
P4P: Provider Portal for (P2P) Applications
Haiyong Xie

Y. Richard Yang
Avi Silberschatz

Yale University

Arvind Krishnamurthy
University of Washington

Laird Popkin
Pando Networks, Inc

ABSTRACT
The emergence of peer-to-peer (P2P) is posing signifi-
cant new challenges to achieving efficient and fair uti-
lization of network resources. In particular, without the
ability to explicitly communicate with network providers,
P2P applications depend mainly on inefficient network
inference and network-oblivious peering, leading to po-
tential inefficiencies for both P2P applications and net-
work providers. To address the issues, we propose a sim-
ple, light-weight framework called P4P to allow more
effective cooperative traffic control between applications
and network providers. Our evaluations show clear per-
formance benefits of the framework. The formation of
the P4P working group consisting of major ISPs and P2P
developers will further develop the framework.

1. INTRODUCTION
A basic problem in a network architecture is how net-

work applications (i.e., network resource consumers) ef-
ficiently utilize the network resources owned by network
providers. We refer to this problem as the network effi-
cient traffic control problem, or traffic control for short.
This problem is particularly important as it can have sig-
nificant impacts on application performance, network ef-
ficiency and economics, and overall system complexity.

In the current Internet, for traditional point-to-point
applications, efficient traffic control is largely determined
by network providers alone: applications specify only
the destinations of traffic; it is up to the network to con-
trol both the paths taken by the traffic and the transmis-
sion rates (through TCP feedback) on the chosen paths.
Network providers can therefore improve efficiency uni-
laterally according to their objectives. Specifically, providers
can use optimal traffic engineering to determine efficient
routing and satisfy economical objectives such as imple-
menting valley-free routing.

However, the recent emergence of P2P applications is
posing significant challenges to efficient traffic control,
with neither the network nor the P2P system having com-
plete leverage over system efficiency.

First, for intradomain, the network-oblivious peering
strategy of many P2P applications may cause traffic to
scatter and unnecessarily traverse multiple links within a
provider’s network, leading to much higher load on some
backbone links and performance degradation to other ap-
plications (see,e.g., [8, 10, 18])). Second, for interdo-
main, network-oblivious peering may cause a P2P ap-
plication in a non-tier-1 network provider to relay a sub-
stantial amount of traffic between its providers [13]. This
may lead to serious disruption of ISP economics (see,
e.g., [4, 16]). Even for tier-1 ISPs who do not make pay-

ments to network providers, P2P traffic may cause traffic
imbalance between its peers, leading to potential viola-
tion of peering agreements. Third, P2P’s dynamic traffic
distribution patterns do not necessarily enjoy a synergis-
tic coexistence with network traffic engineering [7, 12] –
network providers go to great lengths to estimate traffic
matrices and determine routing based on them, but all of
this effort could be negated if P2P applications modify
their download behavior to adapt to changes in the net-
work, thereby resulting in oscillations in traffic matrices
and sub-optimal routing decisions.

In response to these kinds of issues, network providers
have considered multiple new traffic control techniques.
Unfortunately, none of them appear to be fully satisfac-
tory – without P2P cooperation, the new techniques are
either ineffective or degrade P2P performance and often
times are too complex. One approach, for example, is to
install P2P caching devices to cut down bandwidth con-
sumed by P2P applications (e.g., [5, 6, 14, 15]). How-
ever, deploying these caches can be expensive for large
networks. To be effective, the caches need to recognize
P2P applications, limiting their generality and applica-
bility to new or encrypted protocols. Furthermore, there
are complex legal issues involved in caching. Another
technique is to deploy traffic shaping devices to rate limit
P2P (e.g., [1, 2]). These devices rely on deep packet in-
spection or other P2P traffic identification schemes. How-
ever, different P2P protocols use different control mes-
sages, and many P2P protocols use encryption and dy-
namic ports to avoid being identified. It remains unclear
whether in the long run traffic shaping can effectively
control the bandwidth consumption of P2P applications
and reduce provider’s operational costs. Furthermore,
unilateral rate limiting by network providers may sub-
stantially degrade P2P performance and be at odds with
consumer’s needs.

