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Abstract

An efficient solution strategy is proposed for bilevel multiobjective optimization problem (BLMOP) with multiple
objectives at both levels when multiobjective optimization problem (MOP) at the lower level satisfies the convexity and
differentiability for the lower level variables. In the proposed strategy, the MOP at the lower level is first transformed
into a single objective optimization problem by adopting weighted sum scalarization, in which the lower level weight
vector is adjusted adaptively with iteration. Using the Karush-Kuhn-Tucker (KKT) optimality conditions to the lower
level single objective optimization problem, the original bilevel multiobjective formulation can be converted into a
single level MOP with the complementarity constraints. Then a smoothing technique is suggested to cope with the
complementarity constraints. In such a way, the BLMOP is formalized as a single level nonlinear constrained MOP.
Constrained MOEA/D-based approach and NSGA-II are applied to solve this transformed problem respectively and
some instances are tested to demonstrate the feasibility and effectiveness of the solution methodology.
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1. Introduction

A bilevel optimization problem models a hierarchical decision process with two levels in a system. When multiple
objectives arise in a certain level or both levels, a bilevel multiobjective optimization problem (BLMOP) can be
formed. Without loss of generality, the BLMOP with multiple objectives at both levels can be defined as

min
x,y

F(x, y) =
(
F1(x, y), F2(x, y), · · · , Fk(x, y)

)
s. t. G(x, y) ≤ 0

where y solves

min
y

f (x, y) =
(

f1(x, y), f2(x, y), · · · , fl(x, y)
)

s. t. g(x, y) ≤ 0

(1)

where x ∈ Rn is an upper level decision variable, called a leader, y ∈ Rm is a lower level decision variable, called a
follower. F : Rn+m −→ Rk, f : Rn+m −→ Rl, G : Rn+m −→ Rp, g : Rn+m −→ Rq. F and G are upper level objective and
constraint vector-valued functions, which constitute an upper level multiobjective optimization problem (MOP), while
f and g are lower level objective and constraint vector-valued functions, which form a lower level MOP. Therefore,
problem (1) possesses a two-level structure with each MOP at each level, in which the decision space of the upper
level MOP is implicitly determined by the lower level MOP. This leads to the difficulty of computation.
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The BLMOPs can be classified into three categories: 1) Multiple objectives at the upper level and a single objective
at the lower level [1][2][8][32][48], 2) A single objective at the upper level and multiple objectives at the lower
level [4][6][9][20], and 3) Multiple objectives at both levels [15][16][17][21][23][25][35][47][49][50][53]. The third
category is the most complicated and difficult to solve due to their nested structure and multiple objectives at both
levels. The main challenge is that every upper level decision variable leads to a set of Pareto optimal solutions of the
lower level MOP. The solution strategies for the third category can be modified simply to solve the first two categories,
so it is extremely important to study how to solve the BLMOPs in the third category.

Many efforts have been made for dealing with single objective bilevel optimization problems [3][24][27][29]
[30][33][36][45][46], and some monographs and reviews on the algorithms and applications of such single objective
bilevel problems can refer to [5][11][12][18][19][44]. However, in contrast with single objective bilevel optimization
problems, BLMOPs have not been well investigated, especially for BLMOP in the third category. The aim of this
paper is to develop a solution strategy for the problems in the third category.

With regards to the BLMOPs in the third category, some solution algorithms have been proposed. Yin [49] studied
the transportation system management problem using BLMOP models. Multiobjective optimization technique must
be utilized accordingly to generate Pareto optimal solutions. Consequently a solution procedure was developed for
solving the BLMOP models using genetic algorithms. Wang et al. [47] developed a bilevel multiobjective road
network toll model, in which three objectives arise in the upper level, while two objectives is applied in the lower
level. The model was solved using a combination of a metaheuristic and a classical optimization algorithm. Zhang
et al. [50] proposed a fuzzy multi-objective linear bilevel programming model, and then developed an approximation
branch-and-bound algorithm to solve multi-objective bilevel decision problems with fuzzy demands. Jia and Wang
[25] proposed a genetic algorithm called Ga- BCPP for a class of multiobjective bilevel convex optimization problem.
The original problem was converted into a scalar bilevel programming with one objective at each level, in which
the upper level was optimized by the genetic algorithm and the lower level was solved by traditional methods. Deb
and Sinha [15] analyzed the difficulties which a bilevel evolutionary multiobjective optimization algorithm may meet
in dealing with BLMOP and presented a systematic rule for constructing test instances of BLMOP. Deb and Sinha
[16] developed an idea of co-evolutionary multiobjective optimization algorithm for solving BLMOPs with several
objectives at both levels. In the proposed procedure, both upper and lower level multiobjective optimization problems
can be evolved simultaneously through iterations, in order to keep two interacting populations in the process. Deb
and Sinha [17] presented a set of difficult test problems by using an extended version of their early proposed test
problem construction procedure, and proposed a hybrid evolutionary multiobjective bilevel programming algorithm
with local search, which was an interactive algorithm using NSGA-II at both levels respectively. Nishizaki and Sakawa
[35] have studied the linear BLMOP with multiple objectives at both levels. In the solution algorithm, a reference
point scalarizing program was solved interactively, and the reference point was updated via asking the leader. After a
reference point was provided to the upper level objectives, the optimistic (pessimistic) anticipation approach supposed
that the follower returned the Pareto optimal solution of the lower level problem such that the best (worst) fitted the
reference point of the leader. Eichfelder [21] addressed the nonlinear BLMOP with upper level constraints separate
from the lower level variables. A refinement-based approach was proposed for BLMOPs with double objectives at
each level and one upper level variable, in which an exhaustive search was used to the upper level optimization.
Zhang et al. [53] proposed a hybrid particle swarm optimization with crossover operator (C-PSO), and then used an
interactive co-evolutionary procedure to solve BLMOP, in which multiobjective optimization tasks in the upper level
and the lower level were pursued interactively by adopting C-PSO algorithm. A set of Pareto optimal solutions in
each iteration was got using the elite strategy in NSGA-II [14]. Gupta and Ong [23] proposed an adaptively scalarized
bilevel MOEA (AS-BMOEA) to solve BLMOPs with multiple objectives at both levels. Subsequently, a surrogate-
assistance technique was incorporated into the AS-BMOEA to lower the computational cost.

Generally, there are three methodologies for solving the BLMOPs with multiple objectives at both levels. The first
route is to keep two-level multiobjective optimization formation and then evolve both upper and lower level MOPs
simultaneously through interactive approach. For example, this route was used in [16][17][53]. The second route is to
convert the lower level MOP into a single objective optimization problem by adopting scalarization technique, yet keep
two-level structure, then use multiobjective evolutionary algorithms (MOEAs) to solve the upper level multiobjective
formation, at the same time, use classical optimization methods or evolutionary algorithms to solve interactively the
lower level single objective optimization for a given upper level variable. For example, this route was used in [23]. The
third route is to transform the two-level MOP into a single-level multiobjective optimization formation by adopting

2



scalarization technique and optimality conditions to lower level MOP under some satisfactory conditions, and then
use MOEAs to solve the single-level multiobjective formation. Among three methodologies, the first two routes are
computationally expensive, because the original problem keeps two-level structure in considering solution algorithm,
but the lower level programming is not required special properties. In the third route the lower level programming
needs to satisfy certain optimal conditions such that it can be transformed into single level optimization problem.
Thus the computational efficiency can be improved by reducing the complexity of original problem. In this paper, we
consider the lower level programming has special features such as convexity and differentiability, so the third route is
adopted in our approach.

No matter which methodology is used in solving BLMOP, one has to solve a MOP ultimately. MOEAs are effective
heuristic tools to cope with MOPs, which are able to find a set of approximate Pareto optimal solutions in a single run.
Many different MOEAs have been proposed and successfully applied to MOPs [7][10][14][26][28][34][38][40][41][42]
[43][51][52][54][55][56]. Among these MOEAs, NSGA-II [14] is a representative algorithm based on nondomina-
tion, and MOEA/D [51] is an algorithm based on decomposition. These two algorithms have been successfully applied
to a wide range of MOPs. In this paper, a constrained MOEA/D and NSGA-II are used to solve the single-level trans-
formation model, respectively.

