
Wind Energ. Sci., 6, 1379–1400, 2021
https://doi.org/10.5194/wes-6-1379-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Satellite-based estimation of roughness lengths and
displacement heights for wind resource modelling

Rogier Floors1, Merete Badger1, Ib Troen1, Kenneth Grogan2, and Finn-Hendrik Permien3

1DTU Wind Energy, Risø Campus, Technical University of Denmark,
Frederiksborgvej 399, 4000 Roskilde, Denmark

2DHI GRAS A/S, Agern Alle 5, 2970 Hørsholm, Denmark
3Siemens Gamesa Renewable Energy A/S, Borupvej 16, 7330 Brande, Denmark

Correspondence: Rogier Floors (rofl@dtu.dk)

Received: 30 March 2021 – Discussion started: 6 April 2021
Revised: 10 September 2021 – Accepted: 30 September 2021 – Published: 4 November 2021

Abstract. Wind turbines in northern Europe are frequently placed in forests, which sets new wind resource
modelling requirements. Accurate mapping of the land surface can be challenging at forested sites due to sudden
transitions between patches with very different aerodynamic properties, e.g. tall trees, clearings, and lakes. Tree
growth and deforestation can lead to temporal changes of the forest. Global or pan-European land cover data sets
fail to resolve these forest properties, aerial lidar campaigns are costly and infrequent, and manual digitization is
labour-intensive and subjective. Here, we investigate the potential of using satellite observations to characterize
the land surface in connection with wind energy flow modelling using the Wind Atlas Analysis and Application
Program (WAsP). Collocated maps of the land cover, tree height, and leaf area index (LAI) are generated based
on observations from the Sentinel-1 and Sentinel-2 missions combined with the Ice, Cloud, and Land Elevation
Satellite-2 (ICESat-2). Three different forest canopy models are applied to convert these maps to roughness
lengths and displacement heights. We introduce new functionalities for WAsP, which can process detailed land
cover maps containing both roughness lengths and displacement heights. Validation is carried out through cross-
prediction analyses at eight well-instrumented sites in various landscapes where measurements at one mast are
used to predict wind resources at another nearby mast. The use of novel satellite-based input maps in combination
with a canopy model leads to lower cross-prediction errors of the wind power density (rms= 10.9 %–11.2 %)
than using standard global or pan-European land cover data sets for land surface parameterization (rms= 14.2 %–
19.7 %). Differences in the cross-predictions resulting from the three different canopy models are minor. The
satellite-based maps show cross-prediction errors close to those obtained from aerial lidar scans and manually
digitized maps. The results demonstrate the value of using detailed satellite-based land cover maps for micro-
scale flow modelling.

1 Introduction

Wind turbines on land represent a cost-competitive source
of renewable energy (Global Wind Energy Council, 2019).
More than 95 % of the global installed wind energy capac-
ity of ≈ 733 GW in 2020 is installed on land (https://www.
irena.org/wind, last access: 21 April 2021). In northern Eu-
rope’s temperate climates, a vast amount of the land surface
is covered by forest. The exploitation of wind power within

such forests has become more widespread as the hub height
of modern wind turbines has exceeded the forest height
(Enevoldsen, 2016).

Wind resource assessment is typically performed with lin-
earized modelling in a wind farm siting tool (e.g. WAsP or
WindPRO), which contains several submodels to predict the
flow based on an input wind histogram (Troen and Petersen,
1989). Based on Monin–Obukhov similarity theory (Eq. 1),
the flow model can be used to predict the wind speed, U , for
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any height, z, above the ground:

U =
u∗

κ

[
ln
z− d

z0
−9m

]
, (1)

where u∗ is the friction velocity, κ is the von Kármán con-
stant (= 0.4), z0 is the aerodynamic roughness length, and
9m represents the stability correction to the profile and
depends on z/L, where L is the Monin–Obukhov length
(Businger et al., 1971). In addition to z0, the zero-plane dis-
placement height, d , is traditionally used at forested sites to
account for the canopy, forcing the mean flow to be displaced
upwards over forests (Thom, 1971). A dense forest appears
more smooth (i.e. a lower z0) and has a larger d than a sparse
forest with clearings (Shaw and Pereira, 1982).

Values of z0 and d can be assessed through visual inspec-
tion of the forest at a given site combined with digital maps.
In practice, a background value for z0 and d is set, and ad-
justments are made for specific areas where the roughness
and displacement height differ from the background values.
Manual assessments are subjective and time-consuming, and
they can lead to a high level of uncertainty of the estimated
wind resource (Kelly and Jørgensen, 2017).

Fully automated assessments of z0 and d can be achieved
based on global or regional land cover data sets derived from
satellite observations. Each land cover class is assigned a
value of z0 and d via a land cover table (Jancewicz and
Szymanowski, 2017; Floors et al., 2018). State-of-the-art
flow modelling tools offer embedded access to such land
cover maps and to the associated roughness translation ta-
bles, which the user may modify. Due to the coarse spatial
resolution of global land cover data sets (grid spacing of 100–
1000 m), the finer-scale variability within a forest, such as
smaller clearings on the order of 10–100 m, is not resolved.
Further, the available land cover-to-roughness translation ta-
bles may not be fully representative for the site in ques-
tion due to the data sets’ global nature. For example, com-
monly used tables (see Appendix A) show very low rough-
ness lengths for forest classes, which might not be accurate
for areas with heterogeneously forested land cover (Floors
et al., 2018).

Enevoldsen (2017) and Floors et al. (2018) have demon-
strated that tree heights and forest densities retrieved from
aerial lidar scans can be used to parameterize z0 and d over
the forest. This approach is more physical than the ad hoc
assignment using land cover data sets. It sets new require-
ments to the flow modelling tools used for wind energy sit-
ing because (i) a canopy model is needed to estimate z0 and d
from the tree height and density, and (ii) the data processing
routines in the flow modelling tool need to be more efficient
due to the finer resolution of z0 and d that result from lidar-
derived canopy measurements. Several countries in northern
Europe have released national aerial lidar scans, and in addi-
tion, dedicated aerial lidar campaigns may be carried out to
obtain location-specific data sets for wind farm planning. Li-
dar campaigns are rare due to the high cost of the instrumen-

tation and deployment and the time-intensive data processing
requirements. The temporal frequency of such observations
is therefore low.

A wealth of new satellite observations with unprece-
dented spectral properties and spatial and temporal resolu-
tions have become available, e.g. through Copernicus (https:
//www.copernicus.eu, last access: 27 September 2021). For-
est monitoring is a key objective of several new missions
because information on deforestation and forest degradation
is important in connection with climate change mitigation.
However, key metrics for wind-resource assessment such as
the forestry canopy height are still missing or only available
at a low spatial resolution, but they can be derived through
post-processing of the data from available sensors. Here,
we hypothesize that such post-processed values of the forest
canopy height and density retrieved from satellites at a high
spatial resolution can also be used to estimate the wind re-
source for a site with the same accuracy as aerial lidar scans
but at a lower cost.

This paper uses tree heights and densities retrieved from
satellite observations to derive roughness lengths and dis-
placement heights that are then used to estimate the wind
energy resource available at forested sites. Based on wind
observations from meteorological masts at eight sites world-
wide, we evaluate the prediction errors on the wind power
density and the mean wind speed, and we compare them
with predictions based on global land cover maps, aerial lidar
scans, and manual digitization for the parameterization of z0
and d .

2 Background

2.1 Forest parameters from satellites

Firstly, a goal in this paper is to derive tree heights from satel-
lites. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-
2) carries the Advanced Topographic Laser Altimeter Sys-
tem (ATLAS), used to observe the land surface height with
great precision. Amongst many other parameters, the mission
delivers global forest canopy heights (Neuenschwander and
Pitts, 2019), which are well correlated with canopy heights
from aerial lidar scans (Li et al., 2020) and field measure-
ments (Huang et al., 2019). A mission with similar capa-
bilities to ICESat-2 is the Global Ecosystem Dynamics In-
vestigation (GEDI). However, GEDI only collects data up
to 52◦ north and south of the Equator and therefore does
not offer global coverage. Although representing a major
advancement in estimating 3D forest structure, these cur-
rent spaceborne laser observations are restricted to very nar-
row footprints, which are insufficient to map canopy heights
over larger areas. Recent studies have shown that the laser-
derived canopy heights can be extrapolated through differ-
ent combinations with other satellite observations and ma-
chine learning techniques (Csillik et al., 2020; Fagua et al.,
2019). Typically, the canopy heights from laser measure-
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ments are extrapolated using textural information from active
microwave sensors (e.g. Sentinel-1 or ALOS PALSAR) and
multispectral information from passive sensors (e.g. Landsat
or Sentinel-2) (Li et al., 2020).

