consistent positive disjunctive program. Then the set

of all minimal elements from PMP coincides with MMP .

Proof: Let M be a minimal model of P . Then, for each clause A1 ∨ . . .∨
Al ← B1 ∧ . . . ∧ Bm in P , {B1, . . . , Bm} ⊆ M implies Ai ∈ M for some

i (1 ≤ i ≤ l). In this case, there is a split program Ps of P which contains

Ai ← B1∧ . . .∧Bm. Since M satisfies each integrity constraint in P , M is

the least Herbrand model of the consistent Horn logic program Ps, hence

a possible model of P . Thus, MMP is included in PMP . On the other

hand, since each possible model is a model of P by Proposition 3.3, the

set of all minimal elements from PMP coincides with MMP . 2

Thus the set of minimal models is a subset of the set of possible models. In

particular, a definite logic program has a unique possible model which is the least

Herbrand model of the program. The above proposition implies that as for the infer-

ence of positive facts, the possible model semantics coincides with the minimal model

semantics.
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Theorem 3.6 Let P be a consistent positive disjunctive program. An atom A is

true in P iff A is included in every possible model of P . 2

Note that possible models depend on the syntax of a program. For instance, two

programs { a ∨ b ←, a ← } and { a ← } are equivalent under first-order logic,

while the first program has the possible model {a, b} which is not a possible model

of the second program. This is because the first program is intended to specify some

indefinite information about b, while it is not the case in the second program. Such

a distinction is in fact meaningful in knowledge representation. Suppose a situation

like that:

There is a visitor at my house whom I do not know. I am living with

my parents so that I guess either my mother or farther must know him:

know(mother, visitor) ∨ know(father, visitor). After a while, mother

comes back and she actually knows him: know(mother, visitor), and

at this moment the possibility is open that my father’s knowing him

too. However, if we replace the previous belief know(mother, visitor) ∨
know(father, visitor) with know(mother, visitor), the negation

¬know(father, visitor) is assumed under the closed world assumption.

Thus, logically equivalent sentences do not necessarily have the same meaning

from the viewpoint of knowledge representation. Generally speaking, the syntax of

a program plays an important role in logic programming to specify our intended

knowledge, then it appears natural that the possible model semantics also shares

such syntax-dependent properties.

Next we consider the inference of negative facts under the possible model seman-

tics. Under the possible model semantics, negation is defined as follows.

Definition 3.3 Let P be a consistent positive disjunctive program. Then the possible

world assumption (PWA) of P is defined as:

PWA(P ) = {¬A | A ∈ HBP and A 6∈ I for any I ∈ PMP}. 2

Theorem 3.7 Let P be a consistent positive disjunctive program and A be a ground

atom. Then,

(i) P ∪ PWA(P ) is consistent.

(ii) P |= A iff P ∪ PWA(P ) |= A.
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(iii) P ⊆ P ′ does not imply PWA(P ′) ⊆ PWA(P ).

(iv) For a definite logic program P , PWA(P ) = CWA(P ).

Proof: (i) Since P is consistent, it has a minimal model M which is

also a possible model of P . Then, by definition, M is also a model of

P∪PWA(P ), hence the result follows. (ii) The result directly follows from

Theorem 3.6. (iii) Let P = { a∨b←, c← a∧b } and P ′ = P∪{ ← a∧b }.
Then PWA(P ) = ∅, while PWA(P ′) = {¬c}. (iv) For a definite logic

program P , PMP contains the unique least Herbrand model of P , hence

the result follows. 2

The next theorem presents that the PWA is stronger than the WGCWA and

weaker than the GCWA.

Theorem 3.8 Let P be a consistent positive disjunctive program. Then the following

relationship holds:

WGCWA(P ) ⊆ PWA(P ) ⊆ GCWA(P ).

In particular, WGCWA(P ) = PWA(P ) if P ∪Horn(P ) is consistent.

Proof: The relationship PWA(P ) ⊆ GCWA(P ) immediately follows

from the fact that MMP ⊆ PMP . Since the least Herbrand model

MHorn(P ) of Horn(P ) is a superset of any possible model in PMP , the re-

lationship WGCWA(P ) ⊆ PWA(P ) also holds. In particular, Horn(P )

is the set of all definite clauses included in the maximal split program

of P . Then, if P ∪ Horn(P ) is consistent, MHorn(P ) coincides with the

maximal element in PMP , hence the result follows. 2

Example 3.3 (cont. from Example 3.1) Let P be the program:

{ a ∨ b ∨ c←, d← a ∧ b, e← b ∧ c, ← b ∧ c }

where PMP = {{a}, {b}, {c}, {a, b, d}, {a, c}}. Then, PWA(P ) implies ¬e, but not

¬d. 2

Note that in the above example P ∪ Horn(P ) is inconsistent and WGCWA(P )

fails to capture the intended meaning of P . By contrast, the possible model semantics

can infer proper negation by distinguishing two kinds of disjunctions using integrity

constraints.

The possible model semantics was independently discovered by Chan [1993] under

the name of the possible world semantics . In [Chan, 1993], both notions are proven

to be equivalent in positive disjunctive programs.
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3.3 Possible Model Semantics for Normal Disjunc-

tive Programs

In this section, we extend the possible model semantics of positive disjunctive pro-

grams to normal disjunctive programs.

The notion of split programs is defined in the same manner as positive disjunctive

programs. Given a normal disjunctive program P , its split program is defined as a

ground normal logic program obtained from P by replacing each ground disjunctive

clause of the form:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn

with the following ground normal clauses (called split clauses):

Ai ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn for every Ai ∈ S

where S is some non-empty subset of {A1, . . . , Al}. Then, a possible model of P is

defined as a stable model of any split program of P . The set of all possible models of

P is denoted by PMP . A normal disjunctive program having at least one possible

model is called p-coherent , otherwise it is called p-incoherent .

The possible models defined above reduce to those presented in the previous sec-

tion in a positive disjunctive program. Also, possible models coincide with stable

models in normal logic programs. The following properties hold.

Proposition 3.9 A possible model of a normal disjunctive program P is a model of

P . 2

Proposition 3.10 A possible model is a supported model, but not vice versa. 2

Proposition 3.11 Let P be a consistent normal disjunctive program and ST P be

the set of all stable models of P . Then the set of all minimal elements from PMP

contains ST P .

Proof: By definition, a stable model M of P is also a stable model of

some split program of P . Then M is also a possible model of P . Since M

is minimal, it is also a minimal element in PMP . 2

The above proposition implies that a coherent normal disjunctive program is also

p-coherent (but not vice versa, see Example 3.9). The converse of the above proposi-

tion does not hold in general. That is, minimal possible models are not always stable

models.
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Example 3.4 Let P be the program:

{ a ∨ b←, b← a, c← not a }.

Then PMP = {{a, b}, {b, c}}, and {a, b} is a minimal element in PMP but not a

stable model of P . 2

In the above example, {b, c} is the unique stable model of P , hence c is true

under the disjunctive stable model semantics. However, this is not the case under the

possible model semantics, since there is an inclusive interpretation of the disjunction

{a, b} in which c is not true. Thus, in contrast to the case of positive disjunctive

programs, positive facts true under the possible model semantics (viz. positive facts

true in every possible model) differ from those ones under the disjunctive stable

model semantics. At the end of this subsection, we will also show the case that the

possible model semantics implies more positive facts than the disjunctive stable model

semantics.

Now we consider negative inference in normal disjunctive programs. We first

define an extension of the GCWA as negation under the disjunctive stable model

semantics.

Definition 3.4 Let P be a coherent normal disjunctive program. Then GCWA¬(P )

is defined as:

GCWA¬(P ) = {¬A | A ∈ HBP and A 6∈ I for any I ∈ ST P}. 2

Next, in order to define a suitable extension of the WGCWA, we introduce a

transformation from a normal disjunctive program to a normal logic program.

The NLP-transformation of a normal disjunctive program P is defined as:

NLP (P ) = {Ai ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn | A1 ∨ . . . ∨ Al ←
B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn ∈ P and 1 ≤ i ≤ l, l ≥ 1 }.

The NLP (P ) is a direct extension of Horn(P ), and NLP (P ) = Horn(P ) holds

for a positive disjunctive program P . For a coherent normal disjunctive program P ,

NLP (P ) is not always coherent.

Example 3.5 Let P be the program:

{ a ∨ b← not a }.

Then its NLP -transformation becomes

NLP (P ) = { a← not a, b← not a }.

Here ST P = {{b}}, while ST NLP (P ) = ∅. 2
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Conversely, there is an incoherent program whose NLP -transformation has a sta-

ble model.

Example 3.6 Let P be the program:

{ a ∨ b←, b← a, ← not a }.

Then ST P = ∅, while ST NLP (P ) = {{a, b}}. 2

We say that a normal disjunctive program P is weakly coherent if either P or

NLP (P ) has a stable model. Clearly, a coherent program is also weakly coherent,

but not vice versa.

Definition 3.5 Let P be a weakly coherent normal disjunctive program. Then

WGCWA¬(P ) is defined as:

WGCWA¬(P ) = {¬A | A ∈ HBP and A 6∈ I for any I ∈ ST P ∪ ST NLP (P )} 2

This definition is natural in the sense that WGCWA¬(P ) restricts its negative

inference like the WGCWA by taking into account the stable models of NLP (P ). A

similar extension is also given in [Dix, 1992a] in a different context. Note that in the

above definition, one may consider that by analogy with the WGCWA, considering

ST NLP (P ) is enough instead of ST P ∪ ST NLP (P ). But this is not the case. For

instance, let P = { a ∨ b←, c← not a, c← not b }. Then ST P = {{a, c}, {b, c}},
hence GCWA¬(P ) does not imply ¬c. On the other hand, NLP (P ) = { a←, b←,
c← not a, c← not b }, then ST NLP (P ) = {{a, b}} which implies ¬c. Thus, without

ST P , the WGCWA¬ is not weaker than the GCWA¬ any more.

The PWA is also extended in normal disjunctive programs as follows.

Definition 3.6 Let P be a p-coherent normal disjunctive program. Then PWA¬(P )

is defined as:

PWA¬(P ) = {¬A | A ∈ HBP and A 6∈ I for any I ∈ PMP}. 2

Now we investigate the properties of each rule. In the following, we write P |=ST A

(resp. P |=PM A) if A ∈ I for any I ∈ ST P (resp. I ∈ PMP ).

Theorem 3.12 Let P be a normal disjunctive program and A be a ground atom.

Then the following properties hold.
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1. (i) If P is coherent, P ∪GCWA¬(P ) is coherent.

(ii) P |=ST A iff P ∪GCWA¬(P ) |=ST A.

(iii) P ⊆ P ′ does not imply GCWA¬(P ′) ⊆ GCWA¬(P ).

(iv) For a positive disjunctive program P , GCWA¬(P ) = GCWA(P ).

2. (i) If P is weakly coherent, P ∪WGCWA¬(P ) is weakly coherent.

(ii) P |=ST A iff P ∪WGCWA¬(P ) |=ST A.

(iii) P ⊆ P ′ does not imply WGCWA¬(P ′) ⊆ WGCWA¬(P ).

(iv) For a positive disjunctive program P , WGCWA¬(P ) = WGCWA(P ).

3. (i) If P is p-coherent, P ∪ PWA¬(P ) is p-coherent.

(ii) P |=PM A iff P ∪ PWA¬(P ) |=PM A.

(iii) P ⊆ P ′ does not imply PWA¬(P ′) ⊆ PWA¬(P ).

(iv) For a positive disjunctive program P , PWA¬(P ) = PWA(P ).

Proof: 1. (i) Since P is coherent, it has at least one stable model

and every negated atom in GCWA¬(P ) is not included in any stable

model of P , hence P ∪ GCWA¬(P ) is coherent. (ii) Any negated atom

in GCWA¬(P ) is not included in any stable model. Then adding such

negative facts to P does not affect the construction of stable models.

Hence the result follows. (iii) The GCWA¬ is non-decreasing since the

GCWA¬ includes the GCWA (by (iv)) which is non-decreasing. (iv) Since

stable models reduce to minimal models in a positive disjunctive program,

the result immediately follows.

2. (i) When P is weakly coherent, every negated atom in WGCWA¬(P )

is not included in any stable model of P and NLP (P ). Hence, P ∪
WGCWA¬(P ) is also weakly coherent. (ii) The result follows from (i).

(iii) For the non-decreasing property of WGCWA¬(P ), see Example 3.7.

(iv) Since ST P ∪ ST NLP (P ) reduces toMMP ∪ {MHorn(P )} in a positive

disjunctive program P , and each minimal model in MMP is a subset of

MHorn(P ), the result also holds.

3. (i) and (ii) follow directly from the definition. (iii) The PWA¬ is

non-decreasing since the PWA¬ includes the PWA (by (iv)) which is non-

decreasing. (iv) Since possible models in a normal disjunctive program

reduce to those presented in the previous section in a positive disjunctive

program, the result immediately follows. 2
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Notice that in contrast to the WGCWA, the WGCWA¬ is non-decreasing.

Example 3.7 Let P be the program:

{ a ∨ b← not c, c← d }

and P ′ = P ∪ { d ← }. Then, ST P ∪ ST NLP (P ) = {{a}, {b}, {a, b}} and ST P ′ ∪
ST NLP (P ′) = {{c, d}}. Hence, WGCWA¬(P ) = {¬c,¬d}, while WGCWA¬(P ′) =

{¬a,¬b}. 2

Thus, in the presence of default negation in a program, the monotonic decreasing

property of the WGCWA does not hold any more.

For coherent normal logic programs, the three rules coincide.

Proposition 3.13 Let P be a coherent normal logic program. Then, GCWA¬(P ) =

WGCWA¬(P ) = PWA¬(P ).

Proof: For a coherent normal logic program P , ST P ∪ST NLP (P ) = ST P .

Then the relation GCWA¬(P ) = WGCWA¬(P ) holds by each definition.

The relation GCWA¬(P ) = PWA¬(P ) also holds since ST P = PMP

holds for a coherent normal logic program P . 2

The next theorem presents the relationship among the three rules in normal dis-

junctive programs.

Theorem 3.14 Let P be a coherent normal disjunctive program. Then,

(i) WGCWA¬(P ) ⊆ GCWA¬(P ).

(ii) PWA¬(P ) ⊆ GCWA¬(P ).

Proof: Since ST P ⊆ ST P ∪ ST NLP (P ), (i) follows from definitions. The

part (ii) also follows from the fact that ST P ⊆ PMP . 2

As for the WGCWA¬ and the PWA¬, there is no inclusion relationship.

Example 3.8 Consider the program:

P = { a ∨ b ∨ c← not d, e← a ∧ b ∧ not c }.

Then ST P = {{a}, {b}, {c}}, ST NLP (P ) = {{a, b, c}}, andWGCWA¬(P ) = {¬d,¬e},
while PMP = {{a}, {b}, {c}, {a, b, e}, {b, c}, {c, a}, {a, b, c}} and PWA¬(P ) = {¬d}.
Hence, WGCWA¬(P ) 6⊆ PWA¬(P ). The converse inclusion relation does not hold

by Theorem 3.8 either, since each rule reduces to the WGCWA or the PWA in positive

disjunctive programs. 2
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In the above example, WGCWA¬(P ) treats the disjunction a ∨ b ∨ c inclusively,

then it infers ¬e. This is also the case for GCWA¬(P ) which treats it exclusively. On

the other hand, there is the possible model {a, b, e} in which a and b are inclusively

true and c is exclusively false at the same time, then ¬e is not inferred by PWA¬(P ).

This example illustrates that the possible model semantics also properly treats both

types of disjunctions in normal disjunctive programs and provides the most careful

negative inference compared with the other two rules.

Moreover, the PWA¬ can often infer proper negation even in an incoherent pro-

gram.

Example 3.9 Let P be the program:

{ a ∨ b←, b← a, ← not a, c← not b }.

Then ST P = ∅, ST NLP (P ) = {{a, b}}, and PMP = {{a, b}}, hence GCWA¬(P ) is

not well-defined, while PWA¬(P ) and WGCWA¬(P ) imply ¬c. 2

The above program is incoherent, but p-coherent, since {a, b} is a possible model

of P which is not a stable model. Observing the above program, the third clause

asserts that a should be true, which possibly holds by the first disjunctive clause.

Also the truth of a implies the truth of b in the second clause, then it seems natural

to assert the falsity of c by the last clause.

As shown in the above example, the disjunctive stable model semantics often

fails to capture the intended meaning of a program because of its minimal feature.

By contrast, the possible model semantics is well-defined whenever a stable model

exists, and is often useful than the disjunctive stable model semantics thanks to its

non-minimal nature.

3.4 Fixpoint Semantics

In this section, we present a new fixpoint semantics for disjunctive programs to charac-

terize the possible model semantics presented in the previous sections. We first give

a fixpoint semantics for positive disjunctive programs, and generalize it to normal

disjunctive programs.

3.4.1 Fixpoint Semantics for Positive Disjunctive Programs

In a definite logic program, van Emden and Kowalski [1976] introduced a fixpoint

operator which computes the definite consequences of the program. However, the
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situation becomes more complicated in the presence of indefinite consequences in

disjunctive programs. In order to characterize such non-deterministic behavior of

disjunctive programs, we first introduce a closure operator which operates over the

lattice of sets of Herbrand interpretations 22HBP .

Definition 3.7 Let P be a positive disjunctive program and I be a set of interpre-

tations. Then a mapping TP : 22HBP → 22HBP is defined as

TP (I) =
⋃
I∈I

TP (I)

where the mapping TP : 2HBP → 22HBP is defined as follows:

TP (I) =



∅ , if {B1, . . . , Bm} ⊆ I for some ground integrity constraint
← B1 ∧ . . . ∧Bm from P ;

{ J | for each ground clause Ci : A1 ∨ . . . ∨ Ali ← B1 ∧ . . . ∧Bmi

from P such that {B1, . . . , Bmi} ⊆ I,
J = I ∪ ⋃

Ci {Aj} (1 ≤ j ≤ li) } , otherwise . 2

Thus, TP (I) is the set of interpretations J ’s such that for each clause Ci whose

body is satisfied by I, I is expanded into J by adding one disjunct Aj from the heads

of every such Ci. In particular, if I does not satisfy an integrity constraint from P , I

is removed in TP (I).

Example 3.10 Let P be the program:

{ a ∨ b← c, d← c, c←, ← a ∧ b }.

Then, TP ({c}) = {{c, d, a}, {c, d, b}} and TP ({{c, d, a}, {c, d, b}}) = {{c, d, a}, {c, d, b},
{c, d, a, b}}. 2

Definition 3.8 The ordinal powers of TP are defined as follows:

TP ↑ 0 = {∅},
TP ↑ n+ 1 = TP (TP ↑ n),
TP ↑ ω =

⋃
α<ω

⋂
α≤n<ω TP ↑ n,

where n is a successor ordinal and ω is a limit ordinal. 2

The above definition means that at the limit ordinal ω the closure retains interpre-

tations which are persistent in the preceding iterations. That is, for any interpretation

I in TP ↑ ω, there is an ordinal α smaller than ω such that for every n (α ≤ n < ω),

I is included in TP ↑ n. Such a closure definition is also used in [Fages, 1991;

Teusink, 1993a] for computing stable models of normal logic programs.
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Theorem 3.15 TP ↑ ω is a fixpoint.

Proof: When I ∈ TP ↑ ω, suppose that there is no interpretation J in

TP ↑ ω such that I ∈ TP ({J}). In this case, for any α there is some

n (α ≤ n < ω) such that J is not included in TP ↑ n. Then I 6∈ TP ↑
n + 1. This contradicts the fact that I ∈ TP ↑ ω. Thus, J ∈ TP ↑ ω, so

I ∈ TP (TP ↑ ω). Conversely, if I ∈ TP (TP ↑ ω), there is an interpretation

J in TP ↑ ω such that I ∈ TP ({J}). Then J is included in any TP ↑ n for

α ≤ n < ω by definition. Thus I ∈ TP ↑ n for any α+ 1 ≤ n < ω. Hence,

I ∈ TP ↑ ω. 2

Example 3.11 (cont. from Example 3.10) Given the program P , it becomes

TP ↑ 1 = {{c}},
TP ↑ 2 = {{c, d, a}, {c, d, b}},
TP ↑ 3 = {{c, d, a}, {c, d, b}, {c, d, a, b}},
TP ↑ 4 = {{c, d, a}, {c, d, b}, {c, d, a, b}},

where TP ↑ ω = TP ↑ 3. 2

In the above example, the interpretation {c, d, a, b} in TP ↑ 3 is pruned in TP ↑ 4

by the integrity constraint ← a ∧ b, while the same interpretation is also generated

from {c, d, a} and {c, d, b} in TP ↑ 3, hence {c, d, a, b} remains in TP ↑ 4.

By definition, the fixpoint closure presented above exists for any program and is

uniquely determined. Intuitively, the fixpoint characterizes a set of interpretations

which are “generated” in a program by starting from the empty interpretation. Next

we show that the fixpoint closure in fact contains what we want, i.e., the set of all

possible models.

Lemma 3.16 Let P be a positive disjunctive program. Then I is a model of P iff

I ∈ TP ({I}).

Proof: I is a model of P

iff it satisfies integrity constraints and for each clause A1 ∨ . . . ∨ Al ←
B1∧. . .∧Bm in P , {B1, . . . , Bm} ⊆ I implies Ai ∈ I for some Ai (1 ≤ i ≤ l)

iff I ∈ TP ({I}). 2

Let µ(TP ↑ ω) = { I | I ∈ TP ↑ ω and I ∈ TP ({I}) }. Then, by Lemma 3.16,

µ(TP ↑ ω) represents the set of models of P which are included in the fixpoint closure.

Also let min(I) = { I ∈ I |6 ∃ J ∈ I such that J ⊂ I }. Then the following relations

hold.
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Theorem 3.17 Let P be a positive disjunctive program. Then,

(i) PMP = µ(TP ↑ ω) .

(ii) MMP = min(µ(TP ↑ ω)) .

Proof: (i) I is in µ(TP ↑ ω)

iff I is included in TP ↑ ω and is a model of P (by Lemma 3.16)

iff each Ai in I is included in the derived head of a ground clause A1 ∨
. . . ∨ Al ← B1 ∧ . . . ∧ Bm (1 ≤ i ≤ l) in P and I satisfies every integrity

constraint in P

iff I is the least Herbrand model of a consistent split Horn logic program

Ps of P and each Ai in I is derived by the split clause Ai ← B1∧ . . .∧Bm

in Ps
iff I is in PMP .

(ii) The result follows from (i) and Proposition 3.5. 2

Corollary 3.18 A positive disjunctive program P is inconsistent iff µ(TP ↑ ω) = ∅.
2

Example 3.12 (cont. from Example 3.11)

µ(TP ↑ ω) = {{c, d, a}, {c, d, b}}, which coincides with the set of all possible models

of P . 2

For definite logic programs, our fixpoint construction reduces to van Emden and

Kowalski’s fixpoint semantics [van Emden and Kowalski, 1976].

Corollary 3.19 Let P be a definite logic program. Then TP ↑ ω contains the unique

least Herbrand model of P . 2

3.4.2 Fixpoint Semantics for Normal Disjunctive Programs

Now we extend the fixpoint semantics of positive disjunctive programs to normal dis-

junctive programs. To this end, we first introduce a program transformation which

translates a normal disjunctive program into a semantically equivalent positive dis-

junctive program.2

2The transformation is originally introduced in [Inoue et al., 1992] in a different form.
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Definition 3.9 Let P be a normal disjunctive program. Then its epistemic transfor-

mation is defined as the positive disjunctive program P κ obtained from P by replacing

each clause containing default negation:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (m 6= n) (3.1)

with the following not-free clauses in P κ:

λ1 ∨ . . . ∨ λl ∨ KBm+1 ∨ . . . ∨ KBn ← B1 ∧ . . . ∧Bm , (3.2)

Ai ← λi for i = 1, . . . , l , (3.3)

← λi ∧Bj for i = 1, . . . , l and j = m+ 1, . . . , n , (3.4)

λi ← Ai ∧ λk for i = 1, . . . , l and k = 1, . . . , l . (3.5)

In particular, each integrity constraint containing default negation is transformed into

KBm+1 ∨ . . . ∨ KBn ← B1 ∧ . . . ∧Bm .

Note here that each not-free clause in P is included in P κ as it is. 2

In the epistemic transformation, the newly introduced atom KBj means that Bj

is believed . With this epistemic reading, each default negation notBj in the body of

a clause is rewritten in ¬KBj which means that Bj is disbelieved ,3 and shifted to the

head of the clause. Also each λi is a newly introduced atom appearing nowhere in P

and is uniquely associated with each ground instance of a clause (3.1) from P .4

An intuitive reading of the transformed clauses is that if B1, . . . , Bm are true, then

some Ai (1 ≤ i ≤ l) becomes true via λi when Bm+1, . . . , Bn are not true; otherwise,

some Bj (m + 1 ≤ j ≤ n) is believed. The clause (3.5) has an effect to associate

λi with Ai whenever Ai is true and another disjunct Ak is derived from (3.2) via

λk.
5 In this way, every normal disjunctive program P is transformed into a positive

disjunctive program P κ. Then we can construct the fixpoint of P κ as presented in

the previous section.

Let Iκ be an interpretation of P κ. Then Iκ is called canonical if KA ∈ Iκ implies

A ∈ Iκ for any atom A in HBP . That is, in a canonical interpretation each believed

atom has a justification. Given a set of interpretations IPκ , let

objc(IPκ) = {Iκ ∩HBP | Iκ ∈ IPκ and Iκ is canonical }.
3Such an interpretation of default negation is firstly proposed by [Gelfond, 1987].
4If a clause contains n distinct free variables x = x1, . . . , xn, then a new atom λi(x) can be

associated with each Ai, where λi is an n-ary predicate symbol appearing nowhere in P .
5In case of l = 1, the clause (3.5) becomes a tautological clause λ← A ∧ λ and hereafter we will

omit such a clause in Pκ.
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Now we present the fixpoint characterization of possible models in normal dis-

junctive programs. We first prove preliminary lemmas.

Lemma 3.20 Let P be a normal disjunctive program. Then,

ST P = objc(min(µ(TPκ ↑ ω))).