Motivated by these considerations, a BLMOP with multiple objectives at both levels is considered in this paper,
which belongs to BLMOPs in the third category. A reformulation model is proposed for simplifying and solving
this BLMOP. MOEAs can be used to solve the reformulation model. Our approach also uses adaptive scalarization
technique to lower level MOP, which is similar to Gupta and Ong’s method [23], but different in the solution model
and strategy. Firstly, the weighted sum scalarization is used to transform the lower level MOP into a single-objective
optimization problem associated with an adaptive lower level weight vector. Secondly, by using the Karush-Kuhn-
Tucker (KKT) optimality conditions to the lower level single-objective optimization problem, the original bilevel
multiobjective formulation can be converted into a single level MOP with the complementarity constraints. Thirdly,
an existing smoothing technique is utilized to handle the complementarity constraints. Finally, a single level nonlinear
constrained MOP with the lower level weight vector is established. To solve the single level constrained MOP, a com-
bined coding strategy is designed, and then a constrained multiobjective differential evolution based on decomposition
(CMODE/D) according to the framework of MOEA/D in [51] is developed to find a set of Pareto optimal solutions. In
addition, NSGA-II [14] is also utilized to solve this constrained multiobjective optimization model. The main contri-
bution of this paper is that we present a reformulation model by transforming BLMOP into a single-level constrained
MOP, then use different MOEAs to solve the reformulation model. CMODE/D can reach a good approximation to the
entire Pareto front of all test cases.

The remainder of this paper is organized as follows. Some definitions and transformations of BLMOP with
multiple objectives at both levels are presented in Section 2. A constrained multiobjective differential evolution based
on decomposition (CMODE/D) and NSGA-II are provided for solving the transformed model in Sections 3 and 4,
respectively. Experimental studies are provided in Section 5. Section 6 presents the sensitivity of parameters in
CMODE/D. The conclusions are drawn in Section 7.

2. Definitions and reformulations of BLMOP

Problem (1) considered in the paper is a minimization problem with inequality constraints. The other formulations
can be easily transformed to the discussed problem. The following sets are associated with BLMOP.

The constraint region of problem (1) is defined as

Ω = {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0}.

The projection of Ω onto the leader’s decision space is denoted by

I = {x : ∃y, such that (x, y) ∈ Ω}.

Let Ψ(x) be a set of Pareto optimal solutions of the lower level MOP for every x ∈ I. Also, Ψ(x) is the follower’s
rational reaction set for x ∈ I. Denote the inducible region of BLMOP by

IR = {(x, y) : (x, y) ∈ Ω, y ∈ Ψ(x)}.
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The decision-making process of BLMOP can be described as follows. When the leader makes a decision, the
follower makes his rational response and reflect his result from a set of lower level Pareto optimal solutions to the
upper level. The leader must take account of multiple rational responses of the follower. Thus, the leader adjusts his
strategies repeatedly according to the set of rational responses of follower, until the upper level Pareto optimal set is
reached.

For reformulating problem (1) as a single level MOP, we assume that Fi(x, y) (i = 1, 2, · · · , k) and G(x, y) may
be discontinuous, nonconvex, even nondifferentiable, while f j(x, y)( j = 1, 2, · · · , l) and g(x, y) are differentiable and
convex in y for x fixed.

Problem (1) is transformed into the following formulation by using weighted sum scalarization to the lower level
optimization problem:

min
x

F(x, y) =
(
F1(x, y), F2(x, y), · · · , Fk(x, y)

)
s. t. G(x, y) ≤ 0

0 ≤ ω j ≤ 1, j = 1, 2, · · · , l,
l∑

j=1
ω j = 1

min
y
S(x, y, ω) =

l∑
j=1
ω j f j(x, y)

s. t. g(x, y) ≤ 0

(2)

where ω = (ω1, ω2, · · · , ωl) is a lower level weight vector. The lower level weight vector ω can be regarded as a
newly introduced variable, which controls and affects the lower level programming of problem (2). Actually, other
scalarization techniques, for example Tchebycheff approach can be also used to the lower level programming problem
if the differentiability and convexity of lower level programming problem are not considered. This transformation
idea has been used in [23].

Now, the lower level programming of problem (2) is not only affected by the upper level variable x, but also
affected by the lower level weight vector ω = (ω1, ω2, · · · , ωl). According to assumption, the function S(x, y, ω) is
also differentiable and convex in y for x andω fixed. For the sake of simplifying computation, problem (2) is converted
into the following single-level MOP with the complementarity constraints by using the KKT conditions to the lower
level optimization problem.

min
x,y,ω,γ

F (x, y, ω, γ) =
(
F1(x, y), F2(x, y), · · · , Fk(x, y)

)
s. t. G(x, y) ≤ 0

∇yL(x, y, ω, γ) = 0
γ⊤g(x, y) = 0
g(x, y) ≤ 0
γ ≥ 0

0 ≤ ω j ≤ 1, j = 1, 2, · · · , l,
l∑

j=1
ω j = 1

(3)

where L(x, y, ω, γ) is Lagrange function, γ ∈ Rq are Lagrange multipliers, i.e.

L(x, y, ω, γ) = S(x, y, ω) + γ⊤g(x, y). (4)

Therefore,
∇yL(x, y, ω, γ) = ∇yS(x, y, ω) + γ⊤∇yg(x, y)

=
l∑

j=1
ω j∇y f j(x, y) + γ⊤∇yg(x, y). (5)

In [22], there exists such smoothing function ϕµ(a, b) = a+b−
√

(a − b)2 + 4µ2, which has the following properties:

• ϕµ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = µ2 for every µ;

• For µ = 0, ϕµ(a, b) = 2min(a, b), while, for every µ , 0, ϕµ(a, b) is a C∞ function;

• For every (a, b), lim
µ→0
ϕµ(a, b) = 2min(a, b).
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In our previous work [31, 32], this smoothing function was used successfully to handle the complementarity
constraints. Now this smoothing function is applied to problem (3) for dealing with its complementarity constraints.
Consequently, problem (3) is approximated as follows.

min
x,y,ω,γ

F (x, y, ω, γ) =
(
F1(x, y), F2(x, y), · · · , Fk(x, y)

)
s. t. G(x, y) ≤ 0,

∇yL(x, y, ω, γ) = 0,
ϕµ(γi,−gi(x, y)) = 0, i = 1, 2, · · · , q,

0 ≤ ω j ≤ 1,
l∑

j=1
ω j = 1, j = 1, 2, · · · , l

(6)

where
γ = (γ1, γ2, · · · , γq)⊤,

g(x, y) =
(
g1(x, y), g2(x, y), · · · , gq(x, y)

)⊤
,

and

ϕµ(γi,−gi(x, y)) = γi − gi(x, y) −
√

(γi + gi(x, y))2 + 4µ2. (7)

The pre-set parameter µ ∈ R is a small positive real number.
Problem (6) is equal to the following problem formation:

min
x,y,ω,γ

F (x, y, ω, γ) =
(
F1(x, y), F2(x, y), · · · , Fk(x, y)

)
s. t. G(x, y) ≤ 0,

∇yL(x, y, ω, γ) = 0,
ϕµ(γi,−gi(x, y)) = 0, i = 1, 2, · · · , q,
0 ≤ ω j ≤ 1, j = 1, 2, · · · , l − 1,

0 ≤ 1 −
l−1∑
j=1
ω j ≤ 1

(8)

Let ξ = (x, ω1, ω2, · · · , ωl−1) ∈ Rn+l−1, χ = (y, γ) ∈ Rm+q, and introduce the function H : Rn+m+q+l−1 → Rm+q,
defined as

H(ξ, χ) :=



∇yL(x, y, ω, γ)
ϕµ(γ1,−g1(x, y))
ϕµ(γ2,−g2(x, y))

...
ϕµ(γq,−gq(x, y))


, (9)

and let

G(ξ, χ) =



G(x, y)
−ω1
ω1 − 1
−ω2
ω2 − 1
...