Secondly, in connection with flow modelling for wind en-
ergy, the leaf area index (LAI) can be used as a proxy for
the forest density (Raupach, 1994). LAI is defined as the
one-sided green leaf area per unit ground area in broadleaf
canopies and as one-half the total needle surface area per
unit ground area in coniferous canopies (Chen and Black,
1992). Several space-borne sensors, operating in the visi-
ble and near-infrared range, monitor LAI and other vegeta-
tion properties daily. For example, the Terra and Aqua satel-
lites each carry a Moderate Resolution Imaging Spectrora-
diometer (MODIS). From the two instruments in combina-
tion, 4 d composites of LAI are generated routinely. This
product has a relatively coarse resolution and a pixel size of
500 m. Guzinski and Nieto (2019) have developed a method
for downscaling of LAI estimates.

2.2 Forest roughness models

Different models can be used to estimate z0 and d from for-
est canopy heights and LAI. Here, we consider the objec-
tive roughness approach (ORA), the Raupach model, and the
scalar distribution (SCADIS) model.

2.2.1 The objective roughness approach (ORA)

The relation between the canopy height, h, and z0 and d
has been recognized and discussed by many authors (Thom,
1971; De Bruin and Moore, 1985; Enevoldsen, 2017). Be-
cause z0 is usually proportional to h, an easy way to obtain
z0 and d is by relating them linearly to the canopy height,

z0 = c1h, (2)

and

d = c2h. (3)

Maps based on lidar scans using the constant values c1 = 0.1
and c2 = 2/3 were shown in Floors et al. (2018) to reduce the
risk of making large errors (> 25 %) in predicted power den-
sity by 40 %–50 % compared to the best land cover database
at a forested site.

2.2.2 The Raupach model

Raupach (1992) developed a model to predict the bulk drag
coefficient over a rough surface with a given canopy height.
The main model parameter resulting from his analysis is the
frontal area index λ, which for isotropically oriented ele-
ments is given by

λ= 0.5LAI. (4)

Raupach (1994) discussed some simplifications to the origi-
nal model and suggested

d

h
= 1− b, (5)

where

b = 1−
exp(−a)

a
(6)

and

a =
√

2cd1λ. (7)

cd1 was experimentally found to be equal to 7.5. Finally, the
roughness length is estimated as

z0

h
= bexp

(
−κ

min
(√
CS +CRλ,cmax

) −9h) . (8)

Raupach (1994) suggested based on empirical evidence that
CS = 0.003, CR = 0.3, cmax = 0.3, and 9h = 0.193.

2.2.3 The SCADIS model

A criticism of the Raupach (1994) model is that some of
the constants are highly dependent on the structure of the
canopy and may not be universally applicable. To address
this, one can use a one-dimensional version of a k–ω turbu-
lence model, which depends on the leaf area density profile
within the canopy (Sogachev et al., 2002; Sogachev and Pan-
ferov, 2006). An additional advantage of this model is that it
can estimate z0 and d in non-neutral atmospheric conditions.

The leaf area density (LAD) profile is frequently described
(e.g. Meyers and Tha Paw U, 1986) by a beta probability
density function,

LAD= LAI
[
(z/h)α−1(1− z/h)β−1

]
, (9)

where α = 9 and β = 3. The chosen constants are represen-
tative of a temperate pine forest, and we use them throughout
this work due to the absence of information on the canopy
profile from satellite data. Sogachev et al. (2017) validated
the SCADIS model for flow over a 3D area with forested
terrain and found that simulations that explicitly resolve the
drag of the canopy and those that use an effective z0 compare
well.

2.3 Flow modelling and cross-prediction

Maps of z0 and d can be used in combination with terrain
elevation maps as input to wind energy flow models. The
WAsP methodology (Troen and Petersen, 1989) can be ap-
plied to analyse the observed wind climate (a histogram of
wind speeds for each wind direction sector) at a particular
mast location and height and predict the wind climate at a
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nearby location, assuming the same large-scale atmospheric
forcing. The effects of land surface roughness and orogra-
phy are first removed from the observed wind climate. Equa-
tion (1) and the geostrophic drag law (Blackadar and Ten-
nekes, 1968) are then used to estimate the geostrophic wind
speed distribution, which is assumed to be valid some kilo-
metres away from the mast. The geostrophic wind speed dis-
tributions can be transformed to Weibull distributions over
idealized flat terrain at a number of specified heights and z0
(see Sect. 8.7 in Troen and Petersen, 1989). The result of
this process is a so-called generalized wind climate (GWC),
which is characterized by the Weibull parameters A and k
and the probability density per wind direction sector. The
GWC can be used to predict the wind resource near the
measurement site by adding local roughness and orographic
speed-up factors. The process of predicting the wind climate
from one position to another is called a cross-prediction. The
accuracy of such predictions depends strongly on the quality
of the roughness and elevation maps used as input (Floors
et al., 2018).

3 Sites and data

In this section, we present eight sites that are considered in
this study and the different types of input data which are
needed for cross-prediction analyses at the sites.

3.1 Measurement sites

Eight measurement sites are selected for cross-prediction
analyses (Table 1). The sites represent vastly different land
cover types and complexities. The sites Ryningsnäs, Finland,
and Sweden are located in forests, where the displacement
height becomes important, and the uncertainty in wind re-
source assessment is known to be high (Kelly and Jørgensen,
2017). The site near Mérida has low (h≈ 5 m) and irregu-
lar forest in all directions. The sites Cuauhtémoc and Hu-
mansdorp are surrounded by very open landscapes where the
WAsP model is expected to perform well. The sites Risø
(Giebel and Gryning, 2004) and Østerild (Peña, 2019) are
characterized by a mixture of forest and open areas near
the mast, which is more challenging in terms of flow mod-
elling. The sites in Sweden and Finland are from confidential
projects, and the exact locations of these can therefore not be
disclosed.

3.2 Surface roughness maps

3.2.1 Standard land cover data sets

Four coarse-resolution land cover databases (spatial dis-
cretization between 100 and 1000 m) that are regularly ap-
plied for wind energy modelling are used in connection
with this analysis. These are the Global Land Cover Charac-
terization (GLCC 1000), the MODIS MCD12Q1 V6 prod-

uct (MODIS 500), the C3S Global Land Cover product
(GLOB 300), and for the European sites the Corine Land
Cover inventory (CORINE 100). Further details about the
land cover products are given in Table 2.

The coarse-resolution land cover data sets come with stan-
dard roughness conversion tables (Appendix A, Tables A1–
A5). The z0 for forest classes tends to be too low for temper-
ate forests (Floors et al., 2018). Recent studies of Dörenkäm-
per et al. (2020) and Badger et al. (2015) have highlighted
this shortcoming and have suggested higher z0 for forested
areas. To reflect the uncertainty of z0 assignments in forested
areas, we include the original vs. revised values in Ta-
bles A1–A5. In connection with the C3S Global Land Cover
product, the z0 classification is based on the data set of 2009,
and some of the 23 land cover classes have been split into
sub-classes since then. Therefore, z0 of each subclass is as-
sumed to be identical to z0 of the class it inherits from (see
Table A3). It is mostly classes with forests that have been
split up, and one could get a better estimation of z0 by a more
detailed analysis of the canopy structure in these subclasses.
However, this approach is not attempted here.

