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e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.

'Here [m] = {1,2,..., m}.
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Element Distinctness

1|3 12 15'23 3@'42'42

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.
e Decide whether all a;'s are distinct.

e With linear space, we can simply sort the integers.

'Here [m] = {1,2,..., m}.
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Element Distinctness

42 1 3 |23 1 12'3@'42'15
Read Only

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.
e Decide whether all a;'s are distinct.

e Here we consider the low-space regime where S = O(polylog n).

'Here [m] = {1,2,..., m}.
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Element Distinctness

42 1 3 |23 1 12'3@'42'15
Read Only

INPUT: n positive integers a1, az, . . ., a, with a; € [m], m < poly(n)*.

Decide whether all a;'s are distinct.
e Here we consider the low-space regime where S = O(polylog n).
Brute force takes T = O(n?) time.

'Here [m] = {1,2,..., m}.
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Comparison Model

ke ek k¥ *¥ Fk *d ¥ *k

®

e No direct access to the INPUT a.

e Each query (i,/) returns one of “a; < a;", “a; = a;", "a;i > a;".
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Comparison Model

e e Fek ke ek ¥ % F*¥k

®

Theorem (Borodin et al., 1987) (Yao, 1988)

When space S = O(polylog n), Element Distinctness requires T > n
time in comparison model.

2—o(1)

More generally, TS > n?=°(1) (Yao, 1988).
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RAM model

42 3'23 1 12'3@'42'15

e Random access to read-only input. Allow arbitrary arithmetic and bit
operations.

e Surprisingly, in RAM model, one can bypass the n?=°(1) barrier!
(Beame, Clifford, and Machmouchi, 2013)
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RAM model

42 3'23 1 ] 12

3@'42'15

Theorem (Beame, Clifford, and Machmouchi, 2013)
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'®) time in RAM model.

More generally, T25 = O(n?).
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Random Oracle Model

Random bits |rawr@ |r@ |r® RO R(poly(n))

a—> | R —> R(a)
a € [poly(n)]

e Random access to poly(n) random bits which do not count into space
complexity.
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Our Results - 1

Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.
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Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.

e We construct a pseudorandom hash function family with O(polylog n)
seed length to replace the Random Oracle.
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Our Results - 1

Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.

e We construct a pseudorandom hash function family with O(polylog n)
seed length to replace the Random Oracle.

e In order to explain our result, let’s first review BCM algorithm.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].
Take a random oracle R : [m] — [n].

a€[m]l—> | R | —> R(a) € [n]
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].

Take a random oracle R : [m] — [n]. Y :
e Implicitly define the directed functional '

graph Gg with
o vertex set {1,2,...,n}
e one outgoing edge x — R(ax) for each
vertex.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].

Take a random oracle R : [m] — [n]. Y :
e Implicitly define the directed functional ' '

graph Gg with
e vertex set {1,2,...,n}
e one outgoing edge x — R(ax) for each
vertex.

e If a, = a,, x and y must point to the
same vertex in Gg.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'®) time in RAM model.

e Pick a random starting point s.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = 0] (n1'5) time in RAM model.

's/ﬂ’g//_\
e Pick a random starting point s. 7 / @

e The vertices reachable from s form a

p-shape. ——
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*®) time in RAM model.

e Pick a random starting point s.
e The vertices reachable from s form a
p-shape.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*®) time in RAM model.

e Perform Floyd's cycle finding from s.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Perform Floyd's cycle finding from s.

e |t takes O(log n) space and returns
x #y st R(ax) = R(ay).
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either

e a hash collision : a, # a, but
R(ax) = R(ay).
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either

e a hash collision : a, # a, but
R(ax) = R(ay).
e a "real” collision : a, = a,.
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Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either
e a hash collision : a, # a, but
R(ax) = R(ay).
e a “real” collision : a, = a,.
e For any “real” collision (x,y), it is
found iff x, y are reachable from s.
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]

Let s € [n] be a uniform random starting point. In functional graph Gg,

W.l.o.g. assume that there is only one pair of x < y, ax = ay.
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [ [#vertices reachable from s] < O(y/n)

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [ [#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [ [#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [ [#vertices reachable from s] < O(y/n)
R,s

. ,I;’r[u, v are reachable from s] > Q(1/n), Vu,v € [n]

,S

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.

e For the “real” collision, we find it with
probability Q(1/n).
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Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [ [#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.

e For the “real” collision, we find it with
probability Q(1/n).

o Repeat O(n) times. In total, O(n'?)
time.
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Our Results - 2

Our Main Lemma

There exsits a family {hseeq} of pseudorandom hash functions with seed

length O(log® nloglog n), such that functional graph G, : x = heeed(ax)
satisfies

e [ [ftvertices reachable from s] < O(v/n)

s,seed

e Pr [u,v are reachable from s] > Q(1/n), Yu,v € [n]

s,seed

W.l.o.g. assume that there is only one pair of x < y, ax = ay.
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Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.
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Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.