Proof: Suppose that I is in objc(min(µ(TPκ ↑ ω))). Let Iκ be a canonical

interpretation in min(µ(TPκ ↑ ω)) such that Iκ ∩ HBP = I. Then, for

each ground clause of the form (3.1) from P , {B1, . . . , Bm} ⊆ Iκ implies

either (i) ∃λi ∈ Iκ (1 ≤ i ≤ l), Ai ∈ Iκ, and {Bm+1, . . . , Bn} ∩ Iκ = ∅, or

(ii) ∃KBj ∈ Iκ (m+ 1 ≤ j ≤ n) by (3.2), (3.3), and (3.4).6

In case of (i), {Bm+1, . . . , Bn} ∩ Iκ = ∅ implies {Bm+1, . . . , Bn} ∩ I = ∅.
Then there is a clause of the form:

A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm (∗)

in P I . Since {B1, . . . , Bm} ⊆ Iκ and Ai ∈ Iκ implies {B1, . . . , Bm} ⊆ I

and Ai ∈ I, I satisfies the clause (∗) in P I . In case of (ii), since Iκ is

canonical, KBj ∈ Iκ implies Bj ∈ Iκ, and thus Bj ∈ I. In this case, the

clause (∗) is not included in P I . Thus, in both cases, I satisfies every

clause in P I .

Suppose that there is an interpretation J such that (a) J ⊂ I and (b)

J satisfies each clause from P I . Then, two conditions (a) and (b) are

satisfied only if there is a clause (∗) such that {B1, . . . , Bm} ⊆ J and

for some two atoms Ai1 and Ai2 (1 ≤ i1, i2 ≤ l; i1 6= i2), Ai1 ∈ J but

Ai2 ∈ I \ J . Without loss of generality, we can assume that just one such

clause exists in P I . Since I does not contain atoms Bm+1, . . . , Bn, the cor-

responding canonical interpretation Iκ does not contain KBm+1, . . . ,KBn

either. Thus, {B1, . . . , Bm} ⊆ I implies ∃λk ∈ Iκ for some 1 ≤ k ≤ l.

Since Ai1 , Ai2 ∈ I implies Ai1 , Ai2 ∈ Iκ, λk ∈ Iκ implies λi1 , λi2 ∈ Iκ

by (3.5). Let Jκ = Iκ \ {Ai2 , λi2}. Then, the interpretation Jκ satisfies

all the clauses (3.2), (3.3), (3.4), (3.5) in P κ. This contradicts the fact

that Iκ is a minimal model of P κ. Then I is also a minimal model of P I ,

hence a stable model of P .

6When a clause (3.1) contains no not, {B1, . . . , Bm} ⊆ Iκ implies Ai ∈ Iκ (1 ≤ i ≤ l) as a special
case of (i).
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Conversely, suppose that I is a stable model of P . Then, for each clause C

of the form (3.1) from P , let Iλ =
⋃
C{λi | {B1, . . . , Bm} ⊆ I, {Bm+1, . . . , Bn}

∩ I = ∅, and Ai ∈ I (1 ≤ i ≤ l)} and IK =
⋃
C{KBj | {B1, . . . , Bm} ⊆

I and Bj ∈ I (m+ 1 ≤ j ≤ n)}. Let Iκ′ = I ∪ Iλ ∪ IK . Then, Iκ′ satisfies

each clause (3.2), (3.3), (3.4), and (3.5) from P κ, and by the construction

of Iκ′, Iκ′ ∈ µ(TPκ ↑ ω). Now let us define Iκ = I ∪ S where S is a

minimal subset of Iλ∪IK such that each λi or KBj is chosen in a way that

Iκ satisfies every clause in P κ. Note that for each atom KB in Iκ, B ∈ I
by definition, so B ∈ Iκ. Hence Iκ is canonical. Next assume that there

exists Jκ ∈ µ(TPκ ↑ ω) such that Jκ ⊂ Iκ. Since we have defined Iκ as a

minimal set with respect to the atoms from Iλ∪ IK , the inclusion relation

implies Jκ ∩HBP ⊂ Iκ ∩HBP . Then ∃Ai ∈ Iκ \ Jκ. In this case, there is

a clause (3.2) in P κ such that {B1, . . . , Bm} ⊆ Jκ, λi ∈ Iκ \ Jκ, KBj ∈ Jκ
for some 1 ≤ i ≤ l and m + 1 ≤ j ≤ n. Since Jκ ⊂ Iκ, KBj ∈ Iκ. As

Iκ is canonical, KBj ∈ Iκ implies Bj ∈ Iκ. But this is impossible from

the condition (3.4). Thus, there is no Jκ which is smaller than Iκ, hence

Iκ ∈ min(µ(TPκ ↑ ω)). Since Iκ is canonical, I ∈ objc(min(µ(TPκ ↑ ω))).

2

Lemma 3.21 Let P be a normal logic program. Then,

ST P = objc(µ(TPκ ↑ ω)) .

Proof: By Lemma 3.20, objc(min(µ(TPκ ↑ ω))) is the set of all stable

models of P . Since I ∈ objc(min(µ(TPκ ↑ ω))) implies I ∈ objc(µ(TPκ ↑
ω)), we show that the converse is also true. Assume that the converse does

not hold. That is, there is a non-minimal set I ∈ objc(µ(TPκ ↑ ω)) and

∃J ∈ objc(min(µ(TPκ ↑ ω))) such that J ⊂ I. In this case, there exists an

atom A such that A ∈ I \ J . Let I = Iκ ∩ HBP and J = Jκ ∩ HBP for

some canonical interpretations Iκ and Jκ. Then, corresponding to (3.2),

(3.3), and (3.4), there exist clauses:

λ ∨ KBm+1 ∨ . . . ∨ KBn ← B1 ∧ . . . ∧Bm,

A← λ,

← λ ∧Bj (j = m+ 1, . . . , n)

in P κ, where {B1, . . . , Bm} ⊆ Iκ, {B1, . . . , Bm} ⊆ Jκ, λ ∈ Iκ, and ∃KBj ∈
Jκ (m + 1 ≤ j ≤ n). Note here that the clause (3.5) becomes λ← A ∧ λ
and is neglected. Since Jκ is canonical, Bj ∈ Jκ. Then J ⊂ I implies

Bj ∈ Iκ. But this is impossible from the third clause above. 2
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Now we are ready to prove the main theorem.

Theorem 3.22 Let P be a normal disjunctive program. Then,

PMP = objc(µ(TPκ ↑ ω)).

Proof: Let I be a possible model of P . Then I is a stable model of

some coherent split normal logic program Ps of P . By Lemma 3.21, for

the transformed program Ps
κ of Ps, I is in objc(µ(TPκs ↑ ω)). Since Ps

is a program obtained by splitting each disjunctive clause in P , every

interpretation included in TPκs ↑ ω is also obtained by splitting during

the computation of TPκ ↑ ω. Moreover, since I satisfies each integrity

constraint in Ps
κ, it also satisfies the same integrity constraints in P κ.

Hence I is also in objc(µ(TPκ ↑ ω)). The converse is also shown in the

same manner. 2

The above lemmas and theorem are direct extensions of Theorem 3.17.

Corollary 3.23 Let P be a normal disjunctive program. Then,

(i) P is inconsistent iff µ(TPκ ↑ ω) = ∅.

(ii) P is incoherent iff objc(min(µ(TPκ ↑ ω))) = ∅.

(iii) P is p-incoherent iff objc(µ(TPκ ↑ ω)) = ∅. 2

Example 3.13 (cont. from Example 3.4) The program

P = { a ∨ b←, b← a, c← not a }

is transformed into the epistemic form:

P κ = { a ∨ b←, b← a, λ ∨ Ka←, c← λ, ← λ ∧ a }.

Then it becomes

µ(TPκ ↑ ω) = {{a, b,Ka}, {b,Ka}, {b, c, λ}, {b, c, λ,Ka}}.

Thus,

objc(µ(TPκ ↑ ω)) = {{a, b}, {b, c}},
which contains the possible models of P . On the other hand,

min(µ(TPκ ↑ ω)) = {{b,Ka}, {b, c, λ}},

then

objc(min(µ(TPκ ↑ ω))) = {{b, c}},
which contains the stable model of P . 2
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As noticed in the previous section, stable models are not necessarily minimal pos-

sible models. However, the above example shows that we can compute stable models

exactly by computing the minimal set of the closure µ(TPκ ↑ ω) before applying the

operation objc(·).

3.5 Computing Possible Models

In this section, we provide a bottom-up proof procedure to compute possible models

of disjunctive programs. We assume in this section that a program is function-free and

range-restricted, that is, a program containing no function symbol and any variable

in a clause has an occurrence in a positive atom in the body. Such conditions are

usually imposed on a program in the context of deductive databases.

3.5.1 Bottom-up Model Generation Procedure

The algorithm we use to compute possible models in disjunctive programs is based

on a bottom-up model generation proof procedure.

Let P be a positive disjunctive program and I iP be a set of interpretations of P .

Let I0
P = {∅}. For i ≥ 0 do:

1. For any I ∈ I iP , if there is an integrity constraint in P of the form:

← B1 ∧ . . . ∧Bm

such that I |= (B1 ∧ . . . ∧Bm)σ for some ground substitution σ, then remove I

from I iP .

2. For any I ∈ I iP , for every clause Ck in P of the form:

Ck : A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧Bm (l ≥ 1)

such that I |= (B1∧. . .∧Bm)σ for some ground substitution σ, put I∪⋃
Ck{Ajσ}

into I i+1
P for every j = 1, . . . , l.

3. Iterate the above two steps until it reaches the fixpoint In+1
P = InP which is

closed under the above two operations.

In step 1, the procedure prunes interpretations which do not satisfy integrity

constraints in the program. In step 2, the procedure generates the new set of inter-

pretations I i+1
P from the given interpretations I iP by performing forward reasoning
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based on hyperresolution7 and case-splitting on non-unit derived clauses. Note here

that since a program is range-restricted, each disjunct Ajσ generated in step 2 is al-

ways ground. Hence the soundness for unsatisfiability by case-splitting is guaranteed
[Manthey and Bry, 1988]. Moreover, since we consider a finite function-free program,

the above procedure always terminates in a finite step.

The connection between the above closure computation and the fixpoint semantics

with the mapping TP given in Section 3.4.1 is obvious. This correspondence can also

be regarded as an extension of the relation between hyperresolution and van Em-

den and Kowalski’s fixpoint semantics for definite logic programs [van Emden and

Kowalski, 1976, Section 8].

Now we characterize the possible model semantics using the algorithm presented

above. Let IωP be the fixpoint closure obtained by the above procedure. Then the

following results directly follow from Theorem 3.17.

Theorem 3.24 Let P be a positive disjunctive program. Then the following relations

hold.

(i) PMP = µ(IωP ).

(ii) MMP = min(µ(IωP )).

In particular, P is inconsistent iff µ(IωP ) = ∅. 2

Corollary 3.25 For a consistent positive disjunctive program P and a ground atom

A,

(i) GCWA(P ) |= ¬A iff A 6∈ I for any I ∈ min(µ(IωP )).

(ii) WGCWA(P ) |= ¬A iff A 6∈ I for I ∈ IωHorn(P ).

(iii) PWA(P ) |= ¬A iff A 6∈ I for any I ∈ µ(IωP ).

Proof: (i) and (iii) directly follow from each definition and the results

in Theorem 3.24. Since IωHorn(P ) contains a unique element which is the

least Herbrand model of Horn(P ), (ii) also follows from the definition of

the WGCWA. 2

For normal disjunctive programs, the following results hold by Lemmas 3.20, 3.21

and Theorem 3.22.

7A1 ∨ . . . ∨ Al is said to be obtained from A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧ Bm and B1, . . . , Bm by
hyperresolution [Robinson, 1965b].
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Theorem 3.26 Let P be a normal disjunctive program and P κ be its epistemic

transformation. Then the following relations hold.

(i) PMP = objc(µ(IωPκ)).

(ii) ST P = objc(min(µ(IωPκ))).

(iii) For a normal logic program P , PMP = ST P = objc(µ(IωPκ)).

In particular, P is p-incoherent (resp. incoherent) iff objc(µ(IωPκ)) = ∅
(resp. objc(min(µ(IωPκ))) = ∅). 2

Corollary 3.27 Let P be a normal disjunctive program and A be a ground atom.

(i) For a coherent program P , GCWA¬(P ) |= ¬A iffA 6∈ I for any I ∈ objc(min(µ(IωPκ))).

(ii) For a weakly coherent program P , WGCWA¬(P ) |= ¬A iff A 6∈ I for any

I ∈ objc(min(µ(IωPκ))) ∪ objc(µ(IωNLP (P )κ)).

(iii) For a p-coherent program P , PWA¬(P ) |= ¬A iffA 6∈ I for any I ∈ objc(µ(IωPκ)).

Proof: (i) and (iii) directly follow from Theorem 3.26 (i) and (ii). (ii)

also follows from Theorem 3.26 (iii) and the definition of the WGCWA¬.

2

3.5.2 Query Answering

In this section, we address an application of the previously presented algorithm to

query answering under the possible model semantics in normal disjunctive programs.

A query we consider here is the following form:

Q(x)← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (3.6)

where (3.6) is a function-free range-restricted normal clause and x represents variables

appearing in the body of the clause. An answer to the query is a ground substitution

σ for variables in Q(x). In particular, if Q contains no variable, σ is the empty

substitution.

For a given normal disjunctive program P , let PQ be a program obtained from P

by adding a query of the form (3.6). Then, the query is true in P under the possible

model semantics if for every possible model I of PQ there is an answer σ such that

Q(x)σ is included in I. Else if for some possible model I of PQ there is an answer σ

such that Q(x)σ is included in I, a query is possibly true. Otherwise, if there is no

such answer, a query is false. By Theorem 3.26 (i), the following results hold.
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Theorem 3.28 Let P be a normal disjunctive program and Q be a query. Then,

(i) Q is true in P iff for any I ∈ objc(µ(IωPQκ)), Q(x)σ ∈ I for some σ.

(ii) Q is possibly true in P iff for some I ∈ objc(µ(IωPQκ)), Q(x)σ ∈ I for some σ.

(iii) Q is false in P iff for any I ∈ objc(µ(IωPQκ)), Q(x)σ 6∈ I for any σ. 2

Example 3.14 Let P be the program:

{ p(a) ∨ p(b)← }.

Then, q1(x)← p(x) is true, q2 ← p(a) is possibly true, and q3 ← p(c) is false. 2

By using Theorem 3.26 (ii) instead, the above result is also applicable to query

answering under the disjunctive stable model semantics.

3.6 Computational Complexity

In a propositional positive disjunctive program, a minimal model exists whenever

the program is satisfiable. Then the complexity of the existence problem (resp. the

set-entailment problem) for the minimal model semantics is NP-complete (resp. co-

NP-complete). Since the possible model semantics coincides with the minimal model

semantics for positive inference, those complexity results also hold for the possi-

ble model semantics in propositional positive disjunctive programs. On the other

hand, it is known that the complexity of the set-membership problem for the mini-

mal model semantics is Σp
2-complete, and thus inferring negation under the GCWA is

Πp
2-complete [Eiter and Gottlob, 1993c]. By contrast, Chan [1993] has shown that, in

a propositional positive disjunctive program, inferring negation under the WGCWA

or the PWA is still co-NP-complete. In particular, in the absence of integrity con-

straints both the WGCWA and the PWA are tractable.

These observations tell us that the possible model semantics has the computational

advantage over the minimal model semantics for inferring negation, since it does not

increase the complexity more than the classical propositional entailment. Moreover,

as shown in Section 3.2, since the PWA is more intuitive than the WGCWA, it is

concluded that the possible model semantics is the best choice among others from

both the reasoning and computational points of view.

In this section, we prove that the complexity results for the possible model seman-

tics is still within (co-)NP, even in normal disjunctive programs. We show this fact

by transforming possible models in a normal disjunctive program into stable models

in a normal logic program.
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Definition 3.10 Let P be a normal disjunctive program. Then the pm-transformation

transforms P into the normal logic program ℘(P ) which is obtained from P by re-

placing each disjunctive clause:

A1 ∨ . . . ∨ Al ← Γ (3.7)

in P with the following normal clauses and an integrity constraint:

Ai ← Γ ∧ notA′i for i = 1, . . . , l , (3.8)

A′i ← Γ ∧ notAi for i = 1, . . . , l , (3.9)

← Γ ∧ A′1 ∧ . . . ∧ A′l , (3.10)

in ℘(P ) where Γ denotes a conjunction in the body of the clause and each A′i is a

new atom not appearing in P and is uniquely introduced for each Ai in HBP . 2

The intuitive meaning of the pm-transformation is that: when Ai becomes true

by the disjunctive clause (3.7), we can make it true also by the corresponding normal

clause (3.8) in ℘(P ) by assuming that its complementary atom A′i is not true. Else

when Ai does not become true by (3.7), we will make A′i true by assuming that Ai
is not true in the corresponding normal clause (3.9) in ℘(P ). The condition (3.10)

states that when Γ is true, every A′i cannot become true at the same time, that

is, at least one Ai should be true. Thus, the transformed clauses represent every

possible selection of disjuncts from the disjunctive head of the clause, which exactly

characterizes every set of split clauses of (3.7).

Now we show that there is a one-to-one correspondence between the possible

models of P and the stable models of ℘(P ). We first present a preliminary lemma.

Lemma 3.29 Let P be a normal disjunctive program. Then M is a possible model

of P iff M is a possible model of PM .

Proof: M is a possible model of P

iff M is a stable model of some split normal logic program Ps of P

iff M is the least Herbrand model of Ps
M

iff M is the least Herbrand model of some split Horn logic program PM
s

of PM

iff M is a possible model of PM . 2

Theorem 3.30 Let P be a normal disjunctive program and ℘(P ) be its pm-transformation.

Then PMP = ST ℘(P )∩HBP holds, where ST ℘(P )∩HBP = {I∩HBP | I ∈ ST ℘(P )}.
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Proof: (i) First we show that PMP = ST ℘(P )∩HBP holds for a positive

disjunctive program P . Let M be a possible model of a positive disjunctive

program P . Then M is the least Herbrand model of a split program Ps of

P . In this case, M is also the least Herbrand model of a program in which

each disjunctive clause (3.7) in P is replaced with its split clauses {Ai ←
Γ | Ai ∈ M ∩ {A1, . . . , Al}}. Now let us consider a Horn logic program

P ′s which is obtained from P by replacing each disjunctive clause (3.7)

with clauses of {Ai ← Γ | Ai ∈ M ∩ {A1, . . . , Al}} ∪ {A′j ← Γ | Aj ∈
{A1, . . . , Al} \ M}. Let M ′ be the least Herbrand model of P ′s. Then

clearly M = M ′ ∩ HBP holds. Here a program P ′s together with the

integrity constraint (3.10) coincides with the program ℘(P )M
′
. Since M |=

Γ implies at least one Ai ∈ M , M ′ satisfies the condition (3.10). Then

M ′ is also the least Herbrand model of ℘(P )M
′
, hence a stable model of

℘(P ).

Conversely, let M be a stable model of ℘(P ). Since M satisfies the condi-

tion (3.10), M |= Γ implies that at least one of the clauses (3.8) becomes

Ai ← Γ in ℘(P )M , and for each such clauseM |= Γ impliesAi ∈M . In this

case, there is a split program Ps of P in which each disjunctive clause (3.7)

is replaced with its split clauses {Ai ← Γ | Ai ∈M ∩{A1, . . . , Al}}. Since

M is the least Herbrand model of ℘(P )M , M ∩ HBP is also the least

Herbrand model of Ps, hence a possible model of P .

(ii) Next we show that PMP = ST ℘(P ) ∩ HBP holds for a normal dis-

junctive program P . Let M be a possible model of a normal disjunctive

program P . By Lemma 3.29, M is also a possible model of a positive

disjunctive program PM . Then, by (i), there is a stable model M ′ of

℘(PM) such that M = M ′∩HBP , which is also the least Herbrand model

of ℘(PM)M
′
. Since ℘(PM)M

′
= ℘(PM ′)M

′
= ℘(P )M

′
, M ′ is also a stable

model of ℘(P ).

Conversely, let M be a stable model of ℘(P ). Then M is the least Her-

brand model of ℘(P )M . Since ℘(P )M = ℘(PM)M , M is also the least

Herbrand model of ℘(PM)M , and a stable model of ℘(PM). Then, by (i),

M ∩HBP is a possible model of PM . Since PM = PM∩HBP , M ∩HBP is

a possible model of P by Lemma 3.29. 2

The above theorem presents that the possible models of any normal disjunctive

program are expressed by the stable models of the corresponding transformed normal

logic program.
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For the stable model semantics in propositional normal logic programs, both the

existence problem and the set-membership problem are NP-complete, while the set-

entailment problem is co-NP-complete [Marek and Truszczynski, 1991a; 1991b].8 We

use this fact to show the computational complexity of the possible model semantics.

Theorem 3.31 Let P be a propositional normal disjunctive program. Then,

(i) Deciding the existence of a possible model of P is NP-complete.

(ii) Deciding whether an atom is true in some possible model of P is NP-complete.

(iii) Deciding whether an atom is true in every possible model of P is co-NP-

complete.

Proof: Since possible models coincide with stable models in normal logic

programs, each decision problem under the possible models semantics is

(co-)NP-hard. To see that it is in (co-)NP, the pm-transformation ef-

ficiently translates each decision problem for possible models into the

corresponding problem for stable models which is in (co-)NP, then the

membership in (co-)NP follows. 2

Corollary 3.32 Inferring negation under the PWA¬ is co-NP-complete. 2

It is known that the decision problems for the disjunctive stable model semantics

is ΣP
2 -complete for the existence and the set-membership problem, and ΠP

2 -complete

for the set-entailment problem [Eiter and Gottlob, 1993a]. Then the following result

also follows from the definition.

Corollary 3.33 Inferring negation under the GCWA¬ or the WGCWA¬ is both ΠP
2 -

complete. 2

The complexity results for disjunctive programs are summarized in Table 3.1.

These results show that the frameworks based on the minimal/disjunctive sta-

ble model semantics introduce an additional source of complexity for minimality-

checking, while this is not the case for computation of possible models due to its

non-minimal feature.

We have already seen in the previous sections that the possible model semantics

can provide flexible reasoning mechanisms compared with the minimal/disjunctive

stable model semantics thanks to its non-minimal nature. The results of this sec-

tion present that this unique feature of the possible model semantics also brings a

computational advantage over those minimal model based semantics.

8In [Marek and Truszczynski, 1991a; 1991b], integrity constraints are not included in a program.
However, a program containing integrity constraints is easily reducible to the one without them by
rewriting each integrity constraint ← G by the normal clause false← G.



62 POSSIBLE MODEL SEMANTICS

Table 3.1: Complexity Results for Disjunctive Programs

Program Semantics Complexity

Positive DLP minimal model (GCWA) ΠP
2 -complete

WGCWA co-NP-complete
possible model (PWA) co-NP-complete

Normal DLP disjunctive stable model (GCWA¬) ΠP
2 -complete

WGCWA¬ ΠP
2 -complete

possible model (PWA¬) co-NP-complete

3.7 Discussion

In this section, we present the background of the possible model semantics and com-

parisons with related work.

3.7.1 Declarative Semantics

The minimal model semantics of positive disjunctive programs was firstly introduced

by Minker [1982] and extended by Przymusinski [1988a] to the perfect model seman-

tics for (locally) stratified disjunctive programs. Further extensions to normal disjunc-

tive programs have been done in the context of the stable model semantics [Przymusin-

ski, 1991a; Gelfond and Lifschitz, 1991] and the well-founded semantics [Ross, 1989b;

Przymusinski, 1991b; Baral et al., 1992a]. As non-minimal model approaches, Ross

and Topor [1988], and Rajasekar et al. [1989] have proposed the DDR and the

WGCWA as a counterpart of the GCWA. However, they present only negative in-

ference in inclusive disjunctive programs and do not provide any model theoreti-

cal meaning for such programs. Ross and Topor also suggest in their paper the

usage of integrity constraints to distinguish exclusive disjunctions from inclusive

ones, but they give no semantics for such programs. To characterize the meaning

of inclusive disjunctive programs, Dix [1992a] presents the weak perfect/stationary

model semantics for normal disjunctive programs without integrity constraints. How-

ever, these weak semantics have some drawbacks compared with the possible model

semantics. First, the weak semantics cannot represent exclusive disjunctive pro-

grams. Second, the weak semantics do not work well in the presence of integrity

constraints. For example, in Example 3.1 the weak semantics of the program is

given by MMP ∪ {MHorn(P )} = {{a}, {b}, {c}, {a, b, c, d, e}}, but as noted there,

{a, b, c, d, e} is not a model of P . Then, if we choose models satisfying the constraint
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and give the meaning of P by {{a}, {b}, {c}}, it cannot represent the inclusive dis-

junction a ∨ b anymore.

To treat both exclusive and inclusive disjunctions, Ross [1989b] has proposed the

optimal well-founded semantics which can distinguish two types of disjunctions in nor-

mal disjunctive programs. However, his semantics requires each rule to be clarified

whether it is exclusive or inclusive, and it cannot treat a disjunctive clause containing

hybrid disjunctions as presented in the introductory example. Dung [1991] has also

presented a completion theory of negation which can distinguish two types of disjunc-

tions in a program. However, it is defined for only positive disjunctive programs and

also cannot treat hybrid disjunctions in a program. Przymusinski [1991b] suggests

that his stationary semantics can also treat two types of disjunctions by altering

the GCWA and the WGCWA during the construction of completions of disjunctions,

while it seems impossible to treat disjunctive clauses containing hybrid disjunctions.

Gelfond [1991] has developed an epistemic theory for disjunctive programs and pro-

vided a flexible mechanism for inferring closed world negation. His approach is based

on modal logic and is different from our object-level approach.

Recently, Either et al. [1993] have introduced a circumscriptive approach for

inclusive disjunctions in a first-order theory. Their good models provide a model

theoretical counterpart of inclusive interpretations of disjunctions. In contrast to our

approach, however, their Curb theory is defined for a first-order theory and is classical

in its nature. For instance, {a, b} is a possible model of the program { a∨b←, a← }
as presented in Section 3.2.2, while they identify the above program with {a←} and

{a} is the unique good model. In this sense, their approach is syntax-independent and

different from our syntax-dependent logic programming approach. Moreover, their

Curb theory is defined for a first-order theory and its application to logic programming

is limited to positive disjunctive programs.