3.2.2 Novel Sentinel data sets

High-resolution satellite-based data packages are developed
for an area of 40× 40 km around each of the eight sites de-
scribed above. Each data package has a regular grid spac-
ing of 20× 20 m and includes (1) land cover classification,
(2) LAI, and (3) forest canopy height. These data are de-
rived from satellite imagery using machine learning meth-
ods. Specifically, random forests (Breiman, 1996) are used
to classify land cover and for down-scaling LAI, while sup-
port vector machines (Boser et al., 1992) are used for canopy
height estimation. Both algorithms are from a family of su-
pervised machine learning methods that are routinely applied
to satellite imagery to extract features of interest. This is done
by supplying the algorithms with a set of samples from the
satellite imagery that have known labels (e.g. land cover class
or canopy height). These samples are used to train the ma-
chine learning models whereby the algorithms learn to pre-
dict each feature of interest across the entire satellite image.
The primary data source used for the production of the three
data layers is Copernicus satellite imagery from the Sentinel-
1 and Sentinel-2 missions. Sentinel-1 is a c-band (5.6 cm)
synthetic aperture radar sensor, while Sentinel-2 is an optical
sensor providing data in the visible, near-infrared, and short-
wave infrared parts of the spectrum.

The land cover classification is based on five land cover
classes most relevant for wind modelling (Appendix A, Ta-
ble A5). For each site, training data are collected for each
land cover class by manually labelling areas in satellite im-
agery of known land cover. These training data are used as a
dependent variable in a random forest model to predict land
cover for each 20×20 m grid cell. Independent variables used
for the land cover classification model include observations
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Table 1. Sites and masts used for cross-prediction analyses. The characteristic land cover is indicated. The EPSG code identifies the coordi-
nate reference system, including the map projection, datum, and zone number (see text), and the x, y, and z columns identify the positions
in projected map coordinates.

Site Mast Land cover EPSG x (m) y (m) z (m)
type code

Cuauhtémoc (MX) Open 32613 309 874 3 211 836 20.0, 40.0, 60.0, 80.0

Finland (FI) 1 Forest 32635 60.0, 90.0, 116.5
2 Forest 32635 61.0, 91.0, 116.5
3 Forest 32635 61.0, 91.0, 116.5

Humansdorp (SA) Open 32735 270 726 6 222 861 20.2, 37.3, 61.1, 62.0

Mérida (MX) Forest 32616 210 700 2 339 900 20.0, 40.0, 60.0, 80.0

Risø (DK) Mixed 32632 694 096 6 176 367 44.2, 76.6, 94.0, 118.0, 125.2

Ryningsnäs (SE) Forest 32633 559 487 6 348 565 40.0, 59.0, 80.0, 98.0, 120.0, 138.0

Sweden (SE) 1 Forest 32633 57.8, 80.7, 96.4, 100.7
2 Forest 32633 31.5, 44.5, 57.0, 59.0
3 Forest 32633 57.8, 80.9, 96.4, 100.8
4 Forest 32633 57.7, 80.8, 96.4, 100.8
5 Forest 32633 32.1, 44.0, 57.3, 59.0
6 Forest 32633 57.6, 96.4, 100.8

Østerild (DK) 1 Mixed 32632 492 766 6 327 084 40.0, 70.0, 106.0, 140.0, 178.0
2 Mixed 32632 492 767 6 322 834 40.0, 70.0, 106.0, 140.0, 178.0

Table 2. Summary of the different coarse-resolution land cover products (spatial discretization between 100 and 1000 m) used for creating
the roughness maps.

Abbreviation Name Spatial Number of Satellite Reference
resolution classifications coverage

(m) date

GLCC 1000 Global Land Cover Classification 1000 24 1992–1993 USGS EROS Archive (1993)

MODIS 500 MCD12Q1 MODIS/Terra+Aqua
L3, v6, IGBP

500 17 2018 Friedl and Sulla-Menashe (2019)

GLOB 300 C3S Global Land Cover 300 38 2015 ESA CCI (2015)

CORINE 100 CORINE land cover 100 44 2018 Copernicus Land Monitoring
Service (2021)

from the Sentinel-1 and Sentinel-2 sensors. LAI has been es-
timated for all grid cells identified as forest in the land cover
classification through down-scaling of coarse-resolution LAI
from the MODIS sensor to the 20×20 m grid of the Sentinel-
2 observations (Guzinski and Nieto, 2019).

Forest canopy heights are estimated for all grid cells iden-
tified as forest in the land cover classification. Canopy height
estimates from the ICESat-2 sensor are used as a dependent
variable to train a support vector regression model to pre-
dict forest canopy height for each 20×20 m grid cell. Obser-
vations from Sentinel-1 and Sentinel-2 are used as indepen-
dent variables in the regression model. ICESat-2 provides a
globally available data set from the US National Aeronautics

and Space Administration (NASA) that uses space-borne li-
dar technology to estimate ground and vegetation heights. It
does this with six laser beams, scanning a swath of terrain
9 km wide, with each beam having a footprint of 17 m diame-
ter. Because of the Sentinel sensors’ importance for obtaining
the three layers described above, they are labelled “Sentinel”
throughout the rest of this paper.

3.2.3 Reference data sets

To validate the novel Sentinel maps, we consider two types
of roughness maps for reference: (1) from manual digitiza-
tion and (2) from lidar scans for sites where such data are
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readily available from previous works. For an experienced
wind resource engineer, the most accurate way to obtain a
land cover data set is by visual inspection in the field or us-
ing photographs followed by digitization of the land cover
areas with the biggest impact on the flow. A representative z0
is then assigned to each of these areas. Maps digitized man-
ually are available for Cuauhtémoc, Humansdorp, Mérida,
and Risø (see Table 3). Another approach to obtain an accu-
rate roughness map is by using lidar scans. Tree heights can
be retrieved from the cloud point data delivered by airborne
lidars. The lidar data sets are described further in Sect. 3.3 as
they are also used to map the terrain elevation. Once h is ob-
tained from lidar scans, the procedure described in Sect. 3.2.1
in Floors et al. (2018) is used to estimate z0 and d for Ryn-
ingsnäs, Sweden, and Østerild. The reference maps are de-
noted as “manually digitized or lidar scans” throughout the
rest of the paper (see Table 3).

3.3 Elevation maps

In addition to the land surface roughness, a flow model needs
inputs of the terrain elevation. Lidar scans can be used to re-
trieve the terrain elevation and also to estimate the canopy
height at forested sites as described above (Popescu et al.,
2003; Floors et al., 2018). Elevation data from aerial lidar
scans are available for five of the eight sites analysed here
(Table 3). The Swedish sites are covered by a national laser
campaign conducted in 2013 (Lantmäteriet, 2021). The re-
trieved elevation data are available with a 20× 20 m grid
spacing. Lidar scans are available for the Danish site Øster-
ild at the same spatial resolution, whereas the Finland eleva-
tion model is a digital terrain model produced by the Na-
tional Land Survey of Finland (Maanmittauslaitos, MML)
and available at a 10× 10 m grid. For Risø, elevation data
are obtained from the 2.5 m contour lines from “Danmarks
Højdemodel” (Styrelsen for Dataforsyning og Effektiviser-
ing, 2016).

Elevation data for the two Mexican sites, Cuauhtémoc and
Mérida, and the site in South Africa, Humansdorp, are ob-
tained from the Shuttle Radar Topography Mission (NASA
JPL, 2013) at 90 m resolution. We note that wind engineers
should be careful when using databases such as SRTM in
combination with a displacement height. Because the SRTM
product shows the height of the surface, it includes the tree
height. If this is not taken into account, the turbine or mast
might be placed at too high elevation, and there is a risk of
double-counting of the effects of the forest.

4 Methodology

The WAsP model is a microscale flow model that is fre-
quently employed for wind resource assessments (Troen and
Petersen, 1989). It contains submodels for orography, rough-
ness changes, obstacles, and stability effects. In the follow-
ing, we explain how the roughness and orographic submodels

within WAsP are modified to better utilize the high spatial de-
tail of z0 and d obtained from the Sentinel data set. We then
describe the cross-prediction method that is applied to test
the novel Sentinel data sets against more conventional input
data for wind energy flow modelling.