With network provider solution being ineffective, there
are evidences that P2P applications trying to utilize peer-
ing flexibility to improve network efficiency. For ex-
ample, several popular P2P applications such as Joost
and Kontiki have tried to localize peering using the au-
tonomous systems of peers. However, there are funda-
mental limits on what P2P can achieve alone: to improve
efficiency, P2P applications will have to rely on infer-
ring various types of network information such as topol-
ogy, congestion status, cost, and in particular ISP poli-
cies. However, reverse engineering of such information
is challenging if not impossible.

Overall, the P2P paradigm exposes a fundamental is-
sue in traditional traffic control: emerging applications
can have tremendous flexibility in how data is commu-
nicated, and thus, they should be an integral part of net-

1



work efficient control. However, if end hosts are to par-
ticipate in network resource optimizations, then the net-
works cannot continue to be opaque but need to provide a
communication channel for collaborative traffic control.

In this position paper, we present a simple, flexible
framework called P4P. Here P4P stands for provider por-
tal for (P2P) applications. The P4P framework provides
interfaces for applications to communicate with network
resource providers regarding information such as resource
provider capabilities, network info/policy, and virtual cost.
The interfaces preserve provider privacy and allow net-
work providers and P2P applications to jointly optimize
their respective performance.

At the core of this framework is thevirtual cost inter-
face through which ISPs can communicate to P2P appli-
cations the current “peering costs” on its intradomain and
interdomain links.1 These costs reflect ISPs’ preferences
regarding P2P connectivity, and can be used to capture
a number of interesting ISP metrics, such as peak back-
bone utilization, preferred interdomain links, and so on.
The P2P systems use these costs to shape their connec-
tivity and choose ISP-friendly communication patterns if
possible. The interface provides a simple and clean de-
composition between ISP and application operations. as
a result, neither do the ISPs need to know the specifics
of applications, nor do applications need to know the
specifics of ISPs or other applications sharing network
resources on the same ISP. In particular, the interface
enables us to apply the primal-dual decomposition tech-
nique to derive virtual costs. Thereby, the principled in-
terface design leads to extensibility, scalability and effi-
ciency.

A Distributed Computing Industry Association (DCIA)
working group, P4PWG, was formed in July 2007 to pro-
vide a forum for P2P providers, ISPs and researchers to
work together to optimize efficiency and performance.
The P4P Working Group has conducted a large-scale pi-
lot study utilizing P4P. The working group consists of
representatives from over 70 P2P providers, ISPs and re-
searchers. Although there are many outstanding issues,
our current evaluations show that P4P can improve per-
formance for both P2P and ISPs. Thus, it is a framework
that should be more thoroughly explored. In this position
paper, we present the motivation and design perspective
of P4P. There are other submissions to this workshop
addressing other perspectives (e.g., implementation) of
P4P.

2. THE P4P FRAMEWORK
The P4P framework is a flexible and light-weight frame-

work that allows network providers to explicitly provide
more information, guidelines and capabilities to emerg-
ing applications, such as P2P content distribution.

2.1 Motivation
We now motivate the need for a P4P portal to enable

explicit communications between P2P and network providers.
First, P2P systems have tremendous flexibility in shap-

1These costs are not to be confused with payments made by
ISP to its interdomain peers. Instead, they reflect the abstract
costs that the ISP associates with application-level peering over
these links.

ing their traffic flow. Given that a client interested in a
piece of data can download it from any one of the multi-
ple sites storing the data, there are clear benefits to be had
in intelligently choosing a data source (or, alternately,
choosing a peer in a tit-for-tat system). This flexibil-
ity fundamentally changes the traditional network traffic
control problem, which is typically solved in the context
of a given traffic demand matrix. In the updated setting,
there are multiple ways of satisfying the data demands
of an application, each resulting in a different traffic de-
mand matrix, and an efficient solution would require the
explicit involvement of the P2P application.

Second, the current network architecture allows only
for limited, implicit communications between network
providers and applications. In this setting, if a P2P ap-
plication seeks to exploit the flexibility in controlling its
data transfers to improve efficiency, it will have to probe
the network to reverse engineer information such as topol-
ogy, status and policies. However, this is rather challeng-
ing in spite of significant progress in network measure-
ment techniques. For one thing, it is clearly redundant
and wasteful to have each application perform probing.
Even if this issue is addressed by a coordinated service
for topology inference (e.g., [9]) to reduce the overhead,
the fundamental hurdle is the ability to perform the infer-
ence in an accurate manner. New technologies, such as
MPLS, and routers that do not respond to measurement
probes make it difficult to infer network characteristics.
More importantly, available bandwidth and loss-rate es-
timation from end hosts are difficult because their views
are obscured by last-mile bottlenecks; it is difficult for
an end host to identify which links are under-utilized or
over-utilized. Furthermore, cost and policy information
are difficult, if not impossible, to reverse engineer. For
example, it is difficult for P2P to determine which peers
are accessible through lightly-loaded intradomain links
and/or lower-cost interdomain links (where the cost takes
into account factors such as inter-domain policies, traffic
balance ratio between peering providers, and 95% per-
centile based billing).