The possible model semantics was also independently discovered by Chan [1993]

under the name of the possible world semantics. Lately it was rediscovered by Decker
[1992] under the name of the sustained model semantics . Decker and Casamayor
[1993] have also shown that their sustained world assumption, which corresponds to

the PWA, satisfies the properties such as cautious monotonicity , cumulativity and

rationality in the sense of [Kraus et al., 1990]. These works have characterized the

possible model semantics from different viewpoints, while they consider only positive

disjunctive programs and extensions to normal disjunctive programs are not studied

in the literature.

To distinguish two types of disjunctions, one may consider that instead of inserting

integrity constraints, inserting cyclic clauses under the usual minimal model semantics

is enough to interpret inclusive disjunctions. But this is not the case. Consider to
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make the disjunction a ∨ b inclusive by adding cyclic clauses a ← b and b ← a to

it. The resultant program now implies the equivalence a ⇔ b. Applying it to the

introductory example, we obtain land-animal ⇔ aquatic, which is of course not our

intention.

We have used integrity constraints to distinguish exclusive disjunctions from in-

clusive ones. Then if one wishes to simulate the GCWA under the PWA, it is enough

to insert integrity constraints for each exclusive disjunction. Such a simulation is

discussed in [Chan, 1993].

3.7.2 Fixpoint Semantics

A fixpoint semantics for disjunctive programs has been studied by several researchers.

An early approach to provide a fixpoint semantics for positive disjunctive programs

was given by [Minker and Rajasekar, 1990]. In the paper, they developed a fixpoint

operator which operates on states , sets of positive disjunctions from the extended

Herbrand base. Then they showed that its fixpoint closure characterizes the minimal

model semantics of positive disjunctive programs. Our fixpoint semantics is basically

different from theirs in the following points. First, our fixpoint operator is designed

to compute possible models as well as minimal models of disjunctive programs. Sec-

ond, our fixpoint semantics is well-defined not only for positive disjunctive programs,

but also for every normal disjunctive program. Third, our fixpoint construction is

based on the manipulation of standard Herbrand interpretations and does not require

any extension of the Herbrand base. The state based fixpoint semantics have also

been developed for stratified disjunctive programs in [Rajasekar and Minker, 1989]

and for normal disjunctive programs in [Baral et al., 1992a; Przymusinski, 1990b;

Przymusinski, 1991b]. Reed et al. [1991] provide a different fixpoint semantics which

characterizes logical consequences of a positive disjunctive program.

Fernandez and Minker [1991b] have presented a fixpoint semantics for stratified

disjunctive programs using a fixpoint operator over sets of interpretations. With

this fixpoint operator, they have shown that its iterative fixpoint characterizes the

perfect models of a stratified disjunctive program. In [Fernandez and Minker, 1992;

Fernandez et al., 1993], the result is further extended to normal disjunctive programs,

in which they have developed a method for computing stable models by transforming

a normal disjunctive program into a stratified disjunctive program with integrity

constraints. Their approach is close to ours, however, an essential difference is that

their fixpoint operator computes minimal and stable models, while ours also computes

possible models. Inoue and Sakama [1992] developed yet another fixpoint semantics

for computing minimal and stable models but not possible models.
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Decker [1992; 1994] has also developed a fixpoint semantics of disjunctive pro-

grams. His fixpoint operator maps a disjunction of interpretations into a disjunction

of interpretations, and computes sustained models which is equivalent to possible

models. However, he provides the fixpoint semantics only for positive disjunctive

programs, and its extension to normal disjunctive programs is not discussed.

Ross and Topor [1988] have given a fixpoint construction for positive disjunc-

tive programs to characterize the semantics of the DDR, but their fixpoint closure

computes the least Herbrand model of a transformed Horn program and does not

characterize any model theoretical meaning of the original program.

3.7.3 Proof Procedure

Proof procedures for disjunctive programs are developed by several researchers. Fer-

nandez et al. [Fernandez and Minker, 1991a; Fernandez et al., 1993] develop a model

generation proof procedure for computing minimal and stable models of disjunctive

programs using a similar program transformation to ours. Compared with their ap-

proach, our algorithm is designed for computing not only minimal/stable models but

also possible models of a program, and is easily realizable in a non-deterministic

or-parallel environment like [Inoue et al., 1992]. The model generation procedure

presented in Section 3.5 might be considered as a variant of SATCHMO [Manthey

and Bry, 1988] or MGTP [Inoue et al., 1992], but these procedures are designed to

compute minimal/stable models and different from ours. For computing possible

models, Chan [1993] presents a different procedure which, given a positive disjunctive

program P and its model M , finds a subset of M that is also a possible model of P .

We have also presented a method of using a bottom-up procedure to evaluate

queries under the possible model semantics. As an alternative approach, we can

design a top-down proof procedure for the possible model semantics as follows. In

Section 3.6 we have presented that possible models of a normal disjunctive program

can be expressed in terms of stable models of a normal logic program by using the

pm-transformation. This means that, using the pm-transformation, a top-down proof

procedure for the stable model semantics of normal logic programs can also be used

as a procedure for the possible model semantics of normal disjunctive programs.

For instance, Eshghi and Kowalski’s [1989] abductive proof procedure is known to

be correct with respect to call-consistent normal logic programs. Since the pm-

transformation preserves the call-consistency, the abductive procedure is also used

as a proof procedure for the possible model semantics. For positive disjunctive pro-

grams, yet other top-down procedures are developed in [Sakama, 1989; Decker, 1992;

Decker and Casamayor, 1993].
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3.8 Summary

In this chapter, we have introduced the possible model semantics for positive and

normal disjunctive programs, which is an alternative non-minimal model approach

to the declarative semantics of disjunctive programs. The possible model semantics

gives a uniform framework to treat both inclusive and exclusive disjunctions in a

program, and provides a flexible negative inference mechanism compared with the

previously proposed closed world assumptions. The possible model semantics was

also characterized by a new fixpoint semantics of disjunctive programs.

For computing possible models, we have presented a bottom-up model generation

proof procedure for positive and normal disjunctive programs. The procedure is

sound and complete with respect to the possible model semantics as well as the

minimal/stable model semantics in function-free range-restricted programs. We have

also shown that the possible model semantics has a computational advantage over

the minimal/stable model semantics.

In normal disjunctive programs, we have defined the possible model semantics

based on the stable model semantics. However, since its definition is given through

the set of split normal logic programs, it is easy to construct another version of the

possible model semantics based on any semantics of normal logic programs other than

the stable model semantics. In this sense, the possible model semantics presented in

this chapter provides a fairly general framework independent of any specific semantics.

In other words, it establishes the principle of possibilism as a semantical counterpart

of the traditional minimalism, which contributes to enrich our perspectives for com-

monsense reasoning in logic programming and artificial intelligence.



Chapter 4

Relating Disjunctive Logic
Programs to Default Theories

In this chapter, we present the relationship between disjunctive programs and Reiter’s

default logic. We first point out the problem of previously proposed approaches, and

propose an alternative default translation of normal disjunctive programs. The results

are applied to extended disjunctive programs, and a correspondence between default

logic and Gelfond et al.’s disjunctive default logic is investigated. We also address the

connections between disjunctive programs and other major nonmonotonic formalisms

such as Moore’s autoepistemic logic and McCarthy’s circumscription. The possible

model semantics of disjunctive programs is also characterized by autoepistemic logic.

4.1 Introduction

Logic programming realizes a kind of default reasoning in the presence of default

negation in a program. Such default reasoning is, on the other hand, known as

nonmonotonic reasoning in artificial intelligence. Recent studies have shed light on

the relationship between logic programming semantics and nonmonotonic reasoning,

and it is now known that each of these areas relate to the other in a wide scope.

Default logic initially introduced by Reiter [1980] is known as one of the major

formalisms of nonmonotonic reasoning in AI, and it turned out that default logic is

closely related to the declarative semantics of logic programming. Bidoit and Froide-

vaux [1991a; 1991b] have firstly investigated the relationship between logic program-

ming and default logic and introduced a positivist default theory for stratifiable and

non-stratifiable logic programs. Marek and Truszczynski [1989a] have also developed

transformations from logic programs to default theories, and shown a one-to-one

67
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correspondence between the stable models of a logic program and its corresponding

default extensions. The result was further extended by Gelfond and Lifschitz [1991]

to logic programs with classical negation, in which they present a connection between

answer sets of a program and default extensions of its corresponding default theory.

It is often said that a difficulty of Reiter’s default logic arises when one considers

default reasoning with disjunctive information. Using a popular example from [Poole,

1989], when we consider the default rules:

: lh-usable ∧ ¬lh-broken

lh-usable
,

: rh-usable ∧ ¬rh-broken

rh-usable

with the disjunctive formula:

lh-broken ∨ rh-broken,

they have a single extension containing both lh-usable and rh-usable, which is un-

intuitive since the justifications of the defaults ¬lh-broken and ¬rh-broken cannot

hold at the same time.

In the context of disjunctive programs, Bidoit and Hull [1986] present a one-to-one

correspondence between the minimal models of a positive disjunctive program P and

the extensions of a default theory which is obtained from P by adding defaults:

: ¬A
¬A

for each atom A from HBP . In the presence of default negation in a program, Bidoit

and Froidevaux [1991a] present a relationship between a stratified disjunctive program

and its associated positivist default theory. However, as pointed out in this chapter,

Bidoit and Froidevaux’s positivist default theory contains a problem and cannot be

applicable to a disjunctive program with negation even if it is stratifiable. Recently,

Gelfond et al. [1991] proposed a new framework called disjunctive default logic which

is a direct extension of Reiter’s default logic. While the disjunctive default logic

is closely related to the answer set semantics of extended disjunctive programs, it

remains open whether there is a correspondence between Reiter’s default logic and

disjunctive programs in general.

In this chapter, we study the relation between disjunctive programs and default

theories. We first point out the problem of Bidoit and Froidevaux’s positivist default

theories and propose an alternative correct default translation of normal disjunc-

tive programs. The result is further extended to a transformation from extended

disjunctive programs to default theories. We then present a connection between
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default theories and disjunctive default theories through extended disjunctive pro-

grams. Furthermore, we investigate correspondences between disjunctive programs

and other major nonmonotonic formalisms, circumscription and autoepistemic logic,

and present methods of expressing stable models and possible models of disjunctive

programs in terms of those nonmonotonic formalisms.

The rest of this chapter is organized as follows. In Section 4.2, we introduce

basic notations of default logic. In Section 4.3, we point out problems of previously

studied results and introduce an alternative default translation of normal disjunctive

programs. In Section 4.4, we extend the results to extended disjunctive programs, and

present a connection between default and disjunctive default theories. In Section 4.5,

we relate disjunctive programs to autoepistemic logic and circumscription, and show

an autoepistemic translation of the possible model semantics. Section 4.6 summarizes

this chapter.

4.2 Default Logic

Classical first-order logic is always monotonic, that is, adding new axioms will never

invalidate old theorems. However, this monotonic feature of classical logic is not

necessarily adequate for formulating human commonsense reasoning, since we often

confront situations where complete knowledge is not available, but nevertheless must

draw conclusions. In such situations, we have to jump to conclusions with suitable de-

fault assumptions, and such conclusions might be revised after getting more accurate

information.

Nonmonotonic logics are frameworks for such reasoning and they play important

roles today as theoretical tools for commonsense reasoning in AI. Among many non-

monotonic formalisms, Reiter’s default logic [Reiter, 1980] is known as a simple and

powerful framework.

In default logic, nonmonotonic inference is presented by a default rule. For in-

stance, the sentence “birds normally fly” can be represented as

bird(x) : fly(x)

fly(x)
.

The above rule is read as “if x is a bird and it is consistent to assume that x flies,

then conclude that x flies”. Thus, if all we know about Tweety is that she is a bird

bird(Tweety), then it is concluded that she can fly fly(Tweety). However, if we learn

that Tweety is a penguin, and we already know that penguins cannot fly, then the
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assumption fly(Tweety) now becomes inconsistent and the application of the default

is blocked.

In default logic, knowledge about the world is represented as a default theory which

consists of a set of first-order formulas and a set of default rules. A set of first-order

formulas represents valid but incomplete information about the world, while a set of

default rules supplements the first-order formulas with the ability of reasoning with

incomplete information. A default theory is formally stated as follows.

A default theory D is a set of default rules of the form:

α : β1, . . . , βn
γ

(4.1)

where α, β1, . . . , βn and γ are quantifier-free first-order formulas and respectively

called the prerequisite, the justifications and the consequent .1 A default rule (4.1)

with the empty prerequisite (resp. empty justifications) is called a prerequisite-free

(resp. justification-free) default. A default theory which consists of prerequisite-

free (resp. justification-free) defaults is called a prerequisite-free default theory (resp.

justification-free default theory).

Note here that the above definition, which is due to [Gelfond et al., 1991], is

different from the original one [Reiter, 1980] in which the theory is given by the pair

(D,W ) of defaults and first-order formulas. As noted in [Gelfond et al., 1991], since

a formula F in W is viewed as a special default with the prerequisite true (or empty)

and the empty justification:
:

F

in D, both definitions are equivalent. Hence, throughout this chapter, we do not

distinguish W from D, and such a special default is written by F instead of :
F

. A

default rule with variables is considered as a shorthand for the set of all its ground

instances obtained by substituting variables with the ground terms from the language

of D.

A set of formulas S is deductively closed if S = Th(S) where Th is the deductive

closure operator as usual. An extension of a default theory is defined as follows.

Definition 4.1 Let D be a default theory and E be a set of formulas. Then E is an

extension of D if it coincides with the smallest deductively closed set of formulas E ′

satisfying the condition: for any ground instance of any default rule of the form (4.1)

from D, if α ∈ E ′ and ¬β1, . . . ,¬βn 6∈ E then γ ∈ E ′. 2

1Here we consider quantifier-free defaults for simplicity reasons. Such a convention is also assumed
in [Gelfond et al., 1991].
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A default theory may have none, one or multiple extensions in general. Any

extension of a default theory is minimal , that is, for any two extensions E and F ,

E ⊆ F implies E = F . In particular, if the set of all justification-free defaults from

D is inconsistent,2 D has the unique contradictory extension which consists of every

formula in the language ofD.An extension is called consistent if it is not contradictory.

The following results are due to [Reiter, 1980], which present basic properties of

default extensions.

Proposition 4.1 Let D be a default theory. Then E is an extension of D iff E =⋃∞
i=0 Ei where

E0 = {F | F is a first-order formula in D},

Ei+1 = Th(Ei) ∪ {γ |
α : β1, . . . , βn

γ
∈ D where α ∈ Ei and ¬β1, . . . ,¬βn 6∈ E}. 2

Proposition 4.2 Let D be a default theory and E be an extension of D. Then,

E = Th({γ | α : β1, . . . , βn
γ

∈ D where α ∈ E and ¬β1, . . . ,¬βn 6∈ E}). 2

Note that the converse of the above proposition does not hold in general.

Example 4.1 Let D be the default theory:

{a : b

b
,

b : a

a
}.

Then E = Th({a, b}) satisfies the above equation, while the extension of D is ∅. 2

A set E satisfying the equation in Proposition 4.2 is called a weak extension of D
[Marek and Truszczynski, 1989b].

4.3 Default Translation of Normal Disjunctive Pro-

grams

In this section, we first review previously studied results on translating normal dis-

junctive programs into default theories. The problem of those approaches is pointed

out, and an alternative correct default translation of normal disjunctive programs is

presented.

2A set of justification-free defaults is inconsistent iff its extension is inconsistent.
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4.3.1 Positivist Default Theory Revisited

To relate logic programming with default theories, Bidoit and Froidevaux [1991a] have

presented a transformation from disjunctive programs to so-called positivist default

theories . According to [Bidoit and Froidevaux, 1991a], the transformation is presented

as follows.

Definition 4.2 ([Bidoit and Froidevaux, 1991a]) Let P be a normal disjunctive

program. Then the positivist default theory D associated with P is constructed as

follows:

(i) For each not-free clause A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧ Bm in P , its corresponding

first-order formula B1 ∧ . . . ∧Bm ⊃ A1 ∨ . . . ∨ Al is in D.

(ii) Each clause containing not in its body A1∨ . . .∨Al ← B1∧ . . .∧Bm∧notBm+1∧
. . . ∧ notBn in P is transformed into the following default in D:

B1 ∧ . . . ∧Bm : ¬Bm+1, . . . ,¬Bn

A1 ∨ . . . ∨ Al
.

(iii) For each atom A in HBP , the following CWA-default is in D:

: ¬A
¬A

.

(iv) Nothing else is in D. 2

Then, [Bidoit and Froidevaux, 1991a] claims that a positivist default theory asso-

ciated with a stratified disjunctive program always has at least one extension ([Bidoit

and Froidevaux, 1991a, Theorem 3.5]). Moreover,

([Bidoit and Froidevaux, 1991a, Theorem 4.1.3]) Let P be a stratifiable

logical database. Then M is a perfect model for P iff M is a default model

for its positivist default theory.

In the above theorem, a “default model” means an Herbrand model of an extension

and a “logical database” corresponds to a disjunctive program in our terminology.

However, the following example shows that there exists a stratified disjunctive program

whose positivist default theory does not have any extension.
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Example 4.2 Let P be the stratified disjunctive program:

{ a← b ∧ not c, b← a ∧ not c, a ∨ b← },

which has the perfect model {a, b}. Then consider its positivist default theory D:

{ b : ¬c
a

,
a : ¬c
b

, a ∨ b, : ¬a
¬a

,
: ¬b
¬b

,
: ¬c
¬c
}.

If we assume E = Th({a, b,¬c}), then E ′ = Th({a ∨ b,¬c}) is the smallest

deductively closed set satisfying each default in D. Since E 6= E ′, E is not an

extension. In fact, D has no extension. 2

The above example shows that the result presented in [Bidoit and Froidevaux,

1991a] is incorrect. In fact, when a program contains disjunctive information as

well as negation, the positivist default theory causes a problem.3 This observation

leads to the assertion that the result [Przymusinski, 1990a, Theorem 5.2], which

presents the relationship between positivist default theories and the disjunctive stable

model semantics, does not hold too. Since previously presented results turned out

to be incorrect, we now need modification and reconstruction of theories to relate

disjunctive programs with default theories.

4.3.2 Representing Normal Disjunctive Programs by Default
Theories

Now we present an alternative transformation from disjunctive programs to default

theories.

Definition 4.3 Let P be a normal disjunctive program. Then its associated default

theory DP is constructed as follows:

(i) Each clause A1 ∨ . . . ∨ Al ← B1 ∧ . . . ∧ Bm ∧ notBm+1 ∧ . . . ∧ notBn in P is

transformed into the following default in DP :

: ¬Bm+1, . . . ,¬Bn

B1 ∧ . . . ∧Bm ⊃ A1 ∨ . . . ∨ Al
. (4.2)

In particular, each integrity constraint: ← B1∧. . .∧Bm∧notBm+1∧. . .∧notBn

in P is transformed into the following default in DP :

: ¬Bm+1, . . . ,¬Bn

B1 ∧ . . . ∧Bm ⊃ false
.

3According to our analysis, the proof of Lemma 3.3 in [Bidoit and Froidevaux, 1991a] seems to
contain an error. However, if a disjunctive program contains no not, the positivist default theory
reduces to the defaults presented in [Bidoit and Hull, 1986] and it works well.
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(ii) For each atom A in HBP , the following CWA-default is in DP :

: ¬A
¬A

. (4.3)

(iii) Nothing else is in DP . 2

Notice that the difference between the positivist default theory and the associated

default theory is the transformation of clauses containing default negation. That is, in

our transformation, a normal disjunctive program is translated into a prerequisite-free

default theory. Both transformations coincide for positive disjunctive programs.

Now several remarks are in order. Marek and Truszczynski [1989a] have developed

three kinds of transformations tr1, tr2 and tr3 from normal logic programs to default

theories. Considering these transformations in the context of disjunctive programs,

the transformation (4.2) can be regarded as an extension of their transformation

tr2 except that we are considering the CWA-default (4.3). While a transformation

based upon tr3 corresponds to the positivist default theory presented in the previous

section, it has already turned out inappropriate to characterize disjunctive programs.

A tr1-based transformation translates each clause into the default:

B1 ∧ . . . ∧Bm : ¬Bm+1, . . . ,¬Bn

A1 ∨ . . . ∨ Al
,

together with CWA-defaults for each atom.

The difference between tr1 and tr3 is that in tr3 each not-free clause is transformed

into a first-order formula in D, while in tr1 it is transformed into a justification-

free default in D. However, this tr1-based transformation is also inappropriate to

characterize disjunctive programs as the following example shows.

Example 4.3 Let us consider the program:

{ a← b, b← a, a ∨ b← }.

Then, by the above tr1-based transformation, it is translated into the set of defaults:

{ b :

a
,

a :

b
, a ∨ b, : ¬a

¬a
,

: ¬b
¬b
},

which has no extension. 2
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These observations tell us that, from the viewpoint of extending three default

transformations for normal logic programs in [Marek and Truszczynski, 1989a], the

tr2-based transformation is the only candidate that can be used to characterize the

semantics of disjunctive programs.

Then we verify the correctness of the transformation. We first address some

features of prerequisite-free default theories.

Lemma 4.3 Let D be a prerequisite-free default theory. Then E is an extension of

D iff

E = Th({γ | : β1, . . . , βn
γ

∈ D where ¬β1, . . . ,¬βn 6∈ E}).

Proof: By Proposition 4.1, E is an extension of D iff E =
⋃∞
i=0 Ei where

E0 = {F | F is a first-order formula in D},

Ei+1 = Th(Ei) ∪ {γ |
: β1, . . . , βn

γ
∈ D where ¬β1, . . . ,¬βn 6∈ E}.

Then Ei = Th(E1) for i ≥ 2, and the result immediately follows. 2

The above lemma presents that prerequisite-free default theories provide a suffi-

cient condition to assure the converse of Proposition 4.2. That is, the notions of weak

extensions and extensions coincide for prerequisite-free default theories [Marek and

Truszczynski, 1989b].

The above result is further simplified as follows. Let D be a default theory and E

be a set of formulas. Then, let DE be a default theory which is obtained from D by

DE = {α :

γ
| α : β1, . . . , βn

γ
is a ground instance of a default in D

and ¬β1, . . . ,¬βn 6∈ E}

where DE is called the reduct of D with respect to E [Gelfond et al., 1991]. Then

the following property holds.

Lemma 4.4 ([Gelfond et al., 1991]) A set of formulas E is an extension of a default

theory D iff E is an extension of the justification-free default theory DE. 2

From the above two lemmas, we get the following result.

Proposition 4.5 Let D be a prerequisite-free default theory. Then E is an extension

of D iff E = Th(DE). 2
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Now we are ready to prove the main result of this section. Before that, we recall

the following result for positive disjunctive programs.

Lemma 4.6 ([Bidoit and Hull, 1986; Lobo and Subrahmanian, 1992])

Let P be a positive disjunctive program. If E is a consistent extension of DP , then

E ∩HBP is a minimal model of P . 2

Theorem 4.7 Let P be a normal disjunctive program and DP be its associated

default theory. Then the following relations hold.

(i) If M is a stable model of P , then there is an extension E of DP such that

M = E ∩HBP .

(ii) If E is a consistent extension of DP , then M = E ∩HBP is a stable model of P .

Proof: (i) Suppose that M is a stable model of P and let E = Th(M ∪
¬M) where ¬M = {¬A | A ∈ HBP \M}. Then, for each clause A1 ∨
. . . ∨ Al ← B1 ∧ . . . ∧ Bm in PM , the corresponding formula B1 ∧ . . . ∧
Bm ⊃ A1 ∨ . . . ∨ Al is in DP

E. Since M is a minimal model of PM

and DP
E = PM ∪ {¬A | A 6∈ M}, M is also a minimal model of DP

E.

Thus, Th(M ∪ ¬M) = Th(DP
E) holds. Therefore, by Proposition 4.5,

Th(M ∪¬M) is an extension of DP , and since Th(M ∪¬M)∩HBP = M ,

the result follows.

(ii) When E is a consistent extension of DP , E = Th(DP
E) holds by

Proposition 4.5. LetM = E∩HBP . Then, for each formulaB1∧. . .∧Bm ⊃
A1∨. . .∨Al in DP

E, the corresponding clause A1∨. . .∨Al ← B1∧. . .∧Bm

is in PM . Since E is also an extension of DP
E, M is a minimal model of

PM (by Lemma 4.6). Hence M is a stable model of P . 2

Corollary 4.8 Let P be a normal disjunctive program. Then,

(i) P is inconsistent iff DP has the contradictory extension.

(ii) P is consistent but incoherent iff DP has no extension. 2

The above theorem presents a one-to-one correspondence between the stable mod-

els of a normal disjunctive program and the consistent extensions of its associated

default theory. The above results also reduce to the corresponding results in [Marek

and Truszczynski, 1989a] for normal logic programs.
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Example 4.4 ([Gelfond et al., 1991]) Let P be the program consisting of the clauses:

lh-usable← not ab1,

rh-usable← not ab2,

ab1 ← lh-broken,

ab2 ← rh-broken,

lh-broken ∨ rh-broken← .

These clauses are transformed into the following defaults in DP :

: ¬ab1

lh-usable
,

: ¬ab2

rh-usable
, lh-broken ⊃ ab1, rh-broken ⊃ ab2, lh-broken ∨ rh-broken

with the CWA-defaults:

: ¬lh-broken

¬lh-broken
,

: ¬rh-broken

¬rh-broken
,

: ¬lh-usable

¬lh-usable
,

: ¬rh-usable

¬lh-usable
,

: ¬ab1

¬ab1

,
: ¬ab2

¬ab2

.

Then DP has two extensions such that the sets of all atoms from them become

{lh-usable, rh-broken, ab2} and {rh-usable, lh-broken, ab1},

which coincide with the stable models of P . 2

The above example illustrates that Poole’s paradox can be eliminated in Reiter’s

default theory by the effect of the CWA-defaults in the associated default theory.