−ωl−1
ωl−1 − 1

−
l−1∑
j=1
ω j

l−1∑
j=1
ω j − 1



∈ Rp+2l, (10)
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F1(ξ, χ) = F1(x, y),
F2(ξ, χ) = F2(x, y),

...
Fk(ξ, χ) = Fk(x, y).

(11)

Problem (8) is expressed more compactly as:

min
ξ,χ

F (ξ, χ) = (F1(ξ, χ),F2(ξ, χ), · · · ,Fk(ξ, χ))

s. t. G(ξ, χ) ≤ 0,
H(ξ, χ) = 0

(12)

The MOP (12) with equality and inequality constraints is difficult to solve directly, therefore the following inter-
active approach is implemented to simplify and solve constrained MOP (12).

For a given vector ξ = (x, ω1, ω2, · · · , ωl−1), where x ∈ I and ω j ∈ [0, 1] ( j = 1, 2, · · · , l − 1), a solution χ = (y, γ)
is first obtained by solving the following system of equations:

H(ξ, χ) = 0, (13)

and then optimize the following MOP only with inequality constraints on the variable ξ by using constrained MOEAs:

min
ξ
F (ξ, χ) = (F1(ξ, χ),F2(ξ, χ), · · · ,Fk(ξ, χ))

s. t. G(ξ, χ) ≤ 0
(14)

The advantages of the interactive approach are reflected in the following aspects. 1) The number of optimization
variables is reduced, because only variable ξ in problem (14) is needed to optimize, while χ is obtained by solving the
system of equations (13); 2) Equality constraints are not considered in problem (14). Thus, the efficiency of MOEAs
and quality of Pareto optimal solutions can be improved.

In recent decades, significant progress has been made in the development of MOEAs [7][10][14][26][28][34][38]
[40][41][42][43][51][52][54][55][56]. MOEAs aim at exploring a set of representative Pareto optimal solutions in
a single run. In this paper, two distinct evolutionary multiobjective frameworks are adopted to solve problem (14)
respectively, which are MOEA based on decomposition and MOEA based on nondomination. Their representative
algorithms are MOEA/D [51] and NSGA-II [14], respectively.

Some definitions relative to MOP are introduced [14, 51]. Let u and v be two objective vectors with dimension k,
u is said to dominate v if and only if ui ≤ vi for every i = 1, 2, · · · , k and u j < v j for at least one index j ∈ {1, 2, · · · , k}.
A solution ξ is called Pareto optimal if there is no other solution η such that the objective vector of η dominates the
objective vector of ξ. The set of all the Pareto optimal solutions is called the Pareto set (PS) and the set of all objective
vectors corresponding to the Pareto optimal solutions is called the Pareto front (PF) [51].

3. Constrained multiobjective differential evolution based on decomposition (CMODE/D) for problem (14)

MOEA/D [51] is a popular MOEA using decomposition, which simultaneously optimizes a number of single
objective optimization subproblems. Differential evolution (DE) is a relatively effective heuristic algorithm, which
has been found to be quite successful in a wide variety of optimization tasks [13][39]. DE operators taken as main
reproduction operator are used in MOEA/D to generate new solutions.

For constrained MOP (14), we use Tchebycheff approach for converting approximation of the Pareto front of
problem (14) into a number of single objective optimization problems [51].

A single objective optimization subproblem in Tchebycheff approach is provided as follows

min
ξ
T

(
(ξ, χ)|λ, z∗

)
= max

1≤i≤k

{
λi|Fi(ξ, χ) − z∗i |

}
s. t. G(ξ, χ) ≤ 0

(15)

where λ = (λ1, λ2, · · · , λk) is an upper level weight vector, i.e., 0 ≤ λi ≤ 1 for all i = 1, 2, · · · , k and
k∑

i=1
λi = 1.

z∗ = (z∗1, z
∗
2, · · · , z∗k) is the reference point, i.e., z∗i = min

{
Fi(ξ, χ) : G(ξ, χ) ≤ 0

}
for each i = 1, 2, · · · , k.

6



3.1. A combined coding strategy and initial population
For solving the optimization subproblem (15), an individual is composed of an upper level variable x = (x1, x2, · · · ,

xn) and the first l − 1 components (ω1, ω2, · · · , ωl−1) of a lower level weight vector ω = (ω1, ω2, · · · , ωl−1, 1 −
l−1∑
j=1
ω j).

That is to say, a vector ξ = (x1, x2, · · · , xn, ω1, · · · , ωl−1) is regarded as an individual, where xi ∈ [lbi, ubi], i =
1, 2, · · · , n, and ω j ∈ [0, 1], j = 1, 2, · · · , l − 1. For expressing simply, the individual is also denoted by ξ =
(ξ1, ξ2, · · · , ξn+l−1), where ξi ∈ [lbi, ubi], i = 1, 2, · · · , n, and ξi ∈ [0, 1], i = n + 1, n + 2, · · · , n + l − 1.

If the bounds of each xi (i = 1, 2, · · · , n) of upper level variable x are not given, the following method is used to
establish the bounds of upper level variable x, i.e., lbi ≤ xi ≤ ubi, i = 1, 2, · · · , n.

lbi = min{xi : xi ∈ Ii}, ubi = max{xi : xi ∈ Ii} (16)

where Ii is the projection of I onto the i-th coordinate axis, i.e. I = I1 × I2 × · · · × In.
Generate randomly N individuals to constitute an initial population ξ1, ξ2, · · · , ξN , where ξt = (ξt1, ξ

t
2, · · · , ξtn+l−1),

t = 1, 2, · · · ,N, such that ξti ∈ [lbi, ubi] (i = 1, 2, · · · , n) and ξti ∈ [0, 1] (i = n + 1, n + 2, · · · , n + l − 1). Herein, N is the
number of optimization subproblems, and also denotes population size.

3.2. Fitness function
For every individual ξt (t = 1, 2, · · · ,N) in the population, the solution χt = (yt, γt) is obtained by solving the

system of equations (13). After the lower level variable yt is determined, the fitness function f it(ξt, λ) related to upper
level weight vector λ is expressed as:

f it(ξt, λ) =
{
T

(
(ξt, χt)|λ, z∗

)
+ P(ξt, χt), if χt exists

+∞, otherwise
(17)

where P(ξt, χt) = Θ ·
( p+2l∑

i=1
max

{
0,Gi(ξt, χt)

})
, Gi(ξt, χt) is i-th component of the vector function G(ξt, χt), and Θ > 0

denotes a penalty parameter.

3.3. Reproduction operation
Calculate the Euclidean distances between any two upper level weight vectors (a total of N upper level weight

vectors) and then list the T closest upper level weight vectors to each upper level weight vector. For each t =
1, 2, · · · ,N, set B(t) = {t1, · · · , tT } where λt1 , · · · , λtT are the T closest upper level weight vectors to λt. Thus B(t)
contains the indexes of the T closest vectors of λt. If there exists an index i ∈ B(t), the i-th subproblem can be
regarded as a neighbor of the t-th subproblem.

Let r1, r2, r3 are mutually distinct indexes in B(t) not equal to t. An offspring individual ηt = (ηt
1, η

t
2, · · · , ηt

n+l−1) is
generated by the following DE operator:

ηt
i =

{
ξr1

i + S F · (ξr2
i − ξ

r3
i ), if Ri ≤ CR or i = rn(t)

ξti , otherwise (18)

where t = 1, 2, · · · ,N, Ri ∈ (0, 1) is a uniform random number, rn(t) ∈ {1, 2, · · · , n + l − 1} is the randomly selected
index chosen once for each t, S F ∈ (0, 1) denotes scaling factor, and CR ∈ (0, 1) is a real-valued crossover rate
constant.

