Truly Low-Space Element Distinctness
and Subset Sum

via Pseudorandom Hash Functions

Lijie Chen!, Ce Jin!, R. Ryan Williams®, and Hongxun Wu?

IMIT
2 Tsinghua University

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Element Distinctness

Hongxun Wu (Tsinghua) Element Distinctness

Element Distinctness

42'8 |23| 1 12'3@'42'15

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.

'Here [m] = {1,2,..., m}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Element Distinctness

42'3 |23| 1 12'3@'42'15

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.

e Decide whether all a;'s are distinct.

'Here [m] = {1,2,..., m}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Element Distinctness

1|3 12 15'23 3@'42'42

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.
e Decide whether all a;'s are distinct.

e With linear space, we can simply sort the integers.

'Here [m] = {1,2,..., m}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Element Distinctness

42 1 3 |23 1 12'3@'42'15
Read Only

e INPUT: n positive integers aj, a, ..., a, with a; € [m], m < poly(n)*.
e Decide whether all a;'s are distinct.

e Here we consider the low-space regime where S = O(polylog n).

'Here [m] = {1,2,..., m}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Element Distinctness

42 1 3 |23 1 12'3@'42'15
Read Only

INPUT: n positive integers a1, az, . . ., a, with a; € [m], m < poly(n)*.

Decide whether all a;'s are distinct.
e Here we consider the low-space regime where S = O(polylog n).
Brute force takes T = O(n?) time.

'Here [m] = {1,2,..., m}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Comparison Model

ke ek k¥ *¥ Fk *d ¥ *k

®

e No direct access to the INPUT a.

e Each query (i,/) returns one of “a; < a;", “a; = a;", "a;i > a;".

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Comparison Model

e e Fek ke ek ¥ % F*¥k

®

Theorem (Borodin et al., 1987) (Yao, 1988)

When space S = O(polylog n), Element Distinctness requires T > n
time in comparison model.

2—o(1)

More generally, TS > n?=°(1) (Yao, 1988).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

RAM model

42 3'23 1 12'3@'42'15

e Random access to read-only input. Allow arbitrary arithmetic and bit
operations.

e Surprisingly, in RAM model, one can bypass the n?=°(1) barrier!
(Beame, Clifford, and Machmouchi, 2013)

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

RAM model

42 3'23 1] 12

3@'42'15

Theorem (Beame, Clifford, and Machmouchi, 2013)
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'®) time in RAM model.

More generally, T25 = O(n?).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Random Oracle Model

Random bits |rawr@ |r@ |r® RO R(poly(n))

a—> | R —> R(a)
a € [poly(n)]

e Random access to poly(n) random bits which do not count into space
complexity.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Results - 1

Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Results - 1

Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.

e We construct a pseudorandom hash function family with O(polylog n)
seed length to replace the Random Oracle.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Results - 1

Our Result: Element Distinctness

Assuming-a—Random-Oracle, Elemgnt Distinctness can be solved in
S = O(polylog n) space and T = O (n*®) time in RAM model.

e We construct a pseudorandom hash function family with O(polylog n)
seed length to replace the Random Oracle.

e In order to explain our result, let’s first review BCM algorithm.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].
Take a random oracle R : [m] — [n].

a€[m]l—> | R | —> R(a) € [n]

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].

Take a random oracle R : [m] — [n]. Y :
e Implicitly define the directed functional '

graph Gg with
o vertex set {1,2,...,n}
e one outgoing edge x — R(ax) for each
vertex.

Element Distinctness

Hongxun Wu (Tsinghua)

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e INPUT: a1, a,...,a, € [m].

Take a random oracle R : [m] — [n]. Y :
e Implicitly define the directed functional ' '

graph Gg with
e vertex set {1,2,...,n}
e one outgoing edge x — R(ax) for each
vertex.

e If a, = a,, x and y must point to the
same vertex in Gg.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'®) time in RAM model.

e Pick a random starting point s.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = 0] (n1'5) time in RAM model.

's/ﬂ’g//_\
e Pick a random starting point s. 7 / @

e The vertices reachable from s form a

p-shape. ——

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*®) time in RAM model.

e Pick a random starting point s.
e The vertices reachable from s form a
p-shape.

Element Distinctness

Hongxun Wu (Tsinghua)

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*®) time in RAM model.

e Perform Floyd's cycle finding from s.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]
Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Perform Floyd's cycle finding from s.

e |t takes O(log n) space and returns
x #y st R(ax) = R(ay).