4.4 Default Translation of Extended Disjunctive

Programs

This section first extends the results of the previous section to extended disjunctive

programs. Then we discuss a connection between default theories and disjunctive

default theories recently proposed by Gelfond et al. [1991].
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4.4.1 Representing Extended Disjunctive Programs by De-
fault Theories

An extended disjunctive program is a disjunctive program containing classical nega-

tion along with default negation in the program [Gelfond and Lifschitz, 1991]. As

presented in Chapter 2, an extended disjunctive program P is translated into a nor-

mal disjunctive program by considering its positive form P+. Using this translation,

we extend the results in the previous section to extended disjunctive programs.

Given an extended disjunctive program and its answer sets, let S+ be a positive

form of an answer set S where each negative literal ¬A in S is rewritten by A′ in

S+. Then the following relationship holds, which is a straightforward extension of

the result for extended logic programs [Gelfond and Lifschitz, 1991, Proposition 2].

Proposition 4.9 Let P be an extended disjunctive program. Then a consistent set

S is an answer set of P iff S+ is a stable model of P+. 2

Since an extended disjunctive program reduces to a normal disjunctive program by

considering its positive form, we can directly apply Definition 4.3 to give an associated

default theory for an extended disjunctive program. We first rephrase Theorem 4.7

for our current use.

Lemma 4.10 Let P be an extended disjunctive program.

(i) If M is a stable model of P+, then there is an extension E of DP+ such that

M = E ∩HBP+ .

(ii) If E is an extension of DP+ , then M = E ∩HBP+ is a stable model of P+. 2

We say that a consistent extension E of DP+ is positively consistent if it does not

contain a pair of complementary atoms A and A′. The next theorem directly follows

from the above proposition and lemma, which presents a one-to-one correspondence

between the consistent answer sets of a program and the (positively) consistent ex-

tensions of its associated default theory.

Theorem 4.11 Let P be an extended disjunctive program.

(i) If S is a consistent answer set of P , then there is an extension E of DP+ such

that S+ = E ∩HBP+ .

(ii) If E is a positively consistent extension of DP+ , then S+ = E ∩ HBP+ is a

positive form of an answer set S of P . 2
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Clearly the above results reduce to the case of extended logic programs in the

absence of disjunctions in a program.4 It should be noted that when a program has

no consistent answer set, we cannot apply Theorem 4.11 in a straightforward manner.

Corollary 4.12 Let P be an extended disjunctive program. If LP is the unique

answer set of P , then DP+ has no positively consistent extension. 2

The converse of the above corollary does not hold in general.

Example 4.5 Let P be the extended logic program:

{ a← not b, ¬a← },

which has no answer set. In this case, its positive form P+ becomes

{ a← not b, a′ ← },

and its associated default theory DP+ is

{ a′, : ¬b
a
,

: ¬a
¬a

,
: ¬b
¬b

,
: ¬a′

¬a′
},

which has the unique extension Th({a, ¬b, a′}). 2

To characterize a program having no consistent answer set, consider a program

PLP which is the reduct of P with respect to LP . By the definition of answer sets,

LP is the answer set of P iff LP is the answer set of PLP . Let PLP
+

be a positive

form of PLP . Then the following result holds.

Theorem 4.13 Let P be an extended disjunctive program. Then,

(i) P has the answer set LP iff D
PLP

+ has a consistent extension but no positively

consistent extension.

(ii) P has no answer set iff either D
PLP

+ has a positively consistent extension but

DP+ has no positively consistent extension, or D
PLP

+ has the contradictory

extension. 2

The results of Theorem 4.11 and 4.13 present that the answer set semantics of

extended disjunctive programs is also characterized by Reiter’s default theories.

4[Gelfond and Lifschitz, 1991] presents a default translation of extended logic programs, which is
an extension of tr1 of [Marek and Truszczynski, 1989a] and different from ours.
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4.4.2 Relationship to Disjunctive Default Theory

Disjunctive default logic, recently proposed by Gelfond et al. [1991], is known as one

of the extensions of Reiter’s default logic, which is devised to treat default reasoning

with disjunctive information. In this section, we investigate the connection between

disjunctive default theories and associated default theories presented in the previous

sections.

A disjunctive default theory ∆ is a set of defaults of the form:

α : β1, . . . , βm
γ1 | . . . | γn

(4.4)

where α, β1, . . . , βm, γ1, . . . , γn (m,n ≥ 0) are quantifier-free first-order formulas and

respectively called the prerequisite, the justifications and the consequents . The for-

mula γ1 | γ2 represents a disjunction meaning “γ1 is true or γ2 is true”, rather than

“γ1 ∨ γ2 is true”.

An extension E of a disjunctive default theory is defined in the same manner

as that of a default theory except that it is a minimal deductively closed set E ′ of

formulas such that for each default rule (4.4) in ∆, if E ′ satisfies the prerequisite and

E is consistent with the justifications, then E ′ is required to contain some consequent

γi (1 ≤ i ≤ n) rather than the disjunction itself.

Given an extended disjunctive program P , each clause

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln

in P is translated into the following disjunctive default in its associated disjunctive

default theory ∆P :
Ll+1 ∧ . . . ∧ Lm : ¬Lm+1, . . . ,¬Ln

L1 | . . . | Ll
. (4.5)

Note here that any CWA-default is not included in ∆P . The following proposition

is due to [Gelfond et al., 1991] which presents the relation between an extended

disjunctive program and its associated disjunctive default theory.

Proposition 4.14 Let P be an extended disjunctive program and ∆P be its associ-

ated disjunctive default theory. Then a consistent set S is an answer set of P iff S is

the set of all literals from an extension of ∆P . 2

In the previous section, we have presented the relationship between extended

disjunctive programs and default theories. Then the next results follows from Theo-

rem 4.11, Theorem 4.13, and Proposition 4.14. Recall here that S+ is a positive form

of an answer set S.
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Theorem 4.15 Let P be an extended disjunctive program.

(i) If E∆ is a consistent extension of ∆P and S = E∆∩LP , then there is an extension

E of DP+ such that S+ = E ∩HBP+ .

(ii) If E is a positively consistent extension of DP+ and S+ = E ∩HBP+ , then there

is an extension E∆ of ∆P such that S = E∆ ∩ LP . 2

Corollary 4.16 Let P be an extended disjunctive program. Then,

(i) ∆P has the contradictory extension iff eitherD
PLP

+ has a consistent extension but

no positively consistent extension, or D
PLP

+ has the contradictory extension.

(ii) ∆P has no extension iff D
PLP

+ has a positively consistent extension but DP+

has no positively consistent extension. 2

The above results bridge the gap between disjunctive default theories and Reiter’s

default theories in terms of extended disjunctive programs.

In [Gelfond et al., 1991], the difficulty of expressing disjunctive information in

Reiter’s default theory is discussed using some examples. However, we have already

seen that Poole’s paradox is eliminated by considering the CWA-defaults in its asso-

ciated default theory (Example 4.4). The following examples, which are also given in
[Gelfond et al., 1991] to differentiate each formalism, present that we do not lose any

information under Reiter’s default theory in the presence of disjunctive information.

Example 4.6 Let ∆P be the disjunctive default theory:

{ a ≡ b, a | b }.

Then the corresponding default theory

DP = { a ≡ b, a ∨ b, : ¬a
¬a

,
: ¬b
¬b
}

has the unique extension Th({a, b}) which is equivalent to the extension of ∆P . 2

Example 4.7 Let ∆P be the disjunctive default theory:

{ a | b, a :

b
,

: ¬a
c
}.

Then the corresponding default theory

DP = { a ∨ b, a ⊃ b,
: ¬a
c
,

: ¬a
¬a

,
: ¬b
¬b

,
: ¬c
¬c
}

has the unique extension Th({¬a, b, c}) where Th({¬a, b, c} ∩ HBP ) = Th({b, c})
coincides with the unique extension of ∆P . 2
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It remains open whether there is a general correspondence between the disjunctive

default theory and the default theory.5 However, the results presented in this section

show that Reiter’s default theory has the same expressiveness as the disjunctive de-

fault theory to characterize the stable model semantics and the answer set semantics

of normal and extended disjunctive programs.

4.5 Connections with Autoepistemic Logic and Cir-

cumscription

In this section, we consider connections between disjunctive programs and other two

representative nonmonotonic formalisms. The one is Moore’s autoepistemic logic,

and the other is McCarthy’s circumscription.

4.5.1 Autoepistemic Logic

Autoepistemic logic [Moore, 1985] is a modal non-monotonic logic which is developed

as a reconstruction of nonmonotonic logic by [McDermott and Doyle, 1980].

In autoepistemic logic, nonmonotonic reasoning is achieved as reasoning with an

agent’s own belief. For instance, the bird-fly sentence is represented as

bird(x) ∧ ¬L¬fly(x) ⊃ fly(x)

where L is a modal belief operator. The above formula is read as “if x is a bird and

there is no evidence to believe that x does not fly, then x flies”.

Thus, if we know the fact bird(Tweety) and there is no reason to believe the

opposite fact ¬fly(Tweety), then fly(Tweety) is concluded.

An autoepistemic theory is defined in a similar way to a first-order theory except

that its language includes modal formulas built from modal operator L and usual

first-order connectives, with the restriction that quantification into the scope of the

modal operator is not allowed.6

An expansion of an autoepistemic theory is defined as follows.

5A recent study [Eiter and Gottlob, 1993b] indicates that both default theories and disjunctive
default theories are at the same second level of the polynomial hierarchy. Therefore, “there must
exist a polynomial transformation from reasoning tasks in disjunctive default theories to analogous
reasoning tasks in default theories” (G. Gottlob, private communication).

6Thus, free variables appearing in an autoepistemic formula are viewed as representing its ground
instances.
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Definition 4.4 Let AE be an autoepistemic theory. Then its expansion E is defined

as

E = Th(AE ∪ {Lφ | φ ∈ E} ∪ {¬Lφ | φ 6∈ E}). 2 (4.6)

An autoepistemic expansion E satisfies the following conditions:

(i) E = Th(E),

(ii) A ∈ E iff LA ∈ E, and

(iii) A 6∈ E iff ¬LA ∈ E (where E is consistent).

A correspondence between autoepistemic logic and logic programming is firstly

studied by Gelfond [1987] for the perfect model semantics of stratified logic programs.

The result is extended to the stable model semantics of normal logic programs in
[Gelfond and Lifschitz, 1988].

We present an autoepistemic translation of normal disjunctive programs using

the relation between default theories and autoepistemic theories. It is known that

the extensions of a default theory are related to the expansions of an autoepistemic

theory [Konolige, 1988; Marek and Truszczynski, 1989b]. Marek and Truszczynski
[1989b] have shown that there is a one-to-one correspondence between a weak exten-

sion of a default theory and an expansion of its corresponding autoepistemic theory.

Since weak extensions coincide with extensions in prerequisite-free default theories,

the above result implies that the default translation of disjunctive programs presented

in Section 4.3 is also rephrased in the context of autoepistemic logic. That is, in Defi-

nition 4.3 (i), instead of transforming each clause in a program into the corresponding

default rule, we can transform each clause into the following autoepistemic formula:

B1 ∧ . . . ∧Bm ∧ ¬LBm+1 ∧ . . . ∧ ¬LBn ⊃ A1 ∨ . . . ∨ Al , (4.7)

and instead of the CWA-defaults in (ii), we have the CWA-formula:

¬LA ⊃ ¬A. (4.8)

In this way, the autoepistemic theory AEP associated with a disjunctive program

P is defined. Then the following result holds.

Theorem 4.17 Let P be a consistent normal disjunctive program and AEP be its

associated autoepistemic theory. Then M is a stable model of P iff E is an expansion

of AEP and M = E ∩HBP . 2
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The above theorem provides an autoepistemic characterization of disjunctive pro-

grams. Such an autoepistemic translation is also presented in [Przymusinski, 1990a]

in the context of the 3-valued stable model semantics. Using the same techniques pre-

sented in the previous sections, we can also provide autoepistemic characterizations

of extended disjunctive programs and associated disjunctive default theories. An al-

ternative autoepistemic translation for extended disjunctive programs is presented in
[Lifschitz and Schwarz, 1993; Chen, 1993].

4.5.2 Circumscription

Circumscription [McCarthy, 1980; 1986] is also known as one of the popular frame-

works of nonmonotonic reasoning in AI. Different from default logic and autoepistemic

logic, circumscription is still within classical logic but augmented with an ability of

nonmonotonic reasoning.

Using the bird-fly example again, let us consider the first-order formula:

∀x bird(x) ∧ ¬abnormal(x) ⊃ fly(x).

Then, if bird(Tweety) is the all known facts about Tweety, by minimizing the ex-

tension of the predicate abnormal (in this case the empty set), circumscription con-

cludes fly(Tweety). Else if there is an evidence that Tweety is an abnormal bird

abnormal(Tweety), fly(Tweety) is not derived any more.

Several variations of circumscription have been proposed so far. In what follows,

we use predicate circumscription originally proposed by McCarthy [1980].

Given a first-order theory T and a set of predicates Π = {p1, . . . , pn} from T , the

circumscription of T with respect to Π is defined as the second-order axiom that

Circ(T ; Π) ≡ T (p′1, . . . , p
′
n) ∧

n∧
i=1

(∀x p′i(x) ⊃ pi(x)) ⊃
n∧
i=1

(∀x pi(x) ⊃ p′i(x)) (4.9)

where each p′i is a predicate variable with the same arities as pi.

The above schema means that for any theory T (p′1, . . . , p
′
n) obtained from T by

replacing each pi with p′i, there is no theory which has smaller extensions of p1, . . . , pn
with respect to T .

Predicates in Π are said to be minimized , while the rest of predicates in the

language of T are said to be fixed . Any model of Circ(T ; Π) is called a Π-minimal

model of T , in which extensions of each predicate from Π are minimized with fixed

interpretations for the rest of predicates.



AUTOEPISTEMIC LOGIC AND CIRCUMSCRIPTION 85

Circumscription is also closely related to logic programming semantics. Lifschitz
[1985] showed a connection between predicate circumscription and the CWA. The re-

sult is further extended to stratified logic programs [Lifschitz, 1988], and normal logic

programs [Lifschitz, 1989; Lin and Shoham, 1992; Yuan and You, 1993]. For positive

disjunctive programs, circumscription coincides with the minimal model semantics

if no fixed predicate exists. The perfect model semantics of stratified disjunctive

programs is also characterized by prioritized circumscription [Przymusinski, 1988a].

Gelfond et al. [1989] study various forms of closed world assumptions in terms of

circumscription.

In the following, we characterize the disjunctive stable model semantics of normal

disjunctive programs by circumscription.

For a normal disjunctive program P , let PL be a first-order theory which is ob-

tained from P by replacing each notA in P by ¬LA, where LA is a new atom meaning

A is believed .7 Then PL is a set of formulas of the same form as (4.7) except that each

modal formula ¬LBi is replaced by a first-order literal ¬LBi. Given a theory PL, its

Herbrand base is defined as HBP ∪{LA | A ∈ HBP}, and an Herbrand interpretation

is defined as a subset of the Herbrand base. We restrict our attention to Herbrand

models of the theory PL, since we are interested in a semantic relationship between P

and PL. Also such a restriction has an effect to incorporate both the domain closure

assumption and the unique name assumption into PL [Bossu and Siegel, 1985].

Let Π be the set of all predicates appearing in the language of P . Then circum-

scription Circ(PL; Π) represents that circumscribing the predicates Π in PL with the

fixed predicates LΠ, where LΠ = {Lp | p ∈ Π}. In the following, for M ⊆ HBP , we

write LM = {LA | A ∈M}, and LΠ ≡ Π means
∧
pi∈Π ∀x Lpi(x) ≡ pi(x).

Let us consider a propositional theory PL
LM which is obtained from the ground

instance of the theory PL by deleting (i) each formula which has a negative literal

¬LA in its antecedent such that LA ∈ LM , and (ii) all negative literals ¬LA in the

antecedents of the remaining formulas. Then the following lemma holds.

Lemma 4.18 Let P be a normal disjunctive program. Then M∪LM is an Herbrand

model of Circ(PL
LM ; Π)∧LΠ ≡ Π iff M∪LM is an Herbrand model of Circ(PL; Π)∧

LΠ ≡ Π.

Proof: Suppose that M ∪LM is an Herbrand model of Circ(PL
LM ; Π)∧

LΠ ≡ Π. Then, for each ground formula B1 ∧ . . . ∧ Bm ⊃ A1 ∨ . . . ∨ Al
7The meaning of LA is the same as KA in Chapter 3, but here we use the notation LA to compare

it with an autoepistemic formula LA.
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in PL
LM , {B1, . . . , Bm} ⊆ M implies Ai ∈ M for some i (1 ≤ i ≤ l).

In this case, there is a corresponding ground formula B1 ∧ . . . ∧ Bm ⊃
A1 ∨ . . . ∨Al ∨ LBm+1 ∨ . . . ∨ LBn from PL such that {B1, . . . , Bm} ⊆M

and Ai ∈ M hold. Since M is Π-minimal, M ∪ LM is also an Herbrand

model of Circ(PL; Π) ∧ LΠ ≡ Π.

Conversely, suppose that M ∪LM is an Herbrand model of Circ(PL; Π)∧
LΠ ≡ Π. Then, for each ground formula B1 ∧ . . . ∧Bm ⊃ A1 ∨ . . . ∨ Al ∨
LBm+1∨ . . .∨LBn from PL, {B1, . . . , Bm} ⊆M implies either (i) Ai ∈M
for some i (1 ≤ i ≤ l) or (ii) LBj ∈ LM for some j (m + 1 ≤ j ≤ n).

In case of (i), when LBj 6∈ LM , there is a corresponding ground formula

B1 ∧ . . . ∧ Bm ⊃ A1 ∨ . . . ∨ Al in PL
LM such that {B1, . . . , Bm} ⊆ M

implies Ai ∈M . In case of (ii), there is no corresponding ground formula

in PL
LM . In each case, M ∪ LM is also a model of PL

LM . Since M is

Π-minimal, M ∪ LM is an Herbrand model of Circ(PL
LM ; Π) ∧ LΠ ≡ Π.

2

Now we present the theorem which provides a connection between disjunctive

programs and circumscription.

Theorem 4.19 Let P be a normal disjunctive program. Then M is a stable model

of P iff M ∪ LM is an Herbrand model of Circ(PL; Π) ∧ LΠ ≡ Π.

Proof: M is a stable model of P

iff M is a minimal model of PM

iff M is an Herbrand model of Circ(PM ; Π)

iff M is an Herbrand model of Circ(PL
LM ; Π)

iff M ∪ LM is an Herbrand model of Circ(PL
LM ; Π) ∧ LΠ ≡ Π

iffM∪LM is an Herbrand model of Circ(PL; Π)∧LΠ ≡ Π (by Lemma 4.18).

2

The above theorem generalizes the corresponding results for normal logic programs
[Lifschitz, 1989; Lin and Shoham, 1992; Yuan and You, 1993], and also provides a

method of characterizing extended disjunctive programs and associated disjunctive

default theories in terms of circumscription.8

8For normal disjunctive programs, a similar result is also reported in [Lin and Shoham, 1992]

without proof.
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4.5.3 Characterizing Possible Model Semantics

We finally discuss the issue of characterizing the possible model semantics by non-

monotonic formalisms.

We have already seen that possible models of normal disjunctive programs are

translated into stable models of normal logic programs by the pm-transformation in

Section 3.6. Since stable models of normal logic programs can be expressed by the

nonmonotonic frameworks as presented in the previous sections, possible models are

also expressed by each nonmonotonic framework via stable models.

However, the pm-transformation introduces extra atoms like A′i’s, which are not

included in the language of the original program. Hence nonmonotonic translations

of possible models through the pm-transformation also include those extra-language

formulas, which does not precisely coincide with the original meaning of the program.

Then, in this section we consider a possibility to express possible models directly

in terms of each nonmonotonic formalism. For this purpose, we can first exclude

(disjunctive) default logic and circumscription. This is because those formalisms are

based on the principle of minimality, that is, default extensions and circumscribed

models are always minimal. Thereby the remaining candidate is autoepistemic logic.

Fortunately, autoepistemic expansions are not necessarily minimal with respect

to first-order formulas. For instance, the autoepistemic theory { La ⊃ a } has two

expansions: one containing a and La, while the other containing ¬La but neither a nor

¬a. Historically, non-minimal expansions are considered as anomalous expansions,

and efforts have been done to eliminate such expansions [Konolige, 1988]. However,

as shown below, non-minimal expansions are useful to express possible models in an

autoepistemic theory.

Let us consider the autoepistemic theory AE = { La ⊃ a, Lb ⊃ b }, which

has four expansions containing the sets, E1 = {a, La, ¬Lb}, E2 = {b, Lb, ¬La},
E3 = {a, b, La, Lb}, and E4 = {¬La, ¬Lb}, respectively. Then we can observe

that the first three expansions correspond to the possible models of the program

P = { a ∨ b← }.
Rewriting AE by AE ′ = {a ∨ ¬La, b ∨ ¬Lb} will help to understand the corre-

spondence. Each formula in AE ′ presents that an atom is true or not believed, which

exactly characterizes interpretations of split programs of P . That is, E1, E2, and E3

express epistemic interpretations of split programs P1 = {a ←}, P2 = {b ←}, and

P3 = {a ←, b ←}, respectively. On the other hand, since there is no split program

corresponding to E4, we add the formula La ∨ Lb to AE to remove this expansion

from AE. This formula presents that when a ∨ b is true in P , one of the disjuncts is

believed.
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Formally, expressing possible models in autoepistemic logic is achieved as follows.

Definition 4.5 Let P be a normal disjunctive program. Then its associated pm-

autoepistemic theory AEpm
P is constructed as follows:

(i) Each disjunctive clause A1 ∨ . . . ∨Al ← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn

from P is transformed into the following autoepistemic formulas in AEpm
P :

B1 ∧ . . . ∧Bm ∧ ¬LBm+1 ∧ . . . ∧ ¬LBn ⊃ Ai ∨ ¬LAi for i = 1, . . . , l,(4.10)

B1 ∧ . . . ∧Bm ∧ ¬LBm+1 ∧ . . . ∧ ¬LBn ⊃ LA1 ∨ . . . ∨ LAl. (4.11)

In particular, each normal clause Al ← B1 ∧ . . .∧Bm ∧ notBm+1 ∧ . . .∧ notBn

from P is transformed into the following autoepistemic formula in AEpm
P :

B1 ∧ . . . ∧Bm ∧ ¬LBm+1 ∧ . . . ∧ ¬LBn ⊃ Al.

(ii) Nothing else is in AEpm
P . 2

Note here that AEpm
P contains no CWA-formula (4.8).

The first formula (4.10) represents that if the antecedent of the formula is true, Ai
is true or not believed. The second formula (4.11) represents that if the antecedent is

true, at least one of the disjuncts is believed. Recall that an autoepistemic expansion

E satisfies the conditions that ¬LAi ∈ E implies Ai 6∈ E and LAi ∈ E implies Ai ∈ E.

Now we have the following result.

Theorem 4.20 Let P be a consistent normal disjunctive program and AEpm
P be its

associated pm-autoepistemic theory. Then M is a possible model of P iff E is an

expansion of AEpm
P and M = E ∩HBP .

Proof: Let M be a possible model of P . Then there is a split program

P ′ of P such that M is a stable model of P ′. Suppose that each ground

disjunctive clause A1∨ . . .∨Al ← B1∧ . . .∧Bm∧notBm+1∧ . . .∧notBn in

P is replaced with the split clauses: Ai ← B1∧ . . .∧Bm∧notBm+1∧ . . .∧
notBn in P ′, where Ai ∈ S for some non-empty subset S of {A1, . . . , Al}.
In this case, it is easy to see that the corresponding autoepistemic theory

AEpm
P has an expansion E such that Ai ∈ M iff Ai ∈ E ∩ HBP , and

Ai 6∈ M iff ¬LAi ∈ E. Hence, the result follows. The converse is also

shown in the same manner. 2
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4.6 Summary

This chapter has presented the relationship between disjunctive programs and default

theories.

We first pointed out the problem of Bidoit and Froidevaux’s positivist default

theories, and developed an alternative correct default translation of normal disjunctive

programs. It was shown a one-to-one correspondence between the stable models of

a disjunctive program and the default extensions of its associated default theory.

We also extended the results to default translation of extended disjunctive programs

and the answer set semantics. The results indicate that Reiter’s default theory is as

expressive as Gelfond et al.’s disjunctive default theory to characterize the semantics

of disjunctive programs.

We finally presented the connections between disjunctive programs and autoepis-

temic logic, and circumscription. The possible model semantics of disjunctive pro-

grams was also characterized using non-minimal feature of autoepistemic expansions.
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Chapter 5

Equivalence between Disjunctive
and Abductive Logic Programs

Abductive logic programming is a recently proposed framework which enhances logic

programming by supplying the ability of abductive reasoning in AI. In this chap-

ter, we consider such an abductive logic programming framework and reveal its close

relationship to disjunctive programs. We show that the generalized stable model se-

mantics of abductive logic programs are viewed as the possible model semantics of

disjunctive programs, and vice versa. We also demonstrate that abductive disjunc-

tive programs do not increase expressiveness of disjunctive programs. Interrelations

between various semantics of disjunctive and abductive logic programs are discussed

in terms of computational complexity.

5.1 Introduction

Abduction is a form of hypothetical reasoning and is widely used today in various AI

problems such as diagnosis and planning. Abduction is a reasoning for hypotheti-

cal generation from a given observation, and provides a weak kind of non-deductive

inference as a tool for commonsense reasoning.

In logic programming, abduction is realized in the framework of abductive logic

programming . The framework was firstly proposed by Eshghi and Kowalski [1989],

in which they gave an abductive interpretation of negation as failure in normal logic

programs. They showed a one-to-one correspondence between the stable models of

a normal logic program and the extensions of its associated abductive framework.

Kakas and Mancarella [1990] extended their framework to abductive logic programs

containing abducibles which represent not necessarily default negation but positive

91
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hypothetical facts. They also introduced the generalized stable model semantics as

a theoretical framework of such programs. Further extensions of abductive logic

programming have been studied by several researchers in the last few years [Kakas et

al., 1992].