In summary, for traditional applications, routing is made
by network providers using a predictable traffic demand
matrix with full network knowledge. With high levels of
P2P traffic, the traffic control problem needs to be jointly
solved by network providers and P2P applications.

2.2 Design Rationale
We consider the following design requirements.

• Better P2P performance. While some P2P systems
exploit locality and network status to have its clients
refine their peerings, the performance improvement is
limited due to factors such as limited network informa-
tion and slow convergence that is further exacerbated
by churn [11]. Using more accurate network status
information, P4P should be able to identify more effi-
cient connections.

• More efficient network resource usage. By enabling
explicit communication between P2P and the network,
P4P can enable applications to use network status in-
formation to reduce backbone traffic and lower opera-
tion costs.

• Both application and ISP control. It should not be the

2



case that one side dictates the behavior of the side. The
design objective is to serve as communication channel
for applications to make more informed decisions.

• Scalability. P4P should support a large number of
users and P2P networks in very dynamic settings; any
proposed information exchange and optimization tech-
niques should be computationally inexpensive. It may
not be scalable if each peer joining is handled by an
ISP.

• Privacy preservation. P4P should address a major in-
centive concern of network providers who may want
to preserve privacy when releasing their network in-
formation. Individual peers do not want to be tracked
by ISPs.

• Extensibility. There are many types of P2P applica-
tions with varying features. For instance, P2P sys-
tems for file sharing and streaming might have differ-
ent needs, such as P2P streaming having more strin-
gent real-time constraints than file sharing. Also, some
applications use trackers (referred to asappTracker
hereafter) to bootstrap and guide peer selection, while
others do not; in addition, peers may exchange infor-
mation locally through gossip messages. P4P should
be flexible to handle a wide range of P2P applications
with varying requirements and features.

• Fault tolerance. Failure of P4P components should
lead to only inefficiency, instead of system failure.

• Incremental deploymentability. We do not target a
clean-slate re-design. The P4P framework should be
incrementally deployable, one network provider at a
time, one P2P application at a time.

• Provider contribution for P2P acceleration. A network
provider may have many capabilities which it can pro-
vide to accelerate content distribution for P2P and at
the same time increase its revenue. Examples include
class of service, or quality of service that a P2P content
provider can request. Also, a provider may contribute
fixed servers as high-capacity seeds or caches, and this
information should percolate to the P2P application.

• Open standard. Any ISP, provider, application can eas-
ily implement it.

2.3 Design Overview
The P4P framework consists of a data-plane compo-

nent and a control-plane component.
In the data plane, P4P allows applications to mark im-

portance of traffic. Also, routers on the data plane can
give fine-grained feedback to P2P and enable more ef-
ficient usage of network resources. Specifically, routers
can mark the ECN bits of TCP packets (or a field in a
P2P header), or explicitly designate flow rates; end hosts
then adjust their flow rates accordingly. For instance,
a multihomed network can optimize financial cost and
improve performance through virtual capacity computed
based on 95-percentiles [3]. When the virtual capac-
ity is approached, routers mark TCP packets and end
hosts reduce their flow rates accordingly; thus the net-
work provider can both optimize its cost and performance
and allocate more bandwidth to P2P flows. We empha-
size that the data plane component is optional and can be
incrementally deployed.

In the control plane, P4P introducesiTrackers to pro-
vide portals for P2P to communicate with network providers.
The introduction ofiTrackers allows P4P to divide traffic
control responsibilities between P2P and providers, and
also makes P4P incrementally deployable and extensible.