4.1 Model setup

The WAsP model consists of a graphical user interface and a
core model that is written in the programming language For-
tran. In the following, we refer to the core model code that
is directly accessed via a set of Python codes. The routines
are not yet available in the graphical user interface, but a new
WAsP version scheduled for release in late 2021 will include
them. One of the main advantages of the WAsP core model
is its speed: it typically takes seconds to calculate the annual
energy production (AEP). The newly implemented routines
are parallelized using OpenMP in the Fortran language. Be-
cause in the WAsP core each grid point is independently cal-
culated, the problem is easily distributed across central pro-
cessing units. The standard settings of the WAsP core model
(corresponding to WAsP version 12.6) are used here unless
otherwise specified. In the following, we describe the mod-
ifications to the roughness and orographic submodules. The
different parts of the model chain described in this section
are shown in Fig. 1.

4.1.1 Forest submodel

The ORA and Raupach models are used to obtain z0 and
d and were implemented as described in Sect. 2.2. The
SCADIS model is run without Coriolis force, because we
want to obtain z0 and d for the logarithmic wind profile in
the surface layer. The height of the model domain is spec-
ified as 4h. The height of the first model level is specified
to be z1 = 0.5z0b, where the background roughness length
z0b = 0.3 m. The SCADIS model is run from an initial log-
arithmic profile (z0 = z0b) with a wind speed of 10 m s−1 at
the domain top. The time step in the model is set to 300 s.
The model integration is terminated when the wind speed at
the canopy top changes less than 0.001 m s−1. Finally, z0 and
d are then found by fitting dU

dz =
u∗

κ(z−D) toU and u∗ obtained
in the range from 1.5h to 2.5h.

4.1.2 Roughness submodel

Previous versions of WAsP use an algorithm, which finds all
z0 crossings between the roughness lines defined in a map
and a number of rays extending from the point of interest.
In this study we are not only interested in z0 of a land cover
patch, but we also want to take into account the effect of a
displacement height, d. This information has to be passed
from the land cover contour lines to the roughness model.
The roughness submodel in WAsP uses vector lines as input,
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Table 3. Overview of the input data that are used for each site to estimate wind resources. The meaning of the different abbreviations are
discussed in the text.
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Cuauhtémoc (MX) SRTM version 3 X X X X X X X
Finland (FI) Lidar scans X X X X X X X X
Humansdorp (SA) SRTM version 3 X X X X X X X
Mérida (MX) SRTM version 3 X X X X X X X
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Ryningsnäs (SE) Lidar scans X X X X X X X X
Sweden (SE) Lidar scans X X X X X X X X
Østerild (DK) Lidar scans X X X X X X X X

and therefore, the satellite-based raster maps of land cover
are first converted to a vector-map format.

The new routines expect the input of “identifier” lines; i.e.
each line contains an identifier (ID), which represents a cer-
tain land cover left and right of the line. This ID is then
represented in a land cover table, which prescribes the cor-
responding z0, d , and a description of that land cover class
(Appendix A, Tables A1–A5). Keeping the land cover table
separate from the map has several advantages, like the possi-
bility to perform sensitivity studies with respect to z0 and d,
which has been difficult so far because one has to modify the
contour map itself in an external program.

Using the approach above, we can process the standard
land cover maps (see Sect. 3.2.1). The novel Sentinel maps
contain additional layers with h and LAI. h is discretized
into bins of 5 m and the LAI into bins of 1. The result is a
Sentinel land cover raster map which typically contains 10–
40 different classes of forest types plus the classes specified
in Table A5.

For the forest class the centre of the h and LAI bins are
used to estimate z0 and d according to the three roughness
models described in Sect. 2.2. Because the forest submodel
operates on a table and not on the contour lines in the map
itself, the conversion of h and LAI to z0 and d is fast (i.e. the
speed of the computation scales with the number of entries
in the land cover table).

In order to introduce land cover, a new routine, here re-
ferred to as a “spider grid analysis”, is developed. It uses a
polar zooming grid, similarly to the orographic flow model
(Troen, 1990). The advantage of using a zooming grid is that
it concentrates the resolution where it is most needed, and
we can use arbitrarily distributed points. The latter is for ex-
ample beneficial for calculating the wind climate at exact po-
sitions of wind turbines. The distance to the first radial seg-
ment r0 in the zooming grid is defined by the user (default

r0 = 25 m), and each next segment has a grid spacing that is
5 % larger than the previous one. The number of azimuthal
bins (i.e. wind direction sectors) can also be specified by the
user and by default is set to 12, i.e. using a sector width of
30◦. The first sector is always centred at the north.

For each cell in the zooming grid, the fraction of the total
area fi that each of a total of N land cover types in the land
cover table occupies is determined, and the roughness length
is calculated,

lnz0 =

N∑
i=1

fi lnz0i . (10)

The displacement height is taken into account similarly to z0
and is calculated for each cell in the zooming grid as

d =

N∑
i=1

fidi . (11)

The zooming-grid analysis of d and z0 from the Sentinel
ORA 20 map over Ryningsnäs is shown in Fig. 2a and b,
respectively, as circles with a radius of 3 km. For the 0◦ sec-
tor for an area up to 2 km away from the mast, d ≈ 10 and
z0 ≈ 2 m, while for the 150◦ sector at around 2 km distance
there is a lake that causes lower z0. Another detail visible
from close inspection of Fig. 2a is the very low values of d
and z0 in the 150◦ sector at distances less than 100 m away
from the mast. This is because of a clearing in the forest in
that direction (also seen in other sectors), which has impor-
tant implications for the flow modelling at Ryningsnäs, as
will be further discussed in Sect. 6. We note that Ryningsnäs
was extensively investigated by Bergström et al. (2013), who
fitted a logarithmic wind profile to the measurements to ob-
tain z0 and d . For the 150◦ sector, d was close to zero due
to the clearing, while z0 ≈ 2 m. Their value is presumably
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Figure 1. Process diagram of the submodels in WAsP. The rounded rectangles denote data structures, and the square boxes denote a method.

higher than the z0 of the clearing because it was determined
at 30–40 m and therefore has a different footprint area.

Figure 2c shows a so-called reduced roughness rose, which
shows the most significant z0 changes in all directions for the
same area as the zooming grid analysis. This roughness rose
captures the main features of the area around the site, but it
also misses some features that perhaps would have been iden-
tified using the most accurate and detailed method of manual
digitalization. The large number of relatively small clearings
and forest patches in all directions clearly makes it challeng-
ing to find the most significant z0 changes.

To account for roughness changes, WAsP calculates
sector-wise speedup factors for a certain point. Because the
effect of a roughness change on the wind speed in a sector
is distance dependent, with nearby areas having a higher im-
pact, the distance to each z0 area is multiplied with an ex-

ponential weighting function as described in Floors et al.
(2018). From these weighted values z0w, the ones that ex-
plain most of the variance of z0w are stored for further pro-
cessing (up to a maximum of nmax). This is done for compu-
tational efficiency, so that equations that take into account the
effect of internal boundary layers can be used. These equa-
tions are given in Sect. 8.3 of Troen and Petersen (1989). The
output of these equations are sector-wise speed-up factors,
which are used to remove the effect that microscale features
may have on the wind observations. Apart from the speed-up
factors, z0w is also used to compute a geostrophic (sometimes
referred to as an effective or mesoscale) roughness length
z0G.

Similarly to z0, d also has to be filtered to use in Eq. (1)
and the geostrophic drag law. Therefore, a triangular weight-
ing function is applied to the zooming d-grid. The average
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Figure 2. Example of a zooming grid analysis at the Ryningsnäs site up to 3 km distance showing the displacement height h (a), the
roughness length z0 (b), and the corresponding reduced z0 rose (c) after finding the most significant z0 changes.

dG in each sector is found by taking the triangular weighted
average up to a distance xd = 10d0, with d0 defined as d at
the first cell in the zooming grid at a distance x0 from the
origin. The triangular weight w is 1 at x0 and w = 0 when
x > xd . Physically the reason for applying this filter is that
it takes some time for a new logarithmic profile to develop.
Thus, taller trees will need a fetch to lead to an effective dG
that is applied in Eq. (1). The sector-wise z0G and dG can fi-
nally be used in connection with Eq. (1) and the geostrophic
drag law to find a geostrophic wind climate from an input
histogram. This procedure is unaltered from the description
in chap. 8.7 of Troen and Petersen (1989) and is therefore not
further described.