Comparing between disjunctive programs and abductive logic programs, both

frameworks enhance logic programming by supplying the ability of reasoning with

incomplete information. It is achieved in disjunctive programs by reasoning with dis-

junctive information, while in abductive logic programs by reasoning with hypotheses.

Disjunctive programs and abductive logic programs have been independently devel-

oped so far and have different syntax and semantics from each other. However, in

disjunctive programs, each disjunction is considered to represent knowledge about

possible alternative beliefs, and such beliefs can also be regarded as a kind of hy-

potheses. In abductive logic programs, on the other hand, each candidate hypothesis

is examined whether it is adopted or not, and this situation can be considered as

meta-level disjunctive knowledge that either a hypothesis is true or not. Thus, each

formalism appears to deal with very similar problems from different viewpoints. Then

the question naturally arises whether there is any formal correspondence between

these two frameworks.

There are some studies which can be related to the above question. Dung [1992a]

presents a program transformation from acyclic disjunctive programs to normal logic

programs under the stable model semantics and uses Eshghi and Kowalski’s abductive

proof procedure for such programs. However, Dung’s transformation is restricted to

acyclic disjunctive programs and not applicable in general. Console et al. [1991] char-

acterize abduction using Clark’s completion technique in abductive logic programs.

They show that abductive solutions are obtained by deduction in the only-if part of

the completed abductive program which is viewed as a kind of disjunctive program,

but the technique is applicable only to acyclic abductive programs. Inoue and Sakama
[1993] present a program transformation from abductive logic programs to disjunctive

programs under the stable model semantics and use a bottom-up model generation

proof procedure for computing abduction. While their transformation is fairly gen-

eral, it is a one-way transformation from abductive logic programs to disjunctive

programs.

In this chapter, we investigate a general correspondence between disjunctive pro-

grams and abductive logic programs. For the part from abductive logic programs

to disjunctive programs, we show that the generalized stable models of an abductive

logic program are characterized by the possible models of the transformed disjunc-

tive program. Conversely, from disjunctive programs to abductive logic programs,
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we show that the possible models of a disjunctive program are exactly the gener-

alized stable models of the transformed abductive logic program. Moreover, if the

disjunctive stable model semantics is taken as the underlying semantics instead of the

possible model semantics, it is unlikely that disjunctive programs can be efficiently

expressed in terms of the generalized stable model semantics. It is also shown that

abductive disjunctive programs can be expressed by abductive logic programs under

the possible model semantics.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the

notion of abductive logic programming. In Section 5.3, we present program transfor-

mations between abductive logic programs and disjunctive programs. It is shown that

the generalized stable models of an abductive logic program are characterized by the

possible models of the transformed disjunctive program, and vice versa. In Section

5.4, we introduce abductive disjunctive programs and present their translation into

disjunctive programs. It is shown that abductive logic programs are as expressive as

abductive disjunctive programs under the possible model semantics. Section 5.5 dis-

cusses the relation between disjunctive programs and abductive logic programs from

the computational complexity viewpoint. Section 5.6 summarizes this chapter.

5.2 Abductive Logic Programming

Abduction is firstly introduced by Peirce [1932] who characterized three distinguished

forms of reasoning, abduction, induction, and deduction. Abduction is a non-deductive

inference and is formally presented as follows.

Given a theory T and an observation O, abduction is defined as an inference of

an explanation E such that

T ∪ E |= O where T ∪ E is consistent. (5.1)

Thus, abduction can be thought of as a form of hypothetical reasoning which

produces, with background knowledge T , hypothetical sentences E that are sufficient

to account for O.

Abductive logic programming is a form of such abductive frameworks in which T

is given as a logic program.

An abductive logic program is a pair 〈P,A〉 where P is a normal logic program

and A is a finite set of atoms called the abducibles .1

1We slightly modified the original definition of [Kakas and Mancarella, 1990] by including integrity
constraints in a program and considering abducible atoms instead of abducible predicates. Here, an
abducible containing variables is identified with its ground instances.
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Abducibles are pre-specified sentences, which represent candidate hypotheses used

for explanations. Such a specification is needed to get “best” explanations since there

might be many candidate explanations which can deduce a given observation from

the condition (5.1).

A declarative semantics of abductive logic programs is given by Kakas and Man-

carella [1990] who extended the stable model semantics of normal logic programs

to the generalized stable model semantics of abductive logic programs. Similar ex-

tensions are done in [Gelfond, 1990; Inoue, 1991] in the context of extended logic

programs.

Let 〈P,A〉 be an abductive logic program and E be a subset of A. An interpre-

tation I is a generalized stable model of 〈P,A〉 if I is a stable model of the normal

logic program P ∪E. A generalized stable model I is called A-minimal if there is no

generalized stable model J such that J∩A ⊂ I∩A. Clearly, (A-minimal) generalized

stable models coincide with stable models if A = ∅.
Let 〈P,A〉 be an abductive logic program and O be an atom which represents

observation. Then a set E ⊆ A is an explanation of O if there is a generalized stable

model I of 〈P,A〉 such that I satisfies O and E = I ∩ A. An explanation E of O is

minimal if no E ′ ⊂ E is an explanation of O.

Note that the problem of finding explanations is essentially equivalent to the

problem of finding generalized stable models since E is a (minimal) explanation of O

with respect to 〈P,A〉 iff I is a (A-minimal) generalized stable model of 〈P ∪ { ←
notO}, A〉 such that I ∩ A = E.

Also note that without loss of generality an observation is assumed to be a non-

abducible ground atom. This is because if O is an abducible, its explanations trivially

contain O. Else if O(x) contains a tuple of free variables x, we can introduce a

new proposition O which is considered as an observation in the program P ∪ {O ←
O(x)}. Else if multiple observations are given like that O1, . . . , Om are observed

and Om+1, . . . , On are not observed, they are also realized by introducing a clause

O ← O1 ∧ . . . ∧ Om ∧ notOm+1 ∧ . . . ∧ notOn into P and computing explanations of

O [Inoue and Sakama, 1993].

Example 5.1 Let 〈P,A〉 be an abductive logic program such that

P = { p(x)← q(x) ∧ not r(x), q(x)← s(x), q(x)← t(x) }

and A = { s(x), t(b) }. Then, for a given observation O = p(a), the (A-minimal)

generalized stable model I = { p(a), q(a), s(a) } of 〈P,A〉 satisfies O and its

(minimal) explanation is E = I ∩A = { s(a) }. Here, I is also the unique generalized

stable model of 〈P ∪ {← not p(a)},A〉. 2
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5.3 Connections between Disjunctive and Abduc-

tive Logic Programs

In this section, we characterize disjunctive programs in terms of abductive logic pro-

grams, and vice versa. Then we reveal close relationships between the generalized

stable models of abductive logic programs and the possible models of disjunctive

programs.

5.3.1 Generalized Stable Models are Possible Models

We first present a program transformation from abductive logic programs to disjunc-

tive programs, then show that the generalized stable models of an abductive logic

program can be expressed by the possible models of the transformed disjunctive pro-

gram.

In an abductive logic program, each candidate hypothesis is either assumed or

not. Such a situation is naturally expressed by disjunctions in a program.

Definition 5.1 Let 〈P,A〉 be an abductive logic program. Then its dlp-transformation

is defined by a normal disjunctive program dlp(〈P,A〉) which is obtained from P by

adding the following disjunctive clauses for each abducible A ∈ A:

A ∨ ε← (5.2)

where ε is an atom not appearing elsewhere in P . 2

The intuitive meaning of the dlp-transformation is that when an abducible A

is assumed in an abductive logic program 〈P,A〉, the corresponding disjunct A is

chosen from (5.2) in the transformed disjunctive program dlp(〈P,A〉). Else when

A is not assumed, the newly introduced atom ε is chosen from (5.2). Thus the dlp-

transformation specifies meta-level knowledge representing whether each abducible is

assumed or not.

Now we express the generalized stable model semantics in terms of dlp(〈P,A〉).
Let I be a possible model of a normal disjunctive program P . We say that I is

A-minimal if there is no possible model J of P such that J ∩ A ⊂ I ∩ A. In the

following, an atom A is identified with the unit clause A← in E.

Theorem 5.1 Let 〈P,A〉 be an abductive logic program. Then,

(i) I \ {ε} is a generalized stable model of 〈P,A〉 iff I is a possible model of

dlp(〈P,A〉).
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(ii) I \{ε} is an A-minimal generalized stable model of 〈P,A〉 iff I is an A-minimal

possible model of dlp(〈P,A〉).

Proof: (i) Let I ′ be a generalized stable model of 〈P,A〉. Then I ′

is a stable model of P ∪ E for some E from A. Now let us consider

the transformed disjunctive program dlp(〈P,A〉). Then there is a split

program P ′ of dlp(〈P,A〉) such that for each disjunctive clause (5.2),

A ← is in P ′ if A ∈ E ; ε ← is in P ′, otherwise. When ε ← is in P ′,

I ′ ∪ {ε} is a stable model of P ′ and also a possible model of dlp(〈P,A〉).
Else when ε← is not in P ′, I ′ is a stable model of P ′ and also a possible

model of dlp(〈P,A〉). Hence the result of only-if part follows.

Conversely, when I is a possible model of dlp(〈P,A〉), it is a stable model

of some split program P ′ of dlp(〈P,A〉). Let E be the set of all split

clauses included in P ′. Then I is a stable model of P ∪E. Since E \{ε←}
consists of instances fromA, I\{ε} is a generalized stable model of 〈P,A〉.
(ii) The result directly follows from (i) and the definitions of A-minimal

generalized stable models/A-minimal possible models. 2

Corollary 5.2 Let 〈P,A〉 be an abductive logic program. Then, for a given obser-

vation O, there is a (minimal) explanation E of O iff there is an (A-minimal) possible

model I of dlp(〈P,A〉) satisfying O and I ∩ A = E. 2

Example 5.2 Let 〈P,A〉 be an abductive logic program such that

P = { wet-shoes← wet-grass ∧ not driving-car,

wet-grass← rained,

wet-grass← sprinkler-on },

and A = { rained, sprinkler-on }. Then,

dlp(〈P,A〉) = P ∪ { rained ∨ ε←, sprinkler-on ∨ ε← }

which has the five possible models:

{rained, sprinkler-on, wet-grass, wet-shoes},

{ε},

{ε, rained, wet-grass, wet-shoes},
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{ε, sprinkler-on, wet-grass, wet-shoes},
{ε, rained, sprinkler-on, wet-grass, wet-shoes}.

Thus, the generalized stable models of 〈P,A〉 coincide with the sets which are ob-

tained by removing ε from each possible model. In particular, {ε} is the A-minimal

possible model and it corresponds to the A-minimal generalized stable model ∅ of

〈P,A〉. 2

The result of this section indicates that abductive logic programs are also consid-

ered as disjunctive programs. In the next section, we present that the converse is also

the case.

5.3.2 Possible Models are Generalized Stable Models

As presented in the introduction, indefinite information in disjunctive programs is

viewed as possible hypotheses in a program. Then it is natural to represent disjuncts

in terms of abducibles in an abductive logic program. However, the problem is that

disjunctive clauses possibly have conditions in their bodies, while abductive logic

programs introduced in Section 5.2 lack the ability of expressing assumptions with

preconditions. Then our first task is to extend the framework of abductive logic

programs to possibly include such hypothetical rules.

An abductive logic program considering in this section is a pair 〈P, C 〉 where P

is a normal logic program and C is a finite set of normal clauses called the abducible

rules . The abducible rule intuitively means that if the rule is abduced then it is

used for inference together with the background knowledge from P . In this sense,

abductive logic programs presented in the previous sections are considered as a special

case where each abducible rule has the empty precondition. The generalized stable

model semantics of such an extended framework is defined as follows.

Definition 5.2 Let 〈P, C 〉 be an abductive logic program and F be a subset of C.
An interpretation I is a generalized stable model of 〈P, C 〉 if it is a stable model of

the normal logic program P ∪ F . 2

The generalized stable model introduced above is a direct extension of the one

presented in the previous sections, and it reduces to the usual notion when C = A.

Next we provide a program transformation which translates normal disjunctive

programs into abductive logic programs. For a normal disjunctive program P , we

define P = disj(P ) ∪ disj(P ) where disj(P ) is the set of all disjunctive clauses from

P and disj(P ) is the set of all normal clauses and integrity constraints from P . In

the following, Γ denotes the conjunction in the body of a clause.
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Definition 5.3 Given a normal disjunctive program P , let us consider the set of

normal clauses

C = { Ai ← Γ | A1 ∨ . . . ∨ Al ← Γ ∈ disj(P ) and 1 ≤ i ≤ l } (5.3)

and the integrity constraints

IC = { ← Γ ∧ notA1 ∧ . . . ∧ notAl | A1 ∨ . . . ∨ Al ← Γ ∈ disj(P ) }. (5.4)

Then we define the alp-transformation of P by alp(P ) = 〈 disj(P ) ∪ IC, C 〉. 2

The intuitive meaning of the alp-transformation is that each disjunctive clause

in a program is replaced with a set of abducible rules (5.3) in C. The integrity

constraints (5.4) in IC impose the condition that at least one of disjuncts is chosen

as an abducible whenever the body of a disjunctive clause is true. In this way, by the

alp-transformation each disjunctive clause is rewritten by a set of abducible rules.

Now we present the relationship between the possible models of a normal disjunc-

tive program P and the generalized stable models of the transformed abductive logic

program alp(P ).

Theorem 5.3 Let P be a normal disjunctive program. Then I is a possible model

of P iff I is a generalized stable model of alp(P ).

Proof: Let I be a possible model of P . Then there is a split program

P ′ of P such that I is a stable model of P ′. Suppose that each ground

disjunctive clause Ck : A1 ∨ . . . ∨ Alk ← Γk from P is replaced with the

split clauses in Ck
S = {Ai ← Γk | Ai ∈ S} in P ′ where S is a non-empty

subset of {A1, . . . , Alk}. Then I is a stable model of disj(P )∪⋃k C
k
S. Since⋃

k C
k
S consists of instances from C and I satisfies integrity constraints IC,

I is also a generalized stable model of alp(P ).

Conversely, let I be a generalized stable model of alp(P ). Then I is a

stable model of P ∪ F where F is a subset of C. For each normal clause

Ai ← Γ in F , there is a corresponding disjunctive clause C : A1 ∨ . . . ∨
Al ← Γ in disj(P ) such that 1 ≤ i ≤ l. Also, since I satisfies integrity

constraints IC, when I satisfies Γ, at least one normal clause Ai ← Γ

is included in F . In this case, there is a split program P ′ of P in which

each ground instance of a disjunctive clause C is split into a corresponding

ground instance of a normal clause Ai ← Γ. Thus I is also a stable model

of P ′, hence a possible model of P . 2
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Example 5.3 ([Chan, 1993]) Let

P = { violent ∨ psychopath← suspect,

dangerous← violent ∧ psychopath,
suspect← }.

Then, alp(P ) = 〈 disj(P ) ∪ IC, C 〉 where

disj(P ) ∪ IC = { dangerous← violent ∧ psychopath,
suspect←,
← suspect ∧ not violent ∧ not psychopath },

C = { violent← suspect, psychopath← suspect }.

Thus, alp(P ) has three generalized stable models:

{suspect, violent},

{suspect, psychopath},
{suspect, violent, psychopath, dangerous},

which coincide with the possible models of P . 2

Note that in the above example there is no minimal model of P containing

dangerous. By contrast, alp(P ) has a generalized stable model in which dangerous

is true, which corresponds to a possible model in which the disjunction is inclusively

true.

The abductive logic programming framework presented in this section is also in-

troduced by Inoue [1991] in the context of the knowledge system for extended logic

programs. He also shows that an abductive logic program 〈P, C 〉 can be translated

into a semantically equivalent usual abductive logic program 〈P,A〉. Given an ab-

ductive logic program 〈P, C 〉, let us consider a program P ′ which is obtained from P

by including the clause:

A← A′ ∧ Γ

for each abducible rule A← Γ in C. Here A′ is a newly introduced atom not appearing

elsewhere in P and is uniquely associated with each A. Also let A′ be a set of

abducibles which consists of every newly introduced atom A′. Then he proves that

there is a one-to-one correspondence between the generalized stable models of 〈P, C 〉
and the generalized stable models of 〈P ′,A′ 〉. This fact implies that the possible

models of a normal disjunctive program are also expressed by the generalized stable

models of a usual abductive logic program.



100 DISJUNCTIVE AND ABDUCTIVE LOGIC PROGRAMS

5.4 Abductive Disjunctive Programs

This section extends a framework of abductive logic programs to abductive disjunctive

programs, and discusses their correspondence to disjunctive programs and abductive

logic programs.

5.4.1 Generalized Disjunctive Stable Models and Possible
Models

Abductive disjunctive programs are disjunctive programs with abducibles. The defi-

nition of an abductive disjunctive program 〈P,A〉 is the same as an abductive logic

program except that P is a normal disjunctive program. For a given set E ⊆ A, an

interpretation I is a generalized disjunctive stable model of 〈P,A〉 if I is a disjunctive

stable model of the normal disjunctive program P ∪ E. On the other hand, I is a

generalized possible model of 〈P,A〉 if I is a possible model of the normal disjunctive

program P ∪ E. A generalized disjunctive stable model (resp. generalized possi-

ble model) I is A-minimal if there is no generalized disjunctive stable model (resp.

generalized possible model) J such that J ∩ A ⊂ I ∩ A.

The above definitions are direct extensions of the previously proposed notions. In

fact, generalized disjunctive stable models (resp. generalized possible models) reduce

to disjunctive stable models (resp. possible models) in normal disjunctive programs

with A = ∅, and both generalized disjunctive stable models and generalized possible

models reduce to generalized stable models in abductive logic programs.

A difference between generalized disjunctive stable models and generalized possi-

ble models is illustrated in the following example.

Example 5.4 Let 〈P,A〉 be an abductive disjunctive program such that

P = { a ∨ b← c, d← a ∧ b }

and A = { c }. Then, ∅, {c, a}, {c, b}, {c, a, b, d} are all generalized possible models,

while {c, a, b, d} is not a generalized disjunctive stable model. Thus, for a given

observation O = d, it has an explanation c under the generalized possible models,

while no explanation is available under the generalized disjunctive stable models. 2

In this way, the generalized possible model semantics can provide explanations

which come from inclusive disjunctions, while the generalized disjunctive stable model

semantics cannot in general.
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5.4.2 Generalized Possible Models are Generalized Stable
Models

Abductive disjunctive programs are generalization of disjunctive programs. However,

in this section we present a somewhat unexpected result that abductive disjunctive

programs do not increase expressive power of disjunctive programs. We show this

fact by introducing a translation from abductive disjunctive programs into disjunctive

programs.

For an abductive disjunctive program 〈P,A〉, we define its dlp-transformation

dlp(〈P,A〉) in the same manner as presented in Definition 5.1. Then the following

results hold.

Theorem 5.4 Let 〈P,A〉 be an abductive disjunctive program. Then,

(i) I \ {ε} is a generalized possible model of 〈P,A〉 iff I is a possible model of

dlp(〈P,A〉).

(ii) I\{ε} is an A-minimal generalized possible model of 〈P,A〉 iff I is an A-minimal

possible model of dlp(〈P,A〉).

Proof: Similar to the proof of Theorem 5.1. 2

The above theorem, together with Theorem 5.3, implies the following result.

Corollary 5.5 Let 〈P,A〉 be an abductive disjunctive program. Then I \ {ε}
is a generalized possible model of 〈P,A〉 iff I is a generalized stable model of

alp(dlp(〈P,A〉)). 2

By Theorem 5.4, normal disjunctive programs are as expressive as abductive dis-

junctive programs under the possible model semantics. Moreover, Corollary 5.5

presents that abductive disjunctive programs can be expressed even by abductive

logic programs under the generalized possible model semantics.

Next we consider the corresponding relations under the disjunctive stable model

semantics.

Given an abductive disjunctive program 〈P,A〉, its dlpst-transformation is defined

as a normal disjunctive program dlpst(〈P,A〉) which is obtained from P by adding

the following disjunctive clauses for each abducible A ∈ A:

A ∨ εA ← (5.5)
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where εA is an atom not appearing elsewhere in P , and is uniquely associated with

each A.

Note here that different from the dlp-transformation presented in Definition 5.1,

the unique εA is associated with each A in (5.5). This modification is needed to assure

the existence of a disjunctive stable model corresponding to any generalized stable

model of 〈P,A〉 (see Example 5.5 below).

Let us call I an A-minimal disjunctive stable model if it is a disjunctive stable

model such that I ∩ A is minimal. Then the following results hold.

Theorem 5.6 Let 〈P,A〉 be an abductive disjunctive program. Then,

(i) I \ {εA} is a generalized disjunctive stable model of 〈P,A〉 iff I is a disjunctive

stable model of dlpst(〈P,A〉).

(ii) I \ {εA} is an A-minimal generalized disjunctive stable model of 〈P,A〉 iff I is

an A-minimal disjunctive stable model of dlpst(〈P,A〉).

Proof: (i) Let I ′ be a generalized disjunctive stable model of 〈P,A〉.
Then I ′ is a disjunctive stable model of P ∪ E for some E from A. Now

let us consider the transformed disjunctive program dlpst(〈P,A〉). Then

there is a disjunctive stable model I of dlpst(〈P,A〉) such that for each

disjunctive clause A∨εA ←, A ∈ I iff A ∈ I ′, and εA ∈ I iff A 6∈ I ′. Hence

the result follows. The converse is also shown in the same manner.

(ii) The result holds from (i) and the definition of A-minimal (generalized)

disjunctive stable models. 2

Corollary 5.7 Let 〈P,A〉 be an abductive logic program. Then I \ {εA} is a gen-

eralized stable model of 〈P,A〉 iff I is a disjunctive stable model of dlpst(〈P,A〉).
2

Example 5.5 Let 〈P,A〉 be an abductive disjunctive program such that P = ∅
and A = {a, b}. Then, ∅, {a}, {b}, and {a, b} are the generalized disjunctive stable

models of 〈P,A〉. On the other hand,

dlpst(〈P,A〉) = { a ∨ εa ←, b ∨ εb ← },

and {εa, εb}, {a, εb}, {b, εa}, and {a, b} are the corresponding disjunctive stable models

of dlpst(〈P,A〉).
Note here that if we do not distinguish εa and εb, {a, εb} and {b, εa} do not become

disjunctive stable models of dlpst(〈P,A〉). 2
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The above theorem presents that normal disjunctive programs are also as expres-

sive as abductive disjunctive programs under the disjunctive stable model semantics.2

However, in contrast to the case of the possible model semantics, abductive disjunctive

programs cannot be efficiently reduced to abductive logic programs under the gen-

eralized disjunctive stable model semantics. We verify this fact in the next section

from the computational complexity viewpoint.

5.5 Discussion

In this section, we discuss the computational aspects of disjunctive and abductive

logic programs. Throughout the section, programs are assumed to be propositional

programs.

When abductive logic programs do not contain default negation, Selman and

Levesque [1990] and Eiter and Gottlob [1992] show that the decision problem of the

existence of explanations for a given observation in an abductive Horn program is

NP-complete. In other words, in an abductive Horn program, deciding whether there

is a generalized stable model satisfying an observation is NP-complete.

Inoue [1991] and Satoh and Iwayama [1991] show that an abductive logic program

can be translated into a semantically equivalent normal logic program. For an ab-

ductive logic program 〈P,A〉, consider a normal logic program obtained from P by

adding the following clauses for each abducible A in A:

A← notA′ ,

A′ ← notA ,

where A′ is a newly introduced atom not appearing elsewhere in P and is uniquely

associated with each A. Then these authors show that there is a one-to-one corre-

spondence between the generalized stable models of 〈P,A〉 and the stable models of

the transformed normal logic program. Since it is known that the set-membership

problem under the stable model semantics is NP-complete [Marek and Truszczynski,

1991a], the above polynomial-time translation implies that deciding whether there is

a generalized stable model satisfying a given observation is also NP-complete.3

2Similar results are presented in [Inoue and Sakama, 1993; 1994] using different transformations.
3More precisely, the generalized stable models include the stable models as a special case, then

its set-membership problem is NP-hard. Since the polynomial-time transformation translates the
decision problem for a generalized stable model into the corresponding problem for a stable model
which is in NP, the membership in NP also follows.
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Table 5.1: Comparison of Computational Complexity

Program Semantics Complexity

Abductive LP Horn Abduction NP-complete
Generalized Stable Model NP-complete

Normal DLP Possible Model NP-complete
Disjunctive Stable Model ΣP

2 -complete
Abductive DLP Generalized Possible Model NP-complete

Generalized Disjunctive Stable Model ΣP
2 -complete

From the results presented in Section 5.4, generalized possible models can be effi-

ciently translated into possible models. Since we have already seen in Section 3.6 that

the set-membership problem under the possible model semantics is NP-complete, the

corresponding decision problem for generalized possible models is also NP-complete.

On the other hand, we have also shown in Section 5.4 that abductive disjunctive

programs are reducible to normal disjunctive programs under the disjunctive stable

model semantics. Since the set-membership problem under the disjunctive stable

model semantics is ΣP
2 -complete [Eiter and Gottlob, 1993a], deciding whether there

is a generalized disjunctive stable model satisfying a given observation is also ΣP
2 -

complete. These results are summarized in Table 5.1.

The above complexity measures verify the results of this chapter that the gener-

alized stable model semantics of abductive logic programs can be expressed in terms

of the possible model semantics of normal disjunctive programs by a polynomial-time

transformation, and vice versa. Moreover, we can observe that there is no efficient

way to express the disjunctive stable model semantics in terms of the generalized stable

model semantics unless the polynomial hierarchy collapses . This observation extends

the fact that disjunctive stable models cannot be expressed by stable models of a

normal logic program in polynomial time [Eiter and Gottlob, 1993b]. Also we can

observe that when considering to extend the framework of abductive logic programs

to abductive disjunctive programs, the generalized possible model semantics enables

us to extend the framework without increasing computational complexity, while this is

not the case for the generalized disjunctive stable model semantics.