Element Distinctness

Hongxun Wu (Tsinghua)

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either

e a hash collision : a, # a, but
R(ax) = R(ay).

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either

e a hash collision : a, # a, but
R(ax) = R(ay).
e a "real” collision : a, = a,.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 1

Pollard’s p type algorithm [BCM13]

Assuming a Random Oracle, Element Distinctness can be solved in
S = O(polylog n) space and T = O (n'*) time in RAM model.

e Such (x, y) is either
e a hash collision : a, # a, but
R(ax) = R(ay).
e a “real” collision : a, = a,.
e For any “real” collision (x,y), it is
found iff x, y are reachable from s.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]

Let s € [n] be a uniform random starting point. In functional graph Gg,

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [[#vertices reachable from s] < O(y/n)

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [[#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [[#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,

e [[#vertices reachable from s] < O(y/n)
R,s

. ,I;’r[u, v are reachable from s] > Q(1/n), Vu,v € [n]

,S

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.

e For the “real” collision, we find it with
probability Q(1/n).

Hongxun Wu (Tsinghua) Element Distinctness

Sketch of BCM - Part 2

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [[#vertices reachable from s] < O(y/n)
R,s

e Prlu, v are reachable from s] > Q(1/n), Vu,v € [n]

R,s

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

e So each cycle-finding takes O(+/n)
time.

e For the “real” collision, we find it with
probability Q(1/n).

o Repeat O(n) times. In total, O(n'?)
time.

Hongxun Wu (Tsinghua) Element Distinctness

Our Results - 2

Our Main Lemma

There exsits a family {hseeq} of pseudorandom hash functions with seed

length O(log® nloglog n), such that functional graph G, : x = heeed(ax)
satisfies

e [[ftvertices reachable from s] < O(v/n)

s,seed

e Pr [u,v are reachable from s] > Q(1/n), Yu,v € [n]

s,seed

W.l.o.g. assume that there is only one pair of x < y, ax = ay.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 10 / 22

/ 22

Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 11 /22

Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.

Our RAM Upper Bound

Set Intersection can be solved in O(polylog n) space and O(n'®) time.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 11 /22

Out Results - 3

Set Intersection: Given two integer sets A, B, print all the elements in
AN B in any order. Each element is allowed to be printed multiple times.

Our RAM Upper Bound

Set Intersection can be solved in O(polylog n) space and O(n'®) time.

RAM Lower bound (Patt-Shamir and Peleg, 1993) (Dinur, 2020) J

O(polylog n) space algorithms for Set Intersection require (n'®) time.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 11 /22

Our Results - 4

Subset Sum: Given n integers ai, ap, ..., a, and target t, decide whether a
subset of them sum up to t.
Low-space Subset Sum (Bansal, Garg, Nederlof, and Vyas, 2017)

Assuming a Random Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 12 /22

/ 22

Our Results - 4

Subset Sum: Given n integers ai, as, ..., a, and target t, decide whether a
subset of them sum up to t.
Low-space Subset Sum (Bansal, Garg, Nederlof, and Vyas, 2017)

Assuming a Random Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.

Our Result

Assuming-a—Random-Oracle, Subset Sum and Knapsack can be solved by
a Monte Carlo algorithm in 20877 time, with O(poly(n)) space.

| N

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 12 / 22

Constructing Pseudorandom Hash Function

Hongxun Wu (Tsinghua) Element Distinctness

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

R(as)

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

R(as)

First step, s — v = R(as).
For any x € [n],

1
SI?/g[R(as) =x| = o

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

%@@ T

R(as) R(ay,)

Second step, vi — v» = R(ay,).
Given as # a,,, for any x € [n],

1
PriR(aw) = x| R(as) =] =

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

%%@ T

R(as) R (av1 R (au3

Third step, v» — vz = R(ay,).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

k-th step, vk_1 — vk = R(ay,_,)-

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.
e Standard Birthday Paradox.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Analysis for Random Oracle

Birthday Paradox Type Properties [BCM13]
Let s € [n] be a uniform random starting point. In functional graph Gg,
e [E [#tvertices reachable from s] < O(y/n)

R,s

e o - B

R(as) R (av1 R (av3 R (avk 2 R (auk .

o After opening k — 1 boxes, the k-th one still has to be random.
e Standard Birthday Paradox.
e Difficulty: \/n-wise independence.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 14 / 22

Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Hongxun Wu (Tsinghua) Element Distinctness

January 9, 2022

Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.