Our RAM Upper Bound

Set Intersection can be solved in O(polylog n) space and O(n'®) time.
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Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.

Our RAM Upper Bound

Set Intersection can be solved in O(polylog n) space and O(n'®) time.

RAM Lower bound (Patt-Shamir and Peleg, 1993) (Dinur, 2020) J

O(polylog n) space algorithms for Set Intersection require (n'®) time.
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Our Results - 4

Subset Sum: Given n integers ai, ap, ..., a, and target t, decide whether a
subset of them sum up to t.
Low-space Subset Sum (Bansal, Garg, Nederlof, and Vyas, 2017)

Assuming a Random Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.
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Our Results - 4

Subset Sum: Given n integers ai, as, ..., a, and target t, decide whether a
subset of them sum up to t.
Low-space Subset Sum (Bansal, Garg, Nederlof, and Vyas, 2017)

Assuming a Random Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.

Our Result

Assuming-a—Random-Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.

| N
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Constructing Pseudorandom Hash Function
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

R(as)
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

R(as)

First step, s — v = R(as).
For any x € [n],

1
SI?/g[R(as) =x| = o

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22



Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

%@@ ...... T

R(as) R(ay,)

Second step, vi — v» = R(ay,).
Given as # a,,, for any x € [n],

1
PriR(aw) = x| R(as) =] =
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

%%@ ...... T

R(as) R (av1 R (au3

Third step, v» — vz = R(ay,).
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

k-th step, vk_1 — vk = R(ay,_,)-
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.
e Standard Birthday Paradox.
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Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.
e Standard Birthday Paradox.
e Difficulty: \/n-wise independence.
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Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.
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Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.
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Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.
For any a € [m], letting i = min{i | gi(a) = 1},

h(a) 2 1;(a)
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Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.
For any a € [m], letting i = min{i | gi(a) = 1},

h(a) 2 1;(a)

e gi(a) acts as a “filter".
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Our Construction via lterative Restriction

Initially, the functional graph Gy is empty.
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Our Construction via lterative Restriction

In the 1st level, we select the vertices x with gi(ax) =1 (n/2 vertices in
expectation).
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Our Construction via lterative Restriction

"

We sample their outgoing edges x — ri(ax) using r.
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Our Construction via lterative Restriction

"

In the 2nd level, we select the remaining vertices x with g»(ax) =1 (n/4
vertices in expectation).
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Our Construction via lterative Restriction

We sample their outgoing edges x — r»(ax) using r».
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Our Construction via lterative Restriction

In the 3rd level, we select the remaining vertices x with gz(ax) =1 (n/8
vertices in expectation).
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Our Construction via lterative Restriction

We sample their outgoing edges x — r3(ax) using r3.
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Our Construction via lterative Restriction

We repeat this for £ = ©(log n) levels.
Each vertex x got its outgoing edge at level i* = min{i | gi(ax) = 1}.
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Intuition for ©(log n)-wise independence

== edges before level i

/ \\
N
VAN

\
|
1

e Remaining vertex are those with no blue outgoing edge.
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Intuition for ©(log n)-wise independence

== edges before level i

/N

N\

° == new edges in level i

.<—.,_.A/.

A :/

e Remaining vertex are those with no blue outgoing edge.

e Each remaining vertex x has red outgoing edge w.p. % (gi(ax) =1).
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Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
® \ . 11
AVANEVA

®— o
e Remaining vertex are those with no blue outgoing edge.

e Each remaining vertex x has red outgoing edge w.p. % (gi(ax) =1).
e W.h.p. a path in this graph contains O(log n) many red edges.
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Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
° \ . 11
ANV A

¢ Roughly speaking, this is why we need ©(log n)-wise independence
per level.
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Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
° \ . 11
AVANEVA

e o

¢ Roughly speaking, this is why we need ©(log n)-wise independence
per level.

e The actual proof is more complicated (40 pages).
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Open Problems
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Open Problems

e Time-space Tradeoffs
In this work, we only solved the case when S = O(polylog n). Can we
extend it to the full tradeoff?

e Shorter Seed Length
In this work, our seed length is O(Iog3 nloglog n). Can this be
improved?

e Shorter Paper Length
Can we obtain a simpler analysis?
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Questions?

Thank you!
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