4.1.3 Orographic submodel

The submodule for orography computes speed-ups due to el-
evation, and WAsP uses the Bessel expansion on a zooming

grid (BZ) model (Troen, 1990). The input to the orographic
model is a map with elevation lines, which are processed into
a polar zooming grid, with the highest radial resolution at the
centre point of the grid. The resolution of the zooming grid
depends on the radius R being large enough so that the en-
tire map of height contours is contained inside the circle with
radius R. Contour lines that are more than 20 km away from
the site are ignored.

Here we are interested in the effects of z0 on flow mod-
elling, and therefore the highest-quality terrain elevation map
is chosen for each of the eight sites (see Sect. 3.3). We then
study the impact of varying the land cover maps only, while
keeping the elevation map constant.

The resulting zooming grid of d obtained by using Eq. (11)
is added to the terrain elevation zooming grid. Using this
grid, the methodology described in Troen (1990) is used
to calculate sector-wise wind-speed-independent orographic
speed-ups. Similarly to the roughness speed-ups, these are
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used as local perturbations to the flow, which can be used to
obtain a wind climate that is representative for a large area.

4.2 Cross-prediction analyses

We first perform cross-prediction analyses using the standard
land cover databases (GLCC 1000, MODIS 500, GLOB 300,
and CORINE 100) in combination with their respective un-
modified translation tables leading to z0 (Appendix A). Then,
we consider the same input data sets with the modified tables
from Dörenkämper et al. (2020) and Badger et al. (2015). Fi-
nally, we perform the cross-predictions using the novel Sen-
tinel data sets, the manually digitized maps, and the lidar
scans (see Table 3).

At some sites, there are multiple masts measuring at the
same time (see Table 1), and the wind climate from one mast
is used to predict the wind resource at the neighbouring mast.
At other sites, only one mast is available and only vertical
cross-predictions are possible, i.e. predictions of the wind
distribution from one height to another at the same mast. We
exclude observations within the roughness sublayer where
the WAsP model does not apply, so only measurements be-
tween 20 and 200 m are used. In total there are 914 cross-
predictions for the CORINE 100 (only Europe) database and
950 for all the other databases and Sentinel-based maps. This
number is based on all possible cup anemometer pairs per
site in Table 1, subtracting the combinations where a cup
anemometer input is used to predict the wind climate at the
exact same point (a so-called self-prediction).

Observed wind climates are generated for each height and
mast from the 10 min time series of wind speed U and wind
direction θ , which are discretized into histograms using a bin
width of 1 m s−1 and 30◦, respectively.

The power per unit area swept by wind turbine blades, P
(also referred to as the power density), is given by

P = 0.5ρU3, (12)

where ρ is the air density. In WAsP, the wind distribution is
described by sector-wise Weibull distributions, and therefore
we can conveniently find P from the Weibull parameters A
and k for Nd sectors as

P = ρ

Nd∑
i=1

φiA
3
i 0 (1+ 3/ki) , (13)

where φ is the sector frequency, 0 is the gamma function,
and ρ is calculated according to the methods described in
Floors and Nielsen (2019). Throughout this paper we choose
to evaluate relative errors of power density,

εP = 100
(
Pmod

Pobs
− 1

)
, (14)

where P is obtained from the modelled (mod) or observed
(obs) Weibull distributions. The statistics reported through-
out the rest of the paper are the bias, εP , and the root-mean-

square error (RMSE),
√
ε2
P , where the overbar denotes a

Figure 3. Response of the different roughness length and displace-
ment height models to leaf area index (LAI) for a forest with
h= 10 m. The SCADIS model is set up with α = 9 and β = 3,
which are typical values for forests with most of the canopy den-
sity in the upper part of the canopy layer (Sogachev et al., 2017).

mean. We also include relative errors in wind speedU , which
we obtain as in Eq. (14) but instead of P ,U is computed from
the Weibull distributions as

U =

Nd∑
i=1

φiAi0 (1+ 1/ki) . (15)

5 Results

In the following, we show results of the three different for-
est models that were implemented. We present the outcome
of cross-prediction analyses per site, and subsequently, we
aggregate results for all eight sites investigated.

5.1 Model response to LAI

The behaviour of the three forest roughness models for a
canopy height h of 10 m as a function of LAI is shown in
Fig. 3. The ORA model does not depend on LAI and is there-
fore constant, i.e. d/h= 2/3 and z0/h= 0.1. The Raupach
and SCADIS models both show an increasing d as the LAI
increases. z0 has the opposite behaviour and decreases to
lower values after an initial maximum of around LAI≈ 1.

The main differences between the SCADIS and Raupach
models occur for a relatively low LAI∼ 1, using the SCADIS
model z0 ≈ 2 m while using the Raupach model z0 ≈ 1 m.
The same holds for d, where using the Raupach model yields
a d that is nearly twice that of the SCADIS model. For the
more commonly occurring LAI> 3, the differences are mi-
nor. When a different canopy profile is specified, i.e. using
α = 5 and β = 3, there are larger differences between the two
models (not shown).
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5.2 Roughness length maps

Figure 4 illustrates the different z0 representations for a 6×
6 km area around the Ryningsnäs mast. The GLCC database
has the coarsest resolution of 1000 m, and therefore, it fails to
capture any detail near the mast (Fig. 4a). The whole area is
represented by land cover class 14, i.e. evergreen needle-leaf
forest, which corresponds to z0 = 1.5 m (Table A1). Like-
wise, the MODIS database at 500 m resolution does not cap-
ture any detail within the selected area (Fig. 4b), and every-
thing is represented as evergreen needle-leaf forest with z0 =

1.0 m (Table A2). GlobCover, with a resolution of 300 m,
represents most of the land cover around the site as evergreen
needle-leaf forest with z0 = 1.5 m (Table A1) and can cap-
ture some of the lakes and open areas (Fig. 4c). The Corine
land cover database captures more details due to its higher
resolution of 100 m (Fig. 4d). Most of the area around the
mast is classified as “mixed forest” with z0 = 1.1 m (Ta-
ble A4). The lakes to the southeast of the masts and the
open area to the west of the masts are captured. The Sen-
tinel ORA 20 map (Fig. 4e) shows the result of combining
the land cover map with the tree height and LAI layers ac-
cording to the procedure presented in Sect. 3.2.2 and using
the conversion of h to z0 and d from ORA (Sect. 2.2.1). The
Sentinel SCADIS and Raupach maps look very similar to this
and are therefore not shown. It can be seen that the map gen-
erally contains a wider range of z0, ranging from 0.0002 to
over 3 m.

Finally, the z0 map obtained using the ORA approach with
h obtained from lidar scans is shown in Fig. 4f. Spatially
comparing the Sentinel-based tree heights (Fig. 4e) with tree
heights derived from aerial lidar scans (Fig. 4f) reveals that
the areas with lower and higher h correspond very well.
However, z0 derived from Sentinel is generally lower than
from the lidar scans. In Fig. 5 we show the roughness length
around all the sites except the Finnish and Swedish sites,
which are confidential.

As an example of the new routines presented in Sect. 4.1.2,
we use the observed wind speed histogram at the Ryningsnäs
mast at 80 m and predict the wind resource at 80 m for every
point in the 6× 6 km area shown in Fig. 4 using a raster with
a resolution of 40 m. Figure 6 shows the resulting maps of
the terrain elevation, displacement height, power density, and
relative difference before and after d is taken into account.