Hongxun Wu (Tsinghua)

Element Distinctness

January 9, 2022

Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.
For any a € [m], letting i = min{i | gi(a) = 1},

h(a) 2 1;(a)

Hongxun Wu (Tsinghua)

Element Distinctness January 9, 2022

Our Construction via lterative Restriction

Our Construction of hash function h : [m] — [n]

Let £ = ©(log n). Our construction has ¢ independent levels.
For the i-th level, we sample two hash functions r;, g;.

Recall the inputs are a,...,a, € [m].
ri : [m] — [n] and g; : [m] — {0, 1} are ©(log n)-wise independent.
For any a € [m], letting i = min{i | gi(a) = 1},

h(a) 2 1;(a)

e gi(a) acts as a “filter".

Hongxun Wu (Tsinghua)

Element Distinctness January 9, 2022

Our Construction via lterative Restriction

Initially, the functional graph Gy is empty.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

In the 1st level, we select the vertices x with gi(ax) =1 (n/2 vertices in
expectation).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

"

We sample their outgoing edges x — ri(ax) using r.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

"

In the 2nd level, we select the remaining vertices x with g»(ax) =1 (n/4
vertices in expectation).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

We sample their outgoing edges x — r»(ax) using r».

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

In the 3rd level, we select the remaining vertices x with gz(ax) =1 (n/8
vertices in expectation).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

We sample their outgoing edges x — r3(ax) using r3.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Our Construction via lterative Restriction

We repeat this for £ = ©(log n) levels.
Each vertex x got its outgoing edge at level i* = min{i | gi(ax) = 1}.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 16 /

Intuition for ©(log n)-wise independence

== edges before level i

/ \\
N
VAN

\
|
1

e Remaining vertex are those with no blue outgoing edge.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Intuition for ©(log n)-wise independence

== edges before level i

/N

N\

° == new edges in level i

.<—.,_.A/.

A :/

e Remaining vertex are those with no blue outgoing edge.

e Each remaining vertex x has red outgoing edge w.p. % (gi(ax) =1).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
® \ . 11
AVANEVA

®— o
e Remaining vertex are those with no blue outgoing edge.

e Each remaining vertex x has red outgoing edge w.p. % (gi(ax) =1).
e W.h.p. a path in this graph contains O(log n) many red edges.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 17 / 22

Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
° \ . 11
ANV A

¢ Roughly speaking, this is why we need ©(log n)-wise independence
per level.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Intuition for ©(log n)-wise independence

04 : \\. \0 == new edges in level i
° \ . 11
AVANEVA

e o

¢ Roughly speaking, this is why we need ©(log n)-wise independence
per level.

e The actual proof is more complicated (40 pages).

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022 17 / 22

Open Problems

Hongxun Wu (Tsinghua) Element Distinctness

Open Problems

e Time-space Tradeoffs
In this work, we only solved the case when S = O(polylog n). Can we
extend it to the full tradeoff?

e Shorter Seed Length
In this work, our seed length is O(Iog3 nloglog n). Can this be
improved?

e Shorter Paper Length
Can we obtain a simpler analysis?

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Questions?

Thank you!

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Reference |

B

B

Miklos Ajtai and Avi Wigderson.
Deterministic simulation of probabilistic constant depth circuits.
In 26th Annual Symposium on Foundations of Computer Science (sfcs

1985), pages 11-19. IEEE, 1985.

Paul Beame, Raphaél Clifford, and Widad Machmouchi.

Element distinctness, frequency moments, and sliding windows.

In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 290-299. IEEE, 2013.

Allan Borodin, Faith Fich, F Meyer Auf Der Heide, Eli Upfal, and Avi
Wigderson.

A time-space tradeoff for element distinctness.

SIAM Journal on Computing, 16(1):97-99, 1987.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

Reference |l

[§ Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas.
Faster space-efficient algorithms for subset sum, k-sum, and related
problems.

SIAM Journal on Computing, 47(5):1755-1777, 2018.

[{ Andrew Chi-Chih Yao.
Near-optimal time-space tradeoff for element distinctness.
In FOCS, pages 91-97, 1988.

Hongxun Wu (Tsinghua) Element Distinctness January 9, 2022

	Element Distinctness
	Constructing Pseudorandom Hash Function
	Open Problems