The possible model semantics is originally introduced in order to provide a flex-

ible mechanism for closed world assumptions in disjunctive programs. However, the

results of this chapter reveal that the possible model semantics is also useful to charac-

terize abductive logic programs. Moreover, in Section 3.6 we have shown that normal
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disjunctive programs are reducible to normal logic programs under the possible model

semantics. Since abductive disjunctive programs are reducible to normal disjunctive

programs, we can conclude that adding disjunctions and abducibles does not increase

the expressive power of normal logic programs under the possible model semantics.

5.6 Summary

This chapter has investigated formal correspondences between disjunctive programs

and abductive logic programs.

We first presented program transformations between abductive logic programs

and disjunctive programs. It was shown that the generalized stable models of an

abductive logic program are characterized by the possible models of the transformed

normal disjunctive program, and vice versa.

Next we showed that disjunctive programs are as expressive as abductive disjunc-

tive programs. Moreover, normal disjunctive programs, abductive logic programs,

and abductive disjunctive programs are all equivalent under the possible model se-

mantics. On the other hand, we have argued that expressing the disjunctive stable

model semantics in terms of generalized stable models is most unlikely possible in

polynomial time.

The results of this chapter indicate that disjunctive programs and abductive logic

programs are just different ways of looking at the same problem if we choose the ap-

propriate semantics. Also the usefulness of the possible model semantics was verified

not only for disjunctive programs but also for abductive logic programs.
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Chapter 6

Handling Inconsistency in
Disjunctive Logic Programs

An extended disjunctive program is an extension of a normal disjunctive program,

which contains classical negation along with default negation. In the presence of

explicit negation, however, an extended disjunctive program possibly becomes incon-

sistent, and classical logic programming semantics are of no use in such inconsistent

programs. In this chapter, we present theoretical frameworks for possibly inconsistent

disjunctive programs. To achieve this goal, we introduce paraconsistent semantics for

extended disjunctive programs, which can distinguish inconsistent information from

other information in a program. These semantics are based on lattice-structured

multi-valued logics, and are characterized by a fixpoint semantics of extended dis-

junctive programs. The proposed paraconsistent semantics are used for reasoning in

inconsistent programs.

6.1 Introduction

Representing and reasoning with incomplete information in a program is one of the

central issues in recent studies of logic programming. Extended disjunctive programs

introduced by Gelfond and Lifschitz [1991] provide a fairly general framework for

that purpose. An extended disjunctive program can specify incomplete information

by using classical negation as well as disjunctions in a program. In the presence of

such explicit negation in a program, however, an extended disjunctive program pos-

sibly becomes contradictory, since negative consequences are allowed in the program.

In [Gelfond and Lifschitz, 1991], a declarative semantics of extended disjunctive pro-

grams is given by the notion of answer sets , which is a generalization of stable models

107
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of normal disjunctive programs. However, the problem of the answer set semantics

is that the answer set becomes trivial in an inconsistent program and implies every

formula from the program. This is also the case for most of the traditional logic

programming semantics in which local inconsistency might spoil the whole program.

Practically speaking, when we build a large-scale knowledge base in logic program-

ming framework, inconsistent information as well as incomplete information is likely

to happen in the knowledge base. In such a knowledge base, a piece of contradictory

information would make the whole program inconsistent, but still the program may

contain meaningful information which is not affected by the local inconsistency.

Paraconsistent logic is a logic which is not destructive in the presence of inconsis-

tent information. In this logic, the contradictory statement A∧¬A does not deduce an

arbitrary formula, hence would not trivialize the whole theory. In this regard, para-

consistent logic can localize inconsistent information in a theory and serves as a useful

inference tool in artificial intelligence. Historically, paraconsistent logic has been de-

veloped in the area of philosophical logic [Arruda, 1980], and a formal framework

for inconsistent theories was given by da Costa [1974]. Applications of paraconsis-

tent logic to logic programming have also been investigated by several researchers.

Blair and Subrahmanian [1989] firstly introduced a framework of paraconsistent logic

programming . They extended Fitting’s three-valued semantics of logic programming
[Fitting, 1985] and developed a theory for possibly inconsistent logic programs using

Belnap’s four-valued logic [Belnap, 1975]. The result was generalized by Subrahma-

nian [1992] to programs containing disjunctive information. Recently, the paracon-

sistent logic programming framework was further extended to treat default negation

along with explicit negation in a program [Pimentel and Rodi, 1991; Wagner, 1991a;

Kifer and Lozinskii, 1992; Grant and Subrahmanian, 1992]. However, in the context

of extended disjunctive programs, a suitable paraconsistent extension of the answer

set semantics has not been studied in the literature.

In this chapter, we present declarative semantics of possibly inconsistent extended

disjunctive programs. The disjunctive stable model semantics and the possible model

semantics of normal disjunctive programs are extended to the corresponding paracon-

sistent semantics for extended disjunctive programs. The proposed paraconsistent se-

mantics are based on lattice-structured multi-valued logics, and are characterized by

the fixpoint semantics of extended disjunctive programs. We also present applications

of the paraconsistent semantics for reasoning in inconsistent programs.

The rest of this chapter is organized as follows. In Section 6.2, we first present the

paraconsistent minimal and possible model semantics for positive extended disjunctive

programs. The results are generalized in Section 6.3 to the paraconsistent stable
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and possible model semantics for extended disjunctive programs. In Section 6.4,

a fixpoint semantics for extended disjunctive programs is presented to characterize

the paraconsistent semantics of extended disjunctive programs. In Section 6.5, we

discuss the issue of reasoning in inconsistent programs. The notions of preferred stable

models, suspicious stable models, and semi-stable models are introduced as variants

of the paraconsistent stable model semantics. Section 6.6 addresses comparisons with

related work, and Section 6.7 summarizes this chapter.

6.2 Paraconsistent Semantics for Positive Extended

Disjunctive Programs

In this section, we first consider positive extended disjunctive programs, that is,

extended disjunctive programs containing no default negation.

6.2.1 Multi-valued Logic

To formalize the semantics of possibly inconsistent logic programs, multi-valued log-

ics are often used instead of the traditional two-valued logic. Then we start from

introducing such a new logic and define its model theory.

The set of truth values of four-valued logic is defined as IV = {t, f ,>,⊥}, in which

t, f , >, ⊥ are propositions in the language of a program and respectively denote

true, false, contradictory , and undefined . The set of truth values IV makes a complete

lattice under the ordering � such that ⊥ � x � > for x ∈ {t, f} (Figure 6.1). Such

a lattice is also known as Belnap’s four-valued logic [Belnap, 1975].1

In extended disjunctive programs, negative literals have the same status as positive

literals, then it is natural to consider the Herbrand base of a program P as the set

of all ground literals LP from the language of P . For simplicity, we assume that

programs do not contain the reserved propositions from IV and IV 6⊂ LP .2

Let I be a subset of LP . An interpretation of a positive extended disjunctive

program P is defined as a function I : LP → IV such that for each literal L ∈ LP ,

I(L) =


t if L ∈ I and ¬L 6∈ I,
f if ¬L ∈ I and L 6∈ I,
> if both L ∈ I and ¬L ∈ I,
⊥ otherwise.

1Note that the order considering here is the so-called knowledge ordering , while there is the
alternative truth ordering in the context of bilattices [Ginsberg, 1988; Fitting, 1991].

2This assumption is not essential and can be removed, but this issue is not discussed here.



110 INCONSISTENCY IN DISJUNCTIVE PROGRAMS

�
�
�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

�
�
�
�
�
�

>

f t

⊥

Figure 6.1: Four-valued lattice IV

Note that I(L) = t iff I(¬L) = f , I(L) = > iff I(¬L) = >, and I(L) = ⊥ iff

I(¬L) = ⊥.

In this chapter, when no confusion arises, we identify a set of literals I with its

interpretation I(L) for each L ∈ I. For instance, we identify I = {L} with I(L) = t;

I = {L, ¬L} with I(L) = >; I = ∅ with I(L) = ⊥ for any L ∈ LP , and so on.

Satisfaction of each clause in a program is inductively defined as follows.

Definition 6.1 Let P be a positive extended disjunctive program and I be an inter-

pretation. Then,

1. For any literal L ∈ LP ,

(a) I |= L iff t � I(L),

(b) I |= ¬L iff f � I(L).

2. For any disjunction of ground literals F = L1 ∨ . . . ∨ Ln,

I |= F iff I |= Li for some i (1 ≤ i ≤ n).

3. For any conjunction of ground literals G = L1 ∧ . . . ∧ Ln,

I |= G iff I |= Li for every i (1 ≤ i ≤ n).

4. For any ground clause C = F ← G, I |= C iff I |= F or I 6|= G.

In particular, I |= ← G iff I 6|= G, and I |= F ← iff I |= F . 2
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An interpretation I is a model of a positive extended disjunctive program P if I

satisfies every ground clause from P . The ordering � on truth values is also defined

between interpretations. For interpretations I and J , I � J iff I(L) � J(L) for any

L ∈ LP . The orderings �, ≺, � are defined in the usual way. Note that when we

identify a set of literals with its interpretation, I � J iff I ⊆ J . A model I is minimal

if there is no model J such that J ≺ I. A model I is least if I � J for every model

J . To distinguish terms from standard logic programming, a minimal/least model is

also called a paraconsistent minimal/least model (shortly, p-minimal/p-least model).

A consistent model is a model I such that I(L) 6= > for any L ∈ LP , otherwise I is

an inconsistent model . A positive extended disjunctive program is called consistent

if it has a consistent model, otherwise it is called inconsistent .

Proposition 6.1 If a positive extended disjunctive program has a model, it has at

least one p-minimal model.

Proof: Let us consider a decreasing sequence of models I1 ⊇ I2 ⊇ . . .

and their greatest lower bound I =
⋂
i≥1 Ii. Then, for each ground clause

F ← G from a positive extended disjunctive program P , if I |= G, Ii |= G

for any i ≥ 1. In this case, since each Ii is a model of P , F is not empty

and Ii |= F holds for any i ≥ 1. Thus I |= F . Hence, I is also a model of

P , and by definition it is a p-minimal model. 2

Proposition 6.2 A consistent positive extended disjunctive program has a consis-

tent p-minimal model.

Proof: When a positive extended disjunctive program P is consistent,

it has a consistent model I by definition. If I is not minimal, there is a

p-minimal model J such that J ≺ I by Proposition 6.1. Then, I(L) 6= >
for any L ∈ LP implies J(L) 6= > for any L ∈ LP . 2

Corollary 6.3 If a positive extended logic program has a model, it has the unique

p-least model. In particular, a consistent positive extended logic program has the

consistent p-least model. 2

Example 6.1 Let P be the program:

{ a ∨ b←, ¬a←, ¬b←, c← }.

Then P has two p-minimal models {a,¬a,¬b, c} and {b,¬a,¬b, c}. 2
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Note that the above program is inconsistent and the classical minimal model

semantics makes the program trivial, while the p-minimal models retain truth infor-

mation about c that is not affected by the inconsistency.

Remark:

1. As presented in Chapter 2, the meanings of the clauses ← L and ¬L ← are

different in extended disjunctive programs. In our multi-valued setting, this is

also the case. In fact, I(L) = ⊥ is a model of the first clause, while it is not a

model of the second clause. Such a difference is due to the non-contrapositive

feature of the connective ← in extended disjunctive programs.

2. Corresponding to the above fact, the program {L ←, ¬L ←} has a model

I(L) = > while {L ←, ← L} has no model. That is, we consider any inter-

pretation meaningless if it does not satisfy integrity constraints. However, it is

easy to construct a paraconsistent theory for integrity violation if desired.

6.2.2 Paraconsistent Possible Model Semantics

The possible model semantics for positive disjunctive programs is extended to positive

extended disjunctive programs in a straightforward manner.

Given a positive extended disjunctive program P , a split program is defined as a

ground positive extended logic program obtained from P by replacing each ground

disjunctive clause C : L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm with the following ground

extended clauses (called split clauses):

Li ← Ll+1 ∧ . . . ∧ Lm for every Li ∈ S

where S is some non-empty subset of {L1, . . . , Ll}. Then a p-possible model of P is

defined as the p-least model of any split program of P .

By definition, any p-possible model is a model of P .

Example 6.2 Let P be the program:

{ a ∨ b←, c← a ∧ b, ¬c← }.

Then P has the three p-possible models {a,¬c}, {b,¬c} and {a, b, c,¬c}. 2

Note here that if P contains the integrity constraint ← c instead of the clause

¬c←, the positive disjunctive program has two p-possible models {a} and {b}.

The following properties are direct consequences from Propositions 6.1 and 6.2.
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Proposition 6.4 When a positive extended disjunctive program has a model, it has

at least one p-possible model. 2

Proposition 6.5 A consistent positive extended disjunctive program has a consis-

tent p-possible model. 2

As for the relation to p-minimal models, the following property holds.

Proposition 6.6 Any p-minimal model is a minimal p-possible model, and vice

versa. 2

6.3 Paraconsistent Semantics for Extended Dis-

junctive Programs

This section extends the results presented in the previous section to extended dis-

junctive programs in general.

6.3.1 Paraconsistent Stable Model Semantics

We first extend the model theory given for positive extended disjunctive programs in

the previous section to extended disjunctive programs containing default negation.

In an extended disjunctive program, the notion of interpretations and satisfaction

of literals and clauses are defined in the same manner as in Definition 6.1 except that

for each formula not L, we include the additional statements:

• I |= not L iff I(L) � f ,

• I |= not¬L iff I(L) � t.

The first condition indicates that if L is false in I, its default negation not L holds in

I; else if L is undefined in I, not L holds in I as negation as failure to prove; otherwise

I 6|= not L. The second condition gives the counterpart statement.

The notion of (p-minimal) models is defined in the same way as in the previous

section.

The paraconsistent stable model semantics of an extended disjunctive program is

defined as follows.
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Definition 6.2 Let P be an extended disjunctive program and I be a subset of LP .

The reduct of P with respect to I is the positive extended disjunctive program P I

such that a clause

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm (6.1)

is in P I iff there is a ground clause of the form:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (l ≥ 0) (6.2)

from P such that {Lm+1, . . . , Ln} ∩ I = ∅. Then I is called a paraconsistent stable

model (shortly, p-stable model) of P if I is a p-minimal model of P I . 2

Example 6.3 Let P be the program:

{ a ∨ b←, ¬a←, ¬b←, c← not d }.

Then P has two p-stable models {a,¬a,¬b, c} and {b,¬a,¬b, c}. 2

A p-stable model I is consistent if I(L) 6= > for any L ∈ LP , otherwise I is

inconsistent . There is a program which has no p-stable model.

Example 6.4 The program

P = { a← not a, b← }

has no p-stable model. 2

A program which has at least one p-stable model is called coherent , while a pro-

gram having no p-stable model is called incoherent . By definition, the notion of

p-stable models reduces to that of p-minimal models in positive extended disjunctive

programs. In extended disjunctive programs, every p-stable model is minimal.

Proposition 6.7 A p-stable model is a p-minimal model.

Proof: Let I be a p-stable model of a program P . Assume that there is

a p-minimal model J of P such that J � I. Since J is a model of P and

satisfies each clause (6.2) in P , and {Lm+1, . . . , Ln} ∩ I = ∅ and J � I

imply {Lm+1, . . . , Ln} ∩ J = ∅, J also satisfies each clause (6.1) in P I .

Thus J is a model of P I , and since I is a p-minimal model of P I , J � I

implies J = I. 2

The converse of the above proposition does not hold in general. For instance, in

Example 6.4, {a, b} is the p-minimal model of P , but not p-stable.
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6.3.2 Paraconsistent Possible Model Semantics

The paraconsistent possible model semantics for positive extended disjunctive pro-

grams is also directly extended to extended disjunctive programs.

Given an extended disjunctive program P , a split program is defined as a ground

extended logic program obtained from P by replacing each ground disjunctive clause

C : L1∨ . . .∨Ll ← Ll+1∧ . . .∧Lm∧not Lm+1∧ . . .∧not Ln with the following ground

extended clauses (called split clauses):

Li ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln for every Li ∈ S

where S is some non-empty subset of {L1, . . . , Ll}. Then a p-possible model of P is

defined as a p-stable model of any split program of P .

It is easy to see that any p-possible model is a model of P . The following properties

are direct extensions of those presented in Section 3.3.

Proposition 6.8 A coherent extended disjunctive program has at least one p-possible

model. 2

Proposition 6.9 Any p-stable model is a minimal p-possible model, but not vice

versa. 2

As is the case of normal disjunctive programs, there are incoherent programs

having p-possible models.

Example 6.5 Let P be the program:

{ a ∨ ¬b←, ¬b← a, ← not a }.

Then P has the p-possible model {a,¬b}, while it has no p-stable model. 2

6.3.3 Connection to the Answer Set Semantics

For extended disjunctive programs, Gelfond and Lifschitz [1991] have introduced the

answer set semantics . The answer sets are defined in the same manner as p-stable

models in Definition 6.2 except that the definition of p-minimal models of a positive

extended disjunctive program P I is changed in a way that I = LP if a model I

contains a pair of complementary literals L and ¬L. For instance, in Example 6.3,

P has two inconsistent p-stable models, while it has the unique answer set LP . Thus

p-stable models are paraconsistent, while answer sets are not.
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In this section, we provide a connection between the p-stable model semantics

and the answer set semantics in extended disjunctive programs. As presented above,

the essential difference between the two semantics is the treatment of inconsistency.

Then we relate p-stable models to answer sets by trivializing inconsistent p-stable

models.

Let us consider a program Ptr obtained from P by incorporating the trivialization

rule:

N ← L ∧ ¬L (6.3)

for all literals L and N from LP . Then the relationship between answer sets and

p-stable models of extended disjunctive programs is as follows.

Theorem 6.10 Let P be an extended disjunctive program. Then I is an answer set

of P iff I is a p-stable model of Ptr.

Proof: Since consistent answer sets coincide with consistent p-stable

models, the result follows when I is a consistent answer set. Otherwise,

suppose the case that P has the contradictory answer set LP . Then, by

the definition of answer sets, the positive extended disjunctive program

PLP has the answer set LP . In this case, PLP has no consistent p-minimal

model, but an inconsistent p-minimal model. Thus, in the presence of the

trivialization rule (6.3), PLPtr has the p-minimal model containing every

literal N from LP . Hence, LP is the unique p-stable model of Ptr. On the

other hand, if I is an inconsistent p-stable model of Ptr, it contains every

literal N from LP by (6.3). In this case, LP is the p-minimal model of PLPtr ,

and thus each p-minimal model of PLP contains a pair of complementary

literals. Hence, LP is the unique answer set of P . 2

The above theorem indicates that we can easily simulate the “classical” meaning

of logic programming by a simple program transformation. Note that without the

trivialization rule, there is no one-to-one correspondence between inconsistent p-stable

models and the answer set LP in general.

Example 6.6 The program

{ ¬a←, a← not b }

has no answer set, while it has an inconsistent p-stable model {¬a, a}. On the other

hand, the program

{ a←, ¬a←, b← not b }
has the answer set LP , while it has no p-stable model. 2
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The example illustrates that a program possibly has an inconsistent p-stable model

even when there is no answer set of the program. When a program has no p-stable

model, on the other hand, the program has either no answer set or the trivial answer

set LP . Since the answer set semantics brings no useful information, the absence of

p-stable models in this case is not a serious drawback. From this observation, the

paraconsistent stable model semantics is considered to be more useful than the answer

set semantics.

By Proposition 6.9, the answer set semantics is related to the paraconsistent pos-

sible model semantics as follows.

Corollary 6.11 Let P be an extended disjunctive program. If I is an answer set of

P , then I is a minimal p-possible model of Ptr. 2

As previously discussed, paraconsistent possible models are well-defined whenever

paraconsistent stable models are. Then, together with the above observation, we can

conclude that the paraconsistent possible model semantics is the best choice among

others as a semantics of extended disjunctive programs.

P-stable models of an extended disjunctive program are also characterized by

stable models of the positive form of the program. Recall that a positive form of

an extended disjunctive program P is defined as a normal disjunctive program P+

which is obtained by replacing each negative literal ¬L in P with a corresponding

newly introduced atom L′ in P+. Let I+ be a model of such P+. Then the following

relation holds by definition.

Proposition 6.12 Let P be an extended disjunctive program and P+ be its positive

form. Then I is a p-stable model of P iff I+ is a stable model of P+. 2

Note that in case of the answer set semantics the above relation holds only for

consistent answer sets [Gelfond and Lifschitz, 1991].

6.4 Fixpoint Semantics of Extended Disjunctive

Programs

A fixpoint semantics of positive extended disjunctive programs is defined in the same

manner as that of positive disjunctive programs in Section 3.4 except that in this case

the closure operator acts over the lattice of sets of interpretations 22LP .

Given a positive extended disjunctive program P , a mapping TP : 22LP → 22LP

is defined as in Definition 3.7, and its fixpoint closure TP ↑ ω is defined as well.
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Let PMMP be the set of all p-minimal models, and PPMP be the set of all

p-possible models of a program P . Then the following results hold.

Theorem 6.13 Let P be a positive extended disjunctive program. Then,

(i) PPMP = µ(TP ↑ ω) .

(ii) PMMP = min(µ(TP ↑ ω)) .

Proof: Viewing each negative literal in P as an atom, the results directly

follow from Theorem 3.17 in Section 3.4. 2

Corollary 6.14 Let P be a positive extended logic program. Then TP ↑ ω contains

the unique p-least model of P . 2

The above corollary corresponds to Blair and Subrahmanian’s fixpoint semantics

of paraconsistent logic programs [Blair and Subrahmanian, 1989].

The fixpoint semantics is also generalized to extended disjunctive programs. Given

an extended disjunctive program P , let us define the notions of the epistemic trans-

formation P κ, canonical interpretations, and the function objc(IPκ) in the same way

as those of normal disjunctive programs. Let PST P be the set of all p-stable models

of an extended disjunctive program P . Then the following results hold.

Theorem 6.15 Let P be an extended disjunctive program. Then,

(i) PPMP = objc(µ(TPκ ↑ ω)) .

(ii) PST P = objc(min(µ(TPκ ↑ ω))) .

In particular, when P is an extended logic program, PST P = objc(µ(TPκ ↑ ω)) .

Proof: The results follow from Lemma 3.20, Lemma 3.21, and Theo-

rem 3.22 in Section 3.4. 2

As for the answer set semantics, the following relation holds by Theorem 6.10.

Corollary 6.16 Let P be an extended disjunctive program and ASP be the set of

all answer sets of P . Then,

ASP = objc(min(µ(TPκtr ↑ ω)))

where P κ
tr is the epistemic transformation of Ptr. In particular, when P is an extended

logic program, ASP = objc(µ(TPκtr ↑ ω)). 2
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6.5 Reasoning with Inconsistency

This section presents applications of paraconsistent semantics for reasoning with in-

consistent information. In this section, we discuss the issue based on the paracon-

sistent stable model semantics, while the techniques are directly applicable to the

paraconsistent possible model semantics.

6.5.1 Preferred Stable Models

In the previous section, we have defined the paraconsistent stable model semantics

by the collection of all p-stable models. However, when a program has consistent

models as well as inconsistent ones, a rational reasoner may prefer consistent models

to inconsistent ones and consider truth values only in consistent models.

Example 6.7 Let P be the program:

{ ¬a ∨ b←, a← ¬c, ¬c← not c },

which has two p-stable models {a,¬a,¬c} and {a, b,¬c}. In this case, however, it

seems natural to prefer the consistent model {a, b,¬c} and conclude the truth of a

and b. 2

When an extended disjunctive program has consistent p-stable models, we distin-

guish these consistent p-stable models as preferred p-stable models . Thus preferred

p-stable models characterize “consistent” meaning of a program. In fact, preferred p-

stable models coincide with consistent answer sets of extended disjunctive programs.

Theorem 6.17 Let P be an extended disjunctive program. Then I is a preferred

p-stable model of P iff I is a consistent answer set of P .

Proof: Since consistent answer sets coincide with consistent p-stable

models, the result follows. 2

6.5.2 Suspicious Stable Models

When a program contains inconsistent information, it is useful to distinguish facts

affected by such information from other information in a program.
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Example 6.8 Let P be the program:

{ a← b ∧ not c, b←, ¬b←, d← }.

Then P has the p-stable model {a, b,¬b, d}. However, the truth of a is less credible

than the truth of d, since a is derived through the contradictory fact b. 2

In order to distinguish such suspicious facts from others, we present suspicious

reasoning under the paraconsistent stable model semantics. To this end, we first

introduce two new truth values st and sf , which respectively denote suspiciously true

and suspiciously false. These newly introduced values together with the values in IV

constitute a lattice of six-valued logic V I such that ⊥ � sx � x � > for x ∈ {t, f}
(Figure 6.2).

Let LsP = LP ∪ {Ls | L ∈ LP} and Is be a subset of LsP , where each adorned

literal Ls denotes a suspicious literal . Then an interpretation under the logic V I is

defined as a function Is : LsP → V I such that for each literal L ∈ LP ,

Is(L) = lub {x | x = t if L ∈ Is,
x = f if ¬L ∈ Is,
x = st if Ls ∈ Is,
x = sf if ¬Ls ∈ Is,
x = ⊥ otherwise }.

That is, the truth value of each literal Is(L) is defined as the least upper bound

of each value x which is determined by the literal occurrences in Is. Thus, Is(L) = >
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iff either L ∈ Is and ¬L ∈ Is, or Ls ∈ Is and ¬Ls ∈ Is, or L ∈ Is and ¬Ls ∈ Is, or

¬L ∈ Is and Ls ∈ Is. Note that Is(L) = st iff Is(¬L) = sf . Under the logic V I,

satisfaction of literals and default negation is defined as follows.

• Is |= L iff st � Is(L),

• Is |= ¬L iff sf � Is(L),

• Is |= not L iff Is(L) � f ,

• Is |= not¬L iff Is(L) � t.

Satisfaction of clauses is the same as before.