A new individual ζ t = (ζ t
1, ζ

t
2, · · · , ζ t

n+l−1) is generated by the following Gaussian mutation operator:

ζ t
i =

{
ηt

i + σi · Ni(0, 1), if Ri ≤ pm

ηt
i, otherwise (19)

where t = 1, 2, · · · ,N, Ni(0, 1) is a random number drawn from the standard normal distribution, pm is a mutation

probability. If Ri < 0.5, σi =
ubi − lbi

δ
for i = 1, 2, · · · , n, and σi =

1
δ

for i = n + 1, n + 2, · · · , n + l − 1; otherwise,
σi = 1 for i = 1, 2, · · · , n + l − 1. Herein, δ=20.
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3.4. The CMODE/D algorithm based on the framework of MOEA/D in [51]
At each generation, the CMODE/D algorithm maintains the following:

• A population of N points ξ1, · · · , ξN , where ξt is the current solution to the t-th subproblem, t = 1, 2, · · · ,N;

• χ1, · · · , χN , where χt is the optimal solution by solving the system of equations (13) for every individual ξt,
t = 1, 2, · · · ,N.

• FV1, · · · , FVN , where FV t is the objective vector value of (ξt, χt), i.e., FV t =
(
F1(ξt, χt) + P(ξt, χt),F2(ξt, χt) +

P(ξt, χt), · · · ,Fk(ξt, χt) + P(ξt, χt)
)

for each i = 1, · · · ,N;

• z = (z1, z2, · · · , zk), where z j is the best value found so far for function F j(ξt, χt) + P(ξt, χt), j = 1, · · · , k.

Now we provide the constrained multiobjective differential evolution based on decomposition (CMODE/D) as
follows.

Input:

• Problem(14);

• N: the number of the subproblems;

• λ1, · · · , λN : a set of N upper level weight vectors;

• T : the number of the upper level weight vectors in the neighborhood of each upper level weight vector;

• µ: a small positive parameter in the smoothing function (7);

• S F: a scaling factor in reproduction operator;

• CR: a real-valued crossover rate constant in reproduction operator;

• pm: a Gaussian mutation probability in reproduction operator;

• Θ: a penalty parameter in the fitness function;

• MaxG: maximum number of generations.

Output:

• Approximation to the PS:
{
(x1, y1), · · · , (xN , yN)

}
;

• Approximation to the PF:
{
F(x1, y1), · · · , F(xN , yN)

}
.

Step 1 Initialization

Step 1.1 Calculate the Euclidean distances between any two upper level weight vectors and then list the T closest
upper level weight vectors to each upper level weight vector. For each t = 1, · · · ,N, set B(t) = {t1, · · · , tT },
where λt1 , · · · , λtT are the T closest upper level weight vectors to λt.

Step 1.2 Randomly generate an initial population ξ1, · · ·, ξN . For every individual ξt, solve the system of equations
(13), and obtain the optimal solution χt. Set FV t =

(
F1(ξt, χt) + P(ξt, χt),F2(ξt, χt) + P(ξt, χt), · · · ,Fk(ξt, χt) +

P(ξt, χt)
)
.

Step 1.3 Initialize z = (z1, z2, · · · , zk) by setting z j = min
1≤t≤N

{
F j(ξt, χt) + P(ξt, χt)

}
.

Step 2 Weight vector adjustment
If the number of iterations is less than 0.9 × MaxG, then the set of initial weight vectors keeps unchanged.
Otherwise, adjust the set of weight vectors based on the obtained approximation to the PF.
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Step 3 Update
For t = 1, · · · ,N, do

Step 3.1 Reproduction: Randomly select three distinct indexes r1, r2, r3 from B(t) not equal to t, then generate
a solution ηt from ξr1 , ξr2 , ξr3 by a DE operator, and then perform the Gaussian mutation operator on ηt with
probability pm to produce a new solution ζ t.

Step 3.2 Repair: If an element of ζ t is out of the box boundary, its value is reset to be a randomly selected value
inside the boundary. For every repaired individual ζ t, solve the system of equations (13), and obtain the optimal
solution χt.

Step 3.3 Update of z: For each j = 1, 2, · · · , k, if z j > F j(ζ t, χt) + P(ζ t, χt), then set z j = F j(ζ t, χt) + P(ζ t, χt).

Step 3.4 Update of solutions: For each index j ∈ B(t), if f it(ζ t, λ j) ≤ f it(ξ j, λ j), then set ξ j = ζ t, FV j =
(
F1(ζ t, χt)+

P(ζ t, χt),F2(ζ t, χt) + P(ζ t, χt), · · · ,Fk(ζ t, χt) + P(ζ t, χt)
)
.

Step 4 Stopping criterion: If the stopping criterion is satisfied, then stop and output approximation to the PS and
PF. Otherwise, go to Step 2.

4. NSGA-II for problem (14)

NSGA-II developed by Deb et al. [14] is an excellent MOEA based on nondomination. Since it emerged, NSGA-
II has had very significant effect on applications of MOPs. In order to use NSGA-II to solve the MOP (14), same
penalty function method as CMODE/D is adopted to handle the constraints, so problem (14) is converted into the
following unconstrained MOP:

min
ξ
F (ξ, χ) =

(
F1(ξ, χ) + P(ξ, χ),F2(ξ, χ) + P(ξ, χ), · · · ,Fk(ξ, χ) + P(ξ, χ)

)
(20)

where P(ξ, χ) = Θ ·
( p+2l∑

i=1
max

{
0,Gi(ξ, χ)

})
, and Θ > 0 denotes a penalty parameter.

Same combined coding strategy in CMODE/D is used in NSGA-II, i.e. ξ = (x1, x2, · · · , xn, ω1, · · · , ωl−1) is re-
garded as an individual (a member of population), where xi ∈ [lbi, ubi], i = 1, 2, · · · , n, and ω j ∈ [0, 1], j =
1, 2, · · · , l − 1. For each ξ in the population, a solution χ is obtained by solving system of equation (13). Since
the χ is determined by ξ, NSGA-II only evolves the variable ξ.

Now we adopt NSGA-II to solve problem (14) as follows.
Input:

• Problem(20);

• N: population size;

• ηc: a distribution index for the simulated binary crossover operator;

• ηm: a distribution index for polynomial mutation operator;

• µ: a small positive parameter in the smoothing function (7);

• pc: a crossover probability;

• pm = 1/(n + l − 1): a mutation probability (where n + l − 1 is the dimension of variable ξ);

• Θ: a penalty parameter in the fitness function;

• MaxG: maximum number of generations.

Output:
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• Approximation to the PS: {(x1, y1), · · · , (xN , yN)};

• Approximation to the PF: {F(x1, y1), · · · , F(xN , yN)}.

Step 1 Initialization
Set K = 0. Randomly generate an initial population PK = {ξ1K , · · · , ξN

K }. For every population member ξtK , solve
the system of equations (13), and obtain the optimal solution χt

K (t = 1, 2, · · · ,N).

Step 2 Genetic operation
Generate offspring population denoted by QK = {ξ

1
K , · · · , ξ

N
K} by using genetic operation (binary tournament

selection based on the crowded-comparison operator, simulated binary crossover, and polynomial mutation) to
parent population PK . For every population member ξ

t
K , solve the system of equations (13), and obtain the

optimal solution χt
K (t = 1, 2, · · · ,N).

Step 3 Population combination
Combine parent and offspring population, and obtain a big population with 2N members denoted by RK , i.e.
RK = PK ∪ QK .

Step 4 Nondominated sorting and selection
Sort the big population RK according to nondomination, at the same time, select N best solutions in terms of the
rank of nondominated set and crowded distance of each solution to form the next population PK+1 of size N.

Step 5 Stopping criterion
If the stopping criterion is satisfied, then stop and output the approximation to PS and PF. Otherwise, let K =
K + 1, go to Step 2.