The elevation changes are modest at the Ryningsnäs site
(Fig. 6a), but there is a hill to the west. In Fig. 6b, the dis-
placement height in each point is shown. For clarity, we only
focus on d for the most frequently observed westerly sector.
The clearing located southeast of the mast (which is in the
centre of the map) is visible, resulting in lower displacement
heights. In addition, displacement heights of more than 10 m
are visible further from the mast. The result of combined ele-
vation, displacement, and roughness description on the emer-
gent power density in the area is shown in Fig. 6c. The higher
power density due to the flow speed-ups over the hill in the

west is clearly visible. Because the changes in power density
due to the introduction of a displacement height are difficult
to discern, Fig. 6d shows the difference in percent between
P with and without using a displacement height. Using d
causes a decrease in power density between 0 % and 12 %.
The area with the highest reduction in power density in the
centre indeed corresponds closely to the area with the largest
concentration of high displacement heights in Fig. 6b.

5.3 Cross-predictions at wind energy sites

The rms of εP per site is shown in Fig. 7. We have grouped
the maps from the lidar scans and those that were manually
digitized into one class, because we consider all these as ref-
erence maps, i.e. the best possible we can achieve. We find
rather large errors for Mérida, Ryningsnäs, and Finland. All
are forested sites with mixed vegetation patterns. This indi-
cates a need for better flow modelling at such inhomogeneous
sites. Humansdorp and Cuauhtémoc, in contrast, are charac-
terized by a relatively simple land cover, which results in a
low rms of εP . The cross-predictions performed using the
novel Sentinel maps as input mostly lead to lower rms of εP
than those using the standard land cover databases. However,
at Mérida and Østerild the rms of εP from the Sentinel-based
maps is not lower than those from the standard land cover
databases. The former is a very complex site that is charac-
terized by forest in all directions. One possible explanation
for the higher errors at this site can be a clearing in the for-
est that is shown to the southeast in the Sentinel maps, but
which does not appear in reality. At Østerild the dominat-
ing wind direction is from the west, which is subject to many
wind breaks. These are not generally detected in the Sentinel-
based roughness maps but contribute significantly to a higher
z0. Therefore, the background roughness for grassland that
was used in the Sentinel maps (see Table A5) might be too
low at Østerild. The three forest roughness models lead to
very similar results for all sites.

If we consider only the cross-predictions for sites where
aerial lidar scans are available (i.e. Ryningsnäs, Sweden, Fin-
land, and Østerild), we can calculate that the combined rms
of εP ≈ 10.9 % for the aerial lidar scans (lidar scans ORA
20) and 10.7 % for the Sentinel ORA 20 maps, respectively.
At Ryningsnäs, Finland, and Østerild the aerial lidar scans
yield lower rms of εP than the Sentinel maps, whereas at the
Swedish site results are more comparable.

When we consider the sites with manually digitized maps
only (i.e. Humansdorp, Mérida, Cuauhtémoc, Risø), the rms
of εP is 10.9 % for the manually digitized map, 13.1 % for
the Sentinel ORA 20 map, and 17.3 % for the GLOB 300
map. Thus, averaged over these four sites, satellite-derived
estimates of z0 do not yield better power predictions than
those based on manually digitized maps.
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Figure 4. Roughness lengths obtained from a 6×6 km square around the Ryningsnäs site (red point) from standard land cover data sets (a–d),
novel Sentinel data sets (e), and aerial lidar scans (f). The time periods for which the different data sets are obtained are shown in Table 2.

5.4 Aggregated results of cross-predictions

We aggregate results from the cross-predictions for the eight
sites to obtain the average performance of each set of input
data in connection with flow modelling in WAsP.

The rms of εP for the cross-predictions using standard
land cover databases with original and revised roughness
translation tables is shown in Table 4. The GLCC 1000 gen-
erally leads to the highest errors, when both the original and
revised land cover tables are used. The lowest rms of εP of
all is achieved with the GLOB 300 maps in combination with

the revised land cover table. The rms of εP is reduced for all
land cover databases when the revised land cover tables are
used instead of the original ones.

We can now compare results generated with the standard
land cover databases with results generated with the novel
Sentinel data layers as input. Figure 8 shows the prediction
errors when the WAsP model is run with seven different in-
puts: the three global standard land cover databases with re-
vised roughness translation tables plus three types of Sen-
tinel maps based on the three different forest roughness mod-
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Figure 5. Roughness lengths obtained from a 6× 6 km square around the meteorological mast (red point) from Cuauhtémoc (a), Humans-
dorp (b), Mérida (c), Risø (d), Ryningsnäs (e), and mast 1 at Østerild (f) from the Sentinel ORA 20 maps.

els described in Sect. 2.2. The CORINE 100 database is not
available at all sites and is therefore not shown. The refer-
ence map for each site is chosen based on availability of lidar
scans or a manually digitized map (see Table 3).

Maps generated with an advanced forest model (Sentinel
ORA 20, Sentinel Raupach 20, and Sentinel SCADIS 20)
yield lower rms of εP (≈ 11 %) than maps based on the stan-
dard land cover databases. Table 4 shows that also the mean
bias of εP is lower in the Sentinel maps than in the stan-
dard land cover databases GLCC 1000, MODIS 500, and
GLOB 300. Similarly for wind speed, the rms values of εU

are smaller for the model runs using Sentinel maps. The
mean bias in εU becomes slightly negative but is generally
close to zero for all WAsP model runs.

When running WAsP it is often more instructive to evalu-
ate horizontal cross-predictions, because the roughness rose
will then be different for two points. To investigate this, our
data were filtered to include only horizontal cross-predictions
(i.e. sites with more than one mast). However, this did not
change the large differences in εP and εU between the model
simulations based on standard land cover databases and Sen-
tinel maps. In addition, the effect of the measurement height
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Figure 6. Maps showing the terrain elevation (a), the displacement height (b), the power density (c), and the relative difference in power
density compared to a terrain map where d = 0 (d) at Ryningsnäs for westerly winds.

Table 4. RMSE in power density (εP , %) and wind speed (εU , %) for all sites combined. For GLOB 300 and CORINE 100 both the original
and revised land cover databases are shown (see Sect. 3.2 and Appendix A, Tables A4 and A3).

Roughness map Rms Mean bias Rms Mean bias No. of
εP (%) εP (%) εU (%) εU (%) cross-predictions

GLCC 1000 18.7 1.1 6.4 −0.2 950
MODIS 500 19.7 2.4 6.6 0.1 950
GLOB 300 18.4 1.4 6.3 −0.1 950
GLOB 300 (revised) 14.2 0.8 5.1 −0.3 950
CORINE 100 17.5 2.0 5.9 0.2 914
CORINE 100 (revised) 15.0 0.5 5.2 −0.3 914
Sentinel ORA 20 11.0 1.1 4.3 −0.0 950
Sentinel Raupach 20 11.3 1.6 4.4 0.2 950
Sentinel SCADIS 20 11.2 1.1 4.4 0.0 950
Manually digitized/lidar scans 10.9 0.1 4.1 −0.3 950
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Figure 7. The RMSE in power density (εP , %) obtained when each
available wind sensor is used to predict the power density at the
location of other wind sensors located at the same site. Values are
shown for all sites. Different colours refer to different roughness
length maps used as input to the calculation.

was investigated by only including cross-predictions between
50 and 200 m, but again, this did not change the general pic-
ture that emerges from Table 4.

6 Discussion

For the first time, forest parameters retrieved from the Sen-
tinel and ICESat-2 satellites have been used for wind energy
flow modelling. Our results demonstrate that the spatial vari-
ability of the land cover within forests (e.g. vegetation with
different height and density, clearings, lakes) is resolved far
better by these novel products than it is by standard land
cover products with pan-European or global coverage. The
high level of spatial detail in the novel Sentinel data lay-
ers is almost comparable to products derived from aerial li-
dar scans. This is promising in connection with wind energy
flow modelling because these data layers can be produced
for any site in the world and updated frequently. The cost
of retrieving the satellite-based forest data layers is far lower
than the price of dedicated airborne lidar campaigns thanks to
the open access to satellite data archives by Copernicus and
NASA. From Fig. 7 it is clear that using the Sentinel maps of
tree height rather than standard land cover maps has the high-
est benefit at sites where masts or turbines are surrounded by
forest (Ryningsnäs, Finland, and Sweden). Taking the dis-
placement height into account for such sites leads to sig-
nificantly lower εP . Because there are seven masts at the
Swedish site, leading to a large number of cross-predictions,
this site has a large impact on the aggregated results (Ta-
ble 4).