Next, for a positive extended disjunctive program P and an interpretation Is, let

T sP be a mapping which is defined in the same way as in Definition 3.7 except that

we consider the mapping T sP instead of TP as follows: if Is |= L1 ∧ . . . ∧ Lm for some

ground integrity constraint ← L1 ∧ . . . ∧ Lm from P , then T sP (Is) = ∅; otherwise,

T sP (Is) = { Js | for each ground clause Ci : L1 ∨ . . . ∨ Lli ← Lli+1 ∧ . . . ∧ Lmi
from P such that Is |= Lli+1 ∧ . . . ∧ Lmi ,
Js = Is ∪

⋃
Ci

{Lj ′} (1 ≤ j ≤ li) where

Lj
′ = Lj if Lk ∈ Is and Is 6|= ¬Lk for each Lk (li + 1 ≤ k ≤ mi);

Lj
′ = Lsj , otherwise }.

The intuitive meaning of T sP is that when the body of a clause Ci is satisfied by

Is, each derived disjunct Lj
′ = Lj is added to Is if any literal Lk in the body is

derived without suspicion and its negative counterpart ¬Lk or ¬Lsk is not included in

Is. Otherwise, the derived disjunct is suspicious Lj
′ = Lsj , since it is derived through

inconsistent information in a program.

Given an extended disjunctive program P and its epistemic transformation P κ, let

us consider the fixpoint closure SPST P = objc(min(µ(T sPκ ↑ ω))). We call SPST P
the suspicious p-stable models of P .

Theorem 6.18 Let P be an extended disjunctive program. Then a suspicious p-

stable model is a model of P .

Proof: In a suspicious p-stable model, the truth value of each literal

possibly becomes st or sf when its truth value is respectively t or f in its

corresponding p-stable model. Let Is be a suspicious p-stable model and
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I be its corresponding p-stable model in which each literal Ls is identified

with L. By definition, Is |= L iff I |= L, and Is |= not L iff I |= not L.

Thus Is satisfies each clause of P whenever I is a p-stable model of P .

Hence the result follows. 2

Corollary 6.19 For each suspicious p-stable model Is of P , I = {L | Is |= L} is a

p-stable model of P . Conversely, for each p-stable model J of P , there is a suspicious

p-stable model Js of P such that J = {L | Js |= L}. 2

Thus suspicious p-stable models can distinguish information derived through con-

tradictory facts from other information. Clearly, suspicious p-stable models reduce

to p-stable models in the absence of suspicious information.

Note that a proved fact is considered to be suspicious if every proof of the fact

includes inconsistent information. Then if an interpretation includes both L and Ls,

it means that there is a proof of L depending on no inconsistent information. In this

case, by taking the least upper bound of t and st, the truth value of L becomes t.

Example 6.9 (cont. from Example 6.8)

P κ becomes

{ λ ∨ Kc← b, a← λ, ← λ ∧ c, b←, ¬b←, d← },

and

objc(min(µ(T sPκ ↑ ω))) = {{as, b, ¬b, d}}.

Then, Is(a) = st, Is(b) = >, Is(c) = ⊥, and Is(d) = t. 2

6.5.3 Semi-Stable Models

There is an extended disjunctive program which has no p-stable model but still con-

tains useful information. For instance, in Example 6.4, P has no p-stable model but

it seems reasonable to conclude the truth of b. Roughly speaking, incoherency arises

when a literal is implied by its default negation in a program. Since incoherency

is viewed as a kind of inconsistency, it is desirable to provide a framework which

is paraconsistent for such incoherency. In this section, we introduce the notion of

semi-stable models which is paraconsistent for incoherent programs.

To represent incoherent facts, we first introduce five extra truth values bt, bf ,

b>, tcb, and fcb which respectively denote believed true, believed false, believed

contradictory , true with contradictory belief and false with contradictory belief . These
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values together with the values in IV constitute a lattice of nine-valued logic IX such

that ⊥ � bx � x � xcb � > and bx � b> � xcb for x ∈ {t, f} (Figure 6.3).

Let LκP = LP ∪ {KL | L ∈ LP} and Iκ be a subset of LκP . Then an interpretation

under the logic IX is defined as a function Iκ : LκP → IX such that for each literal

L ∈ LP ,

Iκ(L) = lub {x | x = t if L ∈ Iκ,
x = f if ¬L ∈ Iκ,
x = bt if KL ∈ Iκ,
x = bf if K¬L ∈ Iκ,
x = ⊥ otherwise }.

Thus, Iκ(L) = b> iff both KL ∈ Iκ and K¬L ∈ Iκ; Iκ(L) = fcb iff both KL ∈ Iκ
and ¬L ∈ Iκ; Iκ(L) = tcb iff both K¬L ∈ Iκ and L ∈ Iκ, and so on. Note that

Iκ(L) = bt iff Iκ(¬L) = bf , Iκ(L) = b> iff Iκ(¬L) = b>, and Iκ(L) = tcb iff

Iκ(¬L) = fcb.

The intuitive reading of each newly introduced truth value is that if Iκ(L) = bt,

Iκ contains a belief KL without its justification L. On the other hand, if Iκ(L) = tcb,

Iκ contains a fact L with its opposite belief K¬L.

Under this logic, satisfaction of literals and default negation is defined in the same

way as Section 6.3, i.e., I |= L iff t � I(L); I |= ¬L iff f � I(L); I |= not L iff

I(L) � f ; and I |= not¬L iff I(L) � t. Satisfaction of clauses is also defined as

before.

According to the above definition, when I(L) = bt or I(L) = b>, it holds that

I 6|= L and I 6|= not L. This means when L is believed true, it is too weak to conclude
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the truth of L, but enough to reject not L.3 Else when I(L) = tcb, I |= L while

I 6|= not¬L. This means when L is true with contradictory belief, I concludes the

truth of L but rejects not¬L in the presence of its opposite belief K¬L.

Next let IPκ be a set of interpretations of a program P κ obtained by the epistemic

transformation of an extended disjunctive program P . Then an interpretation Iκ ∈
IPκ is said maximally canonical if there is no interpretation Jκ ∈ IPκ such that {KL |
KL ∈ Jκ and L 6∈ Jκ} ⊂ {KL | KL ∈ Iκ and L 6∈ Iκ}. That is, a maximally canonical

interpretation is an interpretation such that the canonical condition is satisfied as

much as possible. In particular, if IPκ contains an interpretation Iκ which is canonical,

it is also maximally canonical. Now let

objκmc(IPκ) = {Iκ ∩ LκP | Iκ ∈ IPκ and Iκ is maximally canonical }.

Theorem 6.20 Let P be an extended disjunctive program. Then any interpretation

included in SST P = objκmc(min(µ(TPκ ↑ ω))) is a model of P .

Proof: By definition, each maximally canonical interpretation Iκ included

in min(µ(TPκ ↑ ω)) is a model of P κ. Then, for each transformed clauses:

λ1 ∨ . . . ∨ λl ∨ KLm+1 ∨ . . . ∨ KLn ← Ll+1 ∧ . . . ∧ Lm ,
Li ← λi for i = 1, . . . , l ,

{Ll+1, . . . , Lm} ⊆ Iκ implies either Li ∈ Iκ (1 ≤ i ≤ l) or KLj ∈ Iκ (m+1

≤ j ≤ n). In case of Li ∈ Iκ, Iκ satisfies the corresponding clause:

L1 ∨ . . . ∨ Ll ← Ll+1 ∧ . . . ∧ Lm ∧ not Lm+1 ∧ . . . ∧ not Ln (∗)

in P . In case of KLj ∈ Iκ, when Lj ∈ Iκ, Iκ satisfies the clause (∗) in P .

Else when Lj 6∈ Iκ, (i) if ¬Lj 6∈ Iκ, the truth value of Lj is bt or b>, then

Iκ 6|= not Lj. (ii) Else if ¬Lj ∈ Iκ, the truth value of Lj becomes fcb, then

Iκ 6|= not Lj. In either case, Iκ satisfies the clause (∗) in P . Therefore, Iκ

satisfies each clause in P . Hence, Iκ ∩ LκP , which is obtained from Iκ by

removing every λi, is also a model of P . 2

We call models SST P the semi-stable models of P .

The notion of semi-stable models reduces to p-stable models in coherent programs.

Corollary 6.21 Let P be a coherent program. Then its semi-stable models coincide

with the p-stable models.

3Recall that notL corresponds to ¬KL.
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Proof: When min(µ(TPκ ↑ ω)) contains canonical interpretations, they

are also maximally canonical. Hence the result follows by definition. 2

The existence of semi-stable models is guaranteed for any program which has

models.

Theorem 6.22 When a program has a model, it has a semi-stable model.

Proof: When a program P has a model, it is easy to see that P κ also has

a model. Then the closure min(µ(TPκ ↑ ω)) contains models which are

maximally canonical, hence SST P is not empty. 2

Thus incoherent programs get the meaning by considering semi-stable models.

Example 6.10 (Barbar’s Paradox)

Let P be the program:

{ shave(Noel, x)← not shave(x, x), mayor(Casanova)← }.

Then its epistemic transformation P κ becomes

{ λ(x) ∨ Kshave(x, x)←,
shave(Noel, x)← λ(x),

← λ(x) ∧ shave(x, x),

mayor(Casanova)← }.

Thus,

min(µ(TPκ ↑ ω)) = {{Kshave(N,N), Kshave(C,C), mayor(C)},
{Kshave(N,N), λ(C), shave(N,C), mayor(C)}}.

In the above closure, the second interpretation is maximally canonical, hence

objκmc(min(µ(TPκ ↑ ω))) = {{ Kshave(N,N), shave(N,C), mayor(C) }},

which contains the unique semi-stable model of P such that shave(N,C) andmayor(C)

are true, while shave(N,N) is believed true. 2

Note that the above program has neither standard two-valued stable models nor

answer sets.

In the incoherent program { a ← not a }, it is known that interpretations “oscil-

late” between ∅ and {a} under the stable class semantics [Baral and Subrahmanian,

1992]. Then it is interesting to observe that the truth value I(a) = bt in its semi-

stable model correspondingly lies between ⊥ and t.
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6.6 Related Work

A framework of paraconsistent logic programming is firstly developed by Blair and

Subrahmanian [1989] in the context of annotated logic programs. They employ Bel-

nap’s four-valued logic as a theoretical basis, but their framework does not treat

default negation in a program. Fitting [1991] provides a general framework for logic

programming in terms of bilattices, but he does not discuss programs containing two

kinds of negation. Kifer and Lozinskii [1992] extend Blair and Subrahmanian’s anno-

tated logic programming framework to a theory possibly containing default negation,

and Wagner [1991a; 1991b] also develops a theory of inconsistent logic programs with

two kinds of negation. Compared with our approach, they do not treat disjunctions

in a program and the underlying logics presented in these literature are different from

our stable model semantics.

Subrahmanian [1992] has extended the work of [Blair and Subrahmanian, 1989]

to programs containing disjunctive information. However, he does not treat default

negation in a program. He also provides a fixpoint semantics of paraconsistent dis-

junctive programs based on Minker and Rajasekar’s model state fixpoint semantics,

which is different from ours as presented in Section 3.7. Lu and Henschen [1992]

consider specifying the closed world assumption in paraconsistent definite and dis-

junctive logic programs. However, they neither consider programs containing two

kinds of negation nor develop any fixpoint theory for disjunctive programs.

Paraconsistent stable model semantics is also proposed by several researchers. Pi-

mentel and Rodi [1991], Grant and Subrahmanian [1992], and Wagner [1993] study

paraconsistent stable model semantics from different viewpoints. The differences be-

tween these approaches and ours are as follows. First, their paraconsistent stable

model semantics are defined for extended logic programs and do not treat disjunctive

information in a program. Second, they do not provide any mechanism to compute

their stable models, while our fixpoint computation realizes constructive computation

of paraconsistent stable models by using bottom-up model generation techniques as

presented in Section 3.5. Third, we have introduced the notion of semi-stable models

which are paraconsistent for incoherent programs, while they do not discuss the is-

sue of handling incoherency. Recently, Fitting [1993] provided a framework of stable

model semantics in terms of bilattices, but did not treat disjunctive programs. An-

other point is that our paraconsistent extensions are not only for the stable model

semantics, but also for the possible model semantics. Sakama [1992] has also de-

veloped a paraconsistent well-founded semantics for extended logic programs and

disjunctive programs, which is different from the stable model approach presented in

this chapter.
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The paraconsistent semantics presented in this chapter is intended to localize in-

consistent information in a program. There is an alternative approach which tries to

detect the source of inconsistency and recover the consistency of a program. Gener-

ally speaking, however, it is a hard task to automatically resolve inconsistency in a

program. When inconsistency arises from default assumptions, Pereira et al. [1991]

and Dung et al. [1991] present methods of removing the inconsistency by preferring a

fact that does not depend on any default assumption. However, their approaches are

of no use in a program where inconsistency is derived without default assumptions.

Kowalski and Sadri [1990] resolve contradiction by giving a higher priority to one of

the conflicting conclusions as an exception, but such an approach generally requires

one to specify a preference for each individual rule. Inoue [1991] and Baral et al.
[1992b] consider the meaning of an inconsistent program as a collection of maximally

consistent subsets of the program, but such a collection exponentially grows according

to the increase of inconsistent information.

6.7 Summary

This chapter has presented paraconsistent frameworks for extended disjunctive pro-

grams. We have introduced the paraconsistent minimal, stable, and possible model

semantics for extended disjunctive programs based on lattice-structured multi-valued

logics. The paraconsistent semantics are characterized by a fixpoint semantics of

extended disjunctive programs. We have also discussed applications of the paracon-

sistent semantics for reasoning with inconsistency.

The paraconsistent semantics are natural extensions of those corresponding se-

mantics for normal disjunctive programs, and compared with Gelfond and Lifschitz’s

answer set semantics, the proposed semantics do not trivialize a program in the

presence of inconsistent information. The paraconsistent semantics presented in this

chapter generalize previous studies of paraconsistent logic programming and provide

a uniform framework of logic programming possibly containing inconsistent infor-

mation, disjunctive information, integrity constraints, and both explicit and default

negation in a program. From the computational viewpoint, the bottom-up model gen-

eration procedure presented in Section 3.5 is used to compute the p-stable/p-possible

models, and complexity results presented in Section 3.6 are directly applicable to

the corresponding paraconsistent semantics. Thus the paraconsistent possible model

semantics has a computational advantage over the paraconsistent minimal and stable

model semantics, and the answer set semantics.
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Chapter 7

Partial Deduction of Disjunctive
Logic Programs

In this chapter, we present partial deduction of disjunctive programs. We first show

that normal partial deduction in logic programming is not applicable as it is in the

context of disjunctive programs. Then we introduce a new partial deduction technique

for disjunctive programs, and show that it preserves the minimal model semantics of

positive disjunctive programs, and the disjunctive stable model semantics of normal

disjunctive programs. Normal partial deduction is also used together with suitable

program transformations from disjunctive programs to normal logic programs, and

the possible model semantics is preserved through such transformations. Partial de-

duction techniques are also applied to goal-oriented partial deduction for query opti-

mization.

7.1 Introduction

Logic programming provides a methodology as a declarative programming language,

while a correctly specified logic program is not necessarily efficient as a practical

programming language. In order to bridge the gap between declarative and practical

programming, studies have been devoted to develop techniques for optimizing logic

programs.

Partial deduction or partial evaluation is known as one of the optimization tech-

niques in logic programming. Given a logic program, partial deduction derives a more

specific program through performing deduction on a part of the program, while pre-

serving the meaning of the original program. Such a specialized program is usually

more efficient than the original program when executed.

129
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Partial deduction in logic programming was firstly introduced by Komorowski

[1981] and has been developed by several researchers from various viewpoints [Sestoft

and Zamulin, 1988; Komorowski, 1992]. From the semantic point of view, Lloyd

and Shepherdson [1991] formalized partial evaluation for normal logic programs and

provide the conditions to assure the correctness with respect to Clark’s program

completion semantics. On the other hand, Tamaki and Sato [1984] showed that partial

deduction preserves the least Herbrand model semantics of definite logic programs in

the context of unfold/fold transformation. The result is extended to the perfect model

semantics for stratified logic programs [Seki, 1991; Maher, 1993], and the well-founded

semantics for normal logic programs [Seki, 1993].

When we consider disjunctive programs, they increase expressive power of logic

programming on the one hand, but their computation is generally expensive on the

other hand. Then optimizations of disjunctive programs are important issues for

practical usage, however, the partial deduction technique in normal logic programs

is not applicable to disjunctive programs in its present form. This is because normal

partial deduction is based on unfolding between normal clauses, and it supplies no

mechanism for unfolding between disjunctive clauses.

In this chapter, we develop partial deduction techniques for disjunctive programs.

We first show that normal partial deduction is not useful in the presence of disjunctive

information in a program, then introduce disjunctive partial deduction for disjunc-

tive programs. We prove that the proposed partial deduction method preserves the

minimal model semantics of positive disjunctive programs, and the disjunctive stable

model semantics of normal disjunctive programs. We also discuss the preservation of

the possible model semantics, and present goal-oriented partial deduction for query

optimization.

The rest of this chapter is organized as follows. In Section 7.2, we present disjunc-

tive partial deduction for positive disjunctive programs and show its correctness with

respect to the minimal model semantics. Section 7.3 extends the result to normal

disjunctive programs containing default negation, and shows that proposed partial

deduction also works well for the disjunctive stable model semantics. A connection

between normal and disjunctive partial deduction is presented, and the preservation

of the possible model semantics is discussed. In Section 7.4, the partial deduction

technique is applied to goal-oriented partial deduction for query optimization. Section

7.5 discusses further issues, and Section 7.6 summarizes this chapter.
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7.2 Partial Deduction of Positive Disjunctive Pro-

grams

In this section, we first present partial deduction of positive disjunctive programs. In

the following, when we write A ∨ Σ← Γ, Σ denotes a disjunction (possibly false) in

the head, and Γ denotes a conjunction (possibly true) in the body. Note here that

when we write a clause as A∨Σ← Γ, it does not necessarily mean that A should be

the leftmost atom in the head of the clause. That is, any two clauses are identified

modulo the permutation of disjuncts/conjuncts in their heads/bodies.

Since a program is semantically identified with its ground program, we consider

ground programs throughout this chapter unless stated otherwise. We also assume

without loss of generality that a disjunction in the head of a ground clause is already

factored , that is, each atom in the disjunctive head of a clause is different.

7.2.1 Normal Partial Deduction

Partial deduction in logic programming is usually defined as unfolding of clauses in

a program.1 For a Horn logic program P , partial deduction is formally presented as

follows.

Given a Horn clause C from P :

C : H ← A ∧ Γ ,

suppose that C1, . . . , Ck are all of the clauses in P such that each of which has the

atom A in its head:

Ci : A← Γi (1 ≤ i ≤ k) .

Then normal partial deduction of P (with respect to C on A) is defined as the

program πN{C;A}(P ) (called a residual program) such that

πN{C;A}(P ) = (P \ {C}) ∪ {C ′1, . . . , C ′k}

where each C ′i is defined as

C ′i : H ← Γ ∧ Γi .

When we simply say normal partial deduction of P (written πN(P )), it means

normal partial deduction of P with respect to any clause on any atom.

1Partial deduction is also called partial evaluation. However, we prefer to use the term partial
deduction, since partial evaluation often includes non-deductive procedures.
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Example 7.1 Let P be the program:

P = { a← b, b← c, b← a, c← }.

Then normal partial deduction of P with respect to a← b on b becomes

πN{a←b;b}(P ) = { a← c, a← a, b← c, b← a, c← }. 2

In the context of unfold/fold transformation of logic programs, Tamaki and Sato
[1984] showed that normal partial deduction preserves the least Herbrand model se-

mantics of definite logic programs.

Lemma 7.1 ([Tamaki and Sato, 1984]) Let P be a definite logic program and MP be

its least Herbrand model. Then, for any residual program πN(P ) of P , MP = MπN (P ).

2

The result also holds for Horn logic programs, that is, programs containing in-

tegrity constraints.

Theorem 7.2 Let P be a Horn logic program and πN(P ) be any residual program

of P . Then MP = MπN (P ).

Proof: By identifying each integrity constraint ← G with false ← G,

MP contains false iff MπN (P ) contains false. In this case, both programs

are inconsistent. Then the result follows from Lemma 7.1. 2

Thus, in what follows we do not take special care for the treatment of integrity

constraints, that is, they are identified with normal clauses during partial deduction

as presented above.

Now we consider partial deduction in disjunctive programs. If we consider to ex-

tend normal partial deduction to a program possibly containing disjunctive clauses,

however, normal partial deduction does not preserve the minimal models of the pro-

gram.

Example 7.2 Let P be the program:

P = { a ∨ b←, a← d, c← a }

where the set of all minimal models of P becomes MMP = {{a, c}, {b}}. On the

other hand,

πN{c←a;a}(P ) = { a ∨ b←, a← d, c← d }
where MMπN{c←a;a}(P ) = {{a}, {b}}. 2
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The problem is that normal partial deduction of logic programs is defined as

unfolding between normal clauses. In the above example, however, there is the dis-

junctive clause a∨b← containing the atom a in its head, so unfolding between c← a

and a ∨ b← would be needed.

Then our first task is to extend the normal partial deduction method to the one

which supplies unfolding for disjunctive clauses.

7.2.2 Disjunctive Partial Deduction

Partial deduction of positive disjunctive programs is defined as follows.

Definition 7.1 Let P be a positive disjunctive program and C be a clause in P of

the form:

C : Σ← A ∧ Γ . (7.1)

Suppose that C1, . . . , Ck are all of the clauses in P such that each of which includes

the atom A in its head:

Ci : A ∨ Σi ← Γi (1 ≤ i ≤ k) . (7.2)

Then disjunctive partial deduction of P (with respect to C on A) is defined as the

program πD{C;A}(P ) (called a residual program) such that

πD{C;A}(P ) = (P \ {C}) ∪ {C ′1, . . . , C ′k}

where each C ′i is defined as

C ′i : Σ ∨ Σi ← Γ ∧ Γi , (7.3)

in which Σ ∨ Σi is factored. 2

Disjunctive partial deduction is a natural extension of normal partial deduction.

In fact, the clause (7.3) is a resolvent of the clauses (7.1) and (7.2). In Horn logic

programs, disjunctive partial deduction coincides with normal partial deduction.

Now we show that disjunctive partial deduction preserves the minimal model

semantics of positive disjunctive programs. We first present a preliminary lemma.

Lemma 7.3 Let P be a positive disjunctive program and M be its minimal model.

Then an atom A is in M iff there is a clause C : A ∨ Σ ← Γ in P such that

M \ {A} |= Γ and M \ {A} 6|= Σ.
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Proof: (⇒) Suppose that for some atom A in M , there is no clause C

in P such that M \ {A} |= Γ and M \ {A} 6|= Σ. Then, for each clause

C, M \ {A} 6|= Γ or M \ {A} |= Σ, and hence it holds that M \ {A} |= Γ

implies M \ {A} |= Σ. In this case, since M \ {A} satisfies each clause C,

it becomes a model of P , which contradicts the assumption that M is a

minimal model. Hence the result follows.

(⇐) Assume that A is not in M . Then M \ {A} = M , and for a clause C

in P , M |= Γ and M 6|= Σ imply A ∈M , contradiction. 2

Theorem 7.4 Let P be a positive disjunctive program and πD(P ) be any residual

program of P . Then MMP =MMπD(P ).

Proof: (⊆) Let M be a minimal model of P . Since the clause (7.3)

is a resolvent of the clauses (7.1) and (7.2) in P , M also satisfies each

clause (7.3) in πD(P ). Then M is a model of πD(P ). Assume that there

is a minimal model N of πD(P ) such that N ⊂ M . Since N is not a

model of P , N does not satisfy the clause (7.1). Then N |= Γ, N |= A,

and N 6|= Σ. As a minimal model N of πD(P ) implies A, it follows from

Lemma 7.3 that there is a clause C of the form (7.2) or (7.3) in πD(P )

such that C contains A in its head. (i) Suppose first that C is of the

form (7.2). Then N |= A implies N \ {A} |= Γi and N \ {A} 6|= Σi (by

Lemma 7.3). Here N \{A} |= Γi implies N |= Γi. Besides, the disjunctive

head A ∨ Σi is assumed to be already factored, then Σi does not include

A. Thus N \ {A} 6|= Σi also implies N 6|= Σi. In this case, however, N

does not satisfy the clause (7.3). This contradicts the assumption that N

is a model of πD(P ). (ii) Next suppose that C is of the form (7.3) such

that Σ = A∨Σ′. Then N |= A implies N |= Σ, which contradicts the fact

N 6|= Σ. Hence, M is also a minimal model of πD(P ).

(⊇) Let M be a minimal model of πD(P ). If M is not a model of P ,

M does not satisfy the clause (7.1). In this case, M 6|= Σ, M |= A, and

M |= Γ. Since a minimal model M of πD(P ) implies A, it follows from

Lemma 7.3 that there is a clause C of the form (7.2) or (7.3) in πD(P )

such that C contains A in its head. When C is of the form (7.2), M |= A

implies M |= Γi and M 6|= Σi (by Lemma 7.3 and the discussion presented

above). Thus M does not satisfy the corresponding clause (7.3), which

contradicts the assumption that M is a model of πD(P ). Else when C is

of the form (7.3) such that Σ = A ∨ Σ′, M |= A implies M |= Σ, which

contradicts the fact M 6|= Σ. Hence M is a model of P . Next assume that
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there is a minimal model N of P such that N ⊂ M . By (⊆), N is also

a minimal model of πD(P ), but this is impossible since M is a minimal

model of πD(P ). 2

Corollary 7.5 Let P be a positive disjunctive program. Then P is inconsistent iff

πD(P ) is inconsistent. 2

Example 7.3 (cont. from Example 7.2) Given the program P , its disjunctive partial

deduction πD{c←a;a}(P ) becomes

πD{c←a;a}(P ) = { a ∨ b←, a← d, c← d, b ∨ c← },

and MMπD{c←a;a}(P ) = {{a, c}, {b}}, which is exactly the same as MMP . 2

7.3 Partial Deduction of Normal Disjunctive Pro-

grams

In this section, we extend disjunctive partial deduction to normal disjunctive pro-

grams.

7.3.1 Disjunctive Partial Deduction of Normal Disjunctive
Programs

The definition of disjunctive partial deduction for normal disjunctive programs is the

same as Definition 7.1, except that in this case each clause possibly contains default

negation.

Example 7.4 Let P be the normal disjunctive program:

P = { a ∨ b← not c, a← d, c← a }.