5. Experimental studies

5.1. Test instances and parameter settings

To evaluate the performances of CMODE/D and NSGA-II, we test eleven BLMOPs, where the first six examples
are selected from the literature, and the others are the constructed instances with adjustable dimensions (K = 10 and
K = 20 were used in the paper). The size of each instance is denoted by n − p −m − q, where n and m are the number
of variables at the upper level and at the lower level respectively, p and q are the number of constraints at the upper
level and at the lower level respectively. These instances are shown as follows.
Problem 1 [25]

min
x,y

F(x, y) =
(
− x − y, x2 + (y − 10)2

)
s. t. 0 ≤ x ≤ 15
min

y
f (x, y) =

(
y2, y(x − 30)

)
s. t. y − x ≤ 0, 0 ≤ y ≤ 15

Problem 2 [16]
min
x,y

F(x, y) =
(
y1 − x, y2

)
s. t. 1 + y1 + y2 ≥ 0, 0 ≤ x ≤ 1
min

y
f (x, y) =

(
y1, y2

)
s. t. y2

1 + y2
2 ≤ x2, −1 ≤ y1, y2 ≤ 1

Problem 3 [16]
min
x,y

F(x, y) =
(
(y1 − 1)2 + y2

2 + x2, (y1 − 1)2 + y2
2 + (x − 1)2

)
min

y
f (x, y) =

(
y2

1 + y2
2, (y1 − x)2 + y2

2

)
s. t. −1 ≤ x, y1, y2 ≤ 2
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Problem 4 [21]
min
x,y

F(x, y) =
(
F1(x, y), F2(x, y)

)
s. t. 0 ≤ x ≤ 10
min

y
f (x, y) =

(
f1(x, y), f2(x, y)

)
s. t. y2 − y2

1 ≥ 0, 10 − 5y2
1 − y2 ≥ 0,

5 − x
6
− y2 ≥ 0, 0 ≤ y1, y2 ≤ 10

where
F1(x, y) = y1 + y2

2 + x + sin2(y1 + x),

F2(x, y) = cos(y2)(0.1 + x)(exp(− y1

0.1 + y2
)),

f1(x, y) =
(y1 − 2)2 + (y2 − 1)2

4
+

y2x + (5 − x)2

16
+ sin

y2

10
,

f2(x, y) =
y2

1 + (y2 − 6)4 − 2y1x − (5 − x)2

80
Problem 5 [16]

min
x,y

F(x, y) =
(
F1(x, y), F2(x, y)

)
s. t. −1 ≤ x ≤ 2

min
y

f (x, y) =
(
y2

1 +
13∑
i=1

y2
i+1, (y1 − x)2 +

13∑
i=1

y2
i+1

)
s. t. −1 ≤ yi ≤ 2, i = 1, 2, · · · , 14

where

F1(x, y) = (y1 − 1)2 +

13∑
i=1

y2
i+1 + x2,

F2(x, y) = (y1 − 1)2 +

13∑
i=1

y2
i+1 + (x − 1)2

Problem 6 [17]
min
x,y

F(x, y) =
(
F1(x, y), F2(x, y)

)
s. t. 0.001 ≤ x1 ≤ K,−K ≤ xi ≤ K, i = 2, · · · ,K

min
y

f (x, y) =
(
y2

1 +
K∑

i=2
(xi − yi)2,

K∑
i=1

i(xi − yi)2
)

s. t. −K ≤ yi ≤ K, i = 1, 2, · · · ,K
where

F1(x, y) = v1 +
K∑

i=1
[x2

i + 10 ∗ (1 − cos( πK )xi)] +
K∑

i=2
(xi − yi)2 − r cos(γ π2

y1
x1

),

F2(x, y) = v2 +
K∑

i=1
[x2

i + 10 ∗ (1 − cos( πK )xi)] +
K∑

i=2
(xi − yi)2 − r sin(γ π2

y1
x1

)

If 0 ≤ x1 ≤ 1,
v1 = cos(0.2π)x1 + sin(0.2π)

√
|0.02 sin(5πx1)|,

v2 = − sin(0.2π)x1 + cos(0.2π)
√
|0.02 sin(5πx1)|,

If x1 > 1
v1 = x1 − (1 − cos(0.2π)),

v2 = 0.1(x1 − 1) − sin(0.2π)
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Here, γ = 4, r = 0.25. Case (a): K = 10, and case (b): K = 20.
Problem 7

min
x,y

F(x, y) =
(

K∑
i=1

(yi − 2)2 +
K∑

i=1
x2

i ,
K∑

i=1
y2

i +
K∑

i=1
(xi − 2)2

)
s. t. −2 ≤ xi ≤ 2, i = 1, 2, · · · ,K

min
y

f (x, y) =
(
−

K∑
i=1

y2
i ,

K∑
i=1

(yi − xi)2
)

s. t. −2 ≤ yi ≤ 2, i = 1, 2, · · · ,K
Here, case (a): K = 10, and case (b): K = 20.
Problem 8

min
x,y

F(x, y) =
(

K∑
i=1

cos(|yi − 5|) +
K∑

i=1
sin(|xi|),

K∑
i=1

sin(|yi|) +
K∑

i=1
cos(|xi − 5|)

)
s. t. −5 ≤ xi ≤ 5, i = 1, 2, · · · ,K

min
y

f (x, y) =
(

K∑
i=1

(xi + yi),
K∑

i=1
(xi − yi)2

)
s. t. −5 ≤ yi ≤ 5, i = 1, 2, · · · ,K

Here, case (a): K = 10, and case (b): K = 20.
Problem 9

min
x,y

F(x, y) =
(

K∑
i=1

(xi + yi),
K∑

i=1
(−xi + yi)

)
s. t. −1 ≤ xi ≤ 1, i = 1, 2, · · · ,K

min
y

f (x, y) =
(

K∑
i=1

(−1)iyi,
K∑

i=1
(−1)i+1yi

)
s. t. −xi + yi ≤ 1, i = 1, 2, · · · ,K

−1 ≤ yi ≤ 1, i = 1, 2, · · · ,K
Here, case (a): K = 10, and case (b): K = 20.
Problem 10

min
x,y

F(x, y) =
(

K∑
i=1

exp(− xi
1+|yi | ) +

K∑
i=1

sin( xi
1+|yi | ),

K∑
i=1

exp(− yi
1+|xi | ) +

K∑
i=1

sin( yi
1+|xi | )

)
s. t. −1 ≤ xi ≤ 1, i = 1, 2, · · · ,K

min
y

f (x, y) =
(

K∑
i=1

cos(|xi|yi) +
K∑

i=1
sin(xi − yi),

K∑
i=1

cos( yi
1+|xi | ) +

K∑
i=1

sin(xi + yi)
)

s. t. xi + yi ≤ 1, i = 1, 2, · · · ,K
−1 ≤ yi ≤ 1, i = 1, 2, · · · ,K

Here, case (a): K = 10, and case (b): K = 20.
Problem 11

min
x,y

F(x, y) =
( K∑

i=1
cos(xi)

max(1,
K∑

i=1
cos(yi))

,

K∑
i=1

cos(yi)

max(1,
K∑

i=1
cos(xi))

)
s. t. x2

i + y2
i ≤ 1, i = 1, 2, · · · ,K

−1 ≤ xi ≤ 1, i = 1, 2, · · · ,K

min
y

f (x, y) =
(

K∑
i=1

(−1)i sin(xi)yi,
K∑

i=1
(−1)i+1 yi

cos(xi)

)
s. t. xi + yi ≤ 1, i = 1, 2, · · · ,K

−1 ≤ yi ≤ 1, i = 1, 2, · · · ,K
Here, case (a): K = 10, and case (b): K = 20.

All experiments were performed on a Lenovo-PC with Intel Core i5-4200U CPU 1.60GHz processor and 8.00GB
of RAM in MATLAB software. For solving the system of nonlinear equations (13), we directly adopted the function
‘fsolve’ in MATLAB optimization toolbox. In our experiments, each algorithm was run ten times independently for
each test instance. The parameter settings in CMODE/D were listed as follows:
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• Population size, or the number of the subproblems: N = 150;

• The number of the upper level weight vectors in the neighborhood of each upper level weight vector: T = 20;

• A small positive parameter in the smoothing function (7): µ = 0.0001;

• Scaling factor: S F = 0.5;

• Crossover rate: CR = 0.6;

• Gaussian mutation probability: pm = 0.6;

• Penalty factor: Θ = 10000;

• Maximum number of generations: MaxG = 300.

The upper level weight vectors λ1, λ2, · · · , λN are controlled by a parameter H, where H = N − 1, and each

individual weight takes a value from
{

0
H
,

1
H
, · · · , H

H

}
. The distribution of solutions in objective space cannot be

determined only by the Euclidean distance of weights in the weight vector space. To get diversity and uniform
distribution of solutions in objective space, it is necessary to adjust the weight vector in the last stage of evolution.
Based on the Euclidean distance of the solutions in objective space, we can calculate a set of the amended weight
vectors. In the first stage, a set of common weight vectors is used to make the solutions approach to approximate PF.
In the last stage, a set of modified weight vectors is adopted to improve the uniform distribution of the solution in
objective space. The procedure of weight vectors adjustment can be found in [32].