Using roughness derived from Sentinel canopy height
maps had the greatest impact at the Ryningsnäs site: reduc-
ing the rms of εP by more than 50 % compared to using
roughness derived from land cover maps (Fig. 7). This im-
provement of εP is due to the mast location very close to the
forest edge in the westerly sector (i.e. winds coming from
265–285◦). Because of the large impact of sector-wise dis-
placement heights on the wind profile, the results are highly
dependent on specifying the correct h. This indicates that for
masts located very close to forest edges, sensitivity studies
are recommended, and the Sentinel maps should be carefully
calibrated.

The observed difference in h in the novel Sentinel product
compared to the lidar scans at Ryningsnäs may partly be due
to the uncertainty in sensing and retrieval methods that are
required to convert satellite observations to canopy heights
and partly due to temporal differences between the satellite
and lidar products. The standard canopy height product from
ICESat-2, which we used to train our model for forest height
estimation, contains tree heights over a 17× 100 m along-
track transect and this is different from the spatial resolu-
tion of the lidar scans. Additionally, tree growth in temperate
forests can be up to a few metres per year. Therefore, it is
important to use the most updated h parameterization when
modelling wind resources. Further research is needed to fully
understand and improve the absolute accuracy of tree heights
retrieved from satellite observations.

Likewise, the absolute accuracy of forest densities ex-
pressed through the LAI should be thoroughly quantified in
future work. For example, the LAI used for our analyses was
downscaled from a very coarse-resolution product, and the
consequence of this downscaling is unknown. Differences
between outputs of the three forest canopy models are small
in this study. It is, however, possible that the SCADIS model
is too advanced for the type of analysis performed here given
the large uncertainty of the LAI input and the absence of
canopy density profiles. More detailed studies at a higher
number of sites, preferably with observed h and LAD pro-
files, are needed to validate the SCADIS model further.

Our analyses show only minor differences in rms of εP
when cross-predictions are performed using Sentinel vs.
aerial lidar scans to estimate d and z0. These findings are
promising in light of the lower cost and the global cover-
age of the satellite-based data layers. Manual assessments of
the land surface roughness do not necessarily lead to better
results. For most sites (three out of five) automated assess-
ments based on the novel Sentinel data sets led to lower error
values than manual assessments. In addition, automated pro-
cedures speed up the wind resource assessment process and
remove the subjective judgement of a siting engineer. Using
high-resolution input data for the automated retrieval of z0 is
essential. We have demonstrated how the small-scale rough-
ness changes within forests are poorly resolved by standard
land cover data sets, and as a consequence, z0 and predic-
tions of the wind power density come with large uncertain-
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Figure 8. RMSE in power density (εP , %) estimated with different input maps for all eight sites combined.

ties even after revision of the roughness translation tables for
forest classes.

Our results indicate that all methods considered in this
paper underestimate the roughness length over forest (i.e.
higher z0 values lead to better predictions). This is possi-
bly due to roughness length aggregation, i.e. finding z0 for
a larger area that correctly prescribes the momentum flux in
surface-layer similarity in connection with Eq. (1). In this
paper, the larger-scale sector-wise roughness length z0G is
obtained via simple logarithmic averaging of the cells in the
spider-grid rose applied in Eq. (10), but this is known to
be flawed in heterogeneous conditions. For example, Tay-
lor (1987) suggested accounting for sub-grid variance of
z0 when calculating an effective roughness length. Vihma
and Savijärvi (1991) compared model approaches for several
landscape configurations in Finland and found that z0eff was
always higher than a simple logarithmic average. This was
also confirmed by Hasager and Jensen (1999), who found
that the difference between the logarithmic average and z0eff
was higher for landscapes with small patches and with a half-
to-half mix of rough and smooth patches. For small patches,
one can argue that the form drag of the forest will always
lead to a much higher z0eff than implied through logarithmic
averaging. However, an analysis of the effect of z0 aggrega-
tion was not attempted in this study, but its impacts are likely
large for heterogeneous sites like Østerild, Finland, and Ryn-
ingsnäs. Bottema et al. (1998) reviewed a range of z0 aggre-
gation methods, which could be investigated in future work.

In this study, cross-prediction is used without any manual
interference. For an actual wind energy project, much smaller
errors would be achieved using the WAsP model because the
site engineer usually has access to measurements at several

heights, which can be used to fit the model nearly perfectly
to the observed mean wind profile. However, such a fitting
process can be deceiving, because a good fit is influenced
by both z0 and atmospheric stability conditions. It may thus
me subject to compensating errors. The effect of atmospheric
stability is beyond the scope of this study, and the default
settings in WAsP are used, but it is acknowledged that there
can be deviations at some sites.

7 Conclusions

We have tested a novel satellite-based product for land sur-
face parameterization in forested areas and quantified the
effect of using this product for wind resource modelling.
The novel satellite-based product is based on observations
from Sentinel-1, Sentinel-2, and ICESat-2, and it contains
collocated layers of land cover, tree heights, and LAI at a
20 m spatial resolution. These maps are converted to maps
of roughness lengths and displacement heights using three
different forest modules of varying complexity. The simplest
way to convert the tree height to z0 and d is by multiply-
ing with a constant (e.g. 1/10). Secondly, a physically more
advanced approach, which also considers the effect of LAI,
is implemented. The third module is a 1D version of the
SCADIS model, and it takes the effects of varying LAI and
canopy density profiles into account. All three forest mod-
ules are used in the WAsP model, which is frequently used
for predicting the wind resources from wind measurements.

We show that the high land cover variability of forested
landscapes is poorly resolved by global and pan-European
land cover databases such as GLCC, MODIS, CORINE, and
GlobCover. The novel satellite-based product leads to more
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detailed maps of z0 and d , which are spatially comparable
to aerial lidar scans or manually digitized maps. Retrieving
canopy heights from satellite data alone is a rapidly evolving
branch of research – driven by the recent release of global
calibration data sets such as ICESat-2 and GEDI. Further re-
search is ongoing to refine the satellite-based products. This
can be achieved through collection of larger and more accu-
rate training data sets for the tree height retrieval, the inte-
gration of ground-based tree height observations, improved
geolocation of satellite-derived products, and advancements
in machine learning algorithms.

Cross-predictions are performed at eight sites with tall
masts to evaluate the effect of using different input data sets
in connection with flow modelling in WAsP. The novel maps
from Sentinel lead to a reduction of the rms of relative errors
in power density at most sites and on average by≈ 3 % com-
pared to the best performing roughness map obtained from
a coarse-resolution land cover database. This is even after
the roughness lengths for specific land cover categories in
the coarse-resolution products are improved. Differences be-
tween the three forest modules are minor, showing that the
sensitivity of the WAsP model to different approaches to ob-
tain z0 and d is low.

The rms of relative errors in power density found for the
Sentinel ORA maps (10.7 %) is comparable to those obtained
from aerial lidar scans (10.9 %). This finding is very promis-
ing because the novel satellite-based maps of z0 and d can
be generated at a lower cost and a higher temporal resolution
than aerial lidar campaigns. Processing of the satellite-based
maps is fully automated. For sites that show a potential for
wind power projects, the new routines and products could re-
place current practices of land cover analysis, which is time-
consuming and plagued by subjective assessments.

Appendix A

The land cover tables for the land cover databases that were
investigated in this paper are supplied in Tables A1–A5.
The references to the land cover databases can be found in
Sect. 3.2.1.

Table A1. Land cover table used for the GLCC database
(Thøgersen, 2021).