Then disjunctive partial deduction of P with respect to c← a on a becomes

πD{c←a;a}(P ) = { a ∨ b← not c, a← d, c← d, b ∨ c← not c }. 2

As shown in the above example, disjunctive partial deduction is not affected by

the presence of default negation in a program. Thus we can directly apply previously

defined disjunctive partial deduction to normal disjunctive programs and the following

result holds.
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Theorem 7.6 Let P be a normal disjunctive program and ST P be the set of all

stable models of P . Then ST P = ST πD(P ).

Proof: Let M be a stable model of P . Then M is a minimal model of

PM . Since PM is a positive disjunctive program, by Theorem 7.4, M is

also a minimal model of πD(PM). Now let us consider the clauses:

Σ← A ∧ Γ ∧ notΓ′ (∗)

and

A ∨ Σi ← Γi ∧ notΓ′i (1 ≤ i ≤ k) (†)

in P , where notΓ′ is the conjunction of default-negation formulas in the

body.

(i) If M 6|= Γ′ and M 6|= Γ′i for some i (1 ≤ i ≤ k), the clauses:

Σ← A ∧ Γ (∗′)

and

A ∨ Σi ← Γi (†′)

are in PM . From these clauses, disjunctive partial deduction generates

the clauses:

Σ ∨ Σi ← Γ ∧ Γi (‡′)

in πD(PM). On the other hand, from (∗) and (†) in P , there are the

clauses:

Σ ∨ Σi ← Γ ∧ Γi ∧ notΓ′ ∧ notΓ′i (‡)

in πD(P ), which become (‡′) in πD(P )M .

(ii) Else if M |= Γ′ or M |= Γ′i for any i (1 ≤ i ≤ k), the clauses (∗) or (†)
is respectively eliminated in PM . Then the clauses (‡′) are not included

in πD(PM). In this case, each clause (‡) in πD(P ) is also eliminated in

πD(P )M .

Thus, there is a one-to-one correspondence between the clauses in πD(PM)

and the clauses in πD(P )M , hence πD(PM) = πD(P )M . Therefore M is

also a minimal model of πD(P )M , and a stable model of πD(P ).

The converse is also shown in the same manner. 2

Corollary 7.7 Let P be a normal disjunctive program. Then P is incoherent iff

πD(P ) is incoherent. 2
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The above theorem also implies that in normal logic programs, normal partial

deduction preserves Gelfond and Lifschitz’s stable model semantics.

Corollary 7.8 Let P be a normal logic program. Then ST P = ST πN (P ). 2

The above result is also presented in [Seki, 1990].

7.3.2 Connections between Normal and Disjunctive Partial
Deduction

In this section, we consider connections between normal and disjunctive partial deduc-

tion. We first give a sufficient condition such that normal partial deduction preserves

the meaning of disjunctive programs.

Theorem 7.9 Let P be a normal disjunctive program and C be a clause of the form

Σ← A ∧ Γ from P . If A does not appear in the head of any disjunctive clause in P ,

then ST P = ST πN{C;A}(P ). That is, normal partial deduction of P with respect to C

on A preserves the disjunctive stable model semantics.

Proof: In this case, disjunctive partial deduction coincides with normal

one, hence the result follows from Theorem 7.6. 2

Next we present a method to compute disjunctive partial deduction in terms of

normal partial deduction.

Definition 7.2 Let P be a normal disjunctive program. Then the nlp-transformation

transforms P into the normal logic program η(P ) which is obtained from P by re-

placing each disjunctive clause:

C : A1 ∨ . . . ∨ Al ← Γ (7.4)

with l normal clauses:

C−i : Ai ← Γ ∧ A−1 ∧ . . . ∧ A−i−1 ∧ A−i+1 ∧ . . . ∧ A−l (1 ≤ i ≤ l) . (7.5)

where each A−j is a new atom introduced for each Aj.

In particular, C = C−i if l ≤ 1. 2

Now we show that disjunctive partial deduction of a normal disjunctive program P

with respect to a clause C is obtained through normal partial deduction of η(P ) with

respect to each C−i . In the following, the function η−1 is the reverse transformation

which shifts each atom A−j appearing in the body of each clause in a program to the

atom Ai in the head of the clause. Also Σ− means A−1 ∧. . .∧A−l where Σ = A1∨. . .∨Al.
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Theorem 7.10 Let P be a normal disjunctive program. Then,

πD{C;A}(P ) = η−1(πN{C−i ;A}(η(P )))

where πN{C−i ;A}(η(P )) means normal partial deduction of η(P ) with respect to each

normal clause C−i on A.

Proof: Corresponding to the clauses (7.1) and (7.2) in P , there are the

clauses:

A′ ← A ∧ Γ ∧ Σ′− (where Σ = Σ′ ∨ A′ ) (∗)
and

A← Γi ∧ Σ−i (1 ≤ i ≤ k) (†)
in η(P ), respectively. Then the clauses:

A′ ← Γ ∧ Γi ∧ Σ′− ∧ Σ−i (‡)

are obtained from (∗) and (†) by normal partial deduction in η(P ). In

this case, by the reverse transformation η−1, each clause of the form

(‡) becomes a disjunctive clause of the form (7.3). Hence, πD{C;A}(P ) =

η−1(πN{C−i ;A}(η(P ))). 2

Example 7.5 Let P be the program:

P = { a ∨ b←, a← b, b← a }.

Then,

πD{a←b;b}(P ) = { a ∨ b←, a←, a← a, b← a }.
On the other hand, the nlp-transformation of P becomes

η(P ) = { a← b−, b← a−, a← b, b← a },

and

πN{a←b;b}(η(P )) = { a← b−, b← a−, a← a−, a← a, b← a }.
Thus,

η−1(πN{a←b;b}(η(P ))) = { a ∨ b←, a←, a← a, b← a }.
Therefore, πD{a←b;b}(P ) = η−1(πN{a←b;b}(η(P ))). 2

The above theorem presents that disjunctive partial deduction πD{C;A}(P ) is ob-

tained by the transformation sequence: P → η(P )→ πN{C−i ;A}(η(P ))→ η−1(πN{C−i ;A}(η(P ))).

That is, together with the nlp-transformation, normal partial deduction can also be

used for normal disjunctive programs.



NORMAL DISJUNCTIVE PROGRAMS 139

7.3.3 Preservation of the Possible Model Semantics

We consider partial deduction for disjunctive programs under the possible model

semantics. Unfortunately, disjunctive partial deduction does not preserve the possible

model semantics in general.

Example 7.6 Let P be the disjunctive program:

P = { a ∨ b←, c← b }.

Then disjunctive partial deduction of P with respect to c← b on b becomes

πD{c←b;b}(P ) = { a ∨ b←, a ∨ c← }.

In this case, PMP = {{a}, {b, c}, {a, b, c}}, while the residual program has the pos-

sible models {a, b} and {a, c} in addition to PMP . 2

In the above example, a dependency relation between c and b is not expressed after

partial deduction. This observation tells us that resolution-based disjunctive partial

deduction often fails to preserve syntax-dependent logic programming semantics. In

fact, the above example shows that even the supported models of P are not preserved

during partial deduction; {a, c} is a supported model of the residual program but it

is not a supported model of P .

Then we first consider a sufficient condition for preserving the possible model

semantics. A result similar to Theorem 7.9 holds.

Theorem 7.11 Let P be a normal disjunctive program and C be a clause of the

form Σ← A ∧ Γ from P . If A does not appear in the head of any disjunctive clause

in P , then PMP = PMπD{C;A}(P ).

Proof: In this case, stable models of each split program of P are pre-

served, hence the result follows. 2

Next we present a method of partial deduction for preserving possible models in

general. We have already seen in Section 3.6 that possible models of any disjunctive

program are expressed by stable models of a normal logic program obtained by the pm-

transformation. Then, we compute partial deduction for the possible model semantics

in terms of normal partial deduction in such a transformed program.

The following result follows from Theorem 3.30 and Corollary 7.8.

Theorem 7.12 Let P be a normal disjunctive program and ℘(P ) be a normal logic

program obtained by pm-transformation. Then PMP = ST πN (℘(P )) ∩HBP . 2
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7.4 Goal-Oriented Partial Deduction

In this section, we present goal-oriented partial deduction in disjunctive programs.

Goal-oriented partial deduction specializes a program with respect to a given goal,

which is useful to optimize programs for query-answering. Lloyd and Shepherdson
[1991] discuss a framework of goal-oriented partial evaluation for normal logic pro-

grams with respect to SLDNF proof procedures. In our framework, goal-oriented

partial deduction is presented as follows.

Let us consider a query of the form:

Q : Q(x)← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (7.6)

where Q(x) is a new atom not appearing elsewhere in a program and x represents

variables appearing in the body of the clause.

Then, given a normal disjunctive program P , partial deduction of P with respect

to Q is defined as πD{Q;Bi}(PQ) where Bi is any atom occurring positively in the body

of Q and PQ is the program P ∪ {Q}. When a query contains variables, we consider

partial deduction with respect to its ground instances.

As introduced in Section 3.5, an answer to a query is defined as a ground substi-

tution σ for variables in Q(x).

A query Q is true in P under the disjunctive stable model semantics if for every

stable model I of PQ there is an answer σ such that Q(x)σ is included in I. Else if

for some stable model I of PQ there is an answer σ such that Q(x)σ is included in I,

the query is possibly true. Otherwise, if there is no such answer, the query is false.

By Theorem 7.6, the following results hold.

Theorem 7.13 Let P be a normal disjunctive program and Q be a query. Then,

under the disjunctive stable model semantics,

(i) Q is true in P iff Q is true in πD{Q;Bi}(PQ).

(ii) Q is possibly true in P iff Q is possibly true in πD{Q;Bi}(PQ).

(iii) Q is false in P iff Q is false in πD{Q;Bi}(PQ). 2

Example 7.7 Let P be the program:

{ p(a) ∨ p(b)← },

in which the query Q : q(x)← p(x) is true. Then,

πD{Q;p(x)}(PQ) = { q(a) ∨ p(b)←, q(b) ∨ p(a)←, q(a) ∨ q(b)←, p(a) ∨ p(b)← }

and Q is also true in πD{Q;p(x)}(PQ) under the disjunctive stable model semantics. 2
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Note that in the above example, we assume that the ground queries q(a)← p(a)

and q(b) ← p(b) are unfolded consecutively in the program. That is, πD{Q;p(x)}(PQ)

means πD{Q;p(b)}(π
D
{Q;p(a)}(P ∪{ q(a)← p(a), q(b)← p(b) })). In this case, the order of

unfolding does not affect the result of partial deduction since each partial deduction

preserves the stable models of the program PQ.

Using the technique presented in the previous section, corresponding results also

hold for goal-oriented partial deduction under the possible model semantics.

7.5 Discussion

So far, we have considered partial deduction of propositional programs, while disjunc-

tive partial deduction is also directly extended to programs containing variables.

Let P be a normal disjunctive program and C be a clause in P of the form:

C : Σ← A ∧ Γ .

Then, for any clause

Ci : Ai ∨ Σi ← Γi (1 ≤ i ≤ k)

from P such that Aσi = Aiσi holds with an mgu σi, the following clauses

C ′i : (Σ ∨ Σi ← Γ ∧ Γi)σi

are in the residual program πD{C;A}(P ) = (P \ {C}) ∪ {C ′1, . . . , C ′k}.
Correctness of such disjunctive partial deduction with respect to the disjunctive

stable model semantics is proved in a similar way to the propositional case.

Disjunctive partial deduction is implemented on the bottom-up model generation

procedure presented in Section 3.5, and it preserves the disjunctive stable model

semantics in range-restricted function-free normal disjunctive programs. On the other

hand, a transformation from disjunctive partial deduction to normal partial deduction

presented in the previous section enables us to use a partial evaluator for normal logic

programs also as a procedure for disjunctive partial deduction. Partial deduction

under the possible model semantics is also executed using a partial evaluator of normal

logic programs with respect to the stable model semantics.

In the context of deductive databases, a program usually consists of a large amount

of data (called an extensional database) and a comparatively small set of derivation

rules (called an intensional database). For query processing in such a database, it

is effective to partially evaluate a query in the intensional database at first, and

subsequently evaluate it in the extensional database [Gallaire et al., 1984]. Such a
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technique can also be realized in our goal-oriented partial deduction presented in

Section 7.4. Related topics are discussed in [Sakama and Itoh, 1988] for optimizing

queries in deductive databases.

The partial deduction technique presented in this chapter is also directly applica-

ble to extended disjunctive programs. Moreover, since positive disjunctive programs

are identified with first-order theories, disjunctive partial deduction has potential ap-

plication to first-order theorem provers. Recently, Brass and Dix [1994] independently

developed a partial deduction technique for disjunctive programs which is equivalent

to ours. They discuss several abstract properties of disjunctive programs and con-

clude partial deduction as one of the fundamental properties that logic programming

semantics should satisfy.

7.6 Summary

In this chapter, we have presented a method of partial deduction for disjunctive pro-

grams. We first showed that normal partial deduction is not applicable to disjunctive

programs in its present form. Then we introduced disjunctive partial deduction for

disjunctive programs, which is a natural extension of normal partial deduction for

normal logic programs. Disjunctive partial deduction was shown to preserve the min-

imal model semantics of positive disjunctive programs, and the disjunctive stable

model semantics of normal disjunctive programs. We also showed a method of trans-

lating disjunctive partial deduction into normal partial deduction, and presented an

application to goal-oriented partial deduction for query optimization.
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Conclusion

8.1 Summary and Contributions

In this dissertation, we have studied theoretical aspects of disjunctive logic program-

ming from various viewpoints.

It has been considered that the principle of minimality is a basic criterion for any

rational semantics of logic programming and commonsense reasoning in AI. However,

it was also noticed that this principle is not always appropriate in the presence of

indefinite information in a program. Then we started to develop a new theoretical

framework of disjunctive logic programs, which violates this common principle. To

this end, in Chapter 3 we proposed a new declarative semantics of disjunctive logic

programs called the possible model semantics. Due to its non-minimal property, the

possible model semantics can freely specify both inclusive and exclusive disjunctions

in a program, and provides a flexible negative inference mechanism under the closed

world assumption. The possible model semantics was also characterized by a new

fixpoint semantics of disjunctive logic programs, and a bottom-up proof procedure

for computing possible models was presented. The advantage of the possible model

semantics lies not only in its representational power, but also in its computational

complexity. That is, computation of possible models does not need an extra mecha-

nism for minimality-checking, which makes computing the possible model semantics

much easier than the minimal-model based semantics. We have verified this fact by

comparing the computational complexity of each semantics.

Logic programming semantics is known to be closely related to nonmonotonic

formalisms in AI. There have been studied methods of representing normal logic pro-

grams in terms of nonmonotonic formalisms, and their extensions to disjunctive logic

programs were also proposed by several researchers. In Chapter 4, however, we have
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pointed out that the previously studied result on default translations of disjunctive

logic programs is incorrect. Then we introduced an alternative correct transformation

from disjunctive logic programs to default theories, and showed that the disjunctive

stable model semantics is characterized in terms of default extensions. The result

indicates that Reiter’s default logic still works well to characterize disjunctive logic

programs, which breaks the folklore that Reiter’s default logic is inappropriate to

characterize disjunctive logic programs in general. In fact, Gelfond et al.’s disjunc-

tive default logic is proposed to treat disjunctions “properly” in a default theory, while

we have shown that Reiter’s default logic has the same expressiveness as disjunctive

default logic to characterize the semantics of disjunctive logic programs. Disjunctive

logic programs were also characterized by autoepistemic logic and circumscription.

Moreover, we have shown that the possible model semantics of disjunctive logic pro-

grams is expressed by the non-minimal feature of autoepistemic expansions.

Abduction is also a form of commonsense reasoning in AI, and its application to

logic programming is known as abductive logic programming. Disjunctive logic pro-

grams and abductive logic programs are two extensions of logic programming which

provide frameworks for reasoning with incomplete information, while little attention

has been paid for their interrelations. Then, in Chapter 5, we revealed a close re-

lationship between disjunctive logic programs and abductive logic programs. It was

shown that the possible model semantics of disjunctive logic programs is essentially

equivalent to the generalized stable models of abductive logic programs. This fact in-

dicates that disjunctive logic programs and abductive logic programs are just different

ways of looking at the same problem if we choose the appropriate semantics. More-

over, the possible model semantics is useful not only for disjunctive logic programs

but also for abductive logic programs, and establishes links between each framework.

The usefulness of the possible model semantics in abductive logic programming was

also verified from the computational complexity viewpoint.

Another important issue for commonsense reasoning in logic programming is the

treatment of inconsistent information in a program. In the context of extended logic

programs, a program may become inconsistent in the presence of explicit negation.

However, classical logic programming framework is useless in the presence of incon-

sistent information, and paraconsistent extensions are needed in order to treat incon-

sistent information properly in a program. In Chapter 6, we then proposed paracon-

sistent frameworks for disjunctive logic programs which can cope with inconsistent

information as well as indefinite information in a program. The paraconsistent sta-

ble and possible model semantics were introduced for extended disjunctive programs,

and those semantics were shown to be useful compared with the answer set semantics.
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Each paraconsistent semantics was also characterized by the fixpoint semantics of ex-

tended disjunctive programs, and various methods for reasoning with inconsistent

information were discussed.

Disjunctive logic programs increase expressive power of logic programming, while

their computation are generally more expensive than normal logic programs. Then,

in Chapter 7, we developed partial deduction techniques for optimizing disjunctive

logic programs. We first argued that normal partial deduction for logic programs is

not directly applicable to disjunctive logic programs, then introduced a new partial

deduction method for disjunctive logic programs. The proposed disjunctive partial

deduction was shown to preserve the minimal model semantics of positive disjunctive

programs and the disjunctive stable models semantics of normal disjunctive programs.

We also showed a method of translating disjunctive partial deduction into normal

partial deduction, and presented a method of using normal partial deduction for the

possible model semantics. An application to goal-oriented partial deduction is also

presented for query optimization in disjunctive deductive databases.

In this dissertation, we have discussed semantic issues for various extensions of

logic programming. Interrelations between those extensions are presented in Fig-

ure 8.1.

Now we know the following relationships between each class of programs.

• Normal disjunctive programs are reducible to positive disjunctive program by

the epistemic transformation presented in Section 3.4. This transformation

preserves both the disjunctive stable model semantics and the possible model

semantics.

• Normal disjunctive programs are reducible to normal logic programs preserving

the possible model semantics by the pm-transformation presented in Section 3.6.

By contrast, under the disjunctive stable model semantics, such a transforma-

tion is most unlikely possible in polynomial time.

• Abductive logic programs are transferable to normal disjunctive programs and

vice versa under the possible model semantics. Also abductive disjunctive pro-

grams are reducible to normal disjunctive programs under the disjunctive stable

model semantics and the possible model semantics (Chapter 5).

• Extended disjunctive programs and extended logic programs are respectively

reducible to normal disjunctive programs and normal logic programs by consid-

ering their positive forms. Each semantics for extended programs are expressed

by the corresponding semantics of normal programs (Chapter 6).
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tive programs, NDP: normal disjunctive programs, ELP: extended logic pro-

grams, EDP: extended disjunctive programs, ALP: abductive logic programs,

ADP: abductive disjunctive programs.

Figure 8.1: Extensions of Logic Programming

The first fact presents that default negation can be represented by disjunctions,

while the second fact presents that the converse is also true under the possible model

semantics. The third fact presents that abductive hypotheses are identified with

disjunctions under the possible model semantics, and abductive disjunctive programs

do not increase expressive power of normal disjunctive programs. The fourth fact

presents that classical negation in extended programs can be interpreted within the

frameworks of normal programs.

These observations indicate a somewhat surprising result that all “extensions” of

logic programming are essentially equivalent under the possible model semantics. That

is, default negation, disjunction, and abducibles can be used interchangeably under the

possible model semantics, and classical negation is nothing but “syntax-sugar”.

This fact suggests that the possible model semantics provides a unifying framework

for the semantics of logic programs, and its potential expressiveness would contribute

to enrich our perspectives of logic programming as a theoretical tool for commonsense
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reasoning in artificial intelligence.

8.2 Future Research

In this dissertation, we have discussed various extensions of logic programming and

their theoretical frameworks. Syntactically speaking, further extensions besides those

presented in the dissertation are considered. One extension is incorporating classical

negation in abductive logic/disjunctive programs. Abductive extended logic programs

and abductive extended disjunctive programs are extensions of abductive logic pro-

grams and abductive disjunctive programs respectively, which are obtained by re-

placing normal logic/disjunctive programs with extended logic/disjunctive programs

in each abductive framework. However, such frameworks are reducible to normal

abductive logic/disjunctive programs by considering their positive forms, so it is easy

to extend the results presented in Chapter 5 to abductive extended logic/disjunctive

programs. Inoue and Sakama [1993] have introduced a fixpoint semantics of abduc-

tive extended disjunctive programs and shown that abductive extended disjunctive

programs are transferable to extended disjunctive programs under the answer set

semantics.

Another extension is to incorporate default negation in the head as well as in the

body of each clause in extended disjunctive programs. Such an extension of logic

programming is known as logic programs with “positive not”. A unique feature of

such programs is that answer sets of those programs are not necessarily minimal, how-

ever, its application to knowledge representation was remained open [Lifschitz and

Woo, 1992]. Inoue and Sakama [1994] have recently shown that such non-minimal

answer sets are useful to characterize abductive reasoning and inclusive disjunctions

in logic programming. Moreover, they show that the possible model semantics plays

an important role for such characterizations. This extension of logic programming is

fairly new, and further applications of such programs are remained to be seen. How-

ever, since the framework is closely related to the possible model semantics, further

investigation would also exploit new applications of the possible model semantics.

Considering the relationship to nonmonotonic reasoning, we have shown in Chap-

ter 4 that disjunctive logic programs are translated into nonmonotonic formalisms in

AI. Since abductive logic/disjunctive programs are transferable to disjunctive logic

programs as presented in Chapter 5, by combining these two transformations, we

can also relate abductive logic programming to each nonmonotonic formalism. From

the computational complexity viewpoint, it is known that disjunctive stable model

semantics and those nonmonotonic formalisms are interrelated at the second level of
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the polynomial hierarchy [Eiter and Gottlob, 1993b]. This fact implies that reasoning

tasks in each nonmonotonic formalism can also be efficiently realized in disjunctive

logic programs. In other words, disjunctive logic programs have potential applications

for nonmonotonic reasoning in AI.

On the other hand, we have shown that non-minimal nature of autoepistemic

logic is useful to characterize inclusive disjunctions in knowledge representation. It is

shown in [Inoue and Sakama, 1994] that such non-minimal autoepistemic expansions

are also useful for characterizing abduction. These facts suggest that the principle

of minimality is not a dominant rule for commonsense reasoning in AI any more. So

it is interesting to seek further applications of non-minimal nonmonotonic reason-

ing, which would open new perspectives of nonmonotonic formalisms as knowledge

representation tools.

As for the procedural aspects of disjunctive logic programs, in Section 3.5 we

have presented a bottom-up proof procedure which is sound and complete with re-

spect to the possible model semantics/disjunctive stable model semantics for function-

free range-restricted normal disjunctive programs. However, the proposed bottom-up

proof procedure is rather naive for query-answering, and in the presence of huge

databases, it might need some optimization techniques as presented in [Bancilhon

and Ramakrishnan, 1988]. For instance, partial deduction presented in Chapter 7 is

one of such optimization techniques, and it would be used to reduce search space for

a given query. In this dissertation, we have not presented a top-down proof procedure

for disjunctive logic programs since it is generally inefficient. However, as discussed

in Section 3.7, concerning the possible model semantics a top-down proof procedure

is realized using a proof procedure for the stable model semantics in pm-transformed

normal logic programs.

From the standpoint of deductive databases, integrity checking and view update

in disjunctive logic programs are also important. We have considered the mean-

ing of a disjunctive logic program as the collection of all possible models satisfying

integrity constraints. Such selection is done during the bottom-up computation of

possible models and any model violating integrity constraints is pruned away. Thus,

if the procedure generates no possible model, we know that a database violates in-

tegrity constraints. Note that we consider integrity constraints in the form of negative

clauses, while more general form of integrity constraints are transformed into negative

clauses as presented in [Sadri and Kowalski, 1988].

There are difficulties in view update in disjunctive deductive databases. Without

disjunctive information, view update is usually achieved by translating an update

request on a virtual relation into a real update on the underlying database relations.
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For example, in a database containing the clause p(x) ← q(x) where p is a virtual

relation and q is a real database relation, the addition of the virtual fact p(a) is

translated into the addition of the real fact q(a). Then p(a) is implied in the updated

database. However, given the disjunctive clause p(x) ∨ r(x)← q(x), it is not so easy

to translate the addition of p(a) into the real update on q(x). This is because the

addition of q(a) in this case does not necessarily imply the truth of p(a). Several

problems arise in updating indefinite knowledge bases and further investigation is

needed.

Last but not least, practical applications of disjunctive logic programming are also

very important. In this dissertation, we are mainly concerned with the theoretical

aspects of disjunctive logic programming, however, we consider that disjunctive logic

programming has promising applications due to its rich expressiveness. For instance,

in Section 5 we have presented an equivalence relationship between disjunctive and

abductive logic programs. This fact implies that applications of abductive logic pro-

gramming, such as diagnosis and planning, can also become applications of disjunctive

logic programming. On the other hand, recent studies in artificial intelligence recog-

nize the need of standardized knowledge representation for developing reusable and

sharable knowledge bases [Neches et al., 1991]. Such technologies are important since

they would greatly reduce the cost of designing and maintaining knowledge bases. Of

course it might be difficult to develop a single common language which is useful for

different kinds of multi-purpose knowledge bases. However, logic programming has

potential possibilities to serve as an archetype of the common language because it

provides a universal framework based on mathematical logic. Moreover, since logic

programming has nice relations with databases and nonmonotonic reasoning, it en-

ables us to develop knowledge bases combining existing database and AI technologies.

Thus we believe that logic programming and disjunctive logic programming play

important roles in knowledge representation and artificial intelligence in the next

generation, and we hope that the studies presented in this dissertation will contribute

to further development of research in the fields.
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