Some parameters used in NSGA-II were same as those in CMODE/D, and the other control parameters suggested
in [14] were adopted. All parameters in NSGA-II were listed as follows:

• Population size: N = 150;

• A distribution index for the simulated binary crossover operator: ηc = 20;

• A distribution index for polynomial mutation operator: ηm = 20;

• A small positive parameter in the smoothing function (7): µ = 0.0001;

• Crossover probability: pc = 0.9;

• Mutation probability: pm = 0.1;

• Penalty parameter in the fitness function: Θ = 10000;

• Maximum number of generations: MaxG = 300.

5.2. Performance metrics

The following two performance metrics are used to assess the advantages of NSGA-II and CMODE/D.

• C-metric (Coverage measure)[55]: Let A and B be two approximations to the Pareto front (PF) of a MOP,
C(A, B) is defined as the percentage of the solutions in B that are dominated by at least one solution in A, i.e.,

C(A, B) =
|u ∈ B|∃v ∈ A : v dominates u|

|B|

where |B| denotes the number of the elements in the set B. C(A, B) = 1 means that all solutions in B are
dominated by some solutions in A, while C(A, B) = 0 implies that no solution in B is dominated by a solution
in A. Generally, C(A, B) , 1 −C(B, A). If C(A, B) > C(B, A), the PF of A is better than that of B.
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Table 1: The average CPU time (in seconds) used by NSGA-II and CMODE/D.

Problem Size NSGA-II CMODE/D

1 1-2-1-3 319.8721 300.2156
2 1-3-2-5 463.2557 506.9602
3 1-2-2-4 250.2315 206.2603
4 1-2-2-7 615.2630 594.6173
5 1-2-14-28 470.9989 554.5790

6(a) 10-20-10-20 580.1767 453.1113
6(b) 20-40-20-40 2719.0337 1191.8846
7(a) 10-20-10-20 603.0251 582.2160
7(b) 20-40-20-40 3431.7187 2127.6222
8(a) 10-20-10-20 1673.2973 1153.4263
8(b) 20-40-20-40 10131.0917 3467.5431
9(a) 10-20-10-30 2129.9674 2093.1028
9(b) 20-40-20-60 16724.0692 14302.3433
10(a) 10-20-10-30 3720.2693 1369.4874
10(b) 20-40-20-60 33378.1960 15093.2247
11(a) 10-30-10-30 2115.0768 1971.7143
11(b) 20-60-20-60 26453.3754 14182.6722

Table 2: The average C-metric values of the Pareto solutions between NSGA-II (A) and CMODE/D (B). The numbers in parentheses represent the
standard deviation.

Problem Size C(A, B) C(B, A)

1 1-2-1-3 6.60e-4 (2.10e-3) 5.30e-3 (6.90e-3)
2 1-3-2-5 1.26e-2 (6.60e-3) 3.15e-1 (4.38e-2)
3 1-2-2-4 1.85e-2 (6.91e-3) 2.73e-2 (1.24e-2)
4 1-2-2-7 2.25e-2 (1.09e-2) 1.29e-1 (3.19e-2)
5 1-2-14-28 1.12e-2 (7.02e-3) 3.40e-2 (7.31e-3)

6(a) 10-20-10-20 0 (0) 1 (0)
6(b) 20-40-20-40 0 (0) 1 (0)
7(a) 10-20-10-20 8.14e-2 (4.43e-2) 5.03e-1 (9.50e-2)
7(b) 20-40-20-40 2.35e-2 (2.38e-2) 7.84e-1 (7.47e-2)
8(a) 10-20-10-20 2.21e-1 (3.84e-1) 6.95e-1 (4.31e-1)
8(b) 20-40-20-40 6.62e-2 (2.09e-1) 8.63e-1 (3.24e-1)
9(a) 10-20-10-30 3.58e-2 (3.90e-2) 2.51e-1 (1.65e-1)
9(b) 20-40-20-60 1.32e-3 (2.79e-3) 9.47e-1 (4.39e-2)
10(a) 10-20-10-30 4.30e-2 (2.05e-2) 6.43e-1 (4.45e-2)
10(b) 20-40-20-60 3.97e-3 (8.38e-3) 8.82e-1 (1.81e-2)
11(a) 10-30-10-30 8.61e-3 (1.43e-2) 7.00e-1 (4.83e-1)
11(b) 20-60-20-60 0 (0) 1 (0)
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Figure 1: Graphical representation of the average CPU time used by NSGA-II and CMODE/D for problems 1-11.
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Figure 2: Graphical representation of the average C-metric values between NSGA-II and CMODE/D for problems 1-11.
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Figure 3: Graphical representation of the average S -metric values obtained by NSGA-II and CMODE/D for problems 1-11.
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Table 3: The average S -metric values of the Pareto solutions obtained by NSGA-II and CMODE/D for each instance. The numbers in parentheses
represent the standard deviation.

Problem Size NSGA-II CMODE/D

1 1-2-1-3 9.56e-1 (6.75e-2) 2.15e-1 (1.60e-2)
2 1-3-2-5 6.96e-2 (1.06e-4) 3.40e-3 (1.73e-4)
3 1-2-2-4 4.20e-3 (3.41e-4) 1.32e-3 (9.94e-5)
4 1-2-2-7 3.47e+0 (7.17e-1) 3.89e-2 (3.52e-3)
5 1-2-14-28 8.90e-3 (2.27e-4) 1.31e-3 (8.76e-5)

6(a) 10-20-10-20 5.67e-2 (2.99e-2) 3.66e-3 (1.52e-3)
6(b) 20-40-20-40 4.40e-1 (9.48e-2) 3.88e-3 (8.86e-3)
7(a) 10-20-10-20 1.76e+0 (5.26e-1) 2.07e+0 (7.95e-2)
7(b) 20-40-20-40 4.13e+0 (2.60e-1) 4.41e+0 (4.12e-1)
8(a) 10-20-10-20 1.60e-1 (1.21e-1) 3.68e-2 (1.09e-2)
8(b) 20-40-20-40 1.80e-1 (1.16e-1) 1.31e-1 (6.79e-1)
9(a) 10-20-10-30 2.92e-1 (5.82e-2) 3.61e-1 (1.91e-2)
9(b) 20-40-20-60 3.71e-1 (1.09e-1) 4.41e-1 (6.49e-2)
10(a) 10-20-10-30 1.51e-2 (1.81e-3) 1.04e-2 (3.72e-3)
10(b) 20-40-20-60 8.33e-2 (5.10e-3) 5.08e-2 (2.29e-2)
11(a) 10-30-10-30 3.45e-3 (5.22e-4) 2.20e-3 (1.51e-3)
11(b) 20-60-20-60 4.10e-3 (1.86e-4) 2.51e-3 (9.97e-4)

• S -metric [37]: This metric is used to calculate the uniformity in the distribution. For the most uniformly
spreadout set of Pareto optimal solutions, the value of S would be zero. Thus a smaller S indicator value is
preferable.

S (A) =

√√√
1

|A| − 1

|A|−1∑
i=1

(di − d̄)2

where di = min
j,i

{ k∑
l=1
|Fl(xi, yi) − Fl(x j, y j)|

}
, i, j = 1, 2, · · · , |A| − 1. d̄ is the average of all distances di, i =

1, 2, · · · , |A| − 1, assuming that there are |A| solutions on the best Pareto front.

5.3. Experimental results of CMODE/D and NSGA-II

In order to roughly evaluate the efficiency of NSGA-II and CMODE/D, Table 1 presents the average CPU time
(in seconds) used by two algorithms for each instance. Moreover, Figure 1 shows the graphical representation of the
average CPU time used by NSGA-II and CMODE/D for instances 1-11.

For measuring the convergence of the final solutions obtained by NSGA-II and CMODE/D, Table 2 shows the
mean and standard deviation of the C-metric values between two algorithms for each instance. At the same time,
Figure 2 displays the graphical representation of the average C-metric values between NSGA-II and CMODE/D for
instances 1-11.