Specifically, each network resource provider, be it a
conventional commercial network provider (e.g., AT&T),
a university campus network, or a virtual service provider
(e.g., Akamai), maintains aniTracker for its network. A
P2P client obtains the IP address of theiTracker of its lo-
cal provider through DNS query (with a new DNS record
typeP4P) or another service such as WHOIS. Standard
techniques can be applied to allow for multipleiTrackers
in a given domain, especially for fault tolerance and scal-
ability. An iTracker provides a portal for three kinds of
information regarding the network provider: network ca-
pabilities; network status/topology; and provider guide-
lines/policies.

3. THE P4P CONTROL PLANE
In this position paper, we focus on the control plane

of the P4P framework, as this is an area that IETF effort
can clearly improve interoperability. Figure 1 shows the
potential entities in the P4P framework:iTrackers owned
by individual network providers, appTrackers in P2P sys-
tems, and P2P clients (or peers for short). Note that
there may exist interactions between ISPs andiTrack-
ers as well as interactions among iTrackers; however,
they are not shown in the figure. Note also that not all
entities might interact in a given setting. For example,
trackerless systems do not have appTrackers. P4P does
not dictate the exact information flow, but rather provides
only a common messaging framework to ensure extensi-
bility. A specification of current P4P interfaces in WSDL
is shared within P4P Working Group.

appTracker

peer
iTracker

capability

policy

info

virtual
cost

Figure 1: iTracker interfaces and information flow (only iTracker
and P2P are shown).

3.1 iTracker interfaces and functions
The key component of the P4P framework is iTrackers.

iTrackers provide three interfaces that others can query.
Theinfo interface allows others, typically peers in-

side the provider network, to obtain network topology
and status. Specifically, given a query for an IP address
inside the network, the interface maps the IP address to
a (ASID, PID, LOC) tuple, whereASID is the ID
of the network provider (e.g., its AS number),PID is an
opaque ID assigned to a group of network nodes, and
LOC is a virtual or geographical coordinate of the node.
Note that the opaquePID is used to preserve provider
privacy at a coarse grain (e.g., a network provider can
assign twoPIDs to nodes at the same point of pres-
ence or PoP). Note also thatLOC can be used to com-
pute network proximity, which can be helpful in choos-

3



ing peers. When sending aninfo query, a peer may
optionally include its swarm ID (e.g., info hash of a tor-
rent). TheiTracker may keep track of peers participating
in a swarm.

Thepolicy interface allows others, for example peers
or appTrackers, to obtain policies and guidelines of the
network. Policies specify how a network provider would
like its networks to be utilized at a high level, typically
regardless of P2P applications; while guidelines are spe-
cific suggestions for P2P to use the network resources.
To name a few examples of network policies: (1) traffic
ratio balance policy, defining the ratio between inbound
and outbound traffic volumes, for interdomain peering
links; (2) coarse-grain time-of-day link usage policy, defin-
ing the desired usage pattern of specific links (e.g., avoid
using links that are congested during peak times); and
(3) fine-grain link usage policy. An example of network
guidelines is that a network provider computes peering
relationships for clusters of peers (e.g., clustered byPID).
Thepolicy interface can also return a set of normal-
ized inter-PID costs, which indicate costs incurred to the
provider when peers in two PIDs communicate.

The virtual cost interface (orcost for short)
allows others, for example peers or appTrackers, to query
virtual network topology and the costs of communica-
tions through an ISP’s network. In the next section, we
will give more detail on this interface.

Thecapability interface allows others, for exam-
ple peers or content providers (through appTrackers), to
request network providers’ capabilities. For example, a
network provider may provide different classes of ser-
vices or on-demand servers in its network. Then an app-
Tracker may askiTrackers in popular domains to provide
such servers and then use them as peers to accelerate P2P
content distribution.

One example of network providers’ capabilities is P2P
cache servers. Cache discovery is a challenge. The cache
providers can inspect the traffic to detect P2P traffic to
cache, requiring them to be inline, which is undesirable
from the perspective of some ISPs. Alternatively, cache
vendors provide proprietary cache discovery protocols,
requiring each P2P application to implement and use mul-
tiple, proprietary cache discovery protocols, which is in-
efficient. A design goal of thecapability interface
is that standardized P2P cache discovery is more effi-
cient than multiple proprietary protocols. Specifically,
if cache discovery is implemented as a part of the P4P
communications (i.e., cache locations are a part of the
ISPs’ policies and network guidance), then all P2P ap-
plications that support P4P will work with all P2P caches
that support P4P.