ID Description Roughness
length (m)

1 Urban and built-up land 0.400
2 Dryland cropland and pasture 0.100
3 Irrigated cropland and pasture 0.100
4 Mixed dryland/irrigated cropland and pasture 0.100
5 Cropland/grassland mosaic 0.070
6 Cropland/woodland mosaic 0.150
7 Grassland 0.050
8 Shrubland 0.070
9 Mixed shrubland/grassland 0.060
10 Savanna 0.070
11 Deciduous broadleaf forest 0.400
12 Deciduous needleleaf forest 0.400
13 Evergreen broadleaf forest 0.500
14 Evergreen needleleaf forest 0.500
15 Mixed forest 0.400
16 Water bodies 0.000
17 Herbaceous wetland 0.030
18 Wooded wetland 0.100
19 Barren or sparsely vegetated 0.020
20 Herbaceous tundra 0.050
21 Wooded tundra 0.150
22 Mixed tundra 0.100
23 Bare ground tundra 0.030
24 Snow or ice 0.001

Table A2. Land cover table used for the MODIS-based maps
(Thøgersen, 2021).

ID Description Roughness
length (m)

0 Water 0.000
1 Evergreen needleleaf forest 1.000
2 Evergreen broadleaf forest 1.000
3 Deciduous needleleaf forest 1.000
4 Deciduous broadleaf forest 1.000
5 Mixed forests 1.000
6 Closed shrublands 0.050
7 Open shrublands 0.060
8 Woody savannas 0.050
9 Savannas 0.150
10 Grasslands 0.120
11 Permanent wetland 0.300
12 Croplands 0.150
13 Urban and built-up 0.800
14 Cropland/natural vegetation mosaic 0.140
15 Snow and ice 0.001
16 Barren or sparsely vegetated 0.010
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Table A3. Land cover table used for the GlobCover/ESA-CCI database (Thøgersen, 2021).

Roughness length (m)

ID Description Original Revised

0 No data 0.000 0.000
10 Cropland, rainfed 0.100 0.100
11 Cropland rainfed, Herbaceous cover 0.100 0.100
12 Cropland rainfed, tree, or shrub cover 0.200 0.200
20 Cropland, irrigated or post-flooding 0.070 0.050
30 Mosaic cropland (> 50 %)/natural vegetation (tree, shrub, herbaceous cover) (< 50 %) 0.070 0.200
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (> 50 %)/cropland (< 50 %) 0.500 0.300
50 Tree cover, broadleaved, evergreen, closed to open (> 15 %) 0.400 1.500
60 Tree cover, broadleaved, deciduous, closed to open (> 15 %) 0.400 1.000
61 Tree cover, broadleaved, deciduous, closed (> 40 %) 0.400 1.000
62 Tree cover, broadleaved, deciduous, open (15 %–40 %) 0.400 0.800
70 Tree cover, needleleaved, evergreen, closed to open (> 15 %) 0.500 1.500
71 Tree cover, needleleaved, evergreen, closed (> 40 %) 0.500 1.500
72 Tree cover, needleleaved, evergreen, open (15 %–40 %) 0.500 1.500
80 Tree cover, needleleaved, deciduous, closed to open (> 15 %) 0.500 1.200
81 Tree cover, needleleaved, deciduous, closed (> 40 %) 0.500 1.200
82 Tree cover, needleleaved, deciduous, open (15 %–40 %) 0.500 1.200
90 Tree cover, mixed leaf type (broadleaved and needleleaved) 0.400 1.500
100 Mosaic tree and shrub (> 50 %)/herbaceous cover (< 50 %) 0.400 0.200
110 Mosaic herbaceous cover (> 50 %)/tree and shrub (< 50 %) 0.070 0.100
120 Shrubland 0.070 0.100
121 Shrubland evergreen 0.070 0.200
122 Shrubland deciduous 0.070 0.200
130 Grassland 0.070 0.030
140 Lichens and mosses 0.050 0.010
150 Sparse vegetation (tree, shrub, herbaceous cover) (< 15 %) 0.070 0.050
151 Sparse tree (< 15 %) 0.070 0.050
152 Sparse shrub (< 15 %) 0.070 0.050
153 Sparse herbaceous cover (< 15 %) 0.070 0.050
160 Tree cover, flooded, fresh or brackish water 0.100 0.800
170 Tree cover, flooded, saline water 0.100 0.600
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 0.400 0.100
190 Urban areas 0.400 1.000
200 Bare areas 0.020 0.005
201 Consolidated bare areas 0.020 0.005
202 Unconsolidated bare areas 0.020 0.005
210 Water bodies 0.000 0.000
220 Permanent snow and ice 0.001 0.003
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Table A4. Land cover table used for the CORINE database (Thøgersen, 2021).

Roughness length (m)

ID Description Original Revised

0 No data 0.0000 0.000
48 No data 0.0000 0.000

255 No data 0.0000 0.000
1 Continuous urban fabric 0.5000 1.000
2 Discontinuous urban fabric 0.4000 1.000
3 Industrial or commercial units 0.7000 0.700
4 Road and rail networks and associated land 0.1000 0.200
5 Port areas 0.5000 0.500
6 Airports 0.0300 0.100
7 Mineral extraction sites 0.1000 0.150
8 Dump sites 0.1000 0.150
9 Construction sites 0.3000 0.300

10 Green urban areas 0.4000 0.800
11 Sport and leisure facilities 0.5000 0.300
12 Non-irrigated arable land 0.0560 0.100
13 Permanently irrigated land 0.0560 0.100
14 Rice fields 0.0184 0.100
15 Vineyards 0.3000 0.300
16 Fruit trees and berry plantations 0.4000 0.400
17 Olive groves 0.4000 0.400
18 Pastures 0.0360 0.100
19 Annual crops associated with permanent crops 0.0560 0.200
20 Complex cultivation patterns 0.0560 0.200
21 Land principally occupied by agriculture, with 0.0560 0.200

significant areas of natural vegetation
22 Agro-forestry areas 0.5000 0.500
23 Broad-leaved forest 0.5000 1.000
24 Coniferous forest 0.5000 1.200
25 Mixed forest 0.5000 1.100
26 Natural grasslands 0.0560 0.100
27 Moors and heathland 0.0600 0.120
28 Sclerophyllous vegetation 0.0560 0.120
29 Transitional woodland-shrub 0.4000 0.400
30 Beaches, dunes, sands 0.0100 0.010
31 Bare rocks 0.0500 0.050
32 Sparsely vegetated areas 0.2000 0.030
33 Burnt areas 0.2000 0.200
34 Glaciers and perpetual snow 0.2000 0.005
35 Inland marshes 0.0500 0.050
36 Peat bogs 0.0184 0.030
37 Salt marshes 0.0348 0.020
38 Salines 0.0300 0.005
39 Intertidal flats 0.0005 0.001
40 Water courses 0.0000 0.000
41 Water bodies 0.0000 0.000
42 Coastal lagoons 0.0000 0.000
43 Estuaries 0.0000 0.000
44 Sea and ocean 0.0000 0.000
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Table A5. Land cover table used for the Sentinel-based maps.

ID Description Roughness length
(m)

0 Non-forest (cropland, 0.03
grassland, other)

1 Forest ORA, Raupach or
SCADIS model

2 Water bodies 0.0

3 Urban/built-up 1.0

4 Open forest 0.4

Code availability. The numerical results are generated with pro-
prietary software.

Data availability. Sample data packages containing the Sen-
tinel forest data layers for selected sites are available at
https://help.emd.dk/mediawiki/index.php?title=Innowind_
Premium_Data_Layers (EMD international, 2021). The wind
measurements from the mast in South Africa (WM08) are
available at http://wasadata.csir.co.za/wasa1/WASAData (CSIR,
2021). Data from the two Mexican masts are available at https:
//aems.ineel.mx/aemdata/MemberPages/Download.aspx?lang=EN
(INEEL, 2021, registration required). GLCC data can be
downloaded at https://doi.org/10.5066/F7GB230D (USGS
EROS Archive, 1993). MODIS data can be downloaded at
https://doi.org/10.5067/MODIS/MCD12Q1.006 (Friedl and
Sulla-Menashe, 2019). ESA CCI data can be downloaded at
http://maps.elie.ucl.ac.be/CCI/viewer/ (ESA, 2021). CORINE
land cover data can be downloaded at https://land.copernicus.eu/
pan-european/corine-land-cover/clc2018?tab=download (Coperni-
cus Land Monitoring Service, 2021).
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