For assessing the distribution uniformity of the final Pareto front obtained by two algorithms, Table 3 provides
the mean and standard deviation of the S -metric values obtained by NSGA-II and CMODE/D for each instance.
Meanwhile, Figure 3 depicts the graphical representation of the average S -metric values obtained by NSGA-II and
CMODE/D for instances 1-11.

Figures 4-20 display the Pareto front achieved by CMODE/D and NSGA-II in the last generation of a typical run
for each instance, respectively.

With same population size and same number of evolutionary generations, it can be observed from Table 1 and
Figure 1 that both CMODE/D and NSGA-II need similar computational time for low dimensional instances 1-5, but
CMODE/D requires less runtime than NSGA-II for instances 6-11.
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(c) Comparison of two algorithms

Figure 4: The PF produced by NSGA-II and CMODE/D for problem 1.
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(c) Comparison of two algorithms

Figure 5: The PF produced by NSGA-II and CMODE/D for problem 2.
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Figure 6: The PF produced by NSGA-II and CMODE/D for problem 3.
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(c) Comparison of two algorithms

Figure 7: The PF produced by NSGA-II and CMODE/D for problem 4.
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Figure 8: The PF produced by NSGA-II and CMODE/D for problem 5.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

F
1

F
2

 

 
NSGA−II

(a) NSGA-II

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

F
1

F
2

 

 
CMODE/D

(b) CMODE/D

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

F
1

F
2

 

 
NSGA−II
CMODE/D

(c) Comparison of two algorithms

Figure 9: The PF produced by NSGA-II and CMODE/D for problem 6(a) (K = 10).
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(c) Comparison of two algorithms

Figure 10: The PF produced by NSGA-II and CMODE/D for problem 6(b) (K = 20).
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(c) Comparison of two algorithms

Figure 11: The PF produced by NSGA-II and CMODE/D for problem 7(a) (K = 10).
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(c) Comparison of two algorithms

Figure 12: The PF produced by NSGA-II and CMODE/D for problem 7(b) (K = 20).
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(c) Comparison of two algorithms

Figure 13: The PF produced by NSGA-II and CMODE/D for problem 8(a) (K = 10).

−35 −30 −25 −20
−40

−38

−36

−34

−32

−30

−28

−26

F
1

F
2

 

 
NSGA−II

(a) NSGA-II

−38 −36 −34 −32 −30 −28 −26 −24
−40

−38

−36

−34

−32

−30

−28

−26

F
1

F
2

 

 
CMODE/D

(b) CMODE/D

−38 −36 −34 −32 −30 −28 −26 −24 −22 −20
−40

−38

−36

−34

−32

−30

−28

−26

F
1

F
2

 

 
NSGA−II
CMODE/D

(c) Comparison of two algorithms

Figure 14: The PF produced by NSGA-II and CMODE/D for problem 8(b) (K = 20).

−15 −10 −5 0 5 10
−10

−5

0

5

F
1

F
2

 

 
NSGA−II

(a) NSGA-II

−15 −10 −5 0 5 10
−10

−5

0

5

F
1

F
2

 

 
CMODE/D

(b) CMODE/D

−15 −10 −5 0 5 10
−10

−5

0

5

F
1

F
2

 

 
NSGA−II
CMODE/D
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Figure 15: The PF produced by NSGA-II and CMODE/D for problem 9(a) (K = 10).
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(c) Comparison of two algorithms

Figure 16: The PF produced by NSGA-II and CMODE/D for problem 9(b) (K = 20).

10 10.5 11 11.5 12 12.5
10

10.5

11

11.5

12

12.5

F
1

F
2

 

 
NSGA−II

(a) NSGA-II

10 10.5 11 11.5 12 12.5
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

F
1

F
2

 

 
CMODE/D

(b) CMODE/D

10 10.5 11 11.5 12 12.5
10

10.5

11

11.5

12

12.5

F
1

F
2

 

 
NSGA−II
CMODE/D

(c) Comparison of two algorithms

Figure 17: The PF produced by NSGA-II and CMODE/D for problem 10(a) (K = 10).
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Figure 18: The PF produced by NSGA-II and CMODE/D for problem 10(b) (K = 20).
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Figure 19: The PF produced by NSGA-II and CMODE/D for problem 11(a) (K = 10).
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(c) Comparison of two algorithms

Figure 20: The PF produced by NSGA-II and CMODE/D for problem 11(b) (K = 20).
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Figure 21: The PS and PF produced by CMODE/D for problem 2.
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Figure 22: The PS and PF produced by CMODE/D for problem 4.

From Table 2 and Figure 2, it is evident that the final Pareto front obtained by CMODE/D is significantly better
than that gotten by NSGA-II for each test instance in terms of the average C-metric values. Especially, CMODE/D
performs much better than NSGA-II in the nondomination of final Pareto front for instances 6-11 with K = 10 and
K = 20.

Moreover, it is clear from Table 3 and Figure 3 that CMODE/D performs better than NSGA-II in the uniformity
of final Pareto front according to average S -metric values for instances 1-6, 8, 10, 11, except instances 7 and 9.

Figures 4-20 reveal that the final Pareto front approximations obtained by CMODE/D and NSGA-II are similar in
shape of the Pareto front except instance 6, but CMODE/D can achieve a better approximation to Pareto front than
NSGA-II for all instances, especially for instances 6-11 with K = 10 and K = 20. It notes that NSGA-II failed in
reaching the PFs for instances 6 and 8 with K = 10 and K = 20, instances 9 and 11 with K = 20.

In summary, both CMODE/D and NSGA-II are able to reach the satisfactory Pareto front for low dimensional
instances 1-5. With the increase of the size of BLMOP, CMODE/D has obvious difference with NSGA-II in terms of
runtime, convergence, and spread of distribution, but there is little difference between two algorithms in uniformity of
the distribution.

5.4. The follower’s response to Pareto optimal solutions

In BLMOP, the leader makes the first decision and is considered to have complete knowledge of the set of re-
sponses available to the follower. Moreover, the leader is aware that the follower observes all its decision. The
follower then makes a decision that maximizes its favourable returns in its PS, given the leader’s action. In order to
observe the follower’s response to Pareto optimal solutions produced by CMODE/D, Figures 21-22 display the PS,
PF of lower level and upper level MOPs for problem 2 and 4, respectively.

Figures 21-22 reveal visually the follower’s response to Pareto optimal solutions. For problem 2, CMODE/D can
find a satisfactory PS to make both upper level and lower level MOPs have nice convergence and diversity in objective
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Table 4: The results of performance metrics of NSGA-II (A) and NSGA-II-DEGM (D).

NSGA-II NSGA-II-DEGM
No. C(A,D) S C(D, A) S

1 1.46e-2 9.56e-1 1.31e-3 1.51e+0
2 3.24e-1 6.96e-2 1.12e-1 8.31e-3
3 1.87e-2 4.20e-3 8.01e-3 4.15e-3
4 1.32e-1 3.47e+0 9.47e-2 9.17e-2
5 5.33e-3 8.90e-3 8.01e-3 4.43e-3

Table 5: Comparison of the proposed strategy vs Gupta and Ong’s strategy.

CMODE/D AS-BMOEA SAAS-BMOEA
No. GD S P GD S P GD S P

2 8.35e-4 1.73e-1 3.90e-4 3.05e-1 4.82e-4 3.34e-1
3 4.06e-4 9.24e-2 2.25e-4 4.83e-1 2.13e-4 4.24e-1
5 4.05e-4 9.45e-2 2.29e-4 4.08e-1 2.37e-4 3.66e-1
6(a) 4.60e-3 1.83e-1 1.83e-4 3.45e-1 5.93e-4 9.65e-1

space. For problem 4, CMODE/D can obtain a PS to make upper level MOP have nice convergence and diversity in
objective space, but lower level MOP possesses some dominated solutions.