A network provider may choose to implement a subset
of the interfaces. The richness of information conveyed
is also determined by the network provider. Note that a
network provider may also enforce some access control
to the interfaces to preserve security and privacy. For ex-
ample, it may restrict access to only trusted appTrackers.

3.2 Examples
Now we give two examples to illustrate how theiTracker

interfaces are utilized.
Figure 2 shows an example P2P application with an

appTracker using thepolicy and/or thevirtual cost
interfaces to request network policy and/or virtual costs.
In the example, a P2P swarm spans two network providers
A andB. Each network provider runs aniTracker for its
own network. Peera andb first register with the app-
Tracker. The appTracker queriesiTracker A through the
interfaces, and then makes peer selection fora andb con-
sidering both application requirements andiTracker in-
formation. Note that as a variant, assume a trackerless
system, then peers will query the interfaces and make
local decisions to select its peers. For presentation sim-
plicity, from now on, we focus on tracker-based system.

Figure 2: An example of P2P obtaining network policy and cost
from portal iTrackers.

Figure 3 shows another example of using P4P. It shows
how to request network capabilities through thecapability
interface. Specifically, the appTracker sends a request to
iTracker B asking the network provider to allocate fixed,
high-capacity servers to aid in distributing content. The
iTracker allocates a server in its network and returns its
address to the appTracker. The appTracker will then in-
clude the server in returned peer sets for those peers in
B.

Figure 3: An example of P2P accessing network capability through
iTrackers.

4. DECOMPOSITION THROUGH VIRTUAL

COST INTERFACE
To support thevirtual cost interface, theiTracker

of a network should be connected to the routing system
of the network provider. TheiTracker first constructs an
extended network topologyG = (V,E) (referred to as vir-
tual topology). This extended topology includes not only
the intradomain topology but also one external-domain
node for each neighboring domain of the network. Each
external-domain node is connected to the internal nodes
that correspond to the exit-points by interdomain peering
links.

TheiTracker maps the internal topologyG to an exter-
nal topologyGk = (Vk,Ek) for swarmk. The iTracker
assigns each node inGk a unique PID. This mapping

4



may be different for different swarms, but we anticipate
that in most cases they will be the same. The objective
of the mapping is to preserve ISP privacy, and this can
be achieved by scrambling the topologyG. A constraint
is that the nodes representing the external-domain nodes
should be labeled with the autonomous system numbers
(ASN).

With virtual topology, a simple peering strategy is lo-
cal peering. Specifically, when a peer joins a swarm, the
appTracker (or the peer in a trackerless system) queries
the iTracker. The iTracker can easily locate the joining
peer within the ISP’s topology using the peer’s IP ad-
dress. It returns the PID of the peer. We refer to peers at
PID i as PID-i peers. For simply local peering, when se-
lecting peers of the joining peer, priority should be given
to peers with the same PID at the same network. This
way, the traffic load across PIDs is minimized. In ad-
dition, transport layer connections over low-latency net-
work paths would be more efficient and are therefore de-
sirable from the client’s perspective.

A major challenge in designing an interface between
iTrackers and P2P is that the interface should naturally
decompose the overall task into a simple task for the
iTracker and one for each swarm. By doing so, we are
able to achieve an extensible, scalable and efficient de-
sign. In such a design, aniTracker deals with aggregated
P2P traffic, instead of working on the specific detail of
a particular P2P application; P2P deals with simple ISP
feedback without the need to know the detail of ISP ob-
jectives.

A particular novelty of our interface design is that we
decouple the algorithms of ISP and P2P using the princi-
ple of primal-dual decomposition. This principled inter-
face design leads to a desirable interface. For example,
only minor modifications are necessary for computing
virtual costs for many different ISP objectives. Please
refer to [17] for technical details.

5. EVALUATIONS
We have collaborated with members of P4P Working

Group to conduct large-scale Internet experiments. In
particular, Verizon provided us with its network topology
and Telefonica provided its Peru network topology, and
Pando Networks integrated its P2P system with our P4P
framework. Pando Networks set up two parallel swarms,
each of which had approximately the same number of
clients with similar network and geographical distribu-
tion. Clients in both swarms shared a 20MB video file.
One of the two swarms was P4P-enabled, the other used
BitTorrent-like peering.