5.5. Comparison of NSGA-II and NSGA-II-DEGM

In order to investigate the effect of reproduction operator in Subsection 3.3 on NSGA-II, we replace the GA
operator in NSGA-II with DE operator and Gaussian mutation (GM) operator, called NSGA-II-DEGM. The same
parameters in DE and GM operators are used in NSGA-II-DEGM, and other parameters are same as NSGA-II.

Table 4 shows the values of C-metric and S-metric between NSGA-II (A) and NSGA-II-DEGM (D) for problems
1-5.

From Table 4, it can be seen that in the framework of NSGA-II, GA operator performs better than DE and GM
operators according to the average C-metric values for problems 1-4. But DE and GM operators obtain more uniform
Pareto solutions in objective space than GA operator for problems 2-5 in terms of S -metric values. Hence, DE and
GM operators are unsuitable for NSGA-II as a reproduction operator.

5.6. Comparison of the proposed strategy vs Gupta and Ong’s strategy

To verify the benefit of the proposed strategy, we compare it with an existing strategy in [23]. Based on the strategy
using an adaptive scalarization for BLMOP, Gupta and Ong [23] proposed two solution approach, an adaptively
scalarized bilevel MOEA (AS-BMOEA) and a surrogate-assisted AS-BMOEA (SAAS-BMOEA).

In [23], two performance metrics, i.e. generational distance (GD) and spacing (SP) [14] were adopted to evaluate
the performance of AS-BMOEA and SAAS-BMOEA. For comparison, we also use these two metrics to assess the
performance of CMODE/D. Comparison of the proposed strategy vs Gupta and Ong’s strategy are provided in Table
5.

From Table 5, AS-BMOEA and SAAS-BMOEA perform slightly better than CMODE/D in convergence, because
the order of magnitude about obtained GD-value is small. However, CMODE/D is better than AS-BMOEA and
SAAS-BMOEA in terms of the uniformity of the obtained solution distribution in the objective space. For problem
6(a)(K=10), contrary to a large population size of 400 and 600 evolutionary generations used in AS-BMOEA and
SAAS-BMOEA, CMODE/D uses a small population size of 150 and 300 evolutionary generations to achieve the
approximate PF.
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Figure 23: The Pareto fronts found by CMODE/D with N = 50 and N = 500 for problem 4.

6. Sensitivity of parameters in CMODE/D

Since we took the instance with the known PF as an analytic example in this section, we used the following
inverted generational distance (IGD)[56] to assess both the diversity and convergence of the obtained solutions.

IGD(P∗, P) =
∑

v∈P∗ d(v, P)
|P∗|

where P∗ is a set of uniformly distributed points in the objective space along the PF. P is an obtained approximation
to the PF. d(v, P) is the minimum Euclidean distance between v and the points in P. A smaller value of IGD(P∗, P) is
therefore naturally preferred. In the following experiments, we select |P∗| = 500 evenly distributed points in PF.

6.1. Impacts of N on CMODE/D
In CMODE/D, N is the number of optimization subproblem, and also denotes the number of a set of weight

vectors. A lager N value will leads to a more expensive computational cost, and a smaller N value will results in a
sparser distribution of Pareto optimal solutions. To verify our analysis, we took instance 4 as an example and chose
N = 50 and N = 500, i.e. a set of 50 or 500 weight vectors, and kept all the other parameters as the same as in Section
5.1.

Figure 23 plots the final solutions obtained in a single run for N = 50 and N = 500. It is evident that CMODE/D
found 50 evenly distributed Pareto solutions for N = 50, and 500 evenly distributed Pareto solutions for N = 500.
Clearly, the computational cost of CMODE/D with N = 500 is ten times as much as that of CMODE/D with N = 50. It
is also shown that CMODE/D can obtain a satisfactory Pareto front using a small population. Certainly, this advantage
of CMODE/D benefits from its decomposition strategy.

6.2. Impacts of T on CMODE/D
The neighborhood relationship among weight vectors is a characteristic of MOEA/D [51]. To investigate the

impact of the neighborhood size T on the performance of CMODE/D, we have tested different settings of T for
instance 4. All the parameter settings are the same as Section 5.1, except the settings of T , which are set to be 5, 10,
50, 100, and 150.

Figure 24 shows the mean IGD-metric values in CMODE/D with different settings of T . It is evident that
CMODE/D performs well with the setting of T = 20. However, when T is small (T = 5) or large (T = 150),
the mean IGD-metric values have no significant difference.

6.3. Impacts of S F and CR on CMODE/D
Scaling factor S F and crossover rate CR are two control parameters in the DE operator for generating new solu-

tions. To investigate the sensitivity of S F and CR in CMODE/D respectively, we have tested S F = 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0 with CR = 0.6, and CR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 with S F = 0.5 on instance 4.
All the parameter settings are the same as Section 5.1, except the settings of S F or CR.

Figure 25 shows the average IGD-metric values found by CMODE/D with different combinations (S F,CR) for
instance 4. It is obvious that CMODE/D is less sensitive to the settings of S F and CR.
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Figure 24: The average IGD-metric value found by CMODE/D with T = 5, 10, 20, 50, 100, 150 for problem 4.
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Figure 25: The average IGD-metric value found by CMODE/D with different combinations (S F,CR) for problem 4.

6.4. Impacts of Θ on CMOEA/D

Penalty factorΘ is a key parameter in the penalty function method. In comparison withΘ = 10000 used in Section
5.1, we have tested Θ = 100, 1000, 100000, 1000000 on instance 2. The other algorithmic parameters are the same as
Section 5.1.

Figure 26 plots the average IGD-metric values found by CMODE/D with different penalty factors Θ for instance
2. It is clear that CMODE/D performs well with the setting of Θ = 10000. However, there is no significant difference
in the magnitude of IGD-metric from Θ = 100 to Θ = 1000000.

6.5. Impacts of other parameters on CMOEA/D

In CMODE/D, except aforementioned key parameters, there exist other parameters, i.e. control parameter µ in the
smooth function (7), Gaussian mutation probability pm and control parameter δ of coefficient σi in Gaussian mutation
(19). To investigate the effect of these parameters on CMODE/D, we do some experiments on only one parameter
each time without tuning other parameters using IGD-metric for problem 4. Table 6 provides IGD-metric values of
these parameters for problem4.

Table 6: Impacts of other parameters on CMOEA/D.

pm µ δ
0.6 0.9 0.01 0.001 0.0001 0.00001 5 10 20 30 50

IGD 3.60e-2 3.67e-2 3.59e-2 3.58e-2 3.60e-2 3.62e-2 3.65e-2 3.63e-2 3.60e-2 3.64e-2 3.61e-2
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Figure 26: The average IGD-metric value found by CMODE/D with different penalty factors Θ for problem 2.

From Table 6, it is clear that CMODE/D is less sensitive to these parameters, because IGD-metric values are close
to 3.60e-2.

7. Conclusion

This paper presents a transformation model for BLMOP with multiple objective functions at both levels. The final
transformation model can be easily dealt with by existing MOEAs as long as minor modifications are made for them.

The lower level MOP is transformed into a single objective optimization by adaptive weighted sum scalarization.
By using KKT optimality conditions to the lower level single objective optimization problem, the original BLMOP is
then converted into a single level MOP with the complementarity constraints. After the smoothing technique is applied
to deal with the complementarity constraints, a single-level nonlinear constrained MOP with the lower level weight
vector is obtained. To solve this constrained MOP, a combined coding strategy comprised of the upper level variable
and the lower level weight vector is adopted such that the upper level decision variable and the lower level weight
vector evolve in their own decision space simultaneously, and then two multiobjective evolutionary frameworks are
provided.

A constrained multiobjective differential evolution algorithm based on decomposition (CMODE/D) and NSGA-II
are utilized to solve this transformation model. Although both CMODE/D and NSGA-II are different algorithmic
frameworks, the numerical results show that two algorithms can effectively locate the Pareto optimal solutions for
low dimensional instances, and each of two algorithms has own advantages, but CMODE/D performed better than
NSGA-II.

The solution approach only for BLMOP with multiple objectives at both levels is proposed, yet the method for the
problems in the third category can be modified to solve the BLMOPs in other two categories.

In the future, we will further study the general BLMOP, in which the lower level programming problem has poor
properties, such as the nondifferentiability and nonconvexity.
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