We observe that the download completion time im-
proves approximately 20% on average. The improve-
ment of download rates for data transfers among Fiber-
to-Home (FTTH) clients is 205% on average, and some
FTTH clients see as high as 600% improvement.

We also observe that the average number of backbone
links in Verizon network used by data delivery dropped
from 5.5 to 0.89 on average. In addition, the total exter-
nal (peering) link load dropped by 70% (outbound) and
53% (inbound), and the total internal backbone link load
dropped by 71% (after traffic normalization).

6. CONCLUSIONS

We presented P4P, a simple and flexible framework
to enable explicit cooperation between P2P and network
providers. It addresses the following issues: (1) explicit
integration of network servers or caches to reduce net-
work load (thecapabilities interface); (2) informa-
tion from ISPs to applications to signal network band-
width constraints and policies to optimize P2P network
topology (thevirtual cost interface); (3) enabling
applications to signal their bandwidth and priority to net-
works (thecapabilities interface and the data plane).

The P4P Working Group, led by Doug Pasko (Veri-
zon; P4PWG co-chair), Laird Popkin (Pando Networks;
P4PWG co-chair), and Marty Lafferty (DCIA) made it
possible to conduct preliminary field tests on key per-
spectives of P4P. The results demonstrate that P4P can be
a promising approach to improve both application per-
formance and provider efficiency. The working group
makes joint efforts towards standardizing the P4P frame-
work and proposing best practices for P2Ps and ISPs.
The P4P Working Group consists of 70+ ISPs, P2P com-
panies and researchers working together to address a wide
range of business and policy issues. We would encour-
age the IETF to establish a workgroup to work collabo-
ratively with the P4P Working Group to pursue standards
in this area.

7. REFERENCES
[1] Cisco. Network-based application recognition (NBAR).

www.cisco.com/univercd/cc/td/doc/product/
software/ios122/122newft/122t/%122t8/dtnbarad.htm.

[2] F5 White Paper. Bandwidth management for peer-to-peer applications.
http://www.f5.com/solutions/technology/
rateshaping_wp.html, Jan. 2006.

[3] D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang. Optimizing cost
and performance for internet multihoming. InProceedings of ACM
SIGCOMM ’04, Portland, OR, August 2004.

[4] S. Guha, N. Daswani, and R. Jain. An experimental study of the skype
peer-to-peer VoIP system. InProc of IPTPS, Santa Barbara, CA, Feb.
2006.

[5] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan.
Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload. InProc. of SOSP ’03, Bolton Landing, Oct. 2003.

[6] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should internet service
providers fear peer-assisted content distribution? InProceedings of the
Internet Measurement Conference, Berkeley, CA, Oct. 2005.

[7] R. Keralapura, N. Taft, C.-N. Chuah, and G. Iannaccone. Can ISPs take the
heat from overlay networks? InProc. of HotNets-III, San Diego, CA, Nov.
2004.

[8] Lightreading.com. P2P plagues service providers.
[9] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane: An information plane
for distributed services. InProc. of OSDI, Seattle, WA, 2006.

[10] A. Parker. The true picture of peer-to-peer filesharing.
http://www.cachelogic.com, July 2004.

[11] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do Incentives Build Robustness in BitTorrent? InProc.
of NSDI, 2007.

[12] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. Selfish routing in
Internet-like environments. InProc of SIGCOMM, Karlsruhe, Germany,
Aug. 2003.

[13] S. Seetharaman and M. Ammar. Characterizing and mitigating
inter-domain policy violations in overlay routes. InProc of ICNP, 2006.

[14] G. Shen, Y. Wang, Y. Xiong, B. Y. Zhao, and Z.-L. Zhang. HPTP:
Relieving the tension between ISPs and P2P. InProc of IPTPS, Bellevue,
WA, Feb. 2007.

[15] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak. Cache
replacement policies revisited: The case of p2p traffic. InProc of GP2P,
Chicago, IL, Apr. 2004.

[16] H. Xie and Y. R. Yang. A measurement-based study of the skype
peer-to-peer VoIP performance. InProc of IPTPS, Bellevue, WA, Feb.
2007.

[17] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. P4P:
Provide portal for (P2P) applications. InProceedings of ACM SIGCOMM,
Seattle, WA, August 2008.

[18] ZDNet News. ISPs see costs of file sharing rise.
http://news.zdnet.com/2100-9584_22-1009456.html,
May 2003